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First order phase transitions in a Bianchi type-I universe
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Considering the theory of induced gravity coupled to matter fields, takinghateraction potential model
we evaluate the one-loop effective potential ifB& 1)-dimensional Bianchi type-l spacetime. It is proved that
the ¢° theory can be regularized i3+ 1)-dimensional curved spacetime. We evaluate the finite temperature
effective potential and study the temperature dependence of phase transitions. The nature of phase transitions
in the early universe is clarified to be of first order. The effects of spacetime curvature and arbitrary field
coupling on the phase transitions in the early universe are also discussed.

PACS numbses): 04.62+v, 11.10.Gh, 11.10.Wx, 11.15.Ex

I. INTRODUCTION metry. At the classical level the scalar curvature acts as an
effective mass of the field and thus influence the phase tran-
In the early universe, symmetries that are spontaneouslsition of the system. The effect of anisotropy on the static
broken today were restored and during the evolution of thespacetimes such as a mixmaster or Taub universe on the
universe there were phase transitions, perhaps many, assoprocess of symmetry breaking and restoration has also been
ated with the spontaneous breakdown of symmeii&3B discussed13,14.
[1]. During such a phase transition it is possible for the field In the present work we discuss the quantum field effects
to acquire nonzero vacuum expectation values. In general, @ phase transition and the temperature dependence of phase
symmetry breaking phase transition can be first or seconttansition for a¢® theory in a Bianchi type-I universe. This
order. For a first order phase transition the change im is the most general model for a self-interacting scalar field
going from one phase to the other must be discontinuousexhibiting ¢— — ¢ symmetry. Self-interactions up ¥® ex-
while for a second order transition there is no barrier at thehibit three lowest levels well separated from the rgd].
transition point and the transition occurs smoothly. Of par-Boyanovsky and Masperi have shown that the nature of
ticular interest for cosmology is the nature of phase transiphase transitions associated with such a field system may be
tion, whether or not it is first order. If the phase transition isof first order or second order depending on the relative
strongly first order, the Universe may be dominated by thedepths of the wells and the strength of coupling.
vacuum energy and undergo a period of inflation. In this One of the simplest models of an anisotropic universe that
case, the transition proceeds by the nucleation of bubbles afescribes a homogeneous and a spatially flat universe is the
the true vacuum. If the phase transition is higher order, oBianchi type-lI cosmology. Unlike the Friedmann-Robertson-
weakly first order, thermal fluctuations may drive the transi-Walker (FRW) model which has the same scale factor for
tion. each of the three spatial directions, the Bianchi type-I cos-
Quantum fields have profound influence on the dynamicaimology has a different scale factor in each direction, which
behavior of the early univer§@—4]. Quantum field theory in  produces an anisotropy in expansion. Futamase has consid-
an external classical gravitational field is usually regarded aered the effective potential in a Bianchi type-1 univef6|
a first step towards a more complete theory of quantum grawhich reduces to the spatially flat Robertson-Walker model
ity [5]. At high energies the quantum matter fields are fre€for zero anisotropy. Huang has discussed the fate of symme-
from all the interactions except the conformal one with antry in a Bianchi type-I universe using an adiabatic approxi-
external metric. The requirement of conformal invariance ismation for a massless field with arbitrary coupling to gravity
especially important for the scalar field, as it fixes the valug17]. Berkin has also calculated the effective potential in a
of the nonminimal parameter of the scalar curvature interacBianchi type-l universe, for a scalar field having arbitrary
tion to the conformal value. The effect of the quantum con-mass and coupling to gravify. 8].
formal factor leads to a first order phase transition induced ¢® model is known to be nonrenormalizable (@+1)-
by curvature where the scalar field plays the role of the ordedimensional flat spacetime. Nonrenormalizability of the field
parametef6—8]. theory does not mean that the theory is not interesting and it
The influence of quantum fields and the gravitational ef-does not mean, of course, that finite renormalized prescrip-
fects on the cosmological phase transitions have been invetien for the calculation of one-loop effective potential does
tigated by many authof®-12. From an analysis based on not exist[19]. Using the present® model we have obtained
the one loop renormalized effective potential it is concludeda finite expression for the one-loop effective potential. The
that the scalar gravitational couplidgand the magnitude of present calculations show that t#€ model can be regular-
the scalar curvatur® crucially determine the fate of sym- ized using the effective potential method iB+1)-
dimensional curved spacetime. This paper is organized in the
following way. In Sec. Il we evaluate the one-loop effective
*Email address: minujoy@cusat.ac.in potential for ¢° theory in a (3+1)-dimensional Bianchi
"Email address: vck@cusat.ac.in type-1 spacetime with small anisotropy and discuss the prop-
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erties of quantum field corrections to the symmetry breaking

or restoration. The finite temperature effects on the phase
transitions of early universe are discussed in Sec. Il and the
nature of phase transitions is examined in Sec. IV. The cru-

cial dependence of phase transitions of the early universe on
spacetime curvature and the gravitational-scalar coupling is
made clear in Sec. V. Section VI is devoted to discussions
and conclusions of the present calculations.

II. QUANTUM FIELD EFFECTS ON SYMMETRY
BREAKING AND RESTORATION IN BIANCHI TYPE-I
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SPACETIME To makeV finite, the following renormalization conditions

The Lagrangian density £ describing a massive self@® used:

interacting scalar fieldp coupled arbitrarily to the gravita-

tional background is 3V ot
mi= 5 : €)
1 2 122 2 2 I $.=R=0
£=\=0|5[0"" 9,40, — ERP*] = 5 NG ($*—mIN)? |, ‘
()
Vit
where the classical potential corresponding to this Lagrang- &= IRID2
ian is 9o/ gm0
1 LTI 2
V($)= 5 RGP+ SN2 ($°—m/n )%, v Az
r— 4 ’
d
This Lagrangian exhibitgp— — ¢ symmetry. The equa- ¢ ¢=R=0
tion of motion associated with the Lagrangiél) is
6
9“'V,V b+ (MP+ ER) p— 4k d®+302¢°=0  (3) y2_ | Vet
r 6
17
in which we putm\ = x. We can write i $c=R=0
¢=dct by, @ To evaluate( b5, ($3), and(¢g) we adopt the canonical
where g is the classical field ang, is a quantum field with guantization relations
vanishing vacuum expectation valde,)=0. Introducing
the renormalized parameters [Dq(t,X), pq(t,y)]=[q(t,X), m4(t,y)]=0,
m2=mZ+om?, E=§& + 8¢, .
; A . [ba(t.X), mo(ty) =i 8(x—y), (10
K=K, t Ok, )\2=Ar2+ D%
where the conjugate momentumr, is defined by
the field equation for the classical fielbl, becomes =9£/3(d; ). Due to the space homogeneity we expand the
quantum field ¢, by the summation or integration over
9*"V ,V et [(M7 + 6MP) + (& + SE)R] b, modes in the form
— 4K+ 5K) p— 120+ 5k) e{ bg),
(6) ¢q(t,X)=C‘1’2(t)f du(K)[akxk(t)yr(x)
+3(N7+ ON) §2+ 30T+ ONP) b 65)
+a xi (YR (0], 11

+15(\2+ ON2) e hg) =0

é(vhereyk(x) is a normalized eigenfunction of the spatial part
of field equation, whiley,(t) is that of the time part. An
explicit functional form of the mode solutiong,(t) and
Q”VV,LVV¢q+(mr2+ gR)¢q_12Kr¢§¢q+ 15)\r2¢§¢q20' yk(x) can only be found after specifying the background
(7)  spacetime.
We consider g3+1)-dimensional Bianchi type-l space-
The effective potential ¥ is given by time with small anisotropy which has the line element

and to the one loop quantum effect, the field equation for th
quantum fieldg, is
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ds?=C(n)dn?—a2(n)dx2—a3(n)dy’—ad(5)dZ, where the spacetime curvature functR@and the anisotropic
(12  functionQ are
C=(a18,85)%". )
_ _ - R=6C }(H+H?+Q), H=2 h;,
In this model the mode function can be written in the sepa- i

rated form as W=C~Y(27) ~*Zexpix.X)xi(n) and then (15)
_ éi _1 _h2
(¢§(7i)>=8773—c(77)f d*kxi( )Xk (7)., h‘_ai’ Q= 36i2<j (hi=hy)*
y When the metric is slowly varying Eq.l4) possesses
=————| d% HENIE WKB approximation solution
(ba(m) 64m5C( n)f Dx(mxic ()] pp
(13
and Xk=(2wk)—1/2exp(—i f ank>, (16)
6 =—— | d% * 3, where
(bq(m) 51279C% n)f [x(m)xi ()]
i i 1
The wave equation Edq7) will then lead to W, = [ clm+| g - 6) R— 12, 2+ 15\ 25"
N 2 1 2 244
X+ Cl mi+| & 5 |R—12x 4+ 15\ ¢ 2 172
+> = +Q] .
k2 ba
+2 +Q]xk=o, (14)
I Substituting the above solution in EAQ.3),

1 1 k2 —1/2
x_ - 3 2 i = 2 2 .4 o
(¢t 167730(77)jd k‘C m,ju(gr G)R 12Kr¢>c+15>\r<;sc+2i 7 +Q]
1
1 1 1 0 m+| & — g) R—12x, 2+ 15\ o+ %
= A%+ > m2+| & — E)R—12Kr¢>§+ 15\2gpe+ e e
17)
and similarly,
1 Q 1/2
mZ+| &— —) R—12«, p2+ 15\ 2o+ =
s A ) 6 C
<¢q>_ 12874C3/2 A
A
X arctan 1 o2 ( (18)
mZ+| &— 5) R—12«, p2+ 15\ 2o+ <
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where we have introduced a momentum cutbffo regularize thék integration. From the renormalization conditions given by
Eq. (9), the renormalization counterterms are evaluated as

m2+9 2 2
, (Kt 6k) A2 1 2+Q . e 15\ 2+ 602) 2+Q 172 t A
N L A AP TC TS == R = e Rl B
my+ =<
C
(19
m2+9
3(,<r+5,<)<§ 1 -~ r'C +15(>\r2+5>\2)< 1) 1 t A
= - = n || T~z arctan ——— 13
8m 6 4A2 25674C32 |°" 6 , Q\¥ , Q|
mr+E mr+E
S (20)
Q 1
mr2+E+A2
7\2
OK=—K,— i , (21
m2+9
60 45\2 -~ T C 542
yp +In 5 + )
T mr+E
2
, , T 135¢3
8y —AN;m+27k,\;| 2+In +
402 , Q
m+ —
' C
ONZ=— N2+
m2+9
, 1/, Q " 3k, 1 A A
225 At z|{mf+ <|| 1+In >t 3 T arcta | —
2 C 167 Q\2 Q\? , Q
m2+ = 2, < mf+E+A
' C r'cC
X ! (22
m2+ 2 -
45\ 2 - ' C 54x?
+In +
4 42 ,, Q
g mr+E

Substituting the renormalization counterterms, we #iMi«/J¢. obtained from Eq(8) as
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et _ (m2+ £,R) g+ &
—=(m
dbe roenTe L3, Q 3k, na
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2 C Q\2 2
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Q|2 1
2
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- 1 1 nm 7
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+| - + c
900 , Q 2 , Q 3k, nw
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C C Q2! 2
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2 1 2 2,4 Q
2| M+ | &= | R— 1267+ 1N E+ S
3 n
25 mr2+9 — =
C Q 2 2
16'77'3 mr2+ E)
2 1 2 2,4, Q] 3
X| 1+In| mf+ §r—g R_12Kr¢c+15)\r¢c+6 be
32k, 7 5
n ¢, where n=123.... (23)
, Q 3k, na
37§ | MP+ < |+ ———— | -
C Q 2 2
1673 m$+E

The above equation shows that we can obtain finite exfor some suitable values of scalar gravitational coupling
pression for the one loop effective potential using ths  could the symmetry be radiatively broken or restored.
model in(3+1)-dimensional Bianchi type | spacetime. Thus  The perturbative method of calculating the effective po-
it is clear that thep® theory in 3+1 dimensions can be regu- tential can be improved by using renormalization gréR()
larized in a curved anisotropic spacetime using the effectivepproact20]. Such RG improved effective potential can be
potential method. It is to be noted that once we let the anealculated in curved spacetime tp1]. The condition ex-
isotropy in the above equation be zero, our result is consispressing the independence of the effective potential from the
tent with that of the symmetric homogeneous case. renormalization point leads to renormalization group equa-

Now we are in a position to investigate the gravitationaltion (RGE) [6]. This property in renormalizable theories may
and quantum field effects on the cosmological phase transbe used for construction of famous RG improved effective
tions. This can be done by considering the case-0. In  potential, which is much more exact than one loop-effective
the case of conformal coupling:(= %) or vanishing scalar potential, because it takes into account all orders of the per-
curvature R=0) we have turbation theory. However, unlike such multiplicatively
renormalizable theories RG improved potential will not give
oV leading log approximation in the preses#f model as the
( eff ~m2ee (24)  theory is not multiplicatively renormalizable.

a¢C ) 4)0_,0

. . . . IIl. FINITE TEMPERATURE BEHAVIOR
which shows that in such situations, the one-loop quantum

correction does not change the fate of symmetry. For the The evolution of particles in vacuum and in a thermal
other cases, we can find from the above equations that onlyath are very different. Similarly, the nature of evolution of

104017-5



MINU JOY AND V. C. KURIAKOSE PHYSICAL REVIEW D 62 104017

field changes when coupled to a thermal bath. Under certaiwhere we put ¥ 82=E%, —M?2. The integral may be evalu-

conditions, the ch_anges may be absorbed in a temperaturgre by expandiny’(o) as a Taylor series and in the high-

d_ependent potential, the finite temperature effective pOtent'emperature limit we find that

tial. The temperature dependence of finite temperature effec-

tive potential in quantum field theory leads to phase 2 2 3 4

i . . - —r M M M

transitions in the early univerg@2]. In this case the vacuum VE(o)= + - —

expectation value is replaced by the thermal averag; 008* 2482 1278  64rx?

= o7 taken with respect to a Gibbs ensemflé N _ _
In this section we evaluate the effective potential at finite The critical temperature in the present case is

temperature and show that the symmetry breaking present in

the model can be removed if the temperature is raised above _[(m2+ £éR)

o= —

InM?82. (31)

1/2

a certain value called the critical temperature. Considering Am (32

the same Lagrangian density as above, the zero loop effec-
tive potential is temperature independent, The symmetry breaking present in the model can be re-
moved if the temperature is raised above a certain value

1 1 called the critical temperature. The order parameter of the
Volo) = EgR‘TZJr E)‘ZUZ(UZ_ m/N)?, @9 theory is temperature dependent.
The one loop approximation to finite temperature effective IV. NATURE OF PHASE TRANSITION
potential has been computed by many authags-26 and is
given by The characteristic of a first order phase transition is the
existence of a barrier between the symmetric and the broken
1 d3k phase[27]. The temperature dependence\&f; for a first
VE(o)== > J 5In(k?—M?) order phase transition obtained using the pregénnodel is
2% ) (2m) shown in Figs. (a)—1(e). WhenT>T,, the effective poten-
1 &K 4?2 tial attains a minimum atr=0, which corresponds to the
_ = 2 f In( mn- E2 (26) completely symmetric case. When the temperature decreases,
2B 45 (2m)° B? ’ a global minimum appears at=0 and two local minima at
o#0, which shows the existence of a barrier between the
where global and local minima. AT=T,, all the minima are de-
generate, that means the symmetry is broken.T~ofl . the
E%A:kZJF M2, (27) minima ato#0 becomes the global one. If far<T, the
extremum ab=0 remains a local minimum, there must be a
M2=m2+ ¢R— 12Ama2+ 15\ 202, barrier between the minimum at=0 and atoc#0. There-

fore the change i in going from one phase to the other

The sum oven diverges: it may be evaluated by the methogMust be discontinuous, indicating a first order phase transi-
of Dolan and Jackiv{23], and we get tion. The phase transition startsTat by tunneling, however,
if the barrier is high enough the tunneling effect is very small

and the phase transition effectively starts at a temperature

3
V/f(g):f dk E_’V'+ 1 In(1—e PE) T<T,. [28]. This shows that the present model can describe
2m)3l 2 B first order phase transitions which might have taken place
_ during the evolution of the early universe.
=V3(0)+Vi(0), (28
Where V. DEPENDENCE ON SCALAR CURVATURE R AND
SCALAR-GRAVITATIONAL COUPLING £
0 d’k Ey Using this ¢® model, it is proved that the curvature can
Vl(ff):f 3 2 (29) restore broken symmetries for a wide range of parameters
(2m) from conformal to near minimal couplings, even if the tem-
perature is below critical temperature. Figure 2 clearly shows
and that the first order phase transition takes plac® akanges.
5 The scalar-gravitational coupling constehts found to
VB(U):J d°k lln(l—e‘BE) play a crucial role in symmetry breaking phase transitions.
1 (2m)3 B Classically, a positive restores symmetry, while the oppo-

site effects are found for negative couplifit8]. Quantum
% o ooy effects depend on the value_ éfrelative to the conformal _
Jo xdxIn[1—exp—(x*+ B*M?)¥?], value ;. The present calculations show that the symmetry is
restored as the scalar coupling constérs$ increased. This
(30 phase transition, induced by the coupling constaig also

a 477'B3
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FIG. 1. (a) The behavior of finite temperature effective potential as a function fofr fixed m=0.9371,A=0.008,R=11.2¢=1.6 and
T=50 such thafT>T,, for which the symmetry is completely restorgd) The behavior of finite temperature effective potential as a
function of o for fixed m=0.9371,A=0.008, R=0.8¢£=0.145, andT=10.15 such thaf >T,. (c) The behavior of finite temperature
effective potential as a function of for fixed m=0.9371,A =0.008,R=0.35£=0.004, andl =8.69 such thalT =T, . (d) The behavior of
finite temperature effective potential as a functiorvofor fixed m=0.9371,A =0.008,R=0.31¢=—0.22, andT =5 such thalf <T.. (e)
The behavior of finite temperature effective potential as a functiosm @r fixed m=0.9371,A=0.008,R=0.3¢=—0.3 andT=0.

found to be of first order. It is clear from Fig. 3 that there is dimensiong19]. The present calculations show that @@

a barrier between the symmetric and broken phases. theory in 3+1 dimensions can be regularized in curved
spacetime and one can obtain finite expression for the one
VI. DISCUSSIONS AND CONCLUSIONS loop effective potential. In this paper we closely examine

According to renormalizability considerations, degree ofand verify the temperature dependence of phase transitions
the interaction potential cannot be higher than four #13 in the early universe and verify their nature to be of first
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FIG. 2. The behavior of finite temperature effective potential as  FIG. 3. The behavior of finite temperature effective potential as
a function ofo for fixed m=0.9371,A=0.008,£=0.1, andT=1. a function of o for fixed m=0.9371,A=0.008,R=0.3 andT=3.
Starting from top the curves corresponds to the following values ofStarting from top the curves corresponds to the following values of
the curvatureR=15,4,2.5,0.5,0.00%0.9. the curvature£=6.5,2.3,1.25,0.01,0.3-0.7.

order as the transition is found to be discontinuous. ues of T<T;. As the temperature is increased abdye the

In most of the works on cosmological phase transitionssymmetry is restored depending on the valuest aind R
the coupling to the background gravitational field is ignored.also. It is also found that symmetry can be restored either by
One deals with the quantum field theory in flat spacetime aincreasing the value of or by increasing the value dR
finite temperature and the expansion of the Universe servegeping the temperature constant. This shows that the scalar-
only to decrease the temperature. However, at sufficientlgravitational coupling and the scalar curvature do play a cru-
early times the spacetime curvature can be expected to lgal role in determining the nature of phase transitions which
important. Many authors have argued that such effects magook place in the early universe.
be important in the context of cosmological phase transitions These results may be useful for the study of quantum
in grand unified modelg19,29—-32. Vilenkin and Ford have thermal processes in the early universe. To examine the sym-
shown that spacetime curvature can drastically change theetry behavior of the early universe closely one should take
behavior of the systerf83]. O’Connor and co-workers have into consideration the effects of spacetime curvature and fi-
confirmed the effect of spacetime curvature and arbitrannite temperature corrections in their full rights.
field coupling on the phase transitions of the early universe
[34]. Jansor{35], Grib and MosteparenkiB6], and Madsen
[37] have independently shown that the interaction with the
external gravitational field may lead to SSB. The present We thank Professor T. Padmanabhan and Professor Maria
work proves that the phase transition taking place during.ombardo for valuable discussions. One of(%J.) would
such a SSB is first order. It is found that f6=0 or R=0 like to thank UGC, N. Delhi for the financial support. V.C.K.
the system remains in the symmetry broken state for all valacknowledges Associateship of IUCAA, Pune.
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