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First order phase transitions in a Bianchi type-I universe

Minu Joy* and V. C. Kuriakose†

Department of Physics, Cochin University of Science and Technology, Cochin, India 682022
~Received 6 June 2000; published 18 October 2000!

Considering the theory of induced gravity coupled to matter fields, taking thef6 interaction potential model
we evaluate the one-loop effective potential in a~311!-dimensional Bianchi type-I spacetime. It is proved that
the f6 theory can be regularized in~311!-dimensional curved spacetime. We evaluate the finite temperature
effective potential and study the temperature dependence of phase transitions. The nature of phase transitions
in the early universe is clarified to be of first order. The effects of spacetime curvature and arbitrary field
coupling on the phase transitions in the early universe are also discussed.

PACS number~s!: 04.62.1v, 11.10.Gh, 11.10.Wx, 11.15.Ex
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I. INTRODUCTION

In the early universe, symmetries that are spontaneo
broken today were restored and during the evolution of
universe there were phase transitions, perhaps many, as
ated with the spontaneous breakdown of symmetries~SSB!
@1#. During such a phase transition it is possible for the fi
to acquire nonzero vacuum expectation values. In gener
symmetry breaking phase transition can be first or sec
order. For a first order phase transition the change inf in
going from one phase to the other must be discontinuo
while for a second order transition there is no barrier at
transition point and the transition occurs smoothly. Of p
ticular interest for cosmology is the nature of phase tran
tion, whether or not it is first order. If the phase transition
strongly first order, the Universe may be dominated by
vacuum energy and undergo a period of inflation. In t
case, the transition proceeds by the nucleation of bubble
the true vacuum. If the phase transition is higher order
weakly first order, thermal fluctuations may drive the tran
tion.

Quantum fields have profound influence on the dynam
behavior of the early universe@2–4#. Quantum field theory in
an external classical gravitational field is usually regarded
a first step towards a more complete theory of quantum g
ity @5#. At high energies the quantum matter fields are f
from all the interactions except the conformal one with
external metric. The requirement of conformal invariance
especially important for the scalar field, as it fixes the va
of the nonminimal parameter of the scalar curvature inter
tion to the conformal value. The effect of the quantum co
formal factor leads to a first order phase transition indu
by curvature where the scalar field plays the role of the or
parameter@6–8#.

The influence of quantum fields and the gravitational
fects on the cosmological phase transitions have been in
tigated by many authors@9–12#. From an analysis based o
the one loop renormalized effective potential it is conclud
that the scalar gravitational couplingj and the magnitude o
the scalar curvatureR crucially determine the fate of sym
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metry. At the classical level the scalar curvature acts as
effective mass of the field and thus influence the phase t
sition of the system. The effect of anisotropy on the sta
spacetimes such as a mixmaster or Taub universe on
process of symmetry breaking and restoration has also b
discussed@13,14#.

In the present work we discuss the quantum field effe
on phase transition and the temperature dependence of p
transition for af6 theory in a Bianchi type-I universe. Thi
is the most general model for a self-interacting scalar fi
exhibitingf→2f symmetry. Self-interactions up tof6 ex-
hibit three lowest levels well separated from the rest@15#.
Boyanovsky and Masperi have shown that the nature
phase transitions associated with such a field system ma
of first order or second order depending on the relat
depths of the wells and the strength of coupling.

One of the simplest models of an anisotropic universe t
describes a homogeneous and a spatially flat universe is
Bianchi type-I cosmology. Unlike the Friedmann-Robertso
Walker ~FRW! model which has the same scale factor f
each of the three spatial directions, the Bianchi type-I c
mology has a different scale factor in each direction, wh
produces an anisotropy in expansion. Futamase has co
ered the effective potential in a Bianchi type-I universe@16#
which reduces to the spatially flat Robertson-Walker mo
for zero anisotropy. Huang has discussed the fate of sym
try in a Bianchi type-I universe using an adiabatic appro
mation for a massless field with arbitrary coupling to grav
@17#. Berkin has also calculated the effective potential in
Bianchi type-I universe, for a scalar field having arbitra
mass and coupling to gravity@18#.

f6 model is known to be nonrenormalizable in~311!-
dimensional flat spacetime. Nonrenormalizability of the fie
theory does not mean that the theory is not interesting an
does not mean, of course, that finite renormalized presc
tion for the calculation of one-loop effective potential do
not exist@19#. Using the presentf6 model we have obtained
a finite expression for the one-loop effective potential. T
present calculations show that thef6 model can be regular
ized using the effective potential method in~311!-
dimensional curved spacetime. This paper is organized in
following way. In Sec. II we evaluate the one-loop effecti
potential for f6 theory in a ~311!-dimensional Bianchi
type-I spacetime with small anisotropy and discuss the pr
©2000 The American Physical Society17-1



in
a
th
ru

e
g
on

el
-

n

-

th

s

l

the
r

rt

nd

-

MINU JOY AND V. C. KURIAKOSE PHYSICAL REVIEW D 62 104017
erties of quantum field corrections to the symmetry break
or restoration. The finite temperature effects on the ph
transitions of early universe are discussed in Sec. III and
nature of phase transitions is examined in Sec. IV. The c
cial dependence of phase transitions of the early univers
spacetime curvature and the gravitational-scalar couplin
made clear in Sec. V. Section VI is devoted to discussi
and conclusions of the present calculations.

II. QUANTUM FIELD EFFECTS ON SYMMETRY
BREAKING AND RESTORATION IN BIANCHI TYPE-I

SPACETIME

The Lagrangian density £ describing a massive s
interacting scalar fieldf coupled arbitrarily to the gravita
tional background is

£5A2gH 1

2
@gmn]mf]nf2jRf2#2

1

2
l2f2~f22m/l!2J ,

~1!

where the classical potential corresponding to this Lagra
ian is

V~f!5
1

2
jRf21

1

2
l2f2~f22m/l!2. ~2!

This Lagrangian exhibitsf→2f symmetry. The equa
tion of motion associated with the Lagrangian~1! is

gmn¹m¹nf1~m21jR!f24kf313l2f550 ~3!

in which we putml5k. We can write

f5fc1fq , ~4!

wherefc is the classical field andfq is a quantum field with
vanishing vacuum expectation value^fq&50. Introducing
the renormalized parameters

m25mr
21dm2, j5j r1dj,

~5!
k5k r1dk, l25l r

21dl2,

the field equation for the classical fieldfc becomes

gmn¹m¹nfc1@~mr
21dm2!1~j r1dj!R#fc ,

24~k r1dk!fc
3212~k r1dk!fc^fq

2&,
~6!

13~l r
21dl2!fc

5130~l r
21dl2!fc

3^fq
2&

115~l r
21dl2!fc^fq

4&50

and to the one loop quantum effect, the field equation for
quantum fieldfq is

gmn¹m¹nfq1~mr
21jR!fq212k rfc

2fq115l r
2fc

4fq50.
~7!

The effective potential Veff is given by
10401
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Veff5
1

2
@~mr

21dm2!1~j r1dj!R#@fc
21^fq

2&#2~k r

1dk!fc
426~k r1dk!fc

2^fq
2&2~k r1dk!^fq

4&

1
1

2
~l r

21dl2!fc
61

15

2
~l r

21dl2!fc
4^fq

2&

1
15

2
~l r

21dl2!fc
2^fq

4&1
1

2
~l r

21dl2!^fq
6&. ~8!

To makeVeff finite, the following renormalization condition
are used:

mr
25S ]2Veff

]fc
2 D

fc5R50

, ~9!

j r5S ]3Veff

]R]fc
2D

fc5R50

,

k r5S ]4Veff

]fc
4 D

fc5R50

,

l r
25S ]6Ve f f

]fc
6 D

fc5R50

.

To evaluatê fq
2&, ^fq

4&, and ^fq
6& we adopt the canonica

quantization relations

@fq~ t,x!,fq~ t,y!#5@pq~ t,x!,pq~ t,y!#50,

@fq~ t,x!,pq~ t,y!#5 id3~x2y!, ~10!

where the conjugate momentumpq is defined by pq
5]£/](] if). Due to the space homogeneity we expand
quantum fieldfq by the summation or integration ove
modes in the form

fq~ t,x!5C21/2~ t !E dm~k!@akxk~ t !yk~x!

1ak
1xk* ~ t !yk* ~x!#, ~11!

whereyk(x) is a normalized eigenfunction of the spatial pa
of field equation, whilexk(t) is that of the time part. An
explicit functional form of the mode solutionsxk(t) and
yk(x) can only be found after specifying the backgrou
spacetime.

We consider a~311!-dimensional Bianchi type-I space
time with small anisotropy which has the line element
7-2
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ds25C~h!dh22a1
2~h!dx22a2

2~h!dy22a3
2~h!dz2,

~12!

C5~a1a2a3!2/3.

In this model the mode function can be written in the se
rated form as uk5C21/2(2p)23/2exp(ik.x)xk(h) and then

^fq
2~h!&5

1

8p3C~h!
E d3kxk~h!xk* ~h!,

^fq
4~h!&5

1

64p6C2~h!
E d3k@xk~h!xk* ~h!#2,

~13!

and

^fq
6~h!&5

1

512p9C3~h!
E d3k@xk~h!xk* ~h!#3.

The wave equation Eq.~7! will then lead to

ẍ1H CFmr
21S j r2

1

6DR212k rfc
2115l r

2fc
4

1(
i

ki
2

ai
2G1QJ xk50, ~14!
10401
-

where the spacetime curvature functionR and the anisotropic
function Q are

R56C21~Ḣ1H21Q!, H5(
i

hi ,

~15!

hi5
ȧi

ai
, Q5

1

36 (
i , j

~hi2hj !
2.

When the metric is slowly varying Eq.~14! possesses
WKB approximation solution

xk5~2Wk!
21/2expS 2 i E dhWkD , ~16!

where

Wk5H CFmr
21S j r2

1

6DR212k rfc
2115l r

2fc
4

1(
i

ki
2

ai
2G1QJ 1/2

.

Substituting the above solution in Eq.~13!,
^fq
2&5

1

16p3C~h!
E d3kH CFmr

21S j r2
1

6DR212k rfc
2115l r

2fc
41(

i

ki
2

ai
2G1QJ 21/2

5
1

16p
H L21

1

2 Fmr
21S j r2

1

6DR212k rfc
2115l r

2fc
41

Q

CGF 11 lnS mr
21S j r2

1

6DR212k rfc
2115l r

2fc
41

Q

C

4L2
D G J

~17!

and similarly,

^fq
4&5

L

128p4C3/2H 12

Fmr
21S j r2

1

6DR212k rfc
2115l r

2fc
41

Q

CG1/2

L

3arctan
L

Fmr
21S j r2

1

6DR212k rfc
2115l r

2fc
41

Q

CG1/2J , ~18!
7-3
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where we have introduced a momentum cutoffL to regularize thek integration. From the renormalization conditions given
Eq. ~9!, the renormalization counterterms are evaluated as

dm25
3~k r1dk!

4p
H L21

1

2 S mr
21

Q

CD S 11 lnFmr
21

Q

C

4L2
G D J 2

15~l r
21dl2!

128p4C3/2 FL2S mr
21

Q

CD 1/2

arctanS L

S mr
21

Q

CD 1/2D G ,

~19!

dj5
3~k r1dk!

8p S j r2
1

6D F 21 lnS mr
21

Q

C

4L2
D G1

15~l r
21dl2!

256p4C3/2 S j r2
1

6D F 1

S mr
21

Q

CD 1/2 arctanS L

S mr
21

Q

CD 1/2D
2

L

S mr
21

Q

C
1L2D G , ~20!

dk52k r2
l r

2

60H 45l r
2

4p
S 21 lnFmr

21
Q

C

4L2
G D 1

54k r
2

pS mr
21

Q

CD J
, ~21!

dl252l r
21

8H 2l r
2p127k rl r

2S 21 lnFmr
21

Q

C

4L2
G D 1

135k r
3

S mr
21

Q

CD J
2255 L21

1

2 S mr
21

Q

CD S 11 ln

mr
21

Q

C

4L2
D 1

3k r

16p3 S 1

S mr
21

Q

CD 1
2

arctanF L

S mr
21

Q

CD 1
2 G2

L

mr
21

Q

C
1L2D 6

3
1

F 45l r
2

4p
S 21 lnFmr

21
Q

C

4L2
G D 1

54k r
2

pS mr
21

Q

CD G
. ~22!

Substituting the renormalization counterterms, we find]Veff /]fc obtained from Eq.~8! as
104017-4
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]Veff

]fc
5~mr

21j rR!fc1

k r S np

2 D
100p3C

3

2F S mr
21

Q

CD1
3k r

16p3S mr
21

Q

CD
1
2
S np

2 D G
3H S mr

21
Q

CD 1
2

2Fmr
21S j r2

1

6DR212k rfc
2115l r

2fc
41

Q

CG J fc

1F 2

S j r2
1

6D
900

1

S j r2
1

6Dk r S np

2 D
200p3S mr

21
Q

C D 1
2F S mr

21
Q

CD1
3k r

16p3S mr
21

Q

CD 1
2
S np

2 D G G Rfc

1

2k rFmr
21S j r2

1

6DR212k rfc
2115l r

2fc
41

Q

CG
25F S mr

21
Q

CD1
3k r

16p3S mr
21

Q

CD 1
2
S np

2 D G
3F11 lnS mr

21S j r2
1

6DR212k rfc
2115l r

2fc
41

Q

CD Gfc
3

1
32k rp

375F S mr
21

Q

CD1
3k r

16p3S mr
21

Q

CD 1
2
S np

2 D G fc
5 , where n51,2,3 . . . . ~23!
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The above equation shows that we can obtain finite
pression for the one loop effective potential using thisf6

model in~311!-dimensional Bianchi type I spacetime. Thu
it is clear that thef6 theory in 311 dimensions can be regu
larized in a curved anisotropic spacetime using the effec
potential method. It is to be noted that once we let the
isotropy in the above equation be zero, our result is con
tent with that of the symmetric homogeneous case.

Now we are in a position to investigate the gravitation
and quantum field effects on the cosmological phase tra
tions. This can be done by considering the casefc→0. In
the case of conformal coupling (j r5

1
6 ) or vanishing scalar

curvature (R50) we have

S ]Veff

]fc
D

fc→0

;mr
2fc ~24!

which shows that in such situations, the one-loop quan
correction does not change the fate of symmetry. For
other cases, we can find from the above equations that
10401
-

e
-
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l
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m
e
ly

for some suitable values of scalar gravitational coupl
could the symmetry be radiatively broken or restored.

The perturbative method of calculating the effective p
tential can be improved by using renormalization group~RG!
approach@20#. Such RG improved effective potential can b
calculated in curved spacetime too@21#. The condition ex-
pressing the independence of the effective potential from
renormalization point leads to renormalization group eq
tion ~RGE! @6#. This property in renormalizable theories ma
be used for construction of famous RG improved effect
potential, which is much more exact than one loop-effect
potential, because it takes into account all orders of the p
turbation theory. However, unlike such multiplicative
renormalizable theories RG improved potential will not gi
leading log approximation in the presentf6 model as the
theory is not multiplicatively renormalizable.

III. FINITE TEMPERATURE BEHAVIOR

The evolution of particles in vacuum and in a therm
bath are very different. Similarly, the nature of evolution
7-5
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field changes when coupled to a thermal bath. Under cer
conditions, the changes may be absorbed in a tempera
dependent potential, the finite temperature effective po
tial. The temperature dependence of finite temperature ef
tive potential in quantum field theory leads to pha
transitions in the early universe@22#. In this case the vacuum
expectation value is replaced by the thermal average^f&T
5sT taken with respect to a Gibbs ensemble@1#.

In this section we evaluate the effective potential at fin
temperature and show that the symmetry breaking prese
the model can be removed if the temperature is raised ab
a certain value called the critical temperature. Consider
the same Lagrangian density as above, the zero loop e
tive potential is temperature independent,

V0~s!5
1

2
jRs21

1

2
l2s2~s22m/l!2. ~25!

The one loop approximation to finite temperature effect
potential has been computed by many authors@23–26# and is
given by

V1
b~s!5

1

2b (
n
E d3k

~2p!3
ln~k22M2!

5
1

2b (
n
E d3k

~2p!3
lnS 24p2n2

b2
2EM

2 D , ~26!

where

EM
2 5k21M2, ~27!

M25m21jR212lms2115l2s4.

The sum overn diverges; it may be evaluated by the meth
of Dolan and Jackiw@23# and we get

V1
b~s!5E d3k

~2p!3 FEM

2
1

1

b
ln~12e2bE!G

5V1
0~s!1V̄1

b~s!, ~28!

where

V1
0~s!5E d3k

~2p!3

EM

2
~29!

and

V̄1
b~s!5E d3k

~2p!3

1

b
ln~12e2bE!

5
1

4pb3E0

`

xdx ln@12exp2~x21b2M2!1/2#,

~30!
10401
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where we put x2/b25EM
2 2M2. The integral may be evalu

ated by expandingV̄1
b(s) as a Taylor series and in the high

temperature limit we find that

V1
b~s!5

2p2

90b4
1

M2

24b2
2

M3

12pb
2

M4

64p2
ln M2b2. ~31!

The critical temperature in the present case is

Tc5F ~m21jR!

lm G1/2

. ~32!

The symmetry breaking present in the model can be
moved if the temperature is raised above a certain va
called the critical temperature. The order parameter of
theory is temperature dependent.

IV. NATURE OF PHASE TRANSITION

The characteristic of a first order phase transition is
existence of a barrier between the symmetric and the bro
phase@27#. The temperature dependence ofVeff for a first
order phase transition obtained using the presentf6 model is
shown in Figs. 1~a!–1~e!. WhenT@Tc , the effective poten-
tial attains a minimum ats50, which corresponds to the
completely symmetric case. When the temperature decrea
a global minimum appears ats50 and two local minima at
sÞ0, which shows the existence of a barrier between
global and local minima. AtT5Tc , all the minima are de-
generate, that means the symmetry is broken. ForT,Tc the
minima atsÞ0 becomes the global one. If forT<Tc the
extremum ats50 remains a local minimum, there must be
barrier between the minimum ats50 and atsÞ0. There-
fore the change ins in going from one phase to the othe
must be discontinuous, indicating a first order phase tra
tion. The phase transition starts atTc by tunneling, however,
if the barrier is high enough the tunneling effect is very sm
and the phase transition effectively starts at a tempera
T!Tc @28#. This shows that the present model can descr
first order phase transitions which might have taken pl
during the evolution of the early universe.

V. DEPENDENCE ON SCALAR CURVATURE R AND
SCALAR-GRAVITATIONAL COUPLING j

Using thisf6 model, it is proved that the curvature ca
restore broken symmetries for a wide range of parame
from conformal to near minimal couplings, even if the tem
perature is below critical temperature. Figure 2 clearly sho
that the first order phase transition takes place asR changes.

The scalar-gravitational coupling constantj is found to
play a crucial role in symmetry breaking phase transitio
Classically, a positivej restores symmetry, while the oppo
site effects are found for negative coupling@18#. Quantum
effects depend on the value ofj relative to the conformal
value 1

6 . The present calculations show that the symmetry
restored as the scalar coupling constantj is increased. This
phase transition, induced by the coupling constantj is also
7-6
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FIG. 1. ~a! The behavior of finite temperature effective potential as a function ofs for fixed m50.9371,l50.008,R511.2,j51.6 and
T550 such thatT@Tc , for which the symmetry is completely restored.~b! The behavior of finite temperature effective potential as
function of s for fixed m50.9371, l50.008, R50.8,j50.145, andT510.15 such thatT.Tc . ~c! The behavior of finite temperatur
effective potential as a function ofs for fixed m50.9371,l50.008,R50.35,j50.004, andT58.69 such thatT5Tc . ~d! The behavior of
finite temperature effective potential as a function ofs for fixed m50.9371,l50.008,R50.31,j520.22, andT55 such thatT,Tc . ~e!
The behavior of finite temperature effective potential as a function ofs for fixed m50.9371,l50.008,R50.3,j520.3 andT50.
is

o

ed
one
ne
ions
rst
found to be of first order. It is clear from Fig. 3 that there
a barrier between the symmetric and broken phases.

VI. DISCUSSIONS AND CONCLUSIONS

According to renormalizability considerations, degree
the interaction potential cannot be higher than four in 311
10401
f

dimensions@19#. The present calculations show that thef6

theory in 311 dimensions can be regularized in curv
spacetime and one can obtain finite expression for the
loop effective potential. In this paper we closely exami
and verify the temperature dependence of phase transit
in the early universe and verify their nature to be of fi
7-7



n
d

rv
nt
o

on

t
e
a
rs

th
e
in

va

r by

alar-
ru-
ich

um
ym-

ake
fi-

aria

.

as

of

a

MINU JOY AND V. C. KURIAKOSE PHYSICAL REVIEW D 62 104017
order as the transition is found to be discontinuous.
In most of the works on cosmological phase transitio

the coupling to the background gravitational field is ignore
One deals with the quantum field theory in flat spacetime
finite temperature and the expansion of the Universe se
only to decrease the temperature. However, at sufficie
early times the spacetime curvature can be expected t
important. Many authors have argued that such effects m
be important in the context of cosmological phase transiti
in grand unified models@19,29–32#. Vilenkin and Ford have
shown that spacetime curvature can drastically change
behavior of the system@33#. O’Connor and co-workers hav
confirmed the effect of spacetime curvature and arbitr
field coupling on the phase transitions of the early unive
@34#. Janson@35#, Grib and Mosteparenko@36#, and Madsen
@37# have independently shown that the interaction with
external gravitational field may lead to SSB. The pres
work proves that the phase transition taking place dur
such a SSB is first order. It is found that forj50 or R50
the system remains in the symmetry broken state for all

FIG. 2. The behavior of finite temperature effective potential
a function ofs for fixed m50.9371,l50.008,j50.1, andT51.
Starting from top the curves corresponds to the following values
the curvature:R515,4,2.5,0.5,0.001,20.9.
d

v

10401
s,
.

at
es
ly
be
ay
s

he

ry
e

e
nt
g

l-

ues ofT<Tc . As the temperature is increased aboveTc , the
symmetry is restored depending on the values ofj and R
also. It is also found that symmetry can be restored eithe
increasing the value ofj or by increasing the value ofR
keeping the temperature constant. This shows that the sc
gravitational coupling and the scalar curvature do play a c
cial role in determining the nature of phase transitions wh
took place in the early universe.

These results may be useful for the study of quant
thermal processes in the early universe. To examine the s
metry behavior of the early universe closely one should t
into consideration the effects of spacetime curvature and
nite temperature corrections in their full rights.
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FIG. 3. The behavior of finite temperature effective potential
a function ofs for fixed m50.9371,l50.008,R50.3 andT53.
Starting from top the curves corresponds to the following values
the curvature:j56.5,2.3,1.25,0.01,20.3,20.7.
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