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Nonlinear gravitational wave interactions with plasmas
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We consider the interactions of a strong gravitational wave with electromagnetic fields using the 113
orthonormal tetrad formalism. A general system of equations is derived, describing the influence of a plane
fronted parallel (pp) gravitational wave on a cold relativistic multicomponent plasma. We focus our attention
on phenomena that are induced by terms that are higher order in the gravitational wave amplitude. In particular,
it is shown that parametric excitations of plasma oscillations take place, due to higher order gravitational
nonlinearities. The implications of the results are discussed.
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I. INTRODUCTION

There have been numerous investigations on the sca
ing of electromagnetic waves off gravitational fields~see
Refs.@1,2#!. Previous research has mostly directed its inter
towards the effects on vacuum electromagnetic fields~al-
though there are exceptions; see, e.g., Refs.@3,4#, where the
effects of plasmas have been taken into account!. Similarly,
much work concerning gravitational waves have conside
the linearized theory, which is obviously the relevant regi
for gravitational wave detectors or, in general, for distan
far away from the gravitational wave source. Alternative
there has been an interest in exact solutions, and thus a n
ber of exact gravitational wave solutions~see, e.g., Ref.@5#
and references therein! have been found. In the present pap
we will choose an intermediate approach, starting with
exact gravitational wave solution, but focusing on a we
amplitude~but still nonlinear! approximation, and studying
the effects induced in a plasma.

The question under study in this paper is whether non
ear gravitational wave effects—which may be of significan
close to the gravitational wave source—can give rise
qualitatively new phenomena in plasmas that are absen
linearized theory. Close to the source, additional effects a
from nonlinearities—due to, for example, the thre
dimensional geometry and/or the nonradiative part of
gravitational field—are likely to be important for astrophys
cal applications. However, in order to focus on the proces
directly induced by nonlinearities, a somewhat simp
model problem with a unidirectional gravitational wave w
be studied: To facilitate the analysis of the nonlinear int
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action between a plasma and a gravitational wave, we m
use of thepp-wave solution of Einstein’s field equations
Furthermore, we introduce a Lorentz tetrad in order to defi
physical variables in a straightforward manner. With th
setup, the governing plasma equations can be written
simple three-dimensional form. In Maxwell’s equations, t
gravitational effects are given by effective charge and curr
densities. Moreover, the fluid equations are given for a c
plasma.

Previously, the parametric excitation of a Langmuir wa
and an electromagnetic wave by a linearized gravitatio
wave was considered@6#. Here we address the question
whether higher order terms in the gravitational wave am
tude can result in new effects, using the above mentio
equations for a cold plasma. In order to demonstrate the
fulness of our set of equations, we study the stability pro
erties of a plasma in the presence of app wave. We show
that including second order gravitational wave effects m
give rise to new phenomena. In particular it is found th
electrostatic waves can be excited at a resonant sur
where the gravitational wave frequency is equal to the lo
plasma frequency. Our results are summarized and discu
in the last section of the paper.

II. PRELIMINARIES

A. Equations for a general space-time

We follow the approach presented in@3# for handling
gravitational effects in Maxwell’s equations. Suppose an
server moves with four-velocityua (a50, . . .,3). This ob-
server will measure the electric and magnetic~EM! fields @7#

Ea[Fabu
b, Ba[ 1

2 eabcF
bc, ~1!

respectively, whereFab is the EM field tensor. Hereeabc is
the volume element on hypersurfaces orthogonal toua.
©2000 The American Physical Society08-1
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We denote the fluid velocityVa[(g,gv), whereg[(1
2v2)21/2. Let q be the particle charge andn the proper num-
ber density. Furthermore, we introduce the orthonorm
frame ~ONF! $ea ,a50, . . . ,4%, each of which is a linear
combination of the coordinate derivatives] i[]/]xi , i.e., ea

5ea
i ] i . Using the split~1! together with j a5qnVa, Max-

well’s equations¹bFab5 j a, ¹ [aFbc]50 read

“•E5rE1r, ~2a!

“•B5rB , ~2b!

Ė2“3B52 j
E
2 j, ~2c!

Ḃ1“3E52 jB , ~2d!

where the ‘‘effective’’~gravity induced! charge densities an
current densities are

rE[2Gba
a Eb2eabgGab

0 Bg , ~3a!

rB[2Gba
a Bb1eabgGab

0 Eg , ~3b!

j E
a[2~G0b

a 2Gb0
a !Eb1G0b

b Ea2eabg~Gb0
0 Bg1Gbg

d Bd!,
~3c!

j B
a[2~G0b

a 2Gb0
a !Bb1G0b

b Ba1eabg~Gb0
0 Eg1Gbg

d Ed!,

~3d!

while r[(p.s.qgn and j[(p.s.qgnv are the matter charg
and current densities, respectively~the sums are over all par
ticle species!. Here Gbc

a are the Ricci rotation coefficient
with respect to the ONF$ea%. We have introduced the nota
tion E[(Ea)5(E1,E2,E3) etc., “[(e1 ,e2 ,e3), and the
overdot stands for derivative in the direction of the timeli
vectore0. The dot and cross products are defined in the us
Euclidean way.

The energy-momentum tensor for each particle specie
assumed to take the form of pressure free matter~dust!,
Tab5mnVaVb, where m is the rest mass of the particle
Then the conservation equations¹bTab5qnFabVb give

e0~gn!1“•~gnv !52gn~G0a
a 1G00

a va1Gba
a vb!, ~4a!

~e01v•“ !gv5
q

m
~E1v3B!2g@G00

a 1~G0b
a 1Gb0

a !

3vb1Gbg
a vbvg#ea . ~4b!

B. Basic relations in the field of app wave

Previous examinations of interactions between grav
tional radiation and EM waves have focused on lineariz
gravitation. On the other hand, one may suspect that th
will be interesting effects in the nonlinear regime, n
present to linear order. Below we will show that this is i
deed the case.

In order to address the issue of how strong gravitatio
radiation may be involved in generation of EM waves, w
look at theplane fronted parallel(pp) waves~for a discus-
10400
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sion, see Ref.@8#!, in the special case of a linearly polarize
plane wave:

ds252dt21a~u!2 dx21b~u!2 dy21dz2, ~5!

whereu5z2t, a andb satisfyabuu1auub50, and the sub-
script u denotes a derivative with respect to retarded tim
Note that we have chosen a vacuum geometry; i.e., we h
omitted the influence of the plasma on the metric.

In order to make interpretations simple, we introduce
canonical Lorentz frame

e05] t , e15a21]x , e25b21]y , e35]z . ~6!

With this frame, the effective charge and current densities~3!
read

rE52~ ln ab!uE3, ~7a!

rB52~ ln ab!uB3, ~7b!

jE52~ ln b!u~E12B2! e12~ ln a!u~E21B1! e2

2~ ln ab!uE3 e3 , ~7c!

jB52~ ln b!u~E21B1! e11~ ln a!u~E12B2! e2

2~ ln ab!uB3 e3. ~7d!

Apart from Maxwell’s equations~2a!–~2d! @together with
the effective charge and current densities~7a!–~7d!# we also
need the fluid equations. From the conservation equations~4!
we obtain the fluid equations using the frame~6!:

]

]t
~gn!1“•~gnv !5gn~ ln ab!u~12v i!, ~8a!

S ]

]t
1v•“ Dgv5

q

m
~E1v3B!1g@~ ln a!uv1e1

1~ ln b!uv2e2#~12v i!1g@~ ln a!uv1
2

1~ ln b!uv2
2#e3 , ~8b!

where v i[v3 is the velocity parallel to the gravitationa
wave propagation direction. These equations should be
isfied for each particle species. In the limit of small gravit
tional wave amplitudes and nonrelativistic velocities, E
~7!,~8!, together with Maxwell’s equations, were given
Ref. @3#. All terms with factors (lnab)u are, however, new,
and—as we will demonstrate in the remainder of this arti
—they may induce new phenomena, compared to the lin
regime.
8-2
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III. EXAMPLE: PARAMETRIC EXCITATION
OF PLASMA OSCILLATIONS

The longitudinal ‘‘currents’’ and ‘‘charges’’ are secon
order in the gravitational wave amplitude~see the Appendix
for further details!. These second order terms can give rise
qualitatively new phenomena compared to the linear regi
and we demonstrate this by considering a simple, but ill
trative, example. In what follows, we will investigate long
tudinal perturbations, i.e.,E5(0,0,E), v5(0,0,v), etc.,
around a cold one-component equilibrium plasma. Compa
to the case of weak gravitational waves@3#, we now have
rE,B different from zero, and we also have a longitudin
contribution to the effective currents. This means that lon
tudinal EM and plasma waves can be excited.

In the unperturbed plasma,]n0 /]t50, E050, and B0

50 @9#. We denote the number density perturbation byn̄,
i.e., n(z,t)5n0(z)1n̄(z,t), and assume that all perturbe
quantities only depend ont andz. To first order, Maxwell’s
equation~2c! becomes

]E

]t
5~ ln ab!uE2m0qn0v, ~9!

where we have usedj m5qn0v. Furthermore, the momentum
equation~8b! becomes

]v
]t

5
q

m
E. ~10!

Taking the time derivative of Eq.~9! and using Eq.~10!,
we obtain

]2E

]t2
1vp

2~z!E5
]

]t
@~ ln ab!uE#, ~11!

where vp(z)5@n0(z)q2m0 /m#1/2 is the local plasma fre-
quency. Thus the left hand side is the usual equation
plasma oscillations in a cold inhomogeneous plasma, and
right hand side is the modification induced by thepp wave.
We next focus on weak periodic deviations from flat spa
time ~see the Appendix!, where the periodicity is 2p/v. At
the resonant surface wherevp(zres)5v, we can then have
parametric excitation of plasma oscillations. We
E(zres,t)5Ê(t)exp@2ivt#1c.c., where c.c. denotes th
complex conjugate, and assume thatu]Ê(t)/]tu!vuÊ(t)u. At
the resonant surface Eq.~11! then reduces to

dÊ

dt
52

1

2
i exp~2ivzres!vĥ2Ê* , ~12!

where the asterisk denotes the complex conjugate~see the
Appendix!. Taking the time derivative of Eq.~12! and using
the complex conjugate of the same equation, we findÊ
}exp(Gt) where the growth rate is

G5 1
2 vuĥ2u. ~13!
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Note that the threshold value for excitation is zero, since
have not included any dissipation mechanism of the plas
oscillations. Adding an electron-ion collision in Eq.~8b!, the
threshold valueĥthr of this instability is of the order of
(ne- i /vp)1/2, where ne- i is the electron–ion collision fre-
quency.

Clearly, our instability does not occur unless higher ord
gravitational perturbations are included, in contrast to
results in Ref.@6#. Thus the corresponding growth rate
smaller in our case for a given source of gravitational rad
tion. There are still two interesting properties of the abo
instability as compared to the process in Ref.@6#, where
parametric excitation of a Langmuir wave and an elect
magnetic wave was considered.

~i! The frequency matching condition in our case isv
5vp , which requires a rather high gravitational frequen
@10#, but is less severe than the condition in Ref.@6#, where
v>2vp .

~ii ! In contrast with most parametric instabilities in pla
mas we have no wave vector matching condition, but inst
the process takes place at a localized resonance surfaz
5zres wherev5vp(zres). This means that there is no thres
old value for the instability introduced by plasma inhomog
neities. Normally the threshold value is inversely propo
tional to the inhomogeneity scale length@11#, and close to a
binary system, where the effects of gravitational radiation
likely to be most important, such a condition for paramet
excitation may thus be rather severe. Unfortunately, the
sult of the ‘‘no inhomogeneity threshold’’ depends on t
cold plasma approximation, and a finite temperature is lik
to change the picture.

IV. SUMMARY AND DISCUSSION

In the present paper we have investigated a higher o
effect of gravitational waves on a plasma. For this purpo
we have developed a Lorentz tetrad formalism for a c
plasma in the presence of a strong gravitational wave.
Lorentz tetrad approach has of course been widely used
fore, perhaps most notably in the membrane paradigm
proach to black hole spacetimes@2#. The obvious advantage
of using a Lorentz tetrad is its direct connection to measu
ments. It is possible to formulate Maxwell’s equations su
that the gravitational contributions take the form
‘‘charge’’ and ‘‘current’’ densities. Similarly, the fluid equa
tions are modified by effective particle sources and grav
tional forces. Of course, this is not the physical picture b
hind the equations, but it still provides a useful tool f
predicting the consequences of the gravitational influenc

The main purposes of this study have been to~i! provide
a framework for investigating strong gravitational pulse
fects in cold multicomponent plasmas and~ii ! to show that
higher order gravitational wave effects may be of impo
tance, since they introduce effective charges and longitud
currents, as well as effective ‘‘particle sources’’ and gravi
tional forces. As demonstrated, this in turn makes n
processes—such as parametric generation of electros
waves—possible. Since the effect under discussion is of
der ĥ2, we do not believe that it will be of significance con
cerningdirect Earth
8-3
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based observations of gravitational waves. It is possi
however, that there exist favorable circumstances, e.g., c
to a binary merger, for which the higher order gravitation
effective charge and current densities can play an impor
role. Close to such sources, the gravitational wave am
tudes can reach considerable strength, implying obse
tional possibilities for the induced phenomena.
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APPENDIX: PERTURBATIVE EXPANSION
OF THE pp WAVE

In many situations of interest the gravitational wave a
plitude is small, i.e.,ua21u!1, ub21u!1, and it is appro-
priate to make approximations for the factors (lna)u , ( ln b)u ,
and (lnab)u that appear in the gravitational source terms
Eqs. ~7! and ~8!. We will concentrate on approximately pe
riodic gravitational waves, such as those generated by bin
systems, in order to get definite results. Leta(u)
5(n52`

` ân exp(invu), b(u)5(n52`
` b̂n exp(invu), where

ân ,b̂n!1, uânu;ub̂nu;uâ1u unu, ;n. Furthermoreân* 5â2n

and similarly forb. Thenauub1abuu50 becomes

(
n52`

`

(
m52`

`

~n21m2!ânb̂m exp@ iv~n1m!#50. ~A1!

To zeroth order, we assume thatâ0515b̂0. To first order,
the solution to Eq.~A1! is â152b̂1[ĥ. Clearly, quadratic
nonlinear terms will generate second harmonic terms pro
tional to exp(2ivu). Separating the frequencies in Eq.~A1!
and concentrating on the second harmonic part, we obta

2b̂212â22ĥ250. ~A2!

The canonical choice isâ25b̂25(1/4)ĥ2. Physically this
means that we minimize the~pseudo!energy density at the
second harmonic frequency. Thus—for this choice—all
oscillations at 2v are strictly due to the nonlinearity of Ein
,
,

,
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stein’s equations, and no harmonics are assumed to be
tially present, i.e., generated by a varying octopole mom
of the binary source. For astrophysical applications this
not necessarily the most accurate choice~since binary sys-
tems may indeed have finite octopole moments!, but it has
the advantage of clearly isolating the effects due to non
earities. Furthermore, it turns out that including the effect
higher moments of the gravitational source~i.e., octupole
moments and higher! do not influence our calculations i
Sec. III. The reason is that an alternative solution to Eq.~A2!

—â25(1/4)ĥ21dâ2 , b̂25(1/4)ĥ22dâ2, instead ofb̂25â2

5(1/4)ĥ2—does not significantly affect the factor ln(ab)u ,
since it is independent ofdâ2 to second order in the gravi
tational amplitude, provideddâ2;ĥ2.

Continuing to third order, a similar calculation shows th
we can make the natural choiceâ35b̂350. For the fourth
order terms, Eq.~A1! gives

32~ â41b̂4!2ĥ450 ~A3!

where the canonical choiceâ45b̂45(1/64)ĥ4 is made. Con-
tinuing this procedure, it turns out that all terms odd inn

Þ1 disappear, while the terms even inn satisfy ân5b̂n;n.
Using the above results, the logarithmic factors in Eqs.~7!

and ~8! become

~ ln a!u5 ivĥ exp~ ivu!2 1
2 ivĥ2 exp~2ivu!1 1

4 ivĥ3

3exp~3ivu!2 1
16 vĥ4 exp~4ivu!1c.c., ~A4a!

~ ln b!u52 ivĥ exp~ ivu!2 1
2 ivĥ2 exp~2ivu!2 1

4 ivĥ3

3exp~3ivu!2 1
16 vĥ4 exp~4ivu!1c.c., ~A4b!

~ ln ab!u52 ivĥ2 exp~2ivu!2 1
8 vĥ4 exp~4ivu!1c.c.

~A4c!

to fourth order in the gravitational amplitude. This procedu
may of course be continued to arbitrary order, noting t
this in general will result in an asymptotic series; i.e., it do
not necessarilyconverge towards a solution ofauub1abuu
50.
c.
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74, 401~1978! @Sov. Phys. JETP47, 209~1978!#; L. P. Grish-
chuk and A. G. Polnarev, inGeneral Relativity and Gravita-
tion, edited by A. Held~Plenum Press, New York, 1980!, Vol.
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