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We report on the existence and phenomenology of type Il critical collapse within the one-parameter family
of SU(2) & models coupled to gravity. Numerical investigations in spherical symmetry show discretely self-
similar (DSS behavior at the threshold of black hole formation for values of the dimensionless coupling
constanty ranging from 0.2 to 100; at 0.18 we see small deviations from DSS. While the echoing peoiod
the critical solution rises sharply towards the lower limit of this range, the characteristic mass scaling has a
critical exponenty which is almost independent af, asymptoting to 0.11850.0005 at large;. We also find
critical scaling of the scalar curvature for near-critical initial data. Our numerical results are based on an
outgoing—null-cone formulation of the Einstein-matter equations, specialized to spherical symmetry. Our nu-
merically computed initial-data critical paramet@rs show second order convergence with the grid resolution,
and after compensating for this variationpii, our individual evolutions are uniformly second order conver-
gent even very close to criticality.

PACS numbes): 04.25.Dm, 02.60.Jh, 02.70.Bf

I. INTRODUCTION a black hole is the formation of a naked singularity. Here we
focus on critical phenomena at the threshold of black hole
Since the numerical investigation of dynamical behaviorformation. As Bizonet al. have pointed ouft9], criticality is
of a massless scalar field under the influence of its gravitaexpected to depend on the coupling constantf so, does
tional forces by Choptuikl], critical behavior has been ob- the system show discrete or continuous self-similarity? And
served in a number of different matter models coupled tan which way do critical phenomena depend on the coupling?
gravity. In the context of type Il critical collapse, these mod-  In this paper we present results from a numerical study of
els have in common that at the threshold of black hole forthe dynamical evolution for the SB) nonlinearo model
mation their dynamics show a universal characteristic apeoupled to gravity in spherical symmetry. Our code uses a
proach to either a discreteDSS or continuously(CSS  characteristic formulation, specialized to the spherical sym-
self-similar solution. metry. Initial data are specified on an outgoing null cone
Nonlinearo fields provide particularly interesting models with vertex at the center of symmetry. The discretized field
to study the dynamics of gravitating self-interacting matter inequations are used to evolve the matter field and the geom-
general relativity. In addition to their applications in physicsetry to future outgoing null cones, using a nonuniformly
(see e.g. Refl2]), they have a simple geometrical interpre- spaced set of grid points which follow ingoing null geode-
tation as harmonic maps, which have been extensively studsics.
ied in the mathematical literatufsee e.g. Refd.3,4]). We find critical behavior at the boundary between black
Recently Bizonet al. [5,6] and also independently Lie- hole formation and dispersion for values of the coupling con-
bling et al.[7] have observed criticdthreshold behavior for  stant 5 in the range of 0.18—100. The critical solution is
non-gravitating systems: the transition between globallyDSS, with the echoing periafl strongly depending ot: As
regular time evolution and singularity formation for the 7 tends to 0.18 from above\ rises sharply. Moreover, we
SU(2) o model on Minkowski background. It was shown by observe small deviations from exact DSS at this smalest
Bizon [5] that this system admits a countably infinite family value. This leads us to conjecture that DSS ceases to be a
of CSS solutions. The stable ground state is the end point ddritical solution for still smaller values of the coupling con-
singular evolution for supercritical initial data, while the first stant.
excitation, which has one unstable mode, plays the role of The organization of this paper is as follows: In Sec. Il we

the critical (CSS solution. review the basic properties of the &) o model in spherical
The interesting question arises of what happens if gravitsymmetry and discuss the system of field equations. We
is added to this system. The gravitating @JJo model is a  present our main physical results in Sec. Ill, and end the

family of theories with adimensionless parameter, which ~ main body of the paper with some conclusions in Sec. IV. In
acts as a coupling constaffior =0 gravity decouples from Appendix A we discuss our numerical methods, which are
the field. It was argued in Ref.6] that the singularity for- based on previous work of Goldwirth, Ori, and Pifd®,11],
mation in flat space might not be relevant for black holeGarfinkle[12], and Ganez and Winicouf13—16. Finally,
formation when gravity is active, since the CSS blowup ex-in Appendix B we discuss the convergence of our numerical
cludes the concentration of energy at the singularity. Sincevolutions to the continuum limit as the grid resolution is
no asymptotically flat solitonic configurations ex|$i, this  increased, including both uniform convergence of accuracy
suggests that the only alternative to dispersion or collapse tdiagnostics within a single evolution, and also convergence
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of the numerically computed critical parametgt itself. by the proper timau at the center. Radial ingoing null geo-
Conventions are chosen as follows: spacetime indices amesics are obtained by integrating the equation
Greek letters, S(2) indices are uppercase Latin letters, the
spacetime signature is<,+,+,+), the Ricci tensor is de- d B V(u,r(u))
fined asR,,=R,,,* with the sign convention of Ref17], o (W=- 2r(u) 29
and the speed of light is set to unity=1.
In spherical symmetry the null expansiofs. of inward
Il. SU(2) ¢ MODEL IN SPHERICAL SYMMETRY and outward directed null rays emanating fromconst sur-

) ) ) faces, can be defined &s.=2(L.r)/r, whereL.. is the Lie
Nonlinearo models are special cases of harmonic map$yerivative along the null direction$, =e 249, and |_

from a spacetime NI,g,,) into some target manifold _o; —(VIr)d, . Thus we have
(N,Gap) (see, e.g., Refl2]). Harmonic mapsx”(x*) are ! '
defined as the extrema of the simple geometric action 2 2(

V
—). (2.6

f2
s=—5’7 J d*x\|g] 973, X", XB Gap(X).  (2.1)
M Whenever® , vanishes on some 2-sphere=const, this

sphere is marginally outer trapped. Since this means diverg-
If the Spacetime metric is dynamica”y COUpled to the mat'ing B, the Bondi-like coordinate Systemlz) cannot pen-
ter fields X, then Eq.(2.1) must be supplemented by the etrate a marginally outer trapped surface—in particular an
Einstein-Hilbert action. apparent horizon.
Variation of the total action with respect to thefield X* We introduce polar coordinatess(®,d) on the target

and the metrig,, yields the coupled Einstein field equa-  manifold ($%,G) , and write the S(®) line element as
tions. The stress-energy tensor resulting from &dl) obeys

the weak, strong and dominant energy conditipt]. The ds?=d¢2+sir? ¢ (dO2+sir © dd?). (2.7)
coupling constanff, and the gravitational constaf enter
the equations only in the dimensionless produgt We focus on a particular spherically symmetric harmonic

=4xwGf2, thereby defining a one-parameter family of dis- map (a corotational equivariant mapbtained via the well-
tinct gravitating matter models. The field equations are scalknown hedgehog ansatz:
invariant.

For the SW2) o- model, the target manifold is taken 8% d(x*)=(u,r), Ox")=6, d(x*)=¢. (2.9
with Gag the “round” metric of constant curvature. Note
that the couplingy may be interpreted as the inverse of the With this ansatz two of the three coupled fields are deter-
scalar curvature of the target manifold. In the limit-c our ~ mined and only one fielgp(u,r) enters the equations. Regu-
model thus corresponds to tleemodel with 3-dimensional larity at the origin forces the field ¢ to vanish atr =0, so
flat target manifold[This is also easily checked by rescaling the origin is always mapped to one of the polesS?f de-
the field ¢— ¢/ /7 and performing the limity—o in Egs.  fined by the choice of coordinat€®.7). As ¢ represents the
(2.10 and (2.12—(2.14.] We restrict ourselves to spheri- “areal coordinate” of the polar coordinate systgf7) on
cally symmetric harmonic maps coupled to gravity, whichthe target manifold, its regularity behavior near the origin is
implies that the base spatgpacetimgmust share this sym- the same as that of the areal coordinate
metry.

We introduce a Bondi coordinate system,r,f,¢} on @(ug,r)=0(r). (2.9
spacetime based upon outgoing null hypersurfaces
= constant, with the line element The matter field equations are then reduced to the single

nonlinear wave equation
V(u,r) )
ds?’=—e?fundy du+2dr | +r2(d6?+sirfode?), .
r Sin(2¢)
(2.2) b= (2.10

r

and assume that spacetime admits a regular cent€r of here[ is th gtV V-
spherical symmetry. This requires the metric functions neaf/NereL IS the wave operatog™-v v,
the origin to behave at fixed retarded timag like

!

\Y,

2 Y
Gr= 3= 20u0+ Oy |
(2.11

2V
—

O=e 2¢
r

B(Ug,r)=0(r?), (2.3

V(ug,r)=r+0(r3), (2.4)
The nontrivial Einstein equations split up into the hyper-
where the gauge has been fixed such that the family of outsurface equationgthe {rr} and{ur}—(V/2r){rr} compo-
going null cones emanating from the center is parametrizedents ofG,,,= «T,,)
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B'= (@) (2124
V'=e?f[1-2ysin(¢)?], (2.12b
the subsidiary equatior?[{uu}— (V/r){ur}])
. . . V .
V—-2VB=2y (rcﬁ)z—?(rqﬁ’)(rtb) , (213
and the redundant equatiof6@})
V(rB"—B')+rB'V' +irv"—2r2%5,.B
=qpr¢'(=Veo' +2rd, o). (2.19

The combination of the hypersurface equatit42 and
the matter field equatioi2.10 suffices to evolve all the
dynamical fields//r, B, and¢. Assuming these equations to
be satisfied, the redundant equati@il4) then holds identi-
cally, and if the subsidiary equatiof2.13 is satisfied on
somer = const surfacéthis is assured for=0 by the regu-
larity conditions therg then it too must hold everywhere.

In view of this, we construct initial data on a
= constant slice by choosing as free data on the slice, then
integrating the hypersurface equatiof12 to obtain the
metric coefficientsvV/r and 8 on the slice. To evolve these
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tually forms. To do this, at each numerical time step we
compute the Misner-Sharp mass functiogs, and look for
regions of the numerical grid which are almost at the critical
density for black hole formation, i.e. wherem@,s/r is al-
most 1. More precisely, if anywhere in the gridngg/r
exceeds a specified thresholthen we estimate that a black
hole will form, with a final masamgy given by the mass
functionmy,g at the outermost such grid point. In general this
mass estimate changes during the evolution; we use the last
value before a numerical evolution terminates as our overall
estimate for the black hole mass.

It is also of interest to compute the total mass;, within
the outer grid boundaryThis gives an upper bound for our
final estimatemgy, .

IIl. RESULTS

For each value of the coupling constajtwe consider a
1-parameter family of initial datap= ¢,(up,r), such that
(say for small values ofp this initial data eventually dis-
perses without forming a black hole, while for large values
of p it eventually forms a black hole. By using a binary
search inp, we can find(a numerical approximation Ydghe
critical value p=p* which defines the threshold of black
hole formation.

We have studied the Einstein—model system in this

data to futureu=const slices, we simultaneously integrate manner over the range of coupling constants €.%8<100,

the hypersurface equatiofi®.12 and the matter field equa-

using several different initial-data families. Here we present

tion (2.10. Throughout the initial data construction and the results using the Gaussian-like initial data family

evolution, we use the subsidiary equati@13 and the re-
dundant equatioii2.14) solely to check the accuracy of our

numerical computations. We discuss our numerical treatment

of all these equations in Appendix A.
In our coordinates, the Misner-Sharp mass funcfib®—
21] can be written directly in terms of the metric,

m(u,r)EmMS(u,r)=%(l—\r—/e‘zﬂ), (2.195

or by using the Einstein equations, rewritten as a radial inte-

gral within a single slice,

m(u,r)Emp(u,r)=Jor m’(u,r) dr, (2.163
where
m'(u,r):gr2<Ye—ZB(¢f)2+2S'n22¢). (2.16b
r r

r—ro\?

(3.9

¢(u0,r)=Ar2exr{—

with the “amplitude” A as the parametgy (holding o and
ro constant for a given critical seanchand also using the
“derivative of 4th-power pseudo-Gaussian” family

o[
exp —

(o
with the “width” o as the parametgs (holding A andr
constant for a given critical seanchAll the results reported
here used a “position”ro=5 and an initial-slice outer
boundary ofr ;= 30. Table | shows some near-critical ini-
tial data parameters.

We have also carried out a number of convergence tests

of our numerical scheme, both for single evolutions and for
entire critical searches. We discuss these in Appendix B.

r—ro

4
$(Ug,1)= —4Ar2( } (3.2

Since our coordinates would be singular on an apparent
horizon, we have designed our numerical evolution scheme
to slow down as an apparent horizon is approached, in such'0.995 for all results reported here.
a manner that the evolution only asymptotes to the apparent’To be precise, we us@, at the outermost grid point, nobys,

horizon(cf. Appendix A J).

sincemy,s is numerically somewhat ill conditioned in the outer part

In other words, none of our numerically computed slicesof the grid, whereasn, is well conditioned everywhere.
ever actually contain an apparent horizon. Thus strictly 3For this latter case the relative signmfs reversed with respect

speaking we can neveneasurea black hole mass, but only
estimatewhat the massvill be when(if) a black hole even-

to black hole formation; i.e. for largp the initial data eventually
disperses, while for smafi it eventually forms a black hole.
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TABLE I. This table shows two families of near-critical initial data parameters for various coupling
constantsy. For the Gaussian-like initial data fami(@.1), we use the “amplitude’A as the parametgr (at
a fixed “width” o=1), with a numerical grid of 16 000 grid points. For the “derivative of 4th-power
pseudo-Gaussian” initial data famil{3.2), we use the “width” o as the parametqr (with different “am-
plitudes” A for different coupling constantswith 8000 grid points. For each coupling constant and each
family, the table also shows the maxm2r echoing periodA/2 of the near-critical evolution, and the
mass-scaling-law critical exponeptdetermined for the entire critical search.

Initial Data Family (3.1) Initial Data Family (3.2)
Parameter is A Parameter is o
n A* A2 v A o* A/2 y
0.18 0.019 523 015 0.5522  0.1063  0.003 1.083 15354  0.5478  0.1028
0.2 0.018942512 0.4367 0.1091 0.002 0.615 31749 0.4327 0.1150
0.225 0.018 241 056 0.3464 0.1207 0.002 0.651 519 42 0.3472 0.1169
0.25 0.017 578 042 0.3043  0.1173  0.002 0.68885173  0.3046  0.1173
0.3 0.016392639 - 0.2668 0.1152 0.002 0.766 003 44 0.2675 0.1146
0.4 0.014 534 866 0.2452  0.1132  0.002 092974689  0.2445  0.1139
0.5 0.013 167 548 0.2386 0.1152 0.0015 0.707 335 37 0.2386 0.1130
1 0.009 5289751 0.2314 0.1163 0.0015 1.21013807 0.2313 0.1155
2 0.006809 7783 0.2295 0.1179 0.0010 1.064 744 72 0.2305 0.1167
5 0.004 333 205 6 0.2304  0.1183  0.0005  0.73434476  0.2308  0.1178
10 0.0030701442 0.2293 0.1186 0.0005 1.318 800 46 0.2312 0.1182
100 0.000972 589 54 0.2302 0.1187 0.0001 0.63147258 0.2311 0.1182
A. DSS echoing A/2. As a DSS diagnostic, we typically look foA(2) peri-

Discrete self-similarity is defined by the existence of a®dicity in the black hole formation diagnostic maxmzr,

discrete diffeomorphismd , such that for some fixed e ; ~ Where the maximum s taken over within each u
= constant slice.

(d%)"g=e?""g Vnel. (3.3 We have clear evidence for the existence of a type Il
critical collapse with a DSS critical solution. Figure 1 shows
In adapted coordinates= — In[(u* —u)/u*] and p=r/(u* examples of this for two values of the coupling constant.
—u), whereu* is a real number which denotes the accumu-Since max 2n/r periodicity is only a neccesary condition for
lation time of DSS, we have DSS, we have also explicitly verified that the matter figld
at selected times coincides with its image under the DSS
diffeomorphism®. Figure 2 shows an example of this.

We find that the self-similarity echoing periad2 varies
strongly with the coupling constanj. Table | gives some
numerical data showing this, and Fig. 3 shows this same data
graphically. At largen, A/2 asymptotes to 0.23G00.0003.

(D%,)"p=(—1)"¢, (3.5)  As ndecreases towards the lower limit of the data in Table |,

7=0.18, A/2 rises sharply. At the very smallest coupling

so that fields even inp (e.g. 8, V/r, and quantities con- constantpy=0.18, but not aty=0.20 or any larger value, the
structed from themare actually periodic inr with period  critical solution shows small deviations from exact DSS: the

Z(7+nA,p)=Z(7,p) Vnel, (3.4

whereZ denotes3, V/r, ¢, or any combination of these, e.g.
2m/r. In addition theo field ¢ satisfies the stronger condi-
tion

Part (a) Part (b) o

. ‘ 10 . , . . FIG. 1. This figure shows DSS
echoing behavior in the black hole
formation diagnostic maxm@/r in
near-critical (in this case slightly
supercritical evolutions for cou-
pling constantsy=0.5 [part (a)]
and 0.18[part (b)]. Notice the
much longer periodA/2 of the
echoes aty=0.18. Although it is
02 ] 02 1 not apparent to the eye at the scale
of this figure, the 0.18 echoes are
0.0 : : : : 0.0 ; : . . not exactlyidentical: they vary in

N N " ° ! * * ! ° ' period and shape by 5—-10 %.
—In(u* — u) —In(u* —u)

0.8 -

2m
r

2m
T

06 -

max
maXx

0.4 r
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T=1.154 T=1212 T=1.270 j<—
\/\\/\ 75
1=1.385 T=1443 T=1.501 17=1.558
/\/ :é
o
/\/ : £
g 7 g
= =
1= 1616 1=1.674 t=1731 K —
1=1.847 1=1.905 T=1.962 1=2.020
/\//\/ " . ! . ! . L o
/‘\/Y 40 -30 -20 -10 [
5,
In(p —p7)

FIG. 2. Snapshots of a near-critical evolution of the(3Ur FIG. 4. Supercritical scaling of the black hole masg,, and of
field ¢ as a function of Im for »=1.0. The frames are evenly R_.., the maximurm(over retarded time within a single evolutioh
spaced inr= —In[(u* —u)/u*] (this increases towards the accumu- of the scalar curvature at the origin. The slopes of the masses and
lation time u*). 7 increases to the right within each row, then R are +y and —2y respectively. The scaling fine structure is
downwards between successive rows. Observedtisthe same in  clearly visible forR.. Its period is found to be 2.099 which is
frames in the same column but 2 rows apart; this indicatesghat very close to the vaIue}A/y=2.097 predicted by perturbation
periodic in 7 with period A=0.46. Also notice thaip is negated  theory and computed from known values of the critical exponents.
between frames in the same column of adjacent rows; i.e. it satisfiephis series of evolutions was done fpe=0.5 using a resolution of
the half-period self-similarity conditiof3.5). 2000 grid points.

periods and shapes of the individual mam/2 oscillations

deviate by 5—10 % from the best-fitting DSS prediction. TheSlightly subcritical evolutions, the maximuritaken overu
physical significance of this is not yet clear. within each evolutioh of the 4-Ricci scalar evaluated at the

origin, Ryay, also shows a similar scaling law, but with slope
—2vy[26]. This is also true for supercritical evolutions, with
Rmax Now defined by taking the maximum unwithin each

In the presence of DSS, the black hole masg, of  evolution only until a(null) slice reaches the apparent hori-
slightly supercritical evolutions shows a universal scalingzon. (Our actual evolutions terminate slightly before the ap-
law (Refs.[22-28) parent horizon, buR,,, does not change significantly in this
interval)

We have investigated these scaling laws using a sequence

where y sets the overall slope of the scaling law, and theOf Supercritical evolutions with varying Ip¢-p*). We ex-

function ¥ is periodic with periodiA/v in In(bo—p*). For  facty by least-squares fitting iy, as a linear function of
P P 220 (P=p%) In(p—p*); after subtracting this fit from Img,, we are left

S with the periodic fine structure. Figure 4 shows a typical
{ supercritical scaling law and Fig. 5 its fine structure.

Since the numerical resolution of our code is limited by
the use of IEEE double precision floating point numbers, we
expect the errors to blow up fgr— p* <10 *® which corre-
sponds to Ing—p*)=35. This can be seen in Figs. 4 and 5,
and also in Fig. &) (discussed in the next sectjorior p
d —p* = —10 deviations from the scaling laws are also appar-
030 : ent, demarcating the range of validity of linear perturbation
. theory.

We find that the mass scaling exponentvaries by at
'0'3' 1 ' 3 10 most 5% over the range of we have studied, asymptoting
) to y=0.1185+0.0005 at largen. (The error is estimated
77 from the dispersion iny values between fits to critical
FIG. 3. This figure shows the variation of the near-critical max S€arches with different initial-data families and/or finite dif-
ference grid resolutions.

The periodicity present in the fine structure of the scaling
law (Figs. 4 and bcan be measured directly. Figure 6 shows
a comparison of the measured periods with the perturbation-
theory prediction; A/y in In(p—p*). The agreement is ex-
cellent.

B. Scaling and universality

Inmgy=yIn(p—p*)+¥(n(p—p*))+const (3.6

0.60
0.50

A/2 040 ¢

o [ . . 4

0.20

0.1 30 100

2m/r echoing periodA/2 with the coupling constang, for the
Gaussian-like initial data family given in Table I. Notice the rapid
rise in A/2 at smalln. The error bar for they=0.18 point is esti-
mated from the dispersion ia/2 values when fitting different sub-
sets of echoes in Fig.()); for larger values ofy this dispersion is
negligible.
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0010 e — T T T T T 0.18< =100 we have evidence of universal critical type Il

P : collapse behavior. The critical solution is DSS. We have
] observed both the typical mass scaling at the threshold of
black hole formation of supercritical initial data and the cor-
responding scaling of the scalar curvature for both sub- and

supercritical evolutions.

Our numerical results are based on an outgoing—null-cone
formulation of the Einstein-matter equations, specialized to
spherical symmetryour numerical methods are discussed in
detail in Appendix A. We have carried out thorough con-
vergence tests to ensure the validity of our res(dee Ap-
pendix B. Notably, we have demonstrated second order

T uniform-in+ convergence of the error diagnoséim (mea-
= -0 -2 % -1 -1 suring finite differencing errors in the Misner-Sharp mass
ln(p — p*) function) for even very nearly critical spacetimes. We have

also demonstrated second order convergence for the initial
FIG. 5. This figure shows the fine-scale structurenigy, (shown  data’s critical parametep*. To our knowledge this is the
in Fig. 4) after subtracting a linear fit. For these evolutions we first time the latter has been reported.
disabled the “Inys/r>0.995 detected foN time steps” stopping In the limit of large couplings our model corresponds to
criterion in our code(cf. Appendiy, running each evolution until  the ¢ model with 3-dimensional flat target manifold. This
Au<10"15; in this case our final slices’ outer grid boundaries al- model has already been studied by Liebl{i2y], where he
most touched the apparent horizon,ragy and my,, Were essen-  considered an additional potential. As this potential does not
tially identical (within <10~ '° of each othex play a role for criticality we should observe the same critical
solution for large couplings. In fact our results for both the
Comparing results for different one-parameter families ofechoing period A=0.4604 and the scaling exponent
initial data, we find that the critical behavior is universal at=0.1187 are in good agreement with the results reported in
all coupling constants;: The critical exponenty and the [27].
echoing period\/2 are the same for all critical searches ata While we observe at most a small variation of the critical
given coupling constant, regardless of which initial data fam-exponenty over the range of coupling constants studied, the
ily is used. For example, Table | shows thatandA/2 are  period A of the DSS depends strongly on the value of the
the samgto within numerical errorsfor even the very dif- coupling constant: ag tends to 0.18 from above the period

ferent initial data familieg3.1) and(3.2). increases by more than a factor of 2 in the narrow range of
0.18< =<0.3. Also, close to the lower limit we observe
IV. CONCLUSIONS small deviations from exact self-similarity.

These observations seem to signal a transition region
In this paper we have presented a detailed numericaround thg value of)=0.18. _Fr_om results of the work on the
analysis of SW2) o models coupled to gravity in spherical o model in flat spacg¢5-7] it is known that there exists a

symmetry for a wide range of the coupling constantFor critical (threshold CSS solution. In a recent paper, Bizon
and Wassermaf28] have shown numerically that this solu-

26 ———— : . : , ; tion persists when gravity is turned on, at least up to a certain
i G—© A/2y= theoretically predicted periods | | value of the coupling constant. Whether or not the CSS so-
23 GO periods measured from fine-structure | | lution plays a role at the threshold of black hole formation

for small couplings is under current investigation.
241
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1. Overview
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slice and inu along ingoing null geodesics. Our grid points
are generically distributed non-uniformly within each slice:
On the initial slice we place them equidistantlyriletween
the origin and some finite maximum raditug,,, but there-
after they freefall in towards the origin along ingoing null
geodesics. We always maintain a grid point at the origin
=0; when another grid point reaches the origin we drop the
point previously at the origin from the grid.

The choice of freely falling grid points provides some
degree of adaptive grid refinement by the focusing of geode-
sics towards regions of strong curvature. Following
Garfinkle [12], we also gain additional resolution at late
times by explicitly refining our grid by a factor of 2 every-
where in the slice, each time we have lost half of the remain-
ing grid points. Again following Ref{12], for some runs we
also manually fine-tune the position of the outermost grid
point on the initial slice ), SO that this grid point will
eventually almost hit the strongest-field region of spacetime.
This greatly improves the effectiveness of the factor-of-2
grid refinements, but this method was not required for the FIG. 7. This figure shows our finite differencing grid. Individual
results presented hefe. grid points are labeled with integers 0—6, and their ingoing-null-

By moving our grid points along null geodesics, the geodesic trajectories are shown as dotted lines. Grid points at the
physical domain of dependence is automatically contained ifrigin are marked with small points. Grid points used in the least-
the numerical domain of dependence, so our time step is n§aAuares fitting procedurief. Appendix A2 are marked with large
restricted by the usual Courant-Friedrichs-LeVGFL) sta- solid circles, while the grid points where the field variables are

bility limit [29,30. However, in order to control time reso- calculated from the Taylor series are marked with large open
. . . ] circles. Grid points where) is already known in the diamond-
lution we require(following Refs.[10,11)) that integral schemécf. Appendix A 3 are marked with solid squares,

(VIr) Au<C Ar (A1) while the grid point where) is computed in this scheme is marked
with an open square.

everywhere in the grid, wher€ is a constant which we
typically take to be on the order of unity. The time step

is thus limited such that grid points fall inwards by no more
than C/2 grid point spacings per time step. Most of our re-

sults reported here were obtained witks 1.5.[Note that for cretiz_ations in time(u) and spacer) use nqnuni_form grid
a null-cone evolution similar to ours, but with grid points at spacings to allow for the free fall of the grid points and the

constant (Ref.[15]), thereis a CFL stability limit, which is adaptive tlme steppingAl). Our r)umencal scheme uses the
in fact just Eq.(A1) with C=2] geometry fieldsB, V/r and (V/r)’, and the rescaled matter
field y=r ¢.

Assuming that these fields are known at all grid points on
theu=u* andu=u*"! slices, we determine the fields on the

=uk*! glice as follows:

(i) For the innermost 3 non-origin grid points in the
=uk"! slice, we use a Taylor series expansion as described
in Appendix A2.

(i) We then sweep outwards over the remaining spatial
grids of theu=uk"? slice as discussed in Appendix A 3.

notation where superscripts denote “tempordll) levels.
Figure 7 shows the typical organization of our grid. All dis-

For r ®, sufficiently small, a large value o¥/r de-
creases the time stéyu as follows: From Eq(2.6) it is clear
that for smallr ® , the function—uwhich is monotonically
increasing withr —becomes largét blows up at an apparent
horizon. Furthermore, by Eq(2.15 we getV/r=e?# (1
—2m/r). Outside of the outermost local maximum ah#
both e?# and 1-2m/r are monotonically increasing with
and thus so i¥//r. If the outer boundary of the grid is taken
sufficiently far out, this is therefore the location of the maxi-
mum of V/r and thus of the most stringent slowdown con-

dition. If Au<10 *® (i.e. close to machine precisignthe
evolution is terminated. 2. Taylor expansions near the symmetry axis

For the remainder of this appendix, we adopt the usual The coupled Einstein-matter equations and regularity de-
termine the generic behavior gf near the origin as

YU+ Au,r)=cir?+cr3+cr? Au+O(Au*+r?).

4By fine-tuningr e in this way, we have also observed DSS in (A2)

the massless scaléflein-Gordon field, with up to 5 echoes visible
(in the sense of Fig.)1 This provides a strong additional test of our
numerical scheme, since the dynamic range of the DSS is muchubstitution of this series expansion into the hypersurface
larger in the Klein-Gordon casd&/2~1.73 therdas defined by Eq. equations(2.12) yields corresponding series expansions for
(3.3)], much larger than the values we find for thefield. the geometry fieldg andV/r.
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To determine the geometry and matter fields near the oriwwe evaluate the integral numerically by approximating the
gin on theu=uk"1 slice, we first least-squares fit the func- integrand as constant over the null parallelogfamwith a
tional form (A2) to the numerically computeg values at the value which is the average of its values at the grid poilits
5 innermost non-origin points of the=uX and u=u*"1* andE. This gives second order overall accuracy for
time levels(these points are marked by large solid circles in
Fig. 7). This determines the coefficients andc,.

For each of the 3 innermost non-origin grid points on the 4. Diagnostics
u=u*"! slice (these points are marked by open circles in
Fig. 7), we first integrate the ingoing null geodesic equation
(2.5 from u=uk to u=uk"!, as described below. Then, us-
ing the coefficient,; andc,, we determiney) at this grid
point from the series expansidA2). Finally, we compute
B, Vir, and (V/r)" from their corresponding series expan-
sions.

Within a single evolution, we use several diagnostics to
assess the accuracy of our numerical computations. We nu-
merically check the satisfaction of the subsidiary and redun-
dant Einstein equation®.13 and(2.14). We also compare
the two “different” forms of the mass functionnygs and
m,: These are in fact identical by virtue of the Einstein
equations, but they are computed in very different ways
Egs. (2.15 and (2.16 respectively, and numerically they
will generally differ by a small amount due to finite differ-

3. Integration schemes encing errors. This difference is a useful diagnostic of the

In order to integrate out from the Taylor series region tocode’s accuracy. To this end, we define
the outer boundary, our general strategy at each grid point is

. Mys— M
as follows: . . _ _ sm(u,r)= —MS e (A5)
(i) We first determine the grid pointiscoordinate on the Mhotal, init
u=u*"* slice by integrating the ingoing null geodesic equa- )
tion (2.5) from u=uX to u=u<*1, where My, ini= Mus(U=0 a9 is the total mass of our

(i) We then determine/ at this grid point using a “dia- initial incg. om i; then a dime_nsionless d@agn(_)stic of how
mond integral” scheme of Guez and Winicouf15,16,14. well our field variables approxma}e the Emstem Qquatlons;
(i) We compute the geometry fields by integrating theW& must havésm|<1 everywhere in the grid at all times for
hypersurface equations one grid point outwards on uhe ©OUr results to be trustworthy.
=uk"1 slice.

For the hypersurface equatiofi®.12) and the geodesic
equation Eq.(2.5) we use a second order iterated Runge- APPENDIX B: CONVERGENCE TESTS
Kutta schemdadapted from Sec. 5.2.1, E¢6.6), of Ref.
[31]]. For a generic ordinary differential equatig@®@DE)
systemdy/dx=1(x,y) the scheme is as follows:

We use convergence tests of the type popularized by
Choptuik[32-34] both to better understand the performance
of our numerical algorithms, and to quantitatively assess the
accuracy of our numerical results. In particular, it is only
through such convergence tests that we can be confident our
el k1 ok i1 kel conclusions reflect properties of the continuum Einstein-

Y=y g AR Y) KT Yped) 1. (A3D) matter equations, rather than numerical artifacts.

As an example of the convergence properties of our com-
While this allows straightforward integration of the hyper- putational scheme, we discuss a series of near-critical
surface equation2.12), the geodesic equatiof2.5 needs =0.5 evolutions. We begin by considering the effects of
special care: The correctdiA3b) requires evaluating the varying grid resolutiongspecified by the number of grid
right-hand-side functiorf at the x*** time level. For the points N) on the critical parametep*. Figure §a) shows
geodesic equation this requires knowing the fiéld on the  these effects for the supercritical mass-scaling law. Notice
u=u**? slice, which is not yet computed at the time the that the dominant effect is to simply shift each entire critical
geodesic integration is done. We thus linearly extrapolate theurve to a slightly differentp*[N]. Table 1l shows these
neededV/r value fromV/r and (V/r)’ values one spatial p*[N] values, and their convergence to a continuum limit
grid point inwards on the samei€u"*) slice. (which we denote byp*[«]) as the grid resolution is in-

The matter field equation is integrated using a “diamondcreased. Notice that the ratios of the successive differences
integral” scheme of Gmez and Winicouf15,16,14. The  (p*[2N]—p*[N])/(p*[4N]—p*[2N]) are very nearly
basic idea is to integrate the nonlinear wave equat®h0  equal to 4; i.e. th@* values show second order convergence
over the null parallelograr spanned by the 4 grid poink§  to p*[].

S W, andE in Fig. 7. This allows the nonlinear wave equa-  Besides shifting the effectivp*, what other effects does

Yhred =Y + AXf(x¥,y¥) (A3a)

tion (2.10 to be written as varying the grid resolution have on the critical behavior?
Figure 8b) shows the same data as Figa@ but plotted
Y(N)= (W) + H(E)— 4(S) using the usual logarithmic mass-scaling-law coordinates,

and with each grid resolution’s data plotted using that reso-
dudr. (A4) Iut?on’s own p*[N] value. It is clear Fhat the different reso-
lutions all yield the same mass scaling law.

(X) v +e% sin( Zf)
r)r r

3|
2)s
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FIG. 8. This figure shows the convergence of the supercritical mass-scaling law with increasing finite difference grid resolugion, for
=0.5 evolutions. Par{a) shows the mass scaling behavior for 5 different grid resolutions, plottelhear scales in bottp (here the
“amplitude” A) andmg, . Notice how the main effect of changes in the grid resolution is to simply shift the entire critical curve to a slightly
differentp*. The actualp* values are given in Table Il, and all these evolutions used the same initial data parameters as given in Table I.
Part(b) shows the same data plotted on logarithmic scales, with each resolytivalses being taken relative to that resolution’s op
value. Notice that all the resolutions satisfy the same scaling law, even dgwnpé[ N] far smaller than the resolution shifts shown in part
(a); this is discussed further in the text.

(In order to get the same mass scaling law at differentnax 2m/r plot: max 2n/r first oscillates a number of times,
resolutions, it is essential here to use each resolution’s oWthen eventually rises to 1.
p*[N] value, since Flg-*ﬁi) shows the mass scaling law  (2) The second evolution uses 16 000 grid points, with the
continuing down top—p*[N] values some 10 orders of samep as evolution(1). Because of the shift in the effective
magnitude smaller than the typicpF[N] shifts from one  x with N; this evolution is now subcritical, in fact subcriti-
resolution to anotiwer. Equivalently, if we dibt use each .| py 5 relatively large amount: maxn2r oscillates only
resolution’s ownp®[N] value in Fig. 8b), then the mass .t half as many times as in evolutiéi), then eventually
scaling law would fail to hold belowp— p*[N]~10""> (the decays to zero

: ° : i ) .
typlﬁal P [INt]' stufts Sein’\'ln F'ﬁ]' (&)).,E ererelllas by tgsmg (3) The third evolution also uses 16 000 grid points, but
each resolution's owrp’ [N] value, it actually continues this time p is adjusted to compensate for the shift in the

down top—p*[N]~1015) e . - —12
We now consider convergence behavior within a single‘affec’uve p* with N: we takep=p“[16000+10 . By

evolution, or more precisely between the 3 evolutions Whosgonstruction, this evolution is supercritical again, by the
max 2m/r’ time developments are shown in Figap same amount as evolutigqd); in fact its max 2n/r plot is

(1) The first evolution uses 8000 grid points, with almost identical to that of eyolutlohl). ,
=p*[8000]+ 1012 so this evolution is just slightly super- We usedm as a diagnostic of our code’s numerical accu-
critical, by about 1 part in 1. This can be seen in the "acY for these evolutions. Figurél® shows the convergence

of ém to zero for evolutiong1) and (2). These evolutions

TABLE II. This table shows the convergence pf with the eventually yield very different Spacetiméeng forming a
finite difference grid resolutiol, for the Gaussian-like data plotted bl,aCk hole, the other nit b,Ut h_ere we considen=const
in Fig. 8. These evolutions used the same initial data parameters %‘C?S at an eaf'Y en,ough time=13.08 [showp by the left
given in Table I. The first two columns give tp# values for the ~ Vertical dashed line in Fig.(8)] that the evolutions have not
various resolutions\. The third column gives the differenceép*  drifted very far apart yet. From Fig(#9) it is clear thatém is
=p*[2N]—p*[N] between consecutive* values as the resolu- almost precisely a factor of 4 smaller at the higher resolution
tion is doubled, and the last column gives the ratios of consecutivéhan at the lower one; i.em shows second order conver-
differences. The values in the last column are very nearly equal tgence to zero, as expected from the construction of our finite

4, showing second order convergencepdt differencing schemes. Notice also that this convergence is

N p*[N] op* ratio unifqrm which is a cons_,iderably stronger numgrica}l—fidelity
1000 0.013 156 008 ) 861x 100 requirement than requiring only pointwise or gridwise-norm
2000 0.013164618 | o s ) 387 convergence.

) 2.22x10 Now consider a convergence test between evoluti@hs
4000 0.013166841 ) 394 , :
8000 0.013167 405 ) 5.64x 10_7 ) 3.97 and (3). Because evolutioii3) adjustsp to compensate for

) 142x10 the shift in the effectivep* with N, these two evolutions

16000 0.013167 548

have very similar behavior, so we can consider much later
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u=constant slices and still obtain good convergence. Foshift in the effectivep* with N, we have excellent—and
example, Fig. &) shows the convergence éim at the rela-  uniformly pointwise—convergence even for evolutions that
tively late timeu=18.59[shown by the right vertical dashed areveryclose to critical p—p*[N] here is about 5 orders of
line in Fig. 9a)]. The convergence i@gain very accurately magnitude smaller than the*[N] shifts between the two
second order. In other words, once we compensate for theesolution$, and hencevery sensitive to small perturbations.
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