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Type II critical collapse of a self-gravitating nonlinear s model
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We report on the existence and phenomenology of type II critical collapse within the one-parameter family
of SU~2! s models coupled to gravity. Numerical investigations in spherical symmetry show discretely self-
similar ~DSS! behavior at the threshold of black hole formation for values of the dimensionless coupling
constanth ranging from 0.2 to 100; at 0.18 we see small deviations from DSS. While the echoing periodD of
the critical solution rises sharply towards the lower limit of this range, the characteristic mass scaling has a
critical exponentg which is almost independent ofh, asymptoting to 0.118560.0005 at largeh. We also find
critical scaling of the scalar curvature for near-critical initial data. Our numerical results are based on an
outgoing–null-cone formulation of the Einstein-matter equations, specialized to spherical symmetry. Our nu-
merically computed initial-data critical parametersp* show second order convergence with the grid resolution,
and after compensating for this variation inp* , our individual evolutions are uniformly second order conver-
gent even very close to criticality.

PACS number~s!: 04.25.Dm, 02.60.Jh, 02.70.Bf
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I. INTRODUCTION

Since the numerical investigation of dynamical behav
of a massless scalar field under the influence of its grav
tional forces by Choptuik@1#, critical behavior has been ob
served in a number of different matter models coupled
gravity. In the context of type II critical collapse, these mo
els have in common that at the threshold of black hole f
mation their dynamics show a universal characteristic
proach to either a discretely~DSS! or continuously~CSS!
self-similar solution.

Nonlinears fields provide particularly interesting mode
to study the dynamics of gravitating self-interacting matter
general relativity. In addition to their applications in physi
~see e.g. Ref.@2#!, they have a simple geometrical interpr
tation as harmonic maps, which have been extensively s
ied in the mathematical literature~see e.g. Refs.@3,4#!.

Recently Bizon´ et al. @5,6# and also independently Lie
bling et al. @7# have observed critical~threshold! behavior for
non-gravitating systems: the transition between globa
regular time evolution and singularity formation for th
SU~2! s model on Minkowski background. It was shown b
Bizoń @5# that this system admits a countably infinite fam
of CSS solutions. The stable ground state is the end poin
singular evolution for supercritical initial data, while the fir
excitation, which has one unstable mode, plays the role
the critical ~CSS! solution.

The interesting question arises of what happens if gra
is added to this system. The gravitating SU~2! s model is a
family of theories with adimensionless parameterh, which
acts as a coupling constant~for h50 gravity decouples from
the field!. It was argued in Ref.@6# that the singularity for-
mation in flat space might not be relevant for black ho
formation when gravity is active, since the CSS blowup e
cludes the concentration of energy at the singularity. Si
no asymptotically flat solitonic configurations exist@8#, this
suggests that the only alternative to dispersion or collaps
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a black hole is the formation of a naked singularity. Here
focus on critical phenomena at the threshold of black h
formation. As Bizon´ et al. have pointed out@9#, criticality is
expected to depend on the coupling constanth. If so, does
the system show discrete or continuous self-similarity? A
in which way do critical phenomena depend on the couplin

In this paper we present results from a numerical study
the dynamical evolution for the SU~2! nonlinears model
coupled to gravity in spherical symmetry. Our code use
characteristic formulation, specialized to the spherical sy
metry. Initial data are specified on an outgoing null co
with vertex at the center of symmetry. The discretized fie
equations are used to evolve the matter field and the ge
etry to future outgoing null cones, using a nonuniform
spaced set of grid points which follow ingoing null geod
sics.

We find critical behavior at the boundary between bla
hole formation and dispersion for values of the coupling co
stant h in the range of 0.18–100. The critical solution
DSS, with the echoing periodD strongly depending onh: As
h tends to 0.18 from above,D rises sharply. Moreover, we
observe small deviations from exact DSS at this smallesh
value. This leads us to conjecture that DSS ceases to
critical solution for still smaller values of the coupling con
stant.

The organization of this paper is as follows: In Sec. II w
review the basic properties of the SU~2! s model in spherical
symmetry and discuss the system of field equations.
present our main physical results in Sec. III, and end
main body of the paper with some conclusions in Sec. IV.
Appendix A we discuss our numerical methods, which a
based on previous work of Goldwirth, Ori, and Piran@10,11#,
Garfinkle @12#, and Gómez and Winicour@13–16#. Finally,
in Appendix B we discuss the convergence of our numer
evolutions to the continuum limit as the grid resolution
increased, including both uniform convergence of accur
diagnostics within a single evolution, and also converge
©2000 The American Physical Society07-1
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of the numerically computed critical parameterp* itself.
Conventions are chosen as follows: spacetime indices

Greek letters, SU~2! indices are uppercase Latin letters, t
spacetime signature is (2,1,1,1), the Ricci tensor is de-
fined asRmn5Rmln

l with the sign convention of Ref.@17#,
and the speed of light is set to unity,c51.

II. SU„2… s MODEL IN SPHERICAL SYMMETRY

Nonlinears models are special cases of harmonic ma
from a spacetime (M ,gmn) into some target manifold
(N,GAB) ~see, e.g., Ref.@2#!. Harmonic mapsXA(xm) are
defined as the extrema of the simple geometric action

S52
fp
2

2 EM
d4xAugu gmn]mXA]nXB GAB~X!. ~2.1!

If the spacetime metric is dynamically coupled to the m
ter fields XA, then Eq.~2.1! must be supplemented by th
Einstein-Hilbert action.

Variation of the total action with respect to thes field XA

and the metricgmn yields the coupled Einsteins field equa-
tions. The stress-energy tensor resulting from Eq.~2.1! obeys
the weak, strong and dominant energy conditions@18#. The
coupling constantf p

2 and the gravitational constantG enter
the equations only in the dimensionless producth
[4pG fp

2 , thereby defining a one-parameter family of d
tinct gravitating matter models. The field equations are sc
invariant.

For the SU~2! s model, the target manifold is taken asS3

with GAB the ‘‘round’’ metric of constant curvature. Not
that the couplingh may be interpreted as the inverse of t
scalar curvature of the target manifold. In the limith→` our
model thus corresponds to thes model with 3-dimensiona
flat target manifold.@This is also easily checked by rescalin
the fieldf→f/Ah and performing the limith→` in Eqs.
~2.10! and ~2.12!–~2.14!.# We restrict ourselves to spher
cally symmetric harmonic maps coupled to gravity, whi
implies that the base space~spacetime! must share this sym
metry.

We introduce a Bondi coordinate system$u,r ,u,w% on
spacetime based upon outgoing null hypersurfacesu
5constant, with the line element

ds252e2b(u,r )duS V~u,r !

r
du12dr D1r 2~du21sin2udw2!,

~2.2!

and assume that spacetime admits a regular centerr 50 of
spherical symmetry. This requires the metric functions n
the origin to behave at fixed retarded timeu0 like

b~u0 ,r !5O~r 2!, ~2.3!

V~u0 ,r !5r 1O~r 3!, ~2.4!

where the gauge has been fixed such that the family of
going null cones emanating from the center is parametri
10400
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by the proper timeu at the center. Radial ingoing null geo
desics are obtained by integrating the equation

d

du
r ~u!52

V„u,r ~u!…

2r ~u!
. ~2.5!

In spherical symmetry the null expansionsQ6 of inward
and outward directed null rays emanating fromr 5const sur-
faces, can be defined asQ652(L6r )/r , whereL6 is the Lie
derivative along the null directionsl 15e22b] r and l 2

52]u2(V/r )] r . Thus we have

Q15
2

r
e22b, Q252

2

r S V

r D . ~2.6!

WheneverQ1 vanishes on some 2-spherer 5const, this
sphere is marginally outer trapped. Since this means div
ing b, the Bondi-like coordinate system~2.2! cannot pen-
etrate a marginally outer trapped surface—in particular
apparent horizon.

We introduce polar coordinates (f,Q,F) on the target
manifold (S3,G) , and write the SU~2! line element as

ds25df21sin2 f ~dQ21sin2 Q dF2!. ~2.7!

We focus on a particular spherically symmetric harmo
map ~a corotational equivariant map! obtained via the well-
known hedgehog ansatz:

f~xm!5f~u,r !, Q~xm!5u, F~xm!5w. ~2.8!

With this ansatz two of the three coupled fields are de
mined and only one fieldf(u,r ) enters the equations. Regu
larity at the origin forces thes field f to vanish atr 50, so
the origin is always mapped to one of the poles ofS3, de-
fined by the choice of coordinates~2.7!. As f represents the
‘‘areal coordinate’’ of the polar coordinate system~2.7! on
the target manifold, its regularity behavior near the origin
the same as that of the areal coordinater:

f~u0 ,r !5O~r !. ~2.9!

The matter field equations are then reduced to the sin
nonlinear wave equation

hf5
sin~2f!

r 2
, ~2.10!

whereh is the wave operatorgmn¹m¹n :

h5e22bH F2V

r 2
1S V

r D 8G] r2
2

r
]u22]u] r1

V

r
] rr J .

~2.11!

The nontrivial Einstein equations split up into the hype
surface equations~the $rr % and $ur%2(V/2r )$rr % compo-
nents ofGmn5kTmn)
7-2
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b85
h

2
r ~f8!2, ~2.12a!

V85e2b@122h sin~f!2#, ~2.12b!

the subsidiary equation„r 2@$uu%2(V/r )$ur%#…

V̇22Vḃ52hF ~r ḟ !22
V

r
~rf8!~r ḟ !G , ~2.13!

and the redundant equation ($uu%)

V~rb92b8!1rb8V81 1
2 rV922r 2]urb

5hrf8~2Vf812r ]uf!. ~2.14!

The combination of the hypersurface equations~2.12! and
the matter field equation~2.10! suffices to evolve all the
dynamical fieldsV/r , b, andf. Assuming these equations t
be satisfied, the redundant equation~2.14! then holds identi-
cally, and if the subsidiary equation~2.13! is satisfied on
somer 5const surface~this is assured forr 50 by the regu-
larity conditions there!, then it too must hold everywhere.

In view of this, we construct initial data on au
5constant slice by choosingf as free data on the slice, the
integrating the hypersurface equations~2.12! to obtain the
metric coefficientsV/r and b on the slice. To evolve thes
data to futureu5const slices, we simultaneously integra
the hypersurface equations~2.12! and the matter field equa
tion ~2.10!. Throughout the initial data construction and t
evolution, we use the subsidiary equation~2.13! and the re-
dundant equation~2.14! solely to check the accuracy of ou
numerical computations. We discuss our numerical treatm
of all these equations in Appendix A.

In our coordinates, the Misner-Sharp mass function@19–
21# can be written directly in terms of the metric,

m~u,r ![mMS~u,r !5
r

2 S 12
V

r
e22bD , ~2.15!

or by using the Einstein equations, rewritten as a radial in
gral within a single slice,

m~u,r ![mr~u,r !5E
0

r

m8~u, r̃ ! dr̃, ~2.16a!

where

m8~u,r !5
h

2
r 2S V

r
e22b~f8!212

sin2 f

r 2 D . ~2.16b!

Since our coordinates would be singular on an appa
horizon, we have designed our numerical evolution sche
to slow down as an apparent horizon is approached, in s
a manner that the evolution only asymptotes to the appa
horizon ~cf. Appendix A 1!.

In other words, none of our numerically computed slic
ever actually contain an apparent horizon. Thus stric
speaking we can nevermeasurea black hole mass, but onl
estimatewhat the masswill be when~if ! a black hole even-
10400
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tually forms. To do this, at each numerical time step
compute the Misner-Sharp mass functionmMS, and look for
regions of the numerical grid which are almost at the criti
density for black hole formation, i.e. where 2mMS/r is al-
most 1. More precisely, if anywhere in the grid 2mMS/r
exceeds a specified threshold,1 then we estimate that a blac
hole will form, with a final massmBH given by the mass
functionmMS at the outermost such grid point. In general th
mass estimate changes during the evolution; we use the
value before a numerical evolution terminates as our ove
estimate for the black hole mass.

It is also of interest to compute the total massmtotal within
the outer grid boundary.2 This gives an upper bound for ou
final estimatemBH .

III. RESULTS

For each value of the coupling constanth, we consider a
1-parameter family of initial dataf5fp(u0 ,r ), such that
~say! for small values ofp this initial data eventually dis-
perses without forming a black hole, while for large valu
of p it eventually forms a black hole. By using a bina
search inp, we can find~a numerical approximation to! the
critical value p5p* which defines the threshold of blac
hole formation.

We have studied the Einstein–s-model system in this
manner over the range of coupling constants 0.18<h<100,
using several different initial-data families. Here we pres
results using the Gaussian-like initial data family

f~u0 ,r !5Ar2expF2S r 2r 0

s D 2G ~3.1!

with the ‘‘amplitude’’ A as the parameterp ~holding s and
r 0 constant for a given critical search!, and also using the
‘‘derivative of 4th-power pseudo-Gaussian’’ family

f~u0 ,r !524Ar2S r 2r 0

s D 3

expF2S r 2r 0

s D 4G ~3.2!

with the ‘‘width’’ s as the parameterp ~holding A and r 0
constant for a given critical search!.3 All the results reported
here used a ‘‘position’’r 055 and an initial-slice outer
boundary ofr outer530. Table I shows some near-critical in
tial data parameters.

We have also carried out a number of convergence t
of our numerical scheme, both for single evolutions and
entire critical searches. We discuss these in Appendix B

10.995 for all results reported here.
2To be precise, we usemr at the outermost grid point, notmMS ,

sincemMS is numerically somewhat ill conditioned in the outer pa
of the grid, whereasmr is well conditioned everywhere.

3For this latter case the relative sign ofp is reversed with respec
to black hole formation; i.e. for largep the initial data eventually
disperses, while for smallp it eventually forms a black hole.
7-3
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TABLE I. This table shows two families of near-critical initial data parameters for various coup
constantsh. For the Gaussian-like initial data family~3.1!, we use the ‘‘amplitude’’A as the parameterp ~at
a fixed ‘‘width’’ s51), with a numerical grid of 16 000 grid points. For the ‘‘derivative of 4th-pow
pseudo-Gaussian’’ initial data family~3.2!, we use the ‘‘width’’s as the parameterp ~with different ‘‘am-
plitudes’’ A for different coupling constants!, with 8000 grid points. For each coupling constant and e
family, the table also shows the max 2m/r echoing periodD/2 of the near-critical evolution, and th
mass-scaling-law critical exponentg determined for the entire critical search.
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A. DSS echoing

Discrete self-similarity is defined by the existence of
discrete diffeomorphismFD such that for some fixedDPR:

~FD* !ng5e2nDg ;nPN. ~3.3!

In adapted coordinatest52 ln@(u*2u)/u* # and r5r /(u*
2u), whereu* is a real number which denotes the accum
lation time of DSS, we have

Z~t1nD,r!5Z~t,r! ;nPN, ~3.4!

whereZ denotesb, V/r , f, or any combination of these, e.g
2m/r . In addition thes field f satisfies the stronger cond
tion

~FD/2* !nf5~21!nf, ~3.5!

so that fields even inf ~e.g. b, V/r , and quantities con-
structed from them! are actually periodic int with period
10400
-

D/2. As a DSS diagnostic, we typically look for (D/2) peri-
odicity in the black hole formation diagnostic max 2m/r ,
where the maximum is taken overr within each u
5constant slice.

We have clear evidence for the existence of a type
critical collapse with a DSS critical solution. Figure 1 show
examples of this for two values of the coupling consta
Since max 2m/r periodicity is only a neccesary condition fo
DSS, we have also explicitly verified that the matter fieldf
at selected timesu coincides with its image under the DS
diffeomorphismF. Figure 2 shows an example of this.

We find that the self-similarity echoing periodD/2 varies
strongly with the coupling constanth. Table I gives some
numerical data showing this, and Fig. 3 shows this same
graphically. At largeh, D/2 asymptotes to 0.230060.0003.
As h decreases towards the lower limit of the data in Tabl
h50.18, D/2 rises sharply. At the very smallest couplin
constanth50.18, but not ath50.20 or any larger value, the
critical solution shows small deviations from exact DSS: t
e

le
e

FIG. 1. This figure shows DSS
echoing behavior in the black hol
formation diagnostic max 2m/r in
near-critical ~in this case slightly
supercritical! evolutions for cou-
pling constantsh50.5 @part ~a!#
and 0.18 @part ~b!#. Notice the
much longer periodD/2 of the
echoes ath50.18. Although it is
not apparent to the eye at the sca
of this figure, the 0.18 echoes ar
not exactly identical: they vary in
period and shape by 5–10 %.
7-4



h

ing

h

e
e
h

ri-
p-
s

ence

al

by
we

5,

ar-
on

g

l
if-

ing
s

ion-
-

y
u-
n

sfi

ax

id

-

and
is
s

nts.

TYPE II CRITICAL COLLAPSE OF A SELF- . . . PHYSICAL REVIEW D 62 104007
periods and shapes of the individual max 2m/r oscillations
deviate by 5–10 % from the best-fitting DSS prediction. T
physical significance of this is not yet clear.

B. Scaling and universality

In the presence of DSS, the black hole massmBH of
slightly supercritical evolutions shows a universal scal
law ~Refs.@22–25#!

ln mBH5g ln~p2p* !1C„ln~p2p* !…1const ~3.6!

where g sets the overall slope of the scaling law, and t
function C is periodic with period1

2 D/g in ln(p2p* ). For

FIG. 2. Snapshots of a near-critical evolution of the SU~2! s
field f as a function of lnr for h51.0. The frames are evenl
spaced int52 ln @(u*2u)/u* # ~this increases towards the accum
lation time u* ). t increases to the right within each row, the
downwards between successive rows. Observe thatf is the same in
frames in the same column but 2 rows apart; this indicates thatf is
periodic in t with period D50.46. Also notice thatf is negated
between frames in the same column of adjacent rows; i.e. it sati
the half-period self-similarity condition~3.5!.

FIG. 3. This figure shows the variation of the near-critical m
2m/r echoing periodD/2 with the coupling constanth, for the
Gaussian-like initial data family given in Table I. Notice the rap
rise in D/2 at smallh. The error bar for theh50.18 point is esti-
mated from the dispersion inD/2 values when fitting different sub
sets of echoes in Fig. 1~b!; for larger values ofh this dispersion is
negligible.
10400
e

e

slightly subcritical evolutions, the maximum~taken overu
within each evolution! of the 4-Ricci scalar evaluated at th
origin, Rmax, also shows a similar scaling law, but with slop
22g @26#. This is also true for supercritical evolutions, wit
Rmax now defined by taking the maximum inu within each
evolution only until a~null! slice reaches the apparent ho
zon. ~Our actual evolutions terminate slightly before the a
parent horizon, butRmax does not change significantly in thi
interval.!

We have investigated these scaling laws using a sequ
of supercritical evolutions with varying ln(p2p* ). We ex-
tract g by least-squares fitting lnmBH as a linear function of
ln(p2p* ); after subtracting this fit from lnmBH , we are left
with the periodic fine structure. Figure 4 shows a typic
supercritical scaling law and Fig. 5 its fine structure.

Since the numerical resolution of our code is limited
the use of IEEE double precision floating point numbers,
expect the errors to blow up forp2p* &10216 which corre-
sponds to ln(p2p* )&35. This can be seen in Figs. 4 and
and also in Fig. 8~b! ~discussed in the next section!. For p
2p* *210 deviations from the scaling laws are also app
ent, demarcating the range of validity of linear perturbati
theory.

We find that the mass scaling exponentg varies by at
most 5% over the range ofh we have studied, asymptotin
to g50.118560.0005 at largeh. ~The error is estimated
from the dispersion ing values between fits to critica
searches with different initial-data families and/or finite d
ference grid resolutions.!

The periodicity present in the fine structure of the scal
law ~Figs. 4 and 5! can be measured directly. Figure 6 show
a comparison of the measured periods with the perturbat
theory prediction1

2 D/g in ln(p2p* ). The agreement is ex
cellent.

es

FIG. 4. Supercritical scaling of the black hole massmBH , and of
Rmax, the maximum~over retarded timeu within a single evolution!
of the scalar curvature at the origin. The slopes of the masses
Rmax are 1g and 22g respectively. The scaling fine structure
clearly visible forRmax. Its period is found to be 2.099 which i
very close to the value1

2 D/g52.097 predicted by perturbation
theory and computed from known values of the critical expone
This series of evolutions was done forh50.5 using a resolution of
2000 grid points.
7-5
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Comparing results for different one-parameter families
initial data, we find that the critical behavior is universal
all coupling constantsh: The critical exponentg and the
echoing periodD/2 are the same for all critical searches a
given coupling constant, regardless of which initial data fa
ily is used. For example, Table I shows thatg andD/2 are
the same~to within numerical errors! for even the very dif-
ferent initial data families~3.1! and ~3.2!.

IV. CONCLUSIONS

In this paper we have presented a detailed numer
analysis of SU~2! s models coupled to gravity in spherica
symmetry for a wide range of the coupling constanth. For

FIG. 5. This figure shows the fine-scale structure inmBH ~shown
in Fig. 4! after subtracting a linear fit. For these evolutions w
disabled the ‘‘2mMS /r .0.995 detected forN time steps’’ stopping
criterion in our code~cf. Appendix!, running each evolution unti
Du,10215; in this case our final slices’ outer grid boundaries
most touched the apparent horizon, somBH and mtotal were essen-
tially identical ~within &10210 of each other!.

FIG. 6. This figure compares the quantity1
2 D/g, as computed

from the echoing in max 2m/r and the mass-scaling law, to th
period of the oscillations present in the fine structure of the ma
scaling law, which is predicted by perturbation theory to be1

2 D/g.
This has been carried out for coupling constants ranging from 0
up to 5. All evolutions were done with 2000 grid points rad
resolution.
10400
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0.18<h<100 we have evidence of universal critical type
collapse behavior. The critical solution is DSS. We ha
observed both the typical mass scaling at the threshold
black hole formation of supercritical initial data and the co
responding scaling of the scalar curvature for both sub-
supercritical evolutions.

Our numerical results are based on an outgoing–null-c
formulation of the Einstein-matter equations, specialized
spherical symmetry~our numerical methods are discussed
detail in Appendix A!. We have carried out thorough con
vergence tests to ensure the validity of our results~see Ap-
pendix B!. Notably, we have demonstrated second or
uniform-in-r convergence of the error diagnosticdm ~mea-
suring finite differencing errors in the Misner-Sharp ma
function! for even very nearly critical spacetimes. We ha
also demonstrated second order convergence for the in
data’s critical parameterp* . To our knowledge this is the
first time the latter has been reported.

In the limit of large couplings our model corresponds
the s model with 3-dimensional flat target manifold. Th
model has already been studied by Liebling@27#, where he
considered an additional potential. As this potential does
play a role for criticality we should observe the same critic
solution for large couplings. In fact our results for both t
echoing periodD50.4604 and the scaling exponentg
50.1187 are in good agreement with the results reporte
@27#.

While we observe at most a small variation of the critic
exponentg over the range of coupling constants studied,
period D of the DSS depends strongly on the value of t
coupling constant: ash tends to 0.18 from above the perio
increases by more than a factor of 2 in the narrow range
0.18<h<0.3. Also, close to the lower limit we observ
small deviations from exact self-similarity.

These observations seem to signal a transition reg
around the value ofh50.18. From results of the work on th
s model in flat space@5–7# it is known that there exists a
critical ~threshold! CSS solution. In a recent paper, Bizo´
and Wasserman@28# have shown numerically that this solu
tion persists when gravity is turned on, at least up to a cer
value of the coupling constant. Whether or not the CSS
lution plays a role at the threshold of black hole formati
for small couplings is under current investigation.
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APPENDIX A: NUMERICAL METHODS

1. Overview

We discretize the coupled Einstein-matter equations us
second order finite differencing inr within eachu5const
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slice and inu along ingoing null geodesics. Our grid poin
are generically distributed non-uniformly within each slic
On the initial slice we place them equidistantly inr between
the origin and some finite maximum radiusr outer, but there-
after they freefall in towards the origin along ingoing nu
geodesics. We always maintain a grid point at the origir
50; when another grid point reaches the origin we drop
point previously at the origin from the grid.

The choice of freely falling grid points provides som
degree of adaptive grid refinement by the focusing of geo
sics towards regions of strong curvature. Followi
Garfinkle @12#, we also gain additional resolution at la
times by explicitly refining our grid by a factor of 2 every
where in the slice, each time we have lost half of the rema
ing grid points. Again following Ref.@12#, for some runs we
also manually fine-tune the position of the outermost g
point on the initial slice (r outer), so that this grid point will
eventually almost hit the strongest-field region of spacetim
This greatly improves the effectiveness of the factor-o
grid refinements, but this method was not required for
results presented here.4

By moving our grid points along null geodesics, th
physical domain of dependence is automatically containe
the numerical domain of dependence, so our time step is
restricted by the usual Courant-Friedrichs-Lewy~CFL! sta-
bility limit @29,30#. However, in order to control time reso
lution we require~following Refs.@10,11#! that

~V/r ! Du<C Dr ~A1!

everywhere in the grid, whereC is a constant which we
typically take to be on the order of unity. The time stepDu
is thus limited such that grid points fall inwards by no mo
than C/2 grid point spacings per time step. Most of our r
sults reported here were obtained withC51.5. @Note that for
a null-cone evolution similar to ours, but with grid points
constantr ~Ref. @15#!, thereis a CFL stability limit, which is
in fact just Eq.~A1! with C52.#

For r Q1 sufficiently small, a large value ofV/r de-
creases the time stepDu as follows: From Eq.~2.6! it is clear
that for smallr Q1 the functionb—which is monotonically
increasing withr—becomes large~it blows up at an apparen
horizon!. Furthermore, by Eq.~2.15! we get V/r 5e2b (1
22m/r ). Outside of the outermost local maximum of 2m/r
both e2b and 122m/r are monotonically increasing withr,
and thus so isV/r . If the outer boundary of the grid is take
sufficiently far out, this is therefore the location of the ma
mum of V/r and thus of the most stringent slowdown co
dition. If Du,10215 ~i.e. close to machine precision!, the
evolution is terminated.

For the remainder of this appendix, we adopt the us

4By fine-tuningr outer in this way, we have also observed DSS
the massless scalar~Klein-Gordon! field, with up to 5 echoes visible
~in the sense of Fig. 1!. This provides a strong additional test of o
numerical scheme, since the dynamic range of the DSS is m
larger in the Klein-Gordon case:D/2'1.73 there@as defined by Eq.
~3.3!#, much larger than the values we find for thes field.
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notation where superscripts denote ‘‘temporal’’~u! levels.
Figure 7 shows the typical organization of our grid. All di
cretizations in time~u! and space~r! use nonuniform grid
spacings to allow for the free fall of the grid points and t
adaptive time stepping~A1!. Our numerical scheme uses th
geometry fieldsb, V/r and (V/r )8, and the rescaled matte
field c[rf.

Assuming that these fields are known at all grid points
theu5uk andu5uk21 slices, we determine the fields on th
u5uk11 slice as follows:

~i! For the innermost 3 non-origin grid points in theu
5uk11 slice, we use a Taylor series expansion as descri
in Appendix A 2.

~ii ! We then sweep outwards over the remaining spa
grids of theu5uk11 slice as discussed in Appendix A 3.

2. Taylor expansions near the symmetry axis

The coupled Einstein-matter equations and regularity
termine the generic behavior ofc near the origin as

c~u1Du,r !5c1r 21c2r 31c2r 2 Du1O~Du41r 4!.
~A2!

Substitution of this series expansion into the hypersurf
equations~2.12! yields corresponding series expansions
the geometry fieldsb andV/r .

ch

FIG. 7. This figure shows our finite differencing grid. Individu
grid points are labeled with integers 0–6, and their ingoing-nu
geodesic trajectories are shown as dotted lines. Grid points a
origin are marked with small points. Grid points used in the lea
squares fitting procedure~cf. Appendix A 2! are marked with large
solid circles, while the grid points where the field variables a
calculated from the Taylor series are marked with large op
circles. Grid points wherec is already known in the diamond
integral scheme~cf. Appendix A 3! are marked with solid squares
while the grid point wherec is computed in this scheme is marke
with an open square.
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SASCHA HUSAet al. PHYSICAL REVIEW D 62 104007
To determine the geometry and matter fields near the
gin on theu5uk11 slice, we first least-squares fit the fun
tional form~A2! to the numerically computedc values at the
5 innermost non-origin points of theu5uk and u5uk21

time levels~these points are marked by large solid circles
Fig. 7!. This determines the coefficientsc1 andc2.

For each of the 3 innermost non-origin grid points on t
u5uk11 slice ~these points are marked by open circles
Fig. 7!, we first integrate the ingoing null geodesic equati
~2.5! from u5uk to u5uk11, as described below. Then, u
ing the coefficientsc1 and c2, we determinec at this grid
point from the series expansion~A2!. Finally, we compute
b, V/r , and (V/r )8 from their corresponding series expa
sions.

3. Integration schemes

In order to integrate out from the Taylor series region
the outer boundary, our general strategy at each grid poi
as follows:

~i! We first determine the grid point’sr coordinate on the
u5uk11 slice by integrating the ingoing null geodesic equ
tion ~2.5! from u5uk to u5uk11.

~ii ! We then determinec at this grid point using a ‘‘dia-
mond integral’’ scheme of Go´mez and Winicour@15,16,14#.

~iii ! We compute the geometry fields by integrating t
hypersurface equations one grid point outwards on thu
5uk11 slice.

For the hypersurface equations~2.12! and the geodesic
equation Eq.~2.5! we use a second order iterated Rung
Kutta scheme@adapted from Sec. 5.2.1, Eq.~5.6!, of Ref.
@31##. For a generic ordinary differential equation~ODE!
systemdy/dx5f(x,y) the scheme is as follows:

ypred
k115yk1Dx f~xk,yk! ~A3a!

yk115yk1 1
2 Dx@ f~xk,yk!1f~xk11,ypred

k11!#. ~A3b!

While this allows straightforward integration of the hype
surface equations~2.12!, the geodesic equation~2.5! needs
special care: The corrector~A3b! requires evaluating the
right-hand-side functionf at the xk11 time level. For the
geodesic equation this requires knowing the fieldV/r on the
u5uk11 slice, which is not yet computed at the time th
geodesic integration is done. We thus linearly extrapolate
neededV/r value from V/r and (V/r )8 values one spatia
grid point inwards on the same (u5un11) slice.

The matter field equation is integrated using a ‘‘diamo
integral’’ scheme of Go´mez and Winicour@15,16,14#. The
basic idea is to integrate the nonlinear wave equation~2.10!
over the null parallelogramS spanned by the 4 grid pointsN,
S, W, andE in Fig. 7. This allows the nonlinear wave equ
tion ~2.10! to be written as

c~N!5c~W!1c~E!2c~S!

2
1

2ES
F S V

r D 8 C

r
1e2b sinS 2

c

r D G du dr. ~A4!
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We evaluate the integral numerically by approximating t
integrand as constant over the null parallelogramS, with a
value which is the average of its values at the grid pointsW
andE. This gives second order overall accuracy forc.

4. Diagnostics

Within a single evolution, we use several diagnostics
assess the accuracy of our numerical computations. We
merically check the satisfaction of the subsidiary and red
dant Einstein equations~2.13! and ~2.14!. We also compare
the two ‘‘different’’ forms of the mass function,mMS and
mr : These are in fact identical by virtue of the Einste
equations, but they are computed in very different ways@via
Eqs. ~2.15! and ~2.16! respectively#, and numerically they
will generally differ by a small amount due to finite differ
encing errors. This difference is a useful diagnostic of
code’s accuracy. To this end, we define

dm~u,r !5
mMS2mr

mtotal, init
~A5!

where mtotal, init[mMS(u50,r max) is the total mass of our
initial slice. dm is then a dimensionless diagnostic of ho
well our field variables approximate the Einstein equatio
we must haveudmu!1 everywhere in the grid at all times fo
our results to be trustworthy.

APPENDIX B: CONVERGENCE TESTS

We use convergence tests of the type popularized
Choptuik@32–34# both to better understand the performan
of our numerical algorithms, and to quantitatively assess
accuracy of our numerical results. In particular, it is on
through such convergence tests that we can be confiden
conclusions reflect properties of the continuum Einste
matter equations, rather than numerical artifacts.

As an example of the convergence properties of our co
putational scheme, we discuss a series of near-criticah
50.5 evolutions. We begin by considering the effects
varying grid resolutions~specified by the number of grid
points N) on the critical parameterp* . Figure 8~a! shows
these effects for the supercritical mass-scaling law. No
that the dominant effect is to simply shift each entire critic
curve to a slightly differentp* @N#. Table II shows these
p* @N# values, and their convergence to a continuum lim
~which we denote byp* @`#) as the grid resolution is in-
creased. Notice that the ratios of the successive differen
(p* @2N#2p* @N#)/(p* @4N#2p* @2N#) are very nearly
equal to 4; i.e. thep* values show second order convergen
to p* @`#.

Besides shifting the effectivep* , what other effects does
varying the grid resolution have on the critical behavio
Figure 8~b! shows the same data as Fig. 8~a!, but plotted
using the usual logarithmic mass-scaling-law coordina
and with each grid resolution’s data plotted using that re
lution’s own p* @N# value. It is clear that the different reso
lutions all yield the same mass scaling law.
7-8
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FIG. 8. This figure shows the convergence of the supercritical mass-scaling law with increasing finite difference grid resolutioh
50.5 evolutions. Part~a! shows the mass scaling behavior for 5 different grid resolutions, plotted onlinear scales in bothp ~here the
‘‘amplitude’’ A) andmBH . Notice how the main effect of changes in the grid resolution is to simply shift the entire critical curve to a sl
different p* . The actualp* values are given in Table II, and all these evolutions used the same initial data parameters as given in
Part~b! shows the same data plotted on logarithmic scales, with each resolution’sp values being taken relative to that resolution’s ownp*
value. Notice that all the resolutions satisfy the same scaling law, even down top2p* @N# far smaller than the resolution shifts shown in pa
~a!; this is discussed further in the text.
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~In order to get the same mass scaling law at differ
resolutions, it is essential here to use each resolution’s
p* @N# value, since Fig. 8~b! shows the mass scaling la
continuing down top2p* @N# values some 10 orders o
magnitude smaller than the typicalp* @N# shifts from one
resolution to another. Equivalently, if we didnot use each
resolution’s ownp* @N# value in Fig. 8~b!, then the mass
scaling law would fail to hold belowp2p* @N#;1025

„the
typical p* @N# shifts seen in Fig. 8~a!…, whereas by using
each resolution’s ownp* @N# value, it actually continues
down top2p* @N#;10215.!

We now consider convergence behavior within a sin
evolution, or more precisely between the 3 evolutions wh
max 2m/r time developments are shown in Fig. 9~a!:

~1! The first evolution uses 8000 grid points, withp
5p* @8000#110212, so this evolution is just slightly super
critical, by about 1 part in 1010. This can be seen in th

TABLE II. This table shows the convergence ofp* with the
finite difference grid resolutionN, for the Gaussian-like data plotte
in Fig. 8. These evolutions used the same initial data paramete
given in Table I. The first two columns give thep* values for the
various resolutionsN. The third column gives the differencesdp*
[p* @2N#2p* @N# between consecutivep* values as the resolu
tion is doubled, and the last column gives the ratios of consecu
differences. The values in the last column are very nearly equa
4, showing second order convergence ofp* .
10400
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max 2m/r plot: max 2m/r first oscillates a number of times
then eventually rises to 1.

~2! The second evolution uses 16 000 grid points, with
samep as evolution~1!. Because of the shift in the effectiv
p* with N, this evolution is now subcritical, in fact subcrit
cal by a relatively large amount: max 2m/r oscillates only
about half as many times as in evolution~1!, then eventually
decays to zero.

~3! The third evolution also uses 16 000 grid points, b
this time p is adjusted to compensate for the shift in t
effective p* with N: we take p5p* @16 000#110212. By
construction, this evolution is supercritical again, by t
same amount as evolution~1!; in fact its max 2m/r plot is
almost identical to that of evolution~1!.

We usedm as a diagnostic of our code’s numerical acc
racy for these evolutions. Figure 9~b! shows the convergenc
of dm to zero for evolutions~1! and ~2!. These evolutions
eventually yield very different spacetimes~one forming a
black hole, the other not!, but here we consideru5const
slices at an early enough time,u513.08@shown by the left
vertical dashed line in Fig. 9~a!# that the evolutions have no
drifted very far apart yet. From Fig. 9~b! it is clear thatdm is
almost precisely a factor of 4 smaller at the higher resolut
than at the lower one; i.e.dm shows second order conve
gence to zero, as expected from the construction of our fi
differencing schemes. Notice also that this convergenc
uniform, which is a considerably stronger numerical-fideli
requirement than requiring only pointwise or gridwise-no
convergence.

Now consider a convergence test between evolutions~1!
and ~3!. Because evolution~3! adjustsp to compensate for
the shift in the effectivep* with N, these two evolutions
have very similar behavior, so we can consider much la
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FIG. 9. This figure shows the
convergence ofdm to zero with
increasing grid resolution, for
near-critical h50.5 evolutions.
Part ~a! shows the time develop
ment of max 2m/r for each of 3
evolutions described in the text
Part~b! shows the convergence o
dm between evolutions~1! and
~2!, at a relatively early time. Par
~c! shows the convergence ofdm
between evolutions~1! and ~3!, at
a relatively late time.~Note that in
all cases, the marked points ar
spaced for ease of reading, an
represent only a small subset o
the time steps or spatial grid
points.!
Fo
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u5constant slices and still obtain good convergence.
example, Fig. 9~c! shows the convergence ofdm at the rela-
tively late timeu518.59@shown by the right vertical dashe
line in Fig. 9~a!#. The convergence is~again! very accurately
second order. In other words, once we compensate for
th

.
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shift in the effectivep* with N, we have excellent—and
uniformly pointwise—convergence even for evolutions th
areveryclose to critical (p2p* @N# here is about 5 orders o
magnitude smaller than thep* @N# shifts between the two
resolutions!, and hencevery sensitive to small perturbations
hys.
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