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Cauchy boundaries in linearized gravitational theory
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We investigate the numerical stability of Cauchy evolution of linearized gravitational theory in a three-
dimensional bounded domain. Criteria of robust stability are proposed, developed into a testbed and used to
study various evolution-boundary algorithms. We construct a standard explicit finite difference code which
solves the unconstrained linearized Einstein equations in the 311 formulation and measure its stability prop-
erties under Dirichlet, Neumann, and Sommerfeld boundary conditions. We demonstrate the robust stability of
a specific evolution-boundary algorithm under random constraint violating initial data and random boundary
data.

PACS number~s!: 04.70.Bw, 04.20.Ex, 04.25.Dm, 04.25.Nx
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I. INTRODUCTION

The computational evolution of three-dimensional gene
relativistic space-times by means of Cauchy evolution i
potentially powerful tool to study the gravitational radiatio
from black-hole–neutron-star binaries whose inspiral is
pected to provide prominent signals to gravitational wa
observatories. There are several three-dimensional gen
relativistic codes under development to solve this proble
Boundary conditions are an essential part of these codes
the outer boundary they must provide an outgoing radia
condition and extract the emitted waveform. For black-h
spacetimes, there is also an inner boundary, approxima
given by the apparent horizon, where one excises the sin
lar region inside a black hole. Instabilities or inaccurac
introduced at such boundaries have emerged as a major p
lem common to all code development. Historically, the fi
Cauchy codes were based upon the Arnowitt-Deser-Mis
~ADM ! formulation@1,2# of the Einstein equations. Recent
there has been pessimism that such codes might be in
ently unstable because of the lack of manifest hyperboli
in the underlying equations. In order to shed light on t
issue, we present here a study of ADM evolution-bound
algorithms in the simple environment of linearized gravi
where nonlinear sources of physical or numerical instabi
are absent and computing time is reduced by a factor of
by use of a linearized code.

Our two main results, for the case of fixed lapse and sh
are

On analytic grounds, ADM boundary algorithms whic
supply values for all components of the metric~or extrinsic
curvature! are inconsistent.

We present a boundary algorithm which allows free spe
fication of the transverse-traceless components of the m
~or extrinsic curvature! at the boundary, and for which un
constrained, linearized ADM evolution can be carried out
a bounded domain for thousands of crossing times with
bust stability.

The criteria for robust stability, which we present he
are the most severe that have been applied to Cauchy e
0556-2821/2000/62~10!/104006~10!/$15.00 62 1040
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tion in numerical relativity. The boundary algorithm differ
from previous approaches and offers fresh hope for rob
nonlinear ADM evolution.

Our particular motivation for this work is the difficulty we
have experienced implementing Cauchy-characteris
matching ~CCM! for three-dimensional general relativit
@3,4#. CCM provides a Cauchy boundary condition b
matching the Cauchy evolution across the boundary t
characteristic evolution. For nonlinear scalar waves pro
gating in a flat three-dimensional space, CCM has been d
onstrated to be more accurate and efficient than all o
existing boundary conditions for Cauchy evolution@5#, and it
has been demonstrated mathematically that this conclu
also applies to gravity@6#. In addition, in the spherically
symmetric case of a self-gravitating scalar wave satisfy
the Einstein-Klein-Gordon equations, CCM has been s
cessfully applied at the inner boundary of a Cauchy evo
tion to excise the interior black hole region and, at the sa
time, at the outer boundary to provide a global evolution
a compactified grid extending to null infinity@7#. These suc-
cesses are promising for the application of CCM to thr
dimensional problems in general relativity but this has n
yet been borne out. This difficulty, and the similar difficul
in efforts using perturbative matching@8#, may possibly arise
from a pathology of the Cauchy boundary which is indepe
dent of matching. In this work, we reveal such a pathology
the way boundary conditions have been applied in the AD
formulation of the Einstein equations which, at present, is
only formulation for which matching has been attempte
We also present a new form of ADM boundary algorith
which eliminates the pathology.

The stability of the Cauchy evolution algorithm itself
straightforward to investigate by carrying out a bounda
free evolution on a 3-torus~equivalent to periodic boundar
conditions!. Such tests constitute Stage 1 of a 3-stage
bed for robust boundary stability which is summarized bel
and explained in detail in Secs. III, IV, and VI. The period
boundary tests serve to cull out algorithms whose bound
stability is doomed from the start. In earlier work, robu
stability for characteristic evolution with random data on
©2000 The American Physical Society06-1
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inner boundary was demonstrated for characteristic evolu
using thePITT null code @6#. In the course of the presen
investigation we have reconfirmed this robustness of thePITT

code using the same specifications proposed here for Ca
codes.

CCM cannot work unless the Cauchy code, as well as
characteristic code, has a robustly stable boundary. Th
necessarily so because the interpolations between a Cart
Cauchy grid and a spherical null grid continually introdu
short wavelength noise into the neighborhood of the bou
ary. This is the rationale underlying the robustness criter
in our test bed. Robustness of the Cauchy boundary
necessary~although not a sufficient! condition for the suc-
cessful implementation of CCM.

Analytic studies of Cauchy evolution of linearized gravi
with boundaries at infinity reveal modes which grow linea
in time, but none which grow exponentially@9#. The inaccu-
racy introduced by such secular modes can be controlled
is not of major concern, at least in the linearized theo
~Such secular modes can lead to exponential instabilitie
numerical origin in the nonlinear theory if not proper
treated@10#!. In the case of a finite boundary, there is furth
potential for instability and a brief discussion is given in Se
III.

As is customary in numerical relativity, we monitor th
existence of unstable modes by the growth of the Ham
tonian constraint. Because the constraints are not enfo
during standard implementation of ADM evolution, th
Hamiltonian constraint is an effective sensor of numeri
instabilities.

Stage 2 of the test bed is based on the simple boun
value problem obtained by opening one dimension o
3-torus to form a 2-torus with plane boundaries normal t
Cartesian axis. Running a Cauchy-boundary algorithm w
this topology and with random initial and random bounda
data forms the second stage of our test bed, which is
cussed in Sec. IV. In Sec. V, we present new evoluti
boundary algorithms which are robustly stable.

Stage 3 of the testbed is designed to test robustnes
boundary conditions appropriate to an isolated system
Sec. VI we establish Stage 3 robustness of an ADM bou
ary algorithm.

The main results presented here are experimental,
computational sense. The difficulties encountered with fin
Cauchy boundaries in general relativity have recen
prompted some analytic investigations of the subject@11,12#.
However, these have so far been confined to hyperbolic
mulations, as opposed to the ADM formulation, and to
analytic problem, as opposed to the finite difference solut
obtained by computation. Although it is not possible to ma
a direct comparison, the nature of our results are consis
with the general conclusions of these analytic studies.

There are several promising numerical approaches b
upon hyperbolic~or ‘‘more hyperbolic’’! formulations of the
equations@13–23#. Here we concentrate on ADM scheme
which are the most compact to code and require the l
amount of memory because they have a smaller numbe
variables. Our results should provide useful benchmarks
other relativity codes. However, it should also be caution
10400
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that the nature of a successful boundary algorithm is dep
dent on the form of the equations adopted, as well as
choice of discretization, and the ADM boundary algorithm
we have obtained do not necessarily apply to other formu
tions.

We use Greek letters for space-time indices and La
letters for spatial indices. Four dimensional geometric qu
tities are explicitly indicated, such as(4)Rab and (4)Gab for
the Ricci and Einstein tensors of the space-time, whereasRi j
andR refer to the Ricci tensor and Ricci scalar of the Cauc
hypersurfaces. Linearized versions of these quantities are
noted by(4)R̃ab , R̃i j , etc. Three dimensional tensor indice
are raised and lowered by the background Euclidean me
d i j . We write h5d i j hi j for three-dimensional traces. W
denote time derivatives byḟ 5] t f . Our convention for the
background Minkowski metric is such that the wave equ
tion takes the form

hab]a]bF5~2] t
21]x

21]y
21]z

2!F50. ~1.1!

II. GENERAL FRAMEWORK

A. The linearized ADM system

The ADM formulation of the Einstein equations intro
duces a foliation of space-time by a time coordinatet and
expresses the four-dimensional metric as

ds252a2dt21gi j ~dxi1b idt!~dxj1b jdt!, ~2.1!

wheregi j is the induced 3-metric of thet5const slices,a is
the lapse andb i the shift, with the normal to the slices give
by nm5(1,2b i)/a. The equations(4)Ri j 50 yield the evo-
lution equations

] tgi j 2£bgi j 522aKi j ~2.2!

] tKi j 2£bKi j 52DiD ja1a~Ri j 1KKi j 22Ki
lKl j !, ~2.3!

for the 3-metric gi j and the extrinsic curvatureKi j
52 1

2 £ngi j , subject to the constraints

R2Ki j K
i j 1K250, ~2.4!

D j~Ki j 2gi j K !50. ~2.5!

Here R, Ri j , and Di are the Ricci scalar, Ricci tensor an
connection of the 3-metric, respectively.

For simplicity we consider a gauge in which the lapse
unity and the shift vanishes~Gaussian coordinates!, so that
the linearized metricgab5hab1hab satisfieshta50, and
obeys the linearized ADM evolution equations

] thi j 522Ki j ,

] tKi j 5R̃i j , ~2.6!

subject to the~linearized! constraints
6-2
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R̃50

] j~Ki j 2d i j K !50. ~2.7!

Here we consider a 1-parameter system of equatio
equivalent to the linearized Einstein equation, consisting
the six evolution equationsEi j 50 along with the four con-
straint equationsC5Ci50, where

Ei jª
(4)R̃i j 1

1

2
ld i j C, ~2.8!

Cª (4)G̃tt , Ciª2 (4)G̃ti and the parameterl allows mixing
the ~linearized! Hamiltonian constraintC into the evolution
equations. Forl50 we recover the standard ADM system

Codes under development for the evolution
3-dimensional space-times without symmetry apply the c
straint equations at the initial time but do not enforce th
during the evolution. It is crucial for this approach that t
constraints be stably propagated in time. An investigation
Frittelli @24# shows that this requires the parameterl in Eq.
~2.8! satisfy 11l>0. This follows from an analysis of the
linearized Bianchi identities]b

(4)G̃a
b[0, which imply that

Ċi1~11l! ] iC1] jE i j [0 ~2.9!

Ċ1] iC i[0. ~2.10!

Thus if the evolution equations are satisfied then the Ham
tonian constraint satisfies

C̈2~11l!]k]kC50. ~2.11!

This equation has a well-posed initial value problem forl
.21 ~when it is hyperbolic! and also forl521, but for
l,21 the equation is elliptic and the initial value proble
is not well-posed. In the standard ADM case,l50 and the
Hamiltonian constraint propagates along the light cone.
consider here evolution equations with a range ofl.

The linearized evolution equations~2.8! take the form

ḣi j 522Ki j

K̇ i j 52
1

2
]m]mhi j 1

1

2
~] iH j1] jHi !1

1

2
d i j lC, ~2.12!

where

Hi5] j S hi j 2
1

2
d i j hD , ~2.13!

and we can express the Hamiltonian as

C5
1

2
] iH

i2
1

4
]m]mh. ~2.14!

A spectral analysis of a system similar to Eqs.~2.12! and
~2.13! is presented in@25#.
10400
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B. Finite difference algorithms

The evolution variables consist of the 3-metric perturb
tions hi j and their associated momentumKi j 52ḣi j /2. The
evolution is implemented on a uniform spatial gr
(xj ,yk ,zl)5( j Dx,kDx,lDx) with time levelstn5nDt. The
three different evolution algorithms we apply can be d
cussed in reference to the scalar wave Eq.~1.1!, rewritten in
the form

Ḟ522K

K̇52
1

2
]m]mF, ~2.15!

analogous to the first differential order in time and seco
differential order in space form of the ADM equations. W
denoteF j ,k,l

n 5F(tn, j Dx,kDx,lDx). All second derivatives
on the right-hand side of Eq.~2.15! are calculated as centere
3-point finite differences.

1. Standard leapfrog (LF1)

The first evolution algorithm, which we refer to asLF1, is
a standard leapfrog implementation of Eq.~2.15!:

F j ,k,l
n115F j ,k,l

n2124K j ,k,l
n Dt

K j ,k,l
n115K j ,k,l

n212¹2F j ,k,l
n Dt, ~2.16!

where ¹2 is the second order accurate centered differe
approximation to the Laplacian. It is known that this alg
rithm has a time-splitting instability in the presence of dis
pative and nonlinear effects@26#.

2. Staggered leapfrog (LF2)

The second evolution algorithm, which we refer to
LF2, is a staggered in time leapfrog scheme which is
subject to the time-splitting instability:

F j ,k,l
n115F j ,k,l

n 22K j ,k,l
n1 1/2Dt ~2.17!

K j ,k,l
n1 1/25K j ,k,l

n21/22
1

2
¹2F j ,k,l

n Dt. ~2.18!

HereK is evaluated on the half grid. Subtraction of the equ
tion

F j ,k,l
n 5F j ,k,l

n2122K j ,k,l
n21/2Dt ~2.19!

from Eq.~2.17! and elimination ofK using Eq.~2.18! shows
that LF2 is equivalent to the standard centered second-o
scheme for the second differential order in time form of t
wave equation~1.1!, in which F lies on integral time levels
andK is not introduced.

3. Iterative Crank-Nicholson (ICN)

The third evolution algorithm, which we refer to asICN ,
is a two-iteration Crank-Nicholson algorithm. For a
6-3
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N-iteration Crank-Nicholson algorithm, the following se
quence of operations is executed at each time-step:

~1! Compute the first order accurate quantities

F
~0!

j ,k,l
n115F j ,k,l

n 22K j ,k,l
n Dt

K
~0!

j ,k,l
n115K j ,k,l

n 2
1

2
¹2F j ,k,l

n Dt. ~2.20!

~2! Starting withi 50, compute the midlevel values

F
~ i !

j ,k,l
n1 1/25

1

2
$F j ,k,l

n 1F
~ i !

j ,k,l
n11%

K
~ i !

j ,k,l
n1 1/25

1

2
$K j ,k,l

n 1K
~ i !

j ,k,l
n11%. ~2.21!

~3! Update using levelsn andn1 1
2 ,

F
~ i 11!

j ,k,l
n115F j ,k,l

n 22K
~ i !

j ,k,l
n1 1/2Dt

K
~ i 11!

j ,k,l
n115K j ,k,l

n 2
1

2
¹2F

~ i !

j ,k,l
n1 1/2Dt. ~2.22!

~4! Incrementi by one and return to step 2 untili 5N is
reached.

A stability analysis by Teukolsky shows that the evoluti
scheme is stable forN52 andN53 iterations, unstable fo
N54 andN55, stable forN56 andN57, etc.@27#.

4. The Courant-Friedrichs-Lewy condition

The stability of the three evolution algorithms requir
they obey the Courant-Friedrichs-Lewy~CFL! condition that
the numerical domain of dependence contain the ana
domain of dependence, a common requirement for exp
algorithms. For the staggered leapfrog~LF2! and the itera-
tive Crank-Nicholson~ICN ! algorithms, we setDt5Dx/4
and for the standard leapfrog~LF1! we setDt5Dx/8, in all
cases slightly less than half the CFL condition for the alg
rithm.

5. Boundary conditions

Boundary conditions are implemented computationally
the following way, which we illustrate in terms of scala
wave boundary data specified atz50 in terms of a function
f.

The Dirichlet condition

F~ t,x,y,0!5 f ~ t,x,y! ~2.23!

is straightforward to implement as

F j ,k,0
n 5 f j ,k

n . ~2.24!

The Neumann condition

]zF~ t,x,y,0!5 f ~ t,x,y! ~2.25!

is implemented as a 3-point one-sided derivative
10400
ic
it

-

F j ,k,0
n 5

1

3
~2F j ,k,2

n 14F j ,k,1
n 22Dx f j ,k

n !. ~2.26!

The Sommerfeld condition

~] t2]z!F~ t,x,y,0!5 f ~ t,x,y!, ~2.27!

is implemented in the interpolative form used in several re
tivity codes@13,15,21# by modeling the field in the neighbor
hood of the boundary asF(t1z,x,y) and using a 3-point
spatial interpolation to obtain

F j ,k,0
n 5

1

2 S 22
Dt

DxD S 12
Dt

DxDF j ,k,0
n211

Dt

Dx S 22
Dt

DxDF j ,k,1
n21

2
1

2 S 12
Dt

DxD Dt

Dx
F j ,k,2

n211Dt f j ,k
n21 . ~2.28!

III. STAGE 1: ROBUST EVOLUTION STABILITY

Periodic boundary conditions are equivalent to a toroi
topology and do not introduce the local effects of a re
boundary. They provide a test of the evolution code isola
from the effects of boundary conditions. Because an insta
ity in such a code may not be evident for a considerable t
if masked by a strong initial signal, the use of random data
efficient at revealing instabilities early in the evolution. Ra
dom initial data does not satisfy the constraints but that po
no difficulty here, where we are only concerned with stab
ity. These observations motivate our Stage 1 test bed:

Stage 1: Run the evolution code on a 3-torus with rando
initial Cauchy data. The stage is passed if the Hamiltoni
constraint C does not exhibit exponential growth.

An evolution code which does not exhibit exponent
growth under these conditions is defined to berobustly
stable. Failure at Stage 1 would rule out applications wi
boundaries.

We use an evolution time of 2000 crossing times (2000L,
whereL is the linear size of the computational domain! on a
uniform 483 spatial grid with a time step slightly less tha
half the Courant-Friedrichs-Lewy limit. These conditions a
computationally practical and are used to determine whe
there is exponential growth of the Hamiltonian, as measu
by thel ` norm. All runs reported in this paper are made w
these specifications.

A. Stage 1 results

We have applied the Stage 1 test to determine whe
any of three evolution algorithms,LF1, LF2 and ICN are
intrinsically unstable. We apply the test on the flat 3-tor
determined by the periodicity conditionshi j (x,y,z)5hi j (x
1L,y,z)5hi j (x,y1L,z)5hi j (x,y,z1L). The Cauchy data
(hi j ,ḣi j ), can be initialized as random numbers in any int
val (2A,A), since the system is linear. Here we use t
interval (21026,11026).

When applied to the scalar wave equation in the hyb
first order in time and second order in space form of E
~2.15!, all three algorithmsLF1, LF2 andICN pass Stage 1
6-4
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This confirms, for the case of random data, prior work@28#
showing that the hybrid system has a well behaved com
tational evolution.

Furthermore, when applied to the ADM system~2.12! for
gravitational evolution withl equal to 0, 2 and 4, all thre
algorithmsLF1, LF2 and ICN also pass Stage 1. For run
with l equal to20.1, 4.1 and 5.0 these three evolution
gorithms exhibited exponential growth. This indicates
range of stability for 0<l<4. In this range, it is notable tha
the norm of the Hamiltonian constraint grows linearly
time for LF1 and LF2 but decays exponentially forICN .
This apparently results from the artificial dissipation inher
in ICN .

The stability of the discretized system of ADM equatio
is more restrictive than~but consistent with! the range21
<l found by Frittelli @24# for stable evolution of the con
straints in the continuum theory. Forl521, algorithms
LF1 andLF2 show exponential growth whereas the norm
the Hamiltonian only grows linearly forICN . However, for
l521.01 orl520.99 this norm grows exponentially fo
ICN . This anomalous behavior suggests that the special
l521 ~the Einstein system of evolution equations! can be
successfully evolved but that its numerical stability is high
sensitive to the choice of finite difference scheme. For t
reason, we have not investigated this case in the presen
a boundary. The upper limit of the window of stability atl
54 is related to the size of the time step. For algorithmLF2,
a run withDt5Dx/8 ~half the time step of the standard run!
and l520 showed no exponential growth. This seems
arise from the increase of the constraint propagation sp
with l, which makes the Courant-Friedrich-Lewy conditio
more stringent.

In summary, the hybrid scalar wave system~2.15! and the
ADM system~2.12!, with l equal to 0, 2 and 4, pass Stage
for the three evolution algorithmsLF1, LF2 andICN . These
are the evolution systems whose boundary stability we inv
tigate in Sec. IV.

IV. STAGE 2: ROBUST BOUNDARY STABILITY

The general linear hyperbolic equation in second or
differential form for a scalar field has a well posed Cauc
problem in a region with Dirichlet, Neumann or Sommerfe
boundary conditions~e.g., see@29#!. For a system of coupled
scalar fields, or a tensor field with coupled components,
standard practice to reduce the equations to first order di
ential form in order to examine hyperbolicity and appropria
boundary conditions@30#. For a first order system in diago
nalizable, strongly hyperbolic form there is a straightforwa
way to decide which variables require data at a given bou
ary @31#. Variables propagating along future directed char
teristics which emanatefrom the boundary can be assigne
free data, but assigning arbitrary boundary values to the
maining variables would be inconsistent with the evoluti
equations. When a second order system is reduced to
order form, spatial derivatives of the field become auxilia
variables, so that there is no longer any natural distinct
between, say, Dirichlet and Neumann boundary conditio
What might have been termed a Neumann condition in
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original system now appears in Dirichlet form. Friedrich a
Nagy @12# have recently given a complete treatment of
well-posed boundary-initial-value problem for a symmet
hyperbolic version of the nonlinear vacuum gravitation
equations. They find a continuum of allowed boundary co
ditions on the field variables, which can be more natura
distinguished as ranging from ‘‘electric’’ to ‘‘magnetic.’’

The hybrid form of the scalar wave equation~2.15! does
not not fit into any hyperbolic category but, since the spa
derivatives of the field are not treated as auxiliary variabl
we retain the classification of Dirichlet, Neumann and So
merfeld boundary conditions. Following common practic
we also retain this classification in the case of the AD
system~2.12!.

Whereas Stage 1 tests stability of the interior evolut
algorithm itself, Stage 2 is designed to be a simple stabi
test of the combined evolution-boundary algorithm. T
boundary algorithm by itself is neither stable nor unstab
rather the combination of the boundary algorithm with
~stable! evolution algorithm may be stable, and a combin
tion with another~stable! evolution algorithms may be un
stable@32#. In Stage 2, the three torus is opened up in
z-direction to form a space of topologyT23@0,L#, with
boundaries atz50 andz5L coinciding with planes of grid
points. A boundary algorithm for these points is necessar
order to update the evolution at grid points neighboring
boundary. One purpose of the testbed is to measure suit
ity for matching the Cauchy evolution to an exterior nume
cally generated solution, such as in CCM, where interpo
tions between the exterior and interior grids continua
introduce random error at the Cauchy boundary. This m
vates the following criterion for robust evolution-bounda
stability:

Stage 2: Run the evolution-boundary code on T23@0,L#
with random initial Cauchy data and random boundary da
The stage is passed if the Hamiltonian constraintC does not
exhibit exponential growth.

As an illustration of how Stage 2 is implemented, rath
than giving smooth Dirichlet data, such as the homogene
dataF(t,x,y,0)50 for a scalar field, we require thatF be
prescribed as a random number at each boundary p
Similarly, in the Neumann or Sommerfeld cases,]zF or
(] t2]z)F are prescribed as random numbers atz50. In
order to avoid inconsistencies, the initial and boundary d
are both set to 0 in a few grid zones near the intersection
the initial Cauchy surface with the boundary.

As a first set of experiments, we have confirmed that
hybrid scalar system~2.15! passes Stage 2 for the three ev
lution algorithmsLF1, LF2 andICN with a Dirichlet bound-
ary algorithm. Sommerfeld and Neumann boundary al
rithms were less successful, as indicated in Table I. O
those combinations of evolution and boundary algorith
which are robustly stable for a scalar field should be
pected to pass Stage 2 for the ADM system.

Next, we tested ADM evolution with boundary data pr
scribed for each component ofKi j , as has been commo
practice. In Sec. V, for the casel50, we show this practice
leads to an inconsistent evolution-boundary problem, wh
finite difference solutions cannot in general converge to
6-5
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correct continuum solution. It is notable that the numeri
results were quite mixed, not necessarily showing unsta
growth. For homogeneousboundary conditions and evolu
tion with l50, we first found that the only stable combin
tion was ICN evolution with a homogeneous Sommerfe
boundary. ~All other combinations showed exponenti
growth on the order of 10 crossing times.! Next, we applied
randomSommerfeld boundary data to all components ofKi j
@the analog of choosingf randomly in Eq.~2.27!#, again with
ICN evolution andl50. The log plot in Fig. 1 shows the
Hamiltonian constraint growing at late times astn, for n
'1.92. Such polynomial growth is normally regarded
stable. However, in this case, there is a large multiply
constant, and the magnitude of the error~of the order of 1000
at t52000) is unacceptably high.

V. NEW ADM BOUNDARY ALGORITHMS

A. Consistency of ADM boundary conditions

Various types of boundary conditions can be applied t
scalar wave, e.g. Dirichlet, Neumann or Sommerfeld. Th
are more options in the ADM case, corresponding to Diric
let, Neumann or Sommerfeld conditions on the various co

TABLE I. Results of Stage 2 tests for scalar wave evolutio
with the LF1, LF2 and ICN algorithms, using Dirichlet, Sommer
feld and Neumann boundary conditions on thez5const faces of a
cube. A ‘‘A ’’ indicates robust stability, a ‘‘3 ’’ indicates exponen-
tial instability and a ‘‘?’’ indicates non-linear growth which was n
clearly exponential on the time scale of the test.

Dirichlet Sommerfeld Neumann

LF1 A 3 ?
LF2 A A ?
ICN A A ?

FIG. 1. A log plot of thel ` norm of the Hamiltonian constrain
as a function of crossing time for a Stage 2 test of random S
merfeld boundary conditions on all metric components.
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ponents of the metric, or equivalently on the components
extrinsic curvatureKi j . However, many of these versions a
inconsistent with the evolution or constraint equations.
this regard, we list some combinations of the linearized E
stein equations and their implications for a correct bound
algorithm. We take the boundary to be a surfacez5const
and denote the transverse directions byxA5(x,y).

The linearized Einstein equation component

2 (4)G̃z
z[2K̇A

A1]B]BhA
A2]A]BhAB50 ~5.1!

can be applied on the boundary to evolve the transverse t
KA

A5Kxx1Kyy , given the transverse-tracefree compone

KAB2 1
2 dABKC

C .
The linearized Ricci tensor equation

(4)R̃t
t[ (4)R̃k

k22C[2K̇50 ~5.2!

can be applied on the boundary to evolve the traceK, thus
determiningKzz in terms of transverse components.

The Einstein equation components

2 (4)G̃z
A[22K̇z

A2]B~]Bhz
A2]Ahz

B!2]z]
AhB

B1]z]
BhB

A50
~5.3!

can be applied on the boundary to determineKz
A , given the

transverse components.
The linearized momentum constraint

C A[]zK
Az1]BKAB2]AK50 ~5.4!

or the combination of the time derivative of the momentu
constraints with Eq.~5.2!,

ĊA2]A(4)R̃t
t[]zK̇z

A1]BK̇AB50, ~5.5!

give other ways to update the Neumann boundary data
]zKz

A in terms of Dirichlet boundary values ofKAB .
The combination

Ċz2]z(4)R̃t
t[]zK̇zz1]AK̇z

A50 ~5.6!

can be used to update the Neumann boundary data forKzz.
In the symmetric hyperbolic treatment of the Einste

equations by Friedrich and Nagy@12#, only 2 components of
the Weyl tensor can be prescribed as free boundary dat
would thus be surprising if free boundary values could
assigned to all metric variables~or their associated momen
tum variables! for an ADM system with gauge freedom fixe
by an explicit choice of lapse and shift, as shown by t
following proposition.

Proposition. Prescription of Dirichlet boundary data on a
components of the metric~or extrinsic curvature! of the
ADM system~2.12! with l50 gives rise to an inconsisten
evolution-boundary problem. The same is true for Neuma
or Sommerfeld boundary data.

Proof: Consider homogeneous Dirichlet data consisting
settingall components ofhi j to zero on the boundary. The
the functionCª]A]AhB

B2]A]BhAB vanishes on the bound
ary and Eq.~5.3! ~one of the evolution equations for thi

s

-
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system! implies that the normal derivative]zC also vanishes
on the boundary. But it is easy to verify, in the casel50,
that theevolution equationsfor hi j imply thatC satisfies the
scalar wave equation. Thus the vanishing Dirichlet data
hi j generates, for any initial data, a solutionC of the wave
equation whose Dirichlet and Neumann boundary data b
vanish. This a classic example of an inconsistent bound
value problem for the scalar waveC. ~This is evident from
considering the fate of an initial pulse of compact supp
when it reaches the boundary.!

Similarly, consider the homogeneous Sommerfeld d
(] t2]z)hi j 50 applied toall metric components on the plan
boundary atz50. If hi j were a global solution consisten
with this boundary data then, since the equations are lin
and have space-time translational symmetry,ĥi j 5(] t
2]z)hi j would also be a global solution but with vanishin
Dirichlet data for all components at the boundary. Thus, a
the Dirichlet problem, a Sommerfeld boundary condition,
by the same argument a Neumann boundary condition,
plied to all components of the metric also leads to an inc
sistent boundary value problem.

B. Robustly stable Dirichlet evolution-boundary algorithms

In order to formulate consistent boundary algorithms,
denote byhTT the traceless part of the components transve
to the boundary, i.e. (hxx2hyy) andhxy in our Stage 2 tes
with boundaries atz50 andz5L. Since our gauge choic
htm50 is consistent with the radiation gauge subclass
harmonic coordinates, theseTT components represent th
free modes of waves propagating normal to the bound
We make the hypothesis that the boundary values ofhTT , or
equivalentlyKTT , should be freely specified in either Dirich
let, Neumann or Sommerfeld form. This is motivated in t
Dirichlet case by the consistency of characteristic evolut
where the free data on a worldtube corresponds to Diric
data forhTT in the linearized approximation. Given thisTT
boundary data, the boundary algorithm must determ
boundary values of the remaining components using the
earized gravitational equations.

The following five Dirichlet boundary algorithms exhib
Stage 2 robust stability for theICN evolution algorithm. The
algorithms update the boundary values of the extrinsic c
vature, with boundary values for the metric perturbation u
dated by the centered difference version of the first of E
~2.12!. Given random initial and boundary data for th
transverse-traceless componentsKTT , all five boundary al-
gorithms update the boundary values of the traceKA

A via
integration of Eq.~5.1!. Boundary values of the remainin
unspecified components are updated as follows:

BA1: We apply Eq.~5.6! to updateKzz and Eq.~5.3! to
updateKz

A .
BA2: We apply Eq.~5.2! to updateKzz and the momen-

tum constraint Eq.~5.4! to supply boundary values for]zKz
A

which, expressed as a 3-point sideways finite difference,
used to updateKz

A .
BA3: We apply Eq.~5.2! to update boundary values fo

Kzz and Eq.~5.5! to supply boundary values for]zK̇z
A which,
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as in BA2, are used to updateKz
A using a centered time

difference.
BA4: We apply Eq.~5.2! to updateKzz and Eq.~5.3! to

updateKz
A .

BA5: We apply Eq.~5.6! to updateKzz ~with finite dif-
ference stencils as above! and Eq.~5.5! to updateKz

A .
All five boundary algorithms satisfy Stage 2 robust stab

ity for ICN evolution. Figure 2 shows the behavior of th
Hamiltonian constraint for these five algorithms in the ca
l52. Note thatBA2 and BA3 have identical performance
as might be expected as they differ only with respect to
tails of initialization at the boundary.BA1 and BA4 show
less noise in the Hamiltonian constraint than the others, w
BA5 showing the largest~although still linear! growth.BA1
gave the best performance, with the Hamiltonian constra
actually decreasing slowly at late times.

For l50 andl54, boundary algorithmsBA1 andBA2
are also robustly stable for ICN evolution.~The other bound-
ary algorithms were not checked for these cases in orde
conserve computing time!.

While these 5 Dirichlet boundary algorithms were robu
for ICN evolution, they failed Stage 2 forLF1 and LF2
evolution withl5 0, 2 and 4, with the exponential growt
rate typically decreasing with increasingl. Table II summa-
rizes the performance forl52. The failure of these
evolution-boundary algorithms for leapfrog evolution, b
not for ICN , emphasizes the complexity of the finite diffe
ence problem compared to the corresponding analytic p
lem.

C. Neumann and Sommerfeld boundaries

We attempted to modify the Dirichlet boundary alg
rithms BA1–BA5 to obtain stable evolution with Neuman
or Sommerfeld boundary data specified for the extrinsic c
vature componentsKTT . In the Neumann case, assuming
components of the metric have been determined at time l
N21 and the evolution has been applied to update all co

FIG. 2. Stage two performance of the Hamiltonian constraint
a function of crossing time for the five robustly stable algorithm
BA1 to BA5.
6-7
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TABLE II. Stage 2 tests of ADM evolution withl52 for boundary algorithmsBA1–BA5. A ‘‘ A ’’
indicates robust stability. A ‘‘3 ’’ indicates instability with the exponential growth rate indicated in units
crossing time~CT!.

BA1 BA2 BA3 BA4 BA5

LF1 3 ~150 CT! 3 ~300 CT! 3 ~300 CT! 3 ~300 CT! 3 ~300 CT!
LF2 3 ~25 CT! 3 ~300 CT! 3 ~100 CT! 3 ~25 CT! 3 ~100 CT!
ICN A A A A A
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ponents at levelN except at the boundary, we express t
Neumann boundary data]zKTT in finite difference form ac-
cording to Eq.~2.26! to updateKTT on the boundary at leve
N. This supplies the necessary data to apply the Dirich
boundary algorithms to update all remaining components

Similarly, in the Sommerfeld case, given that the met
has been determined at levelN21 and the evolution has
been applied to update all components at levelN except at
the boundary, we apply the interpolative Sommerfeld con
tion in finite difference form according to Eq.~2.28! to up-
dateKTT on the boundary at levelN. Again this supplies the
necessary data to apply the Dirichlet boundary algorithm
update all remaining components.

We tried an extensive, although not exhaustive, set
combinations of evolution algorithms, boundary algorithm
and values ofl with Sommerfeld or Neumann condition
applied to theTT components but we were unable to obta
acceptable Stage 2 evolution.

VI. TESTS WITH A CUBIC BOUNDARY „STAGE 3…

For application of these algorithms to an isolated as
physical system, we next perform tests with a cubic bou
ary. This is the standard boundary geometry adopted
Cauchy evolution codes based upon Cartesian coordin
We propose the following operational criteria of robust s
bility for a Cartesian evolution-boundary algorithm for a
isolated system:

Stage 3: Run the evolution-boundary code with a cub
boundary with random initial Cauchy data and rando
boundary data. The stage is passed if the Hamiltonian c
straint C does not exhibit exponential growth.

In view of the Stage 2 results, we confine our Stage
investigation toICN evolution with Dirichlet boundary data
on all faces of the cube applied with the~best performing!
boundary algorithmBA1. The edges and corners of the cu
must be handled separately. The two componentsKTT5

2 1
2 ḣTT are treated as free data~i.e. are specified randomly!

on all faces, edges and corners. While this means two
quantities and four update equations on the faces, there
four free quantities on the edges so that one only needs
update equations. Furthermore, at any corner, the sixKTT
components from the neighboring faces,Kxy , Kxz , Kyz ,
Kxx2Kyy , Kxx2Kzz andKzz2Kyy , are reduced to five tha
are independent and therefore freely specifiable by mean
the identity @Kxx2Kyy#1@Kyy2Kzz#1@Kzz2Kxx#50.
Thus only one equation is needed to update the corners

As just indicated, all non-diagonal components are fre
specifiedTT data on the corners. Given the additionalTT
10400
t

i-

to

f
s

-
-

in
es.
-

-

3

e
re
o

of

y

data@Kxx2Kyy# and@Kzz2Kxx#, the missing diagonal com
ponentKxx is computed from

3Kxx5K1@Kxx2Kyy#1@Kxx2Kzz#,

whereK is updated using the equation

(4)R̃t
t52K̇50.

It remains to give the algorithm for the edges. On t
edges parallel to thex axes,Kxy and Kxz are specified as
boundary data. The missing non-diagonal componentKyz is
updated using(4)G̃yz50, the same equation used on th
neighboring faces except now the derivatives of the metric
they andz directions must be computed by 3-point sidewa
differencing. The diagonal components ofKi j are computed
the same way as on the corners.

We should note that the routine that solves the constr

~2 Ċn1]n(4)R̃t
t!50 ~6.1!

on a face of the cube with normal in then-direction must be
calledafter the missing non-diagonal components have be
updated on the edges surrounding that face. Otherwise, in
case of thez5const face, when computing the quanti
]yKyz on the top time-level, with centered finite differencin
one might use values ofKyz on the edge parallel to thex axis
that were not yet updated.

We confirmed that the above algorithm is robustly sta
by performing runs withl50,2,4 and random initial and
boundary data. The behavior of the Hamiltonian constrain
a function of time is shown in Fig. 3.

VII. CONCLUSION

We have shown that linearized ADM evolution wit
boundaries can be carried out with long term stability in
test bed consisting of random constraint violating initial da
and random boundary data applied to the trace-fr
transverse metric. Adding the Hamiltonian constraint~with
l.0) to the Ricci system of linearized equations appears
give better performance, but does not drastically affect ov
all robustness. The successful implementation of an AD
boundary algorithm presented here offers new hope both
the long term stability of nonlinear ADM evolution and fo
the prospects of matching an exterior solution at an AD
boundary. However, this optimism should be tempered w
the following caveats.

Although we have tested our algorithm only for the ca
6-8
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of unit lapse and zero shift, the extension to any explic
assigned values of the lapse and shift appears to be stra
forward, at least in the linearized theory. However, the use
dynamical gauge conditions, which couple the values
lapse and shift to the metric, would require case-by-case
consideration.

A spherical boundary would be necessary for an appl
tion of our algorithms to CCM, The implementation of
spherical boundary algorithm is simple in principle. Only t
TT metric ~or extrinsic curvature! components should b
matched at the boundary, with the remaining compone
updated using the evolution equations. The identification
the TT components can be readily made in the local tang
space of the boundary. However, a preliminary investigat
reveals nontrivial technical problems arising from the no
alignment of a spherical boundary with the Cartesian g
@33#.

Results for the linear theory are important for ruling o
approaches that cannot work in the nonlinear case. Howe
the real value of our robust boundary algorithms will depe
upon whether they can successfully be applied to the non

FIG. 3. Behavior of the Hamiltonian constraint for a Stage 3 t
with cubic boundary.
d

.

s.

10400
ht-
f
f
e-

-

ts
f

nt
n
-
d

t
er,
d
n-

ear ADM equations. ForBA1, the best performing boundar
algorithm, the formal implementation appears to be straig
forward ~when the lapse and shift are given explicitly!. It is
standard practice in numerical evolution to choose
boundary to follow the evolution, so that the grid is prop
gated up the boundary. This allows straightforward ident
cation of theTT components of the metric and extrinsic cu
vature. An examination of the nonlinear equations used
the boundary algorithm shows that second derivatives do
appear in any essentially new way that would alter the fin
difference stencils. Nonlinear terms with first time deriv
tives which appear in the boundary update scheme can
evaluated either by means of iterative techniques or in te
of previously known time levels by backwards differencin
A separate and more problematic issue is the stability of s
an implementation. At the very least, stability in the nonli
ear case would require suppressing the secular modes o
linear theory from becoming exponential@10#. Preliminary
work underway@34# to incorporate our boundary algorithm
in a nonlinear ADM code shows improved performance
the weak-field regime over applying boundary conditions
all components of the metric, but it is premature to jud
robust nonlinear stability. Our results for the linearized eq
tions could not have been obtained without substantial co
putational experimentation and the same certainly holds
their extension to the nonlinear case.
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