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We investigate the numerical stability of Cauchy evolution of linearized gravitational theory in a three-
dimensional bounded domain. Criteria of robust stability are proposed, developed into a testbed and used to
study various evolution-boundary algorithms. We construct a standard explicit finite difference code which
solves the unconstrained linearized Einstein equations in the ®rmulation and measure its stability prop-
erties under Dirichlet, Neumann, and Sommerfeld boundary conditions. We demonstrate the robust stability of
a specific evolution-boundary algorithm under random constraint violating initial data and random boundary
data.

PACS numbe(s): 04.70.Bw, 04.20.Ex, 04.25.Dm, 04.25.Nx

[. INTRODUCTION tion in numerical relativity. The boundary algorithm differs
from previous approaches and offers fresh hope for robust
The computational evolution of three-dimensional generahonlinear ADM evolution.

relativistic space-times by means of Cauchy evolution is a Our particular motivation for this work is the difficulty we
potentially powerful tool to study the gravitational radiation have experienced implementing Cauchy-characteristic-
from black-hole—neutron-star binaries whose inspiral is exmatching (CCM) for three-dimensional general relativity
pected to provide prominent signals to gravitational wave3,4]. CCM provides a Cauchy boundary condition by
observatories. There are several three-dimensional genenalatching the Cauchy evolution across the boundary to a
relativistic codes under development to solve this problemcharacteristic evolution. For nonlinear scalar waves propa-
Boundary conditions are an essential part of these codes. Afating in a flat three-dimensional space, CCM has been dem-
the outer boundary they must provide an outgoing radiatioronstrated to be more accurate and efficient than all other
condition and extract the emitted waveform. For black-holeexisting boundary conditions for Cauchy evoluti@, and it
spacetimes, there is also an inner boundary, approximatelyas been demonstrated mathematically that this conclusion
given by the apparent horizon, where one excises the singaso applies to gravity6]. In addition, in the spherically
lar region inside a black hole. Instabilities or inaccuraciessymmetric case of a self-gravitating scalar wave satisfying
introduced at such boundaries have emerged as a major protite Einstein-Klein-Gordon equations, CCM has been suc-
lem common to all code development. Historically, the firstcessfully applied at the inner boundary of a Cauchy evolu-
Cauchy codes were based upon the Arnowitt-Deser-Misnetion to excise the interior black hole region and, at the same
(ADM) formulation[1,2] of the Einstein equations. Recently time, at the outer boundary to provide a global evolution on
there has been pessimism that such codes might be inhea-compactified grid extending to null infinify]. These suc-
ently unstable because of the lack of manifest hyperbolicitycesses are promising for the application of CCM to three-
in the underlying equations. In order to shed light on thisdimensional problems in general relativity but this has not
issue, we present here a study of ADM evolution-boundaryet been borne out. This difficulty, and the similar difficulty
algorithms in the simple environment of linearized gravity, in efforts using perturbative matching], may possibly arise
where nonlinear sources of physical or numerical instabilityfrom a pathology of the Cauchy boundary which is indepen-
are absent and computing time is reduced by a factor of fivelent of matching. In this work, we reveal such a pathology in

by use of a linearized code. the way boundary conditions have been applied in the ADM
Our two main results, for the case of fixed lapse and shiftformulation of the Einstein equations which, at present, is the
are only formulation for which matching has been attempted.

On analytic grounds, ADM boundary algorithms which We also present a new form of ADM boundary algorithm
supply values for all components of the metfar extrinsic ~ which eliminates the pathology.
curvature are inconsistent. The stability of the Cauchy evolution algorithm itself is

We present a boundary algorithm which allows free specistraightforward to investigate by carrying out a boundary-
fication of the transverse-traceless components of the metritee evolution on a 3-torugquivalent to periodic boundary
(or extrinsic curvatureat the boundary, and for which un- conditiong. Such tests constitute Stage 1 of a 3-stage test
constrained, linearized ADM evolution can be carried out inbed for robust boundary stability which is summarized below
a bounded domain for thousands of crossing times with roand explained in detail in Secs. Ill, IV, and VI. The periodic
bust stability. boundary tests serve to cull out algorithms whose boundary

The criteria for robust stability, which we present here,stability is doomed from the start. In earlier work, robust
are the most severe that have been applied to Cauchy evolstability for characteristic evolution with random data on an
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inner boundary was demonstrated for characteristic evolutiothat the nature of a successful boundary algorithm is depen-
using therITT null code[6]. In the course of the present dent on the form of the equations adopted, as well as the
investigation we have reconfirmed this robustness oftite  choice of discretization, and the ADM boundary algorithms
code using the same specifications proposed here for Cauchye have obtained do not necessarily apply to other formula-
codes. tions.

CCM cannot work unless the Cauchy Code, as well as the We use Greek letters for Space-time indices and Latin
characteristic code, has a robustly stable boundary. This i§tters for spatial indices. Four dimensional geometric quan-
necessarily so because the interpolations between a CartesiiiifS are explicitly indicated, such 48R, and WG .5 for
Cauchy grid and a spherical null grid continually introduceth€ Ricci and Einstein tensors of the space-time, wheRgas
short wavelength noise into the neighborhood of the bound@NdR refer to the Ricci tensor and Ricci scalar of the Cauchy
ary. This is the rationale underlying the robustness criteriofflYP€rsurfaces. Linearized versions of these quantities are de-
in our test bed. Robustness of the Cauchy boundary is Boted by*)R,;, R;;, etc. Three dimensional tensor indices
necessaryalthough not a sufficientcondition for the suc- are raised and lowered by the background Euclidean metric
cessful implementation of CCM. 5”- . We write h= 5I]hij for three-dimensional traces. We

Analytic studies of Cauchy evolution of linearized gravity denote time derivatives bj‘/: d,f. Our convention for the
with boundaries at infinity reveal modes which grow linearly background Minkowski metric is such that the wave equa-
in time, but none which grow exponentiall9]. The inaccu- tion takes the form
racy introduced by such secular modes can be controlled and
is not of major concern, at least in the linearized theory. 71“'81901195‘1):(—5'34” (9§+ a§+ 55)(13:0_ (1.2
(Such secular modes can lead to exponential instabilities of
numerical origin in the nonlinear theory if not properly
treated 10]). In the case of a finite boundary, there is further Il. GENERAL FRAMEWORK
ﬁ?tential for instability and a brief discussion is given in Sec. A. The linearized ADM system

As is customary in numerical relativity, we monitor the The ADM formulation of the Einstein equations intro-
existence of unstable modes by the growth of the Hamilduces a foliation of space-time by a time coordina&nd
tonian constraint. Because the constraints are not enforcégkPresses the four-dimensional metric as
during standard implementation of ADM evolution, the 2442 i pi i1 pi
Hami?tonian constraiFr)n is an effective sensor of numerical ds’=—o’dt g (dxFAdD(dx+AldY, - (2.1

instabilities. whereg;: is the induced 3-metric of thie=const slicesg is
i im ij :
Stage 2 of the test bed is based on the simple boundar.¥e lapse an' the shift, with the normal to the slices given

value problem obtained by opening one dimension of b (1 o DD i
3-torus to form a 2-torus with plane boundaries normal to ajy_n =(1 .B )/a. The equations Rij=0 yield the evo-
ution equations

Cartesian axis. Running a Cauchy-boundary algorithm wit

this topology and with random initial and random boundary

data forms the second stage of our test bed, which is dis-%9ii ~£s9ij =

cussed in Sec. IV. In Sec. V, we present new evolution-

boundary algorithms which are robustly stable. 9iKij —£4Kij= —DiDja+ a(Rj +KK;; = 2K{K}), (2.9
Stage 3 of the testbed is designed to test robustness of

boundary conditions appropriate to an isolated system. lfior the 3-metric g;; and the extrinsic curvatureK;;

Sec. VI we establish Stage 3 robustness of an ADM bound= — %Engij , Subject to the constraints

ary algorithm.

—2aK (2.2

ij

The main results presented here are experimental, in a R— K”K”+K2=O, (2.9
computational sense. The difficulties encountered with finite
Cauchy boundaries in general relativity have recently D; (K —g'K)=0. (2.5

prompted some analytic investigations of the subjjg#t12.
However, these have so far been confined to hyperbolic forl-_|ere R R

lati q he ADM f lati q h ij» andD; are the Ricci scalar, Ricci tensor and
mulations, as opposed to the ormulation, and to the,,nnection of the 3-metric, respectively.

analytic problem, as opposed to the finite difference solution For simplicity we consider a gauge in which the lapse is

obtained by computation. Although it is not possible to makeiv, and the shift vanishe€aussian coordinatesso that
a direct comparison, the nature of our results are consstetatle linearized metriq, ;= 7,5+ h,s satisfiesh,,=0, and

with the general conclusior)g of these gnalytic studies. oé)eys the linearized ADM evolution equations
There are several promising numerical approaches base

upon hyperboliqor “more hyperbolic”) formulations of the

equationg 13—23. Here we concentrate on ADM schemes,

which are the most compact to code and require the least _

amount of memory because they have a smaller number of K =Rjj, (2.6

variables. Our results should provide useful benchmarks for

other relativity codes. However, it should also be cautionedubject to theglinearized constraints

ﬁthij: _2Kij y
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R=0 B. Finite difference algorithms

o The evolution variables consist of the 3-metric perturba-
d;(K" = 6"K)=0. (27 tons h;j and their associated momentugy = —hij/2. The

H id 1 t ¢ f i evolution is implemented on a uniform spatial grid
ere We Consider a L-parameter system ol equations, v, ,z)=(jAx,kAx,IAx) with time levelst"=nAt. The
equivalent to the linearized Einstein equation, consisting o hree different evolution algorithms we apply can be dis-

the SIx evolqtlon equations; =0 along with the four con- . <0 in reference to the scalar wave Edl), rewritten in
straint equation€=_C;=0, where the form

1

SA3C, (2.9 d=—2K

gij :=(4)§ij +

~ ~ . . 1
C:=WGy,, C:=—WG,; and the parametex allows mixing K=—=3,d" D, (2.15
the (linearized Hamiltonian constraint into the evolution 2
equations. Foh =0 we recover the standard ADM system. analogous to the first differential order in time and second

Codes under development for the evolution of . : . .
3-dimensional space-times without symmetry apply the Conglfferenual order in space form of the ADM equations. We

no_ n ;i i i
straint equations at the initial time but do not enforce themdemteq)llkJ_CI)(t JAX,KAX,|AX). All second derivatives

during the evolution. It is crucial for this approach that the O the right-hand side of E¢2.19 are calculated as centered

constraints be stably propagated in time. An investigation b)?"

Frittelli [24] shows that this requires the parametein Eq.

(2.8) satisfy 1+ =0. This follows from an analysis of the

linearized Bianchi identitiegﬁ(“)égzo, which imply that The first evolution algorithm, which we refer to BB1, is
a standard leapfrog implementation of Eg.15):

point finite differences.

1. Standard leapfrog (LF1)

C'+(1+\) dC+4,E1=0 (2.9

. i
C+¢g;,C'=0. (2.10 K?I,}:K?,E,ll_vzq)n,k,lm’ (2.16

Thus if the evolution equations are satisfied then the Hamil- 5. .
. . " where V< is the second order accurate centered difference
tonian constraint satisfies Lo ; . X
approximation to the Laplacian. It is known that this algo-
rithm has a time-splitting instability in the presence of dissi-

- o
C=(1+N)FaC=0. (2.19 pative and nonlinear effec{26].

This equation has a well-posed initial value problem Xor
>—1 (when it is hyperbolit and also forA=—1, but for

A<—1 the equation is elliptic and the initial value problem The second evolution algorithm, which we refer to as
is not well-posed. In the standard ADM case=0 and the LF2, is a staggered in time leapfrog scheme which is not
Hamiltonian constraint propagates along the light cone. Wé&ubject to the time-splitting instability:

consider here evolution equations with a range\ of

2. Staggered leapfrog (LF2)

The linearized evolution equatioti®.8) take the form D=0, — 2K 2L (2.17
hyj=—2K;; 1
] ] K?’-Ii(—’|1/2: Jn’;’|1/2_ EVZ‘I’?,MAL (2‘1&
) 1 m 1 1 . . .
Kij=— Eﬂmﬁ hij + E(aiHj +djHj) + Eéij)\c, (2.12 r()er:eK is evaluated on the half grid. Subtraction of the equa-
[
e = O 2K AL 219
. 1
Hi=¢91( hi;— §5ijh) , (2.13  from Eq.(2.17 and elimination oK using Eq.(2.18 shows

thatLF2 is equivalent to the standard centered second-order
scheme for the second differential order in time form of the

and we can express the Hamiltonian as . ) X . ) .
P wave equatior(1.1), in which @ lies on integral time levels

1 1 andK is not introduced.
szﬂiHl—deﬁmh. (2.149
3. Iterative Crank-Nicholson (ICN)
A spectral analysis of a system similar to E¢8.12 and The third evolution algorithm, which we refer to &N,
(2.13 is presented if25]. is a two-iteration Crank-Nicholson algorithm. For an
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N-iteration Crank-Nicholson algorithm, the following se-
guence of operations is executed at each time-step:
(1) Compute the first order accurate quantities

(O)n+1 n n
D =P — 2K At
O 1 1,

(2) Starting withi =0, compute the midlevel values

(i)n+ 1/2 1 n (i)n+1
ik = 1Pt Pk
(i)n+ 1/2 1 n (i)n+1
Kiki = §{Kj,k,|+ Kikif (2.2
(3) Update using levels andn+ 3,
(i+1) N (i) i
+ +
o} ?,k,|:(bjn,k,|_2K]n,k,| At
RV 1 2(i) +1/2
K Jn,k,| = an,k,l - EV (I) Jn,k,| At (222

(4) Incrementi by one and return to step 2 uni#=N is
reached.

A stability analysis by Teukolsky shows that the evolution
scheme is stable fal=2 andN=3 iterations, unstable for
N=4 andN=5, stable foN=6 andN=7, etc.[27].

4. The Courant-Friedrichs-Lewy condition

The stability of the three evolution algorithms requires
they obey the Courant-Friedrichs-LeWw@FL) condition that
the numerical domain of dependence contain the analyti

PHYSICAL REVIEW D62 104006

1
<I>J-r"k’0:§(—d)}‘,k'2+4<b}"k'l— 2Axf}"k). (2.26
The Sommerfeld condition
(at_&Z)q)(trxayvo):f(taxyy)! (2'27)

is implemented in the interpolative form used in several rela-
tivity codes[13,15,2] by modeling the field in the neighbor-
hood of the boundary a®(t+z,x,y) and using a 3-point
spatial interpolation to obtain

1 At At

At At

— -1 -1
?vkvo—§<2‘ﬂ 1‘&) hﬁﬂ( ‘ﬁ)‘b?vm
1 At At
-1 -1
_E(l—R)R¢?’k’2+Ath’k . (228)

Ill. STAGE 1: ROBUST EVOLUTION STABILITY

Periodic boundary conditions are equivalent to a toroidal
topology and do not introduce the local effects of a real
boundary. They provide a test of the evolution code isolated
from the effects of boundary conditions. Because an instabil-
ity in such a code may not be evident for a considerable time
if masked by a strong initial signal, the use of random data is
efficient at revealing instabilities early in the evolution. Ran-
dom initial data does not satisfy the constraints but that poses
no difficulty here, where we are only concerned with stabil-
ity. These observations motivate our Stage 1 test bed:

Stage 1 Run the evolution code on a 3-torus with random
initial Cauchy data. The stage is passed if the Hamiltonian
constraint C does not exhibit exponential growth.

An evolution code which does not exhibit exponential
growth under these conditions is defined to tmbustly

domain of dependence, a common requirement for explicistable Failure at Stage 1 would rule out applications with

algorithms. For the staggered leapfrdg-2) and the itera-
tive Crank-Nicholson(ICN) algorithms, we setAt=Ax/4
and for the standard leapfragF1) we setAt=Ax/8, in all

boundaries.
We use an evolution time of 2000 crossing times (2000
whereL is the linear size of the computational domaim a

cases slightly less than half the CFL condition for the algo-uniform 48 spatial grid with a time step slightly less than

rithm.

5. Boundary conditions

half the Courant-Friedrichs-Lewy limit. These conditions are
computationally practical and are used to determine whether
there is exponential growth of the Hamiltonian, as measured

Boundary conditions are implemented computationally inby thel.. norm. All runs reported in this paper are made with

the following way, which we illustrate in terms of scalar
wave boundary data specifiedzt 0 in terms of a function
f.

The Dirichlet condition

d(t,x,y,0)="1(t,x,y) (2.23
is straightforward to implement as
7'y o= k- (2.24
The Neumann condition
a,P(t,x,y,0)="1(t,x,y) (2.25

is implemented as a 3-point one-sided derivative

these specifications.

A. Stage 1 results

We have applied the Stage 1 test to determine whether
any of three evolution algorithm4,F1, LF2 and ICN are
intrinsically unstable. We apply the test on the flat 3-torus
determined by the periodicity conditiorig;(X,y,z) = h;;(x
+L,y,2)=h;j(x,y+L,z)=hj;(x,y,z+L). The Cauchy data,
(hj; ,hij), can be initialized as random numbers in any inter-
val (—A,A), since the system is linear. Here we use the
interval (—10°%,+10°9).

When applied to the scalar wave equation in the hybrid
first order in time and second order in space form of Eq.
(2.15, all three algorithm&.F1, LF2 andICN pass Stage 1.
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This confirms, for the case of random data, prior wi2B]  original system now appears in Dirichlet form. Friedrich and
showing that the hybrid system has a well behaved compuNagy [12] have recently given a complete treatment of a
tational evolution. well-posed boundary-initial-value problem for a symmetric
Furthermore, when applied to the ADM systétnl2 for  hyperbolic version of the nonlinear vacuum gravitational
gravitational evolution with\ equal to 0, 2 and 4, all three equations. They find a continuum of allowed boundary con-
algorithmsLF1, LF2 andICN also pass Stage 1. For runs ditions on the field variables, which can be more naturally
with A equal to—0.1, 4.1 and 5.0 these three evolution al- distinguished as ranging from “electric” to “magnetic.”
gorithms exhibited exponential growth. This indicates a The hybrid form of the scalar wave equati@15 does

range of stability for &\ <4. In this range, it is notable that not not fit into any hyperbolic category but, since the spatial
the norm of the Hamiltonian constraint grows linearly in derivatives of the field are not treated as auxiliary variables,

time for LF1 and LF2 but decays exponentially faCN.  We retain the classification of Dirichlet, Neumann and Som-
This apparently results from the artificial dissipation inherentMerfeld boundary conditions. Following common practice,

in ICN. we also retain this classification in the case of the ADM
The stability of the discretized system of ADM equations SyStem(2.12. - o .

<\ found by Frittelli [24] for stable evolution of the con- algorithm itself, Stage 2 is designed to be a simple stability
straints in the continuum theory. For=—1, algorithms t€st of the combined evolution-boundary algorithm. The
LF1 andLF2 show exponential growth whereas the norm ofboundary algorithm by itself is neither stable nor unstable;
the Hamiltonian only grows linearly fdCN. However, for ~ rather the combination of the boundary algorithm with a
A=—1.01 orx=—0.99 this norm grows exponentially for (stable evolution algorithm may be stable, and a combina-
ICN. This anomalous behavior suggests that the special cadlon With another(stable evolution algorithms may be un-
N=—1 (the Einstein system of evolution equatipmsn be stable[32]. In Stage 2, the three torus is 2opened up in the
successfully evolved but that its numerical stability is highlyZdirection to form a space of topology“<[0.L], with
sensitive to the choice of finite difference scheme. For thaPoundaries az=0 andz=L coinciding with planes of grid
reason, we have not investigated this case in the presence BPINtS. A boundary algorithm for these points is necessary in
a boundary. The upper limit of the window of stability Xt order to update the evolution at grid points neighboring the
— 4 is related to the size of the time step. For algorithf2 boundary. One purpose of the testbed is to measure suitabil-

a run withAt=Ax/8 (half the time step of the standard riins ity for matching the Cauchy evolution to an exterior numeri-

and \ =20 showed no exponential growth. This seems tccally generated solution, such as in CCM, where interpola-

arise from the increase of the constraint propagation speiP'S between the exterior and interior grids continually

with \, which makes the Courant-Friedrich-Lewy condition 'Ntroduce random error at the Cauchy boundary. This moti-
more stringent. vates the following criterion for robust evolution-boundary

In summary, the hybrid scalar wave syst&ril5 and the stability:

ADM system(2.12), with \ equal to 0, 2 and 4, pass Stage 1 . Stage 2 R_ur_1_the evolution-boundary code ofAT0L]
for the three evolution algorithmisF1, LF2 andICN. These with random initial Cauchy data and random boundary data.
The stage is passed if the Hamiltonian constraimoes not

are the evolution systems whose boundary stability we inves-"'* > )
tigate in Sec. IV. exhibit ex_ponentl_al growth. o

As an illustration of how Stage 2 is implemented, rather
than giving smooth Dirichlet data, such as the homogeneous
data®(t,x,y,0)=0 for a scalar field, we require thdt be

The general linear hyperbolic equation in second ordeprescribed as a random number at each boundary point.
differential form for a scalar field has a well posed CauchySimilarly, in the Neumann or Sommerfeld cas@sP or
problem in a region with Dirichlet, Neumann or Sommerfeld (d,— d,)® are prescribed as random numberszatO. In
boundary conditionge.g., se¢29]). For a system of coupled order to avoid inconsistencies, the initial and boundary data
scalar fields, or a tensor field with coupled components, it isire both set to 0 in a few grid zones near the intersection of
standard practice to reduce the equations to first order diffetthe initial Cauchy surface with the boundary.
ential form in order to examine hyperbolicity and appropriate ~As a first set of experiments, we have confirmed that the
boundary condition$30]. For a first order system in diago- hybrid scalar systen2.15 passes Stage 2 for the three evo-
nalizable, strongly hyperbolic form there is a straightforwardlution algorithmsLF1, LF2 andICN with a Dirichlet bound-
way to decide which variables require data at a given boundary algorithm. Sommerfeld and Neumann boundary algo-
ary[31]. Variables propagating along future directed charactithms were less successful, as indicated in Table I. Only
teristics which emanatrom the boundary can be assigned those combinations of evolution and boundary algorithms
free data, but assigning arbitrary boundary values to the rewhich are robustly stable for a scalar field should be ex-
maining variables would be inconsistent with the evolutionpected to pass Stage 2 for the ADM system.
equations. When a second order system is reduced to first Next, we tested ADM evolution with boundary data pre-
order form, spatial derivatives of the field become auxiliaryscribed for each component &f;;, as has been common
variables, so that there is no longer any natural distinctiorpractice. In Sec. V, for the case=0, we show this practice
between, say, Dirichlet and Neumann boundary conditiondeads to an inconsistent evolution-boundary problem, whose
What might have been termed a Neumann condition in thdinite difference solutions cannot in general converge to a

IV. STAGE 2: ROBUST BOUNDARY STABILITY
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TABLE I. Results of Stage 2 tests for scalar wave evolutionsponents of the metric, or equivalently on the components of
with the LF1, LF2 andICN algorithms, using Dirichlet, Sommer-  extrinsic curvaturd;; . However, many of these versions are
feld and Neumann boundary conditions on theconst faces of a  jnconsistent with the evolution or constraint equations. In
cube. A *y" indicates robust stability, a <™ indicates exponen-  thjs regard, we list some combinations of the linearized Ein-
tial instability ano_l a“?” indic_:ates non-linear growth which was not gtein equations and their implications for a correct boundary
clearly exponential on the time scale of the test. algorithm. We take the boundary to be a surfaeeconst
and denote the transverse directionsxy= (x,y).

Dirichlet Sommerfeld Neumann The linearized Einstein equation component
LF1 X ? 5 _
LF2 " 2 MGZ=2K A+ Baghh— dadsh”B=0 (5.9
ICN J J ?

can be applied on the boundary to evolve the transverse trace
Kﬁ= KxxtKyy, given the transverse-tracefree components

correct continuum solution. It is notable that the numericalK ag— 3 SagKS .

results were quite mixed, not necessarily showing unstable The linearized Ricci tensor equation

growth. Forhomogeneou$®oundary conditions and evolu- - - .

tion with A=0, we first found that the only stable combina- BR=WRE-20=-K=0 (5.2
tion wasICN evolution with a homogeneous Sommerfeld .

boundary. (All other combinations showed exponential €0 b€ applied on the boundary to evolve the treicéhus
growth on the order of 10 crossing timeslext, we applied detérminingK,, in terms of transverse components.
randomSommerfeld boundary data to all componentKgf The Einstein equation components

[the analog of choosinfyrandomly in Eq(2.27)], again with ~ :

ICN evolution and\ =0. The log plot in Fig. 1 shows the 28y =~ 2K; — dg(7°hy = #*h7) = 9,0"hg + 7,0°hg =0
Hamiltonian constraint growing at late times #5 for n (5.3
~1.92. Such polynomial growth is normally regarded as;an pe applied on the boundary to determiicfe, given the
stable. However, in thl_s case, there is a large multiplying o sverse components.

constant, and the magnitude of the erf@irthe order of 1000
att=2000) is unacceptably high.

The linearized momentum constraint

Ch=9,KA%+ ggKAB— K =0 (5.9
V. NEW ADM BOUNDARY ALGORITHMS . . . ..
or the combination of the time derivative of the momentum
A. Consistency of ADM boundary conditions constraints with Eq(5.2),

Various types of boundary conditions can be applied to a A A4V A o AB
scalar wave, e.g. Dirichlet, Neumann or Sommerfeld. There CA— PYRi=9,K5+ 9gKAB=0, (5.9

are more options in the ADM case, corresponding to Dirich- . h ¢ date the N boundarv data f
let, Neumann or Sommerfeld conditions on the various comg'veAc.J er ways fo update the eumann boundary data for
d,K3 in terms of Dirichlet boundary values & 5.

10 The combination

Z_ 22(4)Pt— 1 K A
zNzz .
2= PPRI=0,K,,+ 9,K=0 (5.6)

can be used to update the Neumann boundary daté far
In the symmetric hyperbolic treatment of the Einstein
equations by Friedrich and Nag$2], only 2 components of
the Weyl tensor can be prescribed as free boundary data. It
would thus be surprising if free boundary values could be
assigned to all metric variablésr their associated momen-
tum variablegfor an ADM system with gauge freedom fixed
by an explicit choice of lapse and shift, as shown by the
: : : { ! : : ; : following proposition.
Y S I S Proposition Prescription of Dirichlet boundary data on all
‘ ‘ ‘ : : : i components of the metri¢or extrinsic curvature of the
: : : : : : : ADM system(2.12 with A=0 gives rise to an inconsistent
0 500 1000 1500 2000 evolution-boundary problem. The same is true for Neumann
or Sommerfeld boundary data.
Proof. Consider homogeneous Dirichlet data consisting of
FIG. 1. A log plot of thel,, norm of the Hamiltonian constraint Settingall components of;; to zero on the boundary. Then
as a function of crossing time for a Stage 2 test of random Somthe functionW :=9,9*hg — #3®h,g vanishes on the bound-
merfeld boundary conditions on all metric components. ary and Eq.(5.3) (one of the evolution equations for this

10

c,

time /L
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system implies that the normal derivativ, ¥ also vanishes
on the boundary. But it is easy to verify, in the case0, 0.0004 |-
that theevolution equationsor h;; imply that' ¥ satisfies the
scalar wave equation. Thus the vanishing Dirichlet data for
hi; generates, for any initial data, a solutiéh of the wave
equation whose Dirichlet and Neumann boundary data bott
vanish. This a classic example of an inconsistent boundary! Cli,
value problem for the scalar wavk. (This is evident from
considering the fate of an initial pulse of compact support 0
when it reaches the boundary.

Similarly, consider the homogeneous Sommerfeld data
(di— d)hi;=0 applied toall metric components on the plane 0.0001 -4
boundary atz=0. If h;; were a global solution consistent
with this boundary data then, since the equations are linea

0.0003 |

.0002 |-

and have space-time translational symmetlfyi!- = (4, 0 ; 500 E 1(;oo | 15§oo E 2(;00
—d,)hj; would also be a global solution but with vanishing
Dirichlet data for all components at the boundary. Thus, as in time /L

the Dirichlet problem, a Sommerfeld boundary condition, or FIG. 2. Stage two performance of the Hamiltonian constraint as

by the same argument a Ne”ma”'." boundary condmgn, AR function of crossing time for the five robustly stable algorithms
plied to all components of the metric also leads to an incong a4 1o gAS.

sistent boundary value problem.
as in BA2, are used to updatL(’ZA using a centered time
B . . difference.
B. Robustly stable Dirichlet evolution-boundary algorithms BA4: We apply Eq.(5.2) to updateK,, and Eq.(5.3 to
In order to formulate consistent boundary algorithms, weupdateK?.
denote byht the traceless part of the components transverse BA5: We apply Eq.(5.6) to updateK,, (with finite dif-
to the boundary, i.e.l,—hy,) andh,, in our Stage 2 test ference stencils as abgvand Eq.(5.5) to updater.
with boundaries az=0 andz=L. Since our gauge choice All five boundary algorithms satisfy Stage 2 robust stabil-
h;,=0 is consistent with the radiation gauge subclass ofty for ICN evolution. Figure 2 shows the behavior of the
harmonic coordinates, thesSET components represent the Hamiltonian constraint for these five algorithms in the case
free modes of waves propagating normal to the boundary» =2. Note thatBA2 and BA3 have identical performance,
We make the hypothesis that the boundary valudsef or  as might be expected as they differ only with respect to de-
equivalentlyK t1, should be freely specified in either Dirich- tails of initialization at the boundaryBAl and BA4 show
let, Neumann or Sommerfeld form. This is motivated in theless noise in the Hamiltonian constraint than the others, with
Dirichlet case by the consistency of characteristic evolutiorBA5 showing the largedtalthough still linear growth. BA1
where the free data on a worldtube corresponds to Dirichlegave the best performance, with the Hamiltonian constraint
data forhyy in the linearized approximation. Given thiST  actually decreasing slowly at late times.
boundary data, the boundary algorithm must determine ForA=0 and\ =4, boundary algorithm8A1 and BA2
boundary values of the remaining components using the linare also robustly stable for ICN evolutiofT.he other bound-

earized gravitational equations. ary algorithms were not checked for these cases in order to
The following five Dirichlet boundary algorithms exhibit conserve computing time
Stage 2 robust stability for tH€N evolution algorithm. The While these 5 Dirichlet boundary algorithms were robust

algorithms update the boundary values of the extrinsic curfor ICN evolution, they failed Stage 2 fdrF1 and LF2
vature, with boundary values for the metric perturbation up-evolution withA= 0, 2 and 4, with the exponential growth
dated by the centered difference version of the first of Egsrate typically decreasing with increasiihg Table Il summa-
(2.12. Given random initial and boundary data for therizes the performance fon=2. The failure of these
transverse-traceless componekts;, all five boundary al- evolution-boundary algorithms for leapfrog evolution, but
gorithms update the boundary values of the trd{& via  not for ICN, emphasizes the complexity of the finite differ-
integration of Eq.(5.1). Boundary values of the remaining ence problem compared to the corresponding analytic prob-
unspecified components are updated as follows: lem.

BALl: We apply Eq.(5.6) to updateK,, and Eq.(5.3) to
updateK/;. C. Neumann and Sommerfeld boundaries

BA2: We apply Eq.(5.2) to updateK,, and the MOMEN- we attempted to modify the Dirichlet boundary algo-
tum constraint Eq(5.4) to supply boundary values f@LK;  rithms BA1-BAS5 to obtain stable evolution with Neumann
which, expresse/:j as a 3-point sideways finite difference, argr sommerfeld boundary data specified for the extrinsic cur-
used to updaté; . vature component&rr. In the Neumann case, assuming all

BA3: We apply Eq.(5.2) to update boundary values for components of the metric have been determined at time level
K,,and Eq.(5.5) to supply boundary values f@gK? which,  N-—1 and the evolution has been applied to update all com-
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TABLE 1l. Stage 2 tests of ADM evolution witih\=2 for boundary algorithm®8A1-BA5. A “ "
indicates robust stability. A X" indicates instability with the exponential growth rate indicated in units of
crossing timegCT).

BAl BA2 BA3 BA4 BAS
LF1 X (150 CT) X (300 CT) X (300 CT) X (300 CT) X (300 CT)

LF2 X (25 CT) X (300 CT) X (100 CT) X (25 CT) X (100 CT)
ICN

ponents at leveN except at the boundary, we express thedata K,,—K,,] and[K,,— K], the missing diagonal com-
Neumann boundary da@K++ in finite difference form ac- ponentK,, is computed from
cording to Eq.(2.26) to updateK 1 on the boundary at level
N. This supplies the necessary data to apply the Dirichlet 3Kx= K+ [Kyx= Kyy ]+ [ K= Kz,
boundary algorithms to update all remaining components. ) ) )
Similarly, in the Sommerfeld case, given that the metricWhereK is updated using the equation
has been determined at levdl—1 and the evolution has

been applied to update all components at leNedxcept at (4)~R¥: ~K=0.
the boundary, we apply the interpolative Sommerfeld condi- ) ) )

dateK 7 on the boundary at levél. Again this supplies the €dges parallel to the axes,K,, andK,, are specified as
necessary data to apply the Dirichlet boundary algorithms toundary data. The missing non-diagonal comporgptis
update all remaining components. updated using(“)éyzzo, the same equation used on the
We tried an extensive, although not exhaustive, set ofeighboring faces except now the derivatives of the metric in
combinations of evolution algorithms, boundary algorithmsthey andz directions must be computed by 3-point sideways
and values ofA with Sommerfeld or Neumann conditions differencing. The diagonal componentskyf are computed
applied to theT T components but we were unable to obtainthe same way as on the corners.
acceptable Stage 2 evolution. We should note that the routine that solves the constraint

VI. TESTS WITH A CUBIC BOUNDARY (STAGE 3) (—C"+ "R =0 (6.2)

For application of these algorithms to an isolated astroqp, 4 face of the cube with normal in thedirection must be
physical system, we next perform tests with a cubic boundgg|iedafter the missing non-diagonal components have been
ary. This is the standard boundary geometry adopted igyngated on the edges surrounding that face. Otherwise, in the
Cauchy evolution codes based upon Cartesian coordinateS.se of thez=const face, when computing the quantity
We propose the following operational criteria of robust sta-) o1 the top time-level, with centered finite differencing
bility for a Cartesian evolution-boundary algorithm for an 0|¥1eyrznight use values of,, on the edge parallel to theaxis ’
isolated system: _ _ __that were not yet updated.

Stage 3 Run the evolution-boundary code with a cubic \ye confirmed that the above algorithm is robustly stable
boundary with random initial Cauchy data and random by performing runs withh=0,2,4 and random initial and

bou_ndary data. The sj[a_ge is passgd if the Hamiltonian Conboundary data. The behavior of the Hamiltonian constraint as
straint C does not exhibit exponential growth. 3a function of time is shown in Fig. 3.

In view of the Stage 2 results, we confine our Stage
investigation tolCN evolution with Dirichlet boundary data
on all faces of the cube applied with tlieest performing VIl. CONCLUSION
boundary algorithnBA1. The edges and corners of the cube  \we have shown that linearized ADM evolution with

must be handled separately. The two componé(#$=  poundaries can be carried out with long term stability in a
—$hyr are treated as free datie. are specified randomly test bed consisting of random constraint violating initial data
on all faces, edges and corners. While this means two freend random boundary data applied to the trace-free-
guantities and four update equations on the faces, there atensverse metric. Adding the Hamiltonian constrdimith
four free quantities on the edges so that one only needs twp>0) to the Ricci system of linearized equations appears to
update equations. Furthermore, at any corner, theKsix  give better performance, but does not drastically affect over-
components from the neighboring facds,,, K,,, K,,, all robustness. The successful implementation of an ADM
Kux—Kyy, K=Kz andK,,—K,,, are reduced to five that boundary algorithm presented here offers new hope both for
are independent and therefore freely specifiable by means tifie long term stability of nonlinear ADM evolution and for
the identity [Ky—Ky J+[Kyy—K,]J+[K,,—K]=0. the prospects of matching an exterior solution at an ADM
Thus only one equation is needed to update the corners. boundary. However, this optimism should be tempered with
As just indicated, all non-diagonal components are freelythe following caveats.
specifiedTT data on the corners. Given the additiofal Although we have tested our algorithm only for the case
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ear ADM equations. FOBA1, the best performing boundary
algorithm, the formal implementation appears to be straight-
forward (when the lapse and shift are given explicitlit is
standard practice in numerical evolution to choose the
boundary to follow the evolution, so that the grid is propa-
gated up the boundary. This allows straightforward identifi-
cation of theT T components of the metric and extrinsic cur-
vature. An examination of the nonlinear equations used in
the boundary algorithm shows that second derivatives do not
appear in any essentially new way that would alter the finite
difference stencils. Nonlinear terms with first time deriva-
tives which appear in the boundary update scheme can be
evaluated either by means of iterative techniques or in terms
; : : ; ; o of previously known time levels by backwards differencing.
0 500 1000 1500 2000 A separate and more problematic issue is the stability of such
time /L an implementation. At the very least, stability in the nonlin-
i o _ ear case would require suppressing the secular modes of the
_ FIG. 3 Behavior of the Hamiltonian constraint for a Stage 3 testjjaqy theory from becoming exponentig0]. Preliminary
with cubic boundary. work underway[34] to incorporate our boundary algorithms

of unit lapse and zero shift, the extension to any explicitly!" & nonlinear ADM code shows improved performance in
assigned values of the lapse and shift appears to be straighfi€ Weak-field regime over applying boundary conditions to
forward, at least in the linearized theory. However, the use ofll components of the metric, but it is premature to judge
dynamical gauge conditions, which couple the values ofpbust nonlinear stability. Our rgsults fpr the Ilnearlzeq equa-
lapse and shift to the metric, would require case-by-case retl_ons_could not h_ave be_en obtained without sub_stantlal com-
consideration. putational experimentation and the same certainly holds for

A spherical boundary would be necessary for an applicalh€ir extension to the nonlinear case.
tion of our algorithms to CCM, The implementation of a
spherical boundary algorithm is simple in principle. Only the
TT metric (or extrinsic curvature components should be
matched at the boundary, with the remaining components We thank B. Schmidt for reading the manuscript and sug-
updated using the evolution equations. The identification ofjesting improvements. We have benefited from conversa-
the TT components can be readily made in the local tangentions with H. Friedrich, S. Frittelli, and A. Rendall. This
space of the boundary. However, a preliminary investigatiorwork has been supported by NSF PHY 9510895, NSF PHY
reveals nontrivial technical problems arising from the non-9800731 and NSF INT 9515257 to the University of Pitts-
alignment of a spherical boundary with the Cartesian gridourgh. N.T.B. thanks the Foundation for Research Develop-
[33]. ment, South Africa, for financial support, and the University

Results for the linear theory are important for ruling out of Pittsburgh for hospitality. R.G. thanks the Albert-Einstein-
approaches that cannot work in the nonlinear case. Howevelnstitut for hospitality. Computer time for this project was
the real value of our robust boundary algorithms will dependprovided by the Pittsburgh Supercomputing Center and by
upon whether they can successfully be applied to the nonlinNPACI.
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