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‘‘No-hair’’ theorem for spontaneously broken Abelian models in static black holes

Eloy Ayón-Beato
Departamento de Fı´sica, CINVESTAV-IPN, Apartado Postal 14-740, C.P. 07000, Me´xico, D.F., Mexico

~Received 4 October 1999; published 9 October 2000!

The vanishing of the electromagnetic field, for purely electric configurations of spontaneously broken Abe-
lian models, is established in the domain of outer communications of a static asymptotically flat black hole.
The proof is gauge invariant, and is accomplished without any dependence on the model. In the particular case
of the Abelian Higgs model, it is shown that the only solutions admitted for the scalar field become the vacuum
expectation values of the self-interaction.

PACS number~s!: 04.70.Bw, 04.20.Ex, 04.40.2b
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I. INTRODUCTION

The classical and strongest version of the ‘‘no-hair’’ co
jecture establishes that a stationary black hole is uniqu
described by global charges, i.e., conserved charges as
ated with massless gauge fields, expressed by surface
grals at the spatial infinityi o @1#. In particular, the conjecture
excludes the existence of massive fields in the domain
outer communicationŝ̂ J && of a stationary black hole. This
fact rests on the idea that in the black hole transition
stationarity ‘‘everything that can be radiated away will
radiated away’’~see Ref.@2#!, so, the only classical degree
of freedom of a stationary black hole are those correspond
to nonradiative multipole moments; massive fields are au
matically excluded because all their multipoles are radia
@1#.

The absence of massive ‘‘hair’’ was shown early in t
Bekenstein pioneering works for massive scalar fiel
Proca-massive spin-1 fields, and massive spin-2 fields@3–5#.
An alternative demonstration for Proca fields can be found
Ref. @6#. The ‘‘no-hair’’ theorem for massive vector fields
a useful tool for excluding the existence of new black h
solutions for very complicated theories as metric-affine gr
ity, where a relevant sector of this theory reduces to an
fective Einstein-Proca system@7#.

It is well known that fields acquire mass not only kin
matically, as in the previous cases, but also through a
namical mechanism of spontaneous symmetry breaking.
is the case of spontaneously broken Abelian models des
ing a charged scalar field with a self-interaction having n
zero vacuum expectation values, and minimally coupled
massless Abelian gauge field. The ‘‘no-hair’’ conjecture
this model has been previously articulated as follows@8#: any
stationary black hole solution, such that all gauge-invari
observables are nonsingular, must have a vanishing ele
magnetic field, in the domain of outer communicatio
^^J && of the black hole. The simplest of this systems is t
Abelian Higgs model ~Mexican-hat self-interaction! for
which a ‘‘no-hair’’ theorem was shown in Ref.@9#, proving
the vanishing of the gauge field for spherically symmet
static black holes. This proof has been considered unsatis
tory @10# because it is based on an inconsistent gauge cho
Improved versions have been recently given@11–13#, with-
out the original restrictions criticized in Ref.@10#.
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The subject of this paper is twofold, first, to relax th
spherically symmetric assumption in the previously quo
contributions, by working with general static asymptotica
flat systems, and second, to extent the ‘‘no-hair’’ theorem
more general Abelian models than the Higgs model, i.e.,
general spontaneously broken self-interactions. Emphas
given on asymptotically flat black holes only, this way w
exclude from consideration black holes pierced by a cos
string @14# —with the corresponding nontrivial behavior o
the Abelian field— as it has been previously pointed by Be
enstein@13,15#, these last configurations are not asympto
cally flat since they present the angular deficit inherent to
presence of topological defects. The basic difference
tween these configurations is that for the string-pierced bl
holes the scalar field satisfy boundary conditions at infin
in accordance with the existence of a topological defect,
the scalar field is confined to the vacuum only in a circle
infinity, which implies the developing of a cosmic string
the interior of the circle, whereas for asymptotically fl
black holes the scalar field approaches the vacuum in
directions at infinity.

For a static black hole, the Killing fieldk coincides with
the null generator of the event horizonH1 and is timelike
and hypersurface orthogonal in all the domain of outer co
municationŝ ^J &&. This allow us to choose, by simply con
nectedness of̂̂ J && @16#, a global coordinate system (t,xi),
i 51,2,3, in all^^J && @17#, such thatkÄÕt and the metric
reads

g52Vdt21g i j dxidxj, ~1!

whereV andg aret independent,g is positive definite in all
^^J &&, and V is positive in all ^^J && and vanishes inH1.
From Eq.~1! it can be noted that staticity implies the exi
tence of a time-reversal isometryt°2t.

In Sec. II the vanishing of the electromagnetic field in t
domain of outer communicationŝ̂J && of a static asymp-
totically flat black hole is demonstrated for purely elect
configurations of a generic spontaneously broken Abe
model. At the end of Sec. II the conditions for establishing
‘‘no-hair’’ theorem for purely magnetic configurations a
also analyzed. Section III is devoted to show, in the parti
lar case of the Abelian Higgs model, that the charged sc
field is confined to its vacuum in̂^J &&. Conclusions are
given in Sec. IV.
©2000 The American Physical Society04-1
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II. ‘‘NO-HAIR’’ THEOREM FOR THE ABELIAN GAUGE
FIELD

The action describing the coupling to gravity of the re
evant models to be considered is

S5
1

2E S 1

k
R2

1

8p
Fa bFa b2~DaF!†DaF

2U~F†F! Ddv, ~2!

whereR is the scalar curvature,Fab[2¹ [aAb] is the field
strength of the Abelian gauge fieldAa , Da[¹a2 ieAa is
the gauge covariant derivative, andU(F†F) is a non-
negative self-interaction with nonvanishing vacuum expec
tion values, as for instance, in the Higgs model wh
UH5(l/2)(uFu22v2)2; here (•••)† denotes complex conju
gation. Parametrizing the complex scalar field
F5r exp iu the Lagrangian becomes

L5
1

2k
R2

1

16p
FabFab2

1

2
¹ar¹ar2

1

2e2r2
JaJa

2
1

2
U~r!, ~3!

with Ja[er2(¹au2eAa). The potentialU(r) is a non-
negative function achieving its minima at nonzero valuesva ,
see Fig. 1, and it is assumed thatr asymptotically ap-
proaches to any one of this values. The Abelian symmetr
the models is expressed by the invariance of the Lagran
~3! under the gauge transformationsu°u1eL,Aa°Aa
1¹aL. From Lagrangian~3!, the Einstein-Maxwell-Scala
equations for the involved fields are established

FIG. 1. Example of a spontaneously broken potential with fi
types of nonvanishing vacuum expectation values. The positive
number« is such that 0,«<v1, and it will be used to show thatr
is a nonvanishing function at the horizon.
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k
Rmn5

1

4p
Fm

aFna1¹mr¹nr1
1

e2r2
JmJn

2
1

2
gmnS FabFab

8p
2U~r! D , ~4!

¹bFab54pJa, ~5!

hr5
1

2
U8~r!1

1

e2r3
JaJa, ~6!

whereU8(r)[dU(r)/dr.
We would like to emphasize that the Reissner-Nordstr¨m

black hole is not a solution of the above equations; the s
tem we are dealing with is an Abelian Higgs model, i.e.
charged (eÞ0) scalar field minimally coupled to an Abelia
gauge field, and with a self-interaction having nonvanish
vacuum expectation values. The coupling of this system
gravity Eqs.~4!-~6!, does not reduce in no one case to t
Einstein-Maxwell system, and therefore, it does not cont
the Reissner-Nordstro¨m black hole as a solution. This be
comes apparent from the Lagrangian~2!: for constant values
of the charged scalar field,F5const, a mass term
e2uconstu2AmAm, is present, which converts the Abelia
gauge field in a massive Proca-like spin-1 field, for whi
there exist no static black hole solutions except the Schw
zschild one, as it was pointed out in the Introduction@4,6#.
For a zero value of the scalar field, the mass term vanis
but, an effective cosmological constant,Leff5kU(0)/2,
arises, this is due to the spontaneously broken behavio
the self-interaction, which requiresU(0)Þ0. In this case, we
lost asymptotic flatness and, consequently, the Reiss
Nordström black hole cannot be a solution of the resulti
system. Other is the situation when there is no spontaneo
symmetry breaking, i.e.,U(0)50, in this case the mode
reduces to the Einstein-Maxwell system for vanishing sca
field and the existence of the Reissner-Nordstro¨m black hole
is assured, but this is not the case we will deal with in t
paper.

We shall assume that the gauge field shares the same
metries of the metric, namely, it is stationary,£ F50. Con-
sequently with a~metric-! static configuration~1!, we will
also assume the existence of electromagnetic staticity,
the Maxwell field Fab and the Maxwell equations~5! are
invariant under time-reversal transformations. The tim
reversal invariance of Maxwell equations~5! requires that, in
the coordinates chosen in Eq.~1!, Jt and Fti remain un-
changed whileJi and Fi j change sign, or the opposit
scheme, i.e.,Jt and Fti change sign as long asJi and Fi j

remain unchanged under time reversal@4#. However, this
isometry should not change gauge-invariant observab
thereforeJi andFi j must vanish in the first case, whileJt and
Fti vanish in the second one. Hence, staticity on the me
and material sources implies the existence of two nonov
lapping cases: a purely electric case~I! and a purely mag-
netic case~II !.

al
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Now we are ready to prove the ‘‘no-hair’’ statement f
the gauge field, i.e., for spontaneously broken Abelian mo
the electromagnetic field vanishes in the domain of ou
communicationŝ ^J && of a static asymptotically flat black
hole. Let V,^^J && be the open region bounded by th
spacelike hypersurfaceS, the spacelike hypersurfaceS8, and
pertinent portions of the horizonH 1, and the spatial infinity
i o. The spacelike hypersurfaceS8 is obtained by shifting
each point ofS a unit parametric value along the integr
curves of the Killing fieldk. Multiplying the Maxwell equa-
tions ~5! by Ja /r2 and integrating by parts overV, after
applying the Gauss theorem, and using thatJa /r2

52e(¹au2eAa), one obtains

F E
S8

2E
S

1E
H 1ùV

1E
i oùVG 1

r2
JaFabdSb

5E
VS e2

2
FabFab1

4p

r2
JaJaD dv. ~7!

The boundary integral overS8 cancels out that one overS,
sinceS8 andS are isometric hypersurfaces. At spatial infi
ity i o the scalar field modulusr approaches to one of th
nonvanishing valuesva , minimizing the potential function
U(r), which implies @see Lagrangian~3!# that the gauge
field behaves as an effective massive field at spatial infi
i o, due to the spontaneous breaking of the gauge symmet
this region. The usual Yukawa fall-off of massive fields
infinity cause the boundary integral overi oùV vanishes
@9,11#. For the remaining boundary integral at the portion
the horizonH 1ùV we make use of the standard measure
this regiond Sb52n[bl m] l

mds @18,19#, where l is the null
generator of the horizon,n is the other future-directed nu
vector (nml m521), orthogonal to the spacelike cross se
tions of the horizon, andds is the surface element —th
standard measure follows from choosing the natural volu
three-form at the horizon, i.e.,h35* (n` l)` l. Using the
quoted measure the integrand over the horizon can be re
ten as

1

r2
JaFabdSb5S JaFabl b

r2
1

JaFabnb

r2
~ l ml m!D ds. ~8!

In order to demonstrate that the last integrand vanishes
sufficient to prove that the quantities appearing at the ri
hand side of Eq.~8! are such that:JaFabl b /r2 vanishes and
JaFabnb /r2 remains bounded at the horizon. We shall e
tablish the behavior of these quantities at the horizon
studying some invariants constructed from the curvature.
using Einstein equations~4!, we obtain the following two
equivalent expressions:
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k2
RmnRmn5

G2

2p
1S 2Jm¹mr

er D 2

1S F

2p
2

JmJm

e2r2 D 2

1S F

2p
1¹mr¹mr D 2

1S U~r!1
JmJm

e2r2 D 2

1@U~r!1¹mr¹mr#21
1

pe2r2
JmFm

aJnFna

1
1

p
¹mr* Fm

a¹nr* Fna , ~9!

5
G2

2p
1S 2Jm¹mr

er D 2

1S F

2p
2

JmJm

e2r2 D 2

1S F

2p
2¹mr¹mr D 2

1S U~r!1
JmJm

e2r2 D 2

1@U~r!1¹mr¹mr#21
1

pe2r2
JmFm

aJnFna

1
1

p
¹mrFm

a¹nrFna , ~10!

whereF[FabFab/4, G[ * FabFab/4, and* Fab stands for
the Hodge dual (* Fab5hmnabFmn/2). It is important to note
that the previous Eqs. only differ in the sign inside the fou
term, and in the fact that the last term is written in each c
with * Fab andFab , respectively.

Since the horizon is a smooth surface, the left hand sid
the above Eqs. is bounded on it. For the purely electric c
~I!, the last two terms in the right-hand side of Eq.~9! are
nonnegative, the remaining terms are perfect square,
consequently each term in the right-hand side of Eq.~9! is
bounded at the horizon. In particular, the bounded beha
of the sixth term involving the quantitiesU(r) and¹mr¹mr
implies, from the non-negativeness of these quantities,
they are also bounded at the horizon. It follows from t
bounded behavior of the perfect-square terms whereU(r)
and ¹mr¹mr are combined with the quantitiesJmJm/e2r2

and F, respectively, that the last mentioned quantities
also bounded at the horizon. Thus, any quantity appearin
the right-hand side of Eq.~9! is bounded at the horizon, in
particularU(r), F andJmJm/r2. The same conclusions ca
be achieved, along the same lines of reasoning, for the pu
magnetic case~II !, but this time using the right-hand side o
Eq. ~10!. Other invariants can be built from the Ricci curv
ture ~4! by means ofl andn, which are well-defined smooth
vector fields on the horizon. The first invariant reads

1

k
Rmnnmnn5

1

4p
I mI m1~nm¹mr!21

1

e2r2
~Jmnm!2

2
nmnm

2 S F

2p
2U~r! D , ~11!
4-3
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whereI m[Fmnnn . The last term above vanishes because
bounded behavior of both the invariantF and the potential
U(r). SinceI is orthogonal to the null vectorn, it must be
spacelike or null (I mI m>0), therefore each one of the re
maining terms on the right hand side of Eq.~11! must be
bounded. The next invariant to be considered, which v
ishes at the horizon due to the Raychaudhuri equation for
null generator@20#, reads

05
1

k
Rmnl ml n5

1

4p
EmEm1~ l m¹mr!21

1

e2r2
~Jml m!2

2
l ml m

2 S F

2p
2U~r! D , ~12!

whereEm[Fmnl n is the electric field at the horizon. Onc
again the bounded behavior of the invariantF and the poten-
tial U(r) can be used to achieve the vanishing of the l
term of Eq.~12!. SinceE is orthogonal to the null generato
l, it must be spacelike or null (EmEm>0), consequently each
term on the right-hand side of Eq.~12! vanishes indepen
dently, which implies thatJml m/r50 and thatE is propor-
tional to the null generatorl at the horizon, i.e.,E5
2(Eana) l. The vanishing ofl m¹mr, only reproduces the
fact thatl coincides with the Killing field at the horizon. Th
last invariant to be studied gives the following relation:

1

k
Rmnl mnn2

F

4p
1

U~r!

2
5

1

4p
~Emnm!21~ l m¹mr!~nn¹nr!

1S Jml m

er D S Jnnn

er D , ~13!

where it has been used thatE52(Eana) l. Becausenn¹nr
and Jnnn/r are bounded at the horizon, andJml m/r50
5 l m¹mr, the last two terms in the right-hand side of E
~13! vanish, thusEmnm is bounded at the horizon as cons
quence of the bounded behavior of the left-hand side of
~13!.

Summarizing, the study of the quoted invariants at
horizon leads to the following conclusion
Emnm, Jmnm/r, nm¹mr, JmJm/r2, and I mI m are bounded a
the horizon, whileJml m/r50 and E52(Eana) l in the
same region. Now we are in position to make a more deta
analysis of the sufficient conditions for the vanishing of t
integrand~8! over the horizon, i.e.,JaFabl b /r2 vanishes
andJaFabnb /r2 remains bounded at the horizon. Using t
definition Em[Fmnl n and thatE52(Eana) l, we obtain for
the first quantity at the horizon

JaFabl b

r2
52

1

r
~Emnm!

Jnl n

r
. ~14!

SinceEmnm is bounded andJnl n/r vanishes at the horizon, i
follows that the last expression vanishes at the horizon if
scalar field modulusr does not vanishes in this region. W
shall show at the end of this section thatr is a nonvanishing
function at the horizon and in all the domain of outer co
municationŝ ^J &&.
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For the second quantity we note thatJ andI are orthogo-
nal to the null vectorsl and n, respectively. Therefore,J
must be spacelike or proportional tol, andI must be space-
like or proportional ton. Using a null tetrad basis, con
structed withl, n, and a pair of linearly independent spac
like vectors, these last ones being tangent to the space
cross sections of the horizon, theJ and I vectors can be
written as

J52~Jana!l1J', ~15!

I52~ I al a!n1I', ~16!

whereJ' and I' are the projections, orthogonal tol andn,
on the spacelike cross sections of the horizon. Using E
~15! and ~16! it is clear that JmJm5Jm

'J'm, and I mI m

5I m
'I'm, i.e., the contribution to these bounded magnitud

comes only from the spacelike sector orthogonal tol andn.
With the help of Eqs.~15! and ~16! the other quantity ap-
pearing in the integrand~8! can be written as

JaFabnb

r2
5

JaI a

r2
5

1

r H ~Eana!
Jbnb

r
1

Ja
'I'a

r J , ~17!

where the identityI al a52Eana has been used. The firs
term inside the braces in Eq.~17! is bounded becauseEana

and Jbnb/r are bounded. To the second term the Schw
inequality applies, sinceJ' and I' belong to a space
like subspace. Thus, (Ja

'I'a/r)2<(Jm
'J'm/r2)(I n

'I'n)
5(JmJm/r2)(I nI n) and sinceJmJm/r2 and I nI n are bounded
at the horizon, the second term inside the braces of Eq.~17!
is also bounded. Since the term enclosed by the braces in
~17! is bounded, it follows that the bounded behavior at t
horizon of the whole expression depends again in the non
nishing property of the scalar field modulusr in this region.

The analysis of the sufficient conditions for the vanishi
of the integrand~8! over the horizon shows that, the quanti
~14! vanishes at the horizon and the quantity~17! remains
bounded in this region if the scalar field modulusr is a
nonvanishing function at the horizon. All the conclusio
achieved up to now, can be applied to both cases the pu
electric ~I! and the purely magnetic~II ! ones. To finish the
demonstration of the vanishing of the integrand~8! over the
horizon, it remains only to show thatr is a nonvanishing
function in this region. We are able, by using the functionf «

below, to complete the demonstration for the purely elec
case~I!. Unfortunately, the purely magnetic case~II ! escapes
to be treated along a similar way and it remains still as
open problem; we believe that the ‘‘no-hair’’ conjecture a
plies also to this case.

We proceed now to show that for the purely electric ca
~I! of spontaneously broken models (vaÞ0) r is a strictly
positive function in all the domain of outer communication
^^J &&, of a static asymptotically flat black hole. In fact, le
«.0 be any positive real number such that 0,«<v1 ~see
Fig. 1!, wherev1Þ0 is the least value minimizing the poten
tial functionU(r), then we shall show thatr>«.0 in all of
^^J &&. This result implies, by continuity ofr, that r>«
.0 also at the horizon. In order to arrive at this conclusio
4-4
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the equation of motion~6! for r will be used. Let f «

PC`(R) be the real function defined by

f «~ t !5H 2exp@21/~«2t !2#, t,«,

0, t>«.
~18!

Such function satisfies the following conditions, see Fig.

f «~va!50, 21< f «~ t !<0, f «8~ t !>0, ~19!

whereva is the value for whichU(r) achieves itsath mini-
mum.

Multiplying Eq. ~6! by f « + r and integrating by parts ove
V, after applying the Gauss theorem, one arrives at

E
]V

f «~r!¹mr dSm5E
VS f «8~r!¹mr¹mr1

1

2
f «~r!U8~r!

1
f «~r!

4er3
JmJmD dv. ~20!

We would like to point out that the term 1/r3 in the integrand
above is well behaved in the domain of outer communi
tions ^^J &&. This rests in the following: the integral identit
~20! is obtained from the equation of motion~6!. In order for
this equation to be satisfied in the domain of outer comm
nications ^^J &&, the function r must beC2(^^J &&), i.e.,
twice differentiable in this region. On the other hand, most
the physically relevant potentials are smooth functions,
fact, the mayor part of them are polynomial. In this sen
the fulfillment of Eq.~6! implies, by the well-behaved natur
of both its left-hand side and the term involving the deriv
tive of the potential, that the remaining term in this E
going as 1/r3, is also well behaved in the domain of out
communicationŝ ^J &&.

In ]V the boundary integrals overS8 and S cancel out
again in the left-hand side of Eq.~20!. The boundary integra
over i oùV vanishes, becauser takes asymptotically some o
the valuesva minimizing the potential functionU(r), then
by the conditions~19! the integrand vanishes there. Th
same happens to the integral overH 1ùV; using the natural
measure at the horizon the integrand can be written as

FIG. 2. The graph of the auxiliar functionf «(t).
10400
:

-

-

f
n
,

-
,

f «~r!¹mr dSm5 f «~r!@ l m¹mr1~ l nl n!nm¹mr# ds,
~21!

where the vanishing ofl m¹mr and the bounded behavior o
nm¹mr at the horizon, together with the null character ol
and the bounded behavior off «(r) ~19! imply the vanishing
of the whole integrand at the horizon. Since there are
contributions at the left-hand side of Eq.~20!, the volume
integral vanishes and we have for the purely electric case~I!

E
VS f «8~r!g i j ¹

ir¹ jr1
1

2
f «~r!U8~r!2V

f «~r!

4er3
~Jt!2D dv

50, ~22!

where the coordinates from Eq.~1! has been used. From th
properties off « , U, V, andg it follows that each term in the
integrand above is non-negative, so, Eq.~22! is fulfilled only
if each of them vanishes identically inV. In particular,
f «(r)U8(r)uV50, this condition can be satisfied iff «(r)uV
50 which implies, from the definition off « ~18!, that ruV
>«.0. Conversely, let us now suppose thatf «(r)upÞ0 for
some pPV this requires, from the quoted condition, th
U8(r)up50 and, from the definition off « ~18!, that 0<rup
,«, but the only extreme ofU(r) in this interval is atr
50 ~see Fig. 1!, hence,f «(r)upÞ0⇒rup50. The functionr
cannot vanish in all ofV because it asymptotically ap
proaches one of the valuesva for which U(r) achieves its
minima. Thus, by the connectedness ofV and the continuity
of the functionr, r(V) is an interval inR1 containing the
points $0,va%, which implies that the inverse image of th
open interval ]0,«@,r(V) under the functionr is a non-
empty open subset ofV; it is clear that on this subset bot
f «(r) andU8(r) are nonvanishing functions~see Figs. 1 and
2!. Summarizing, the assumptionf «(r)upÞ0 for some p
PV, implies the existence of a nonempty open subset oV
for which the conditionf «(r)U8(r)uV50 is violated. So,
this contradiction implies the vanishing off «(r) in all of V,
which requires, by the definition off « ~18!, thatruV>«.0,
result which can be extended to all of^^J &&. This result
finally implies, by the continuity of the functionr that
ruH 1>«.0.

With the nonvanishing ofr at the horizon we have tha
Eq. ~14! vanishes and Eq.~17! remains bounded in this re
gion, which implies, together with the null character ofl at
the horizon, the vanishing of the whole integrand~8! over the
horizon. With no contribution from boundary integrals in E
~7!, the volume integral for the purely electric case~I! is
written, using the coordinates from Eq.~1!, as

E
V
2VS e2g i j F

tiFt j1
4p

r2
~Jt!2D dv50. ~23!

The nonpositiveness of the above integrand, which is mi
the sum of squared terms, implies that the integral is van
ing only if Fti andJt vanish everywhere inV, and hence in
all of ^^J &&.
4-5
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Finally, we would like to explain why our proof on th
nonvanishing ofr fails in the purely magnetic case~II !. This
is due to the fact that the last term in the volume integral~22!
must be replaced, in the purely magnetic case~II !, by the
nonpositive quantityf «(r)g i j J

iJj /4er3 ~see Fig. 2!; since
the first two terms are again non-negative the integrand h
no definite sign and it is impossible to deduce the vanish
of it from the vanishing of the integral. So, the nonvanishi
of r for the purely magnetic case~II ! must be justified using
a different approach. We are looking for a shortcut to so
this impasse, since we believe that the ‘‘no-hair’’ conjectu
applies also to this case. For any successful justification
the conditionruH 1Þ0, the rest of the proof follows in this
way: the nonvanishing ofr implies again the vanishing o
the integrand~8! over the horizon, having no contributio
from boundary integrals in Eq.~7!, the volume integral for
the purely magnetic case~II ! can be written, using the coor
dinates from Eq.~1!, as

E
VS e2

2
g i j gklF

ikF jl 1
4p

r2
g i j J

iJj D dv50, ~24!

where again the non-negativeness of the integrand imp
that the vanishing of the integral is satisfied only ifFik andJi

vanish everywhere inV, and hence in all of̂^J &&.

III. ‘‘NO-HAIR’’ THEOREM FOR THE SCALAR FIELD
IN THE ABELIAN HIGGS MODEL

It is reasonable to expect, from the ‘‘no-hair’’ conjectur
that the only possible solutions for a scalar model in
domain of outer communicationŝ̂J && of a stationary as-
ymptotically flat black hole become the vacuum expectat
values of the self-interaction. In the models considered
this paper this implies the uniqueness of the scalar st
Fa5vaexpiu, where vaÞ0 are the values minimizing th
potential functionU(r). We now concentrate our attentio
in the Abelian Higgs model, for whichU(r) has a single
minimum atv, and we shall show the truthfulness of the la
statement for the purely electric case~I!, without any depen-
dence on the specific choice of the potential. The resu
obtained by applying the same procedure used above fo
Eq. ~6!, with the function f «(r) replaced this time by the
n
nd

,
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function tanh (r2v), and taking into account thatJm50,
arriving now at

E
V
@sech2~r2v ! g i j ¹

ir¹ jr1tanh~r2v !U8~r!#dv50,

~25!

where the boundary integral vanishes by the same argum
yielding to the vanishing of the boundary integral in E
~20!. SinceU(r) has a single minimum atv, again the inte-
grand at the left-hand side of Eq.~25! is non-negative, so the
integral vanishes only ifr5v in all of V, and hence in all of
^^J &&. We believe that this result can be extended to m
general Abelian models.

IV. CONCLUSIONS

The ‘‘no-hair’’ theorem for purely electric configuration
of spontaneously broken Abelian models has been exten
to general static asymptotically flat black holes. The theor
is gauge invariant, and is established for any model w
nonvanishing vacuum expectation values. It is shown that
gauge field vanishes outside the black hole. This vanishin
physically due to the effective behavior of the gauge field
a massive field by the spontaneous symmetry breaking.
the particular case of the Abelian Higgs model—Mexica
hat potential—it is additionally shown that the scalar field
confined to the vacuum in all the black hole exterior, whi
implies a zero contribution to the right-hand side of the E
stein equations~4!, and that the only black hole admitted
the Schwarzschild solution. We discuss the main conditi
to establish the theorem for purely magnetic configuratio
but the problem remains still open; we believe that the ‘‘n
hair’’ conjecture applies also to this case.
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