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“No-hair” theorem for spontaneously broken Abelian models in static black holes
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The vanishing of the electromagnetic field, for purely electric configurations of spontaneously broken Abe-
lian models, is established in the domain of outer communications of a static asymptotically flat black hole.
The proof is gauge invariant, and is accomplished without any dependence on the model. In the particular case
of the Abelian Higgs model, it is shown that the only solutions admitted for the scalar field become the vacuum
expectation values of the self-interaction.

PACS numbegps): 04.70.Bw, 04.20.Ex, 04.46b

[. INTRODUCTION The subject of this paper is twofold, first, to relax the

. . . spherically symmetric assumption in the previously quoted
. The classw'al and strongest version of the no-haw .Con'cgntributi())/ns),/ by working Withpgeneral statFi)c asymp%octlically
jecture establishes that a stationary black hole is uniquely,, systems, and second, to extent the “no-hair” theorem to
described by global charges, i.e., conserved charges assofiyre general Abelian models than the Higgs model, i.e., for
ated with massless gauge fields, expressed by surface intganeral spontaneously broken self-interactions. Emphasis is
grals at the spatial infinity® [1]. In particular, the conjecture given on asymptotically flat black holes only, this way we
excludes the existence of massive fields in the domain 0gxclude from consideration black holes pierced by a cosmic
outer communication§ 7)) of a stationary black hole. This  string [14] —with the corresponding nontrivial behavior of
fact rests on the idea that in the black hole transition tothe Abelian field— as it has been previously pointed by Bek-
stationarity “everything that can be radiated away will be enstein[13,15, these last configurations are not asymptoti-
radiated away”(see Ref[2]), so, the only classical degrees cally flat since they present the angular deficit inherent to the
of freedom of a stationary black hole are those correspondingresence of topological defects. The basic difference be-
to nonradiative multipole moments; massive fields are autotween these configurations is that for the string-pierced black

matically excluded because all their multipoles are radiativéholes the scalar field satisfy boundary conditions at infinity
[1]. in accordance with the existence of a topological defect, i.e.,

The absence of massive “hair” was shown early in thethe scalar field is confined to the vacuum only in a circle at
Bekenstein pioneering works for massive scalar fieldsinfinity, which implies the developing of a cosmic string at
Proca-massive spin-1 fields, and massive spin-2 fi@és). the interior of the circle, whereas for asymptotically flat
An alternative demonstration for Proca fields can be found if?lack holes the scalar field approaches the vacuum in all
Ref.[6]. The “no-hair” theorem for massive vector fields is directions at infinity.

a useful tool for excluding the existence of new black holeth Forl? static tt)lackfrlﬂle, the f'rlll'n.g g:lu CO('jn.C'dt.eS vlv::h
solutions for very complicated theories as metric-affine grav- € null generator of the event horiz and 1s imelike
nd hypersurface orthogonal in all the domain of outer com-

ity, where a relevant sector of this theory reduces to an ef2nd VP! ) )
fective Einstein-Proca systef]. munications((.7)). This allow us to choose, by simply con-

H |
It is well known that fields acquire mass not only kine- nectedness df 7)) [16], a global coordinate systent, k),

matically, as in the previous cases, but also through a d i1=1,2,3, in all({(7)) [17], such thak=4d/ét and the metric

) : _ reads
namical mechanism of spontaneous symmetry breaking. This

@s the case of spontan_eously broken Abelian_ models_ describ- g=—Vd+ yijdxidxj, (1)
ing a charged scalar field with a self-interaction having non-

zero vacuum expectation values, and minimally coupled t0 §herev and y aret independenty is positive definite in all
massless Abelian gauge field. The “no-hair” conjecture for<<j>>, andV is positive in all((7)) and vanishes irt*.

this model has been previously articulated as follp8lsany  From Eq.(1) it can be noted that staticity implies the exis-
stationary black hole solution, such that all gauge-invariantence of a time-reversal isometty> —t.

observables are nonsingular, must have a vanishing electro- |n Sec. Il the vanishing of the electromagnetic field in the
magnetic field, in the domain of outer communicationsdomain of outer communicationg.7)) of a static asymp-
((J)) of the black hole. The simplest of this systems is thetotically flat black hole is demonstrated for purely electric
Abelian Higgs model (Mexican-hat self-interactionfor  configurations of a generic spontaneously broken Abelian
which a “no-hair” theorem was shown in Rel9], proving  model. At the end of Sec. Il the conditions for establishing a
the vanishing of the gauge field for spherically symmetric*no-hair” theorem for purely magnetic configurations are
static black holes. This proof has been considered unsatisfaaiso analyzed. Section Ill is devoted to show, in the particu-
tory [10] because it is based on an inconsistent gauge choicéar case of the Abelian Higgs model, that the charged scalar
Improved versions have been recently giyéa—13, with-  field is confined to its vacuum if(7)). Conclusions are
out the original restrictions criticized in R€fL10]. given in Sec. IV.
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FIG. 1. Example of a spontaneously broken potential with five
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whereU’ (p)=dU(p)/dp.
We would like to emphasize that the Reissner-Norastro

types of nonvanishing vacuum expectation values. The positive regllack hole is not a solution of the above equations; the sys-

numbere is such that 8&<e<wv 4, and it will be used to show that
is a nonvanishing function at the horizon.

II. “NO-HAIR” THEOREM FOR THE ABELIAN GAUGE
FIELD

tem we are dealing with is an Abelian Higgs model, i.e., a
charged €+ 0) scalar field minimally coupled to an Abelian

gauge field, and with a self-interaction having nonvanishing
vacuum expectation values. The coupling of this system to
gravity Egs.(4)-(6), does not reduce in no one case to the
Einstein-Maxwell system, and therefore, it does not contain

The action describing the coupling to gravity of the rel- the Reissner-Nordstno black hole as a solution. This be-

evant models to be considered is
5—1f Lo Lk, Fef (D) DD
=5 | <R g-Fes —(D,®)
—U(¢T<I>))dv, 2

whereR is the scalar curvaturés ,;=2V,Ag is the field
strength of the Abelian gauge field,, D,=V _ —ieA, is
the gauge covariant derivative, ard(®'®) is a non-

comes apparent from the Lagrangi@y: for constant values

of the charged scalar fieldd=const, a mass term,
e?|const?A A*, is present, which converts the Abelian
gauge field in a massive Proca-like spin-1 field, for which
there exist no static black hole solutions except the Schwar-
zschild one, as it was pointed out in the Introductjdrb].

For a zero value of the scalar field, the mass term vanishes,
but, an effective cosmological constant 4= «U(0)/2,
arises, this is due to the spontaneously broken behavior of
the self-interaction, which requirés(0)+ 0. In this case, we
lost asymptotic flathess and, consequently, the Reissner-
Nordstran black hole cannot be a solution of the resulting
system. Other is the situation when there is no spontaneously

negative self-interaction with nonvanishing vacuum expectasymmetry breaking, i.e{J(0)=0, in this case the model

tion values, as for instance, in the Higgs model wher
Up=(N/2)(|®|2—0v?)?; here (- -)" denotes complex conju-

gation. Parametrizing
& =p expid the Lagrangian becomes

L —1 R —l F,gF? lV ve J,J¢
= 2K 167T af E a/p P 2e2p2 o
1U 3
ZU(p), ()

with J,=ep?(V ,0—eA,). The potentialU(p) is a non-
negative function achieving its minima at nonzero valigs
see Fig. 1, and it is assumed thatasymptotically ap-

&educes to the Einstein-Maxwell system for vanishing scalar

field and the existence of the Reissner-Nordsttdack hole

the complex scalar field byjs assured, but this is not the case we will deal with in the

paper.

We shall assume that the gauge field shares the same sym
metries of the metric, namely, it is stationaf/,F=0. Con-
sequently with almetric-) static configuration1), we will
also assume the existence of electromagnetic staticity, i.e.,
the Maxwell field F*# and the Maxwell equationés) are
invariant under time-reversal transformations. The time-
reversal invariance of Maxwell equatio(® requires that, in
the coordinates chosen in E€), J' and F" remain un-
changed whileJ' and F" change sign, or the opposite
scheme, i.e.J)' and F" change sign as long aB and F"
remain unchanged under time rever$d]. However, this
isometry should not change gauge-invariant observables,

proaches to any one of this values. The Abelian symmetry ofherefore' andF! must vanish in the first case, whiléand
the models is expressed by the invariance of the LagrangiaR" vanish in the second one. Hence, staticity on the metric

(3) under the gauge transformatiorts—60+eA,A —A,

+V,A. From Lagrangian(3), the Einstein-Maxwell-Scalar

equations for the involved fields are established

and material sources implies the existence of two nonover-
lapping cases: a purely electric cadg and a purely mag-
netic casdll).
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Now we are ready to prove the “no-hair” statement for 2 G2 2 I8y 2 EJ g 2
. . . v_ uP ©
the gauge field, i.e., for spontaneously broken Abelian model —ZRMR“ —2—+( ) +<2—— > 2)
the electromagnetic field vanishes in the domain of outer ¥ & €p T €p
communicationg (7)) of a static asymptotically flat black E 2 3 gm\2
hole. Let VC{(J)) be the open region bounded by the +|5=+V,pVp | +| U(p)+ H
spacelike hypersurfacg, the spacelike hypersurfage, and 2m e’p?
pertinent portions of the horizak *, and the spatial infinity
i°. The spacelike hypersurface’ is obtained by shifting +[U(p)+V ,pV#p]2+ J“E “J'E
. : . . p)+tV,upVep > 5 F I Fu,
each point ofY a unit parametric value along the integral mep
curves of the Killing fieldk. Multiplying the Maxwell equa- 1
tions (5) by J,/p? and integrating by parts ovey, after + ZVHp*F “VYp*F, | 9)
applying the Gauss theorem, and using thai/p? ™ .
=2e(V,0—eA,), one obtains
G? [20V,p\% [ F 3,0\
“22 "\ e 2n @
1
f —f+J +f —JFPdS 2 2
, s +ay Jioam| a2 ¢ F J, J*
H*av Ji°ny|p + E_VMPVMP +| U(p)+ e’;pz
e? 4qr
=f EFQBFQM — 3,34 dv. )
v p +[U(p)+V ,pVFpl2+ —— I#F 2J'F,,
mep
The boundary integral ovex’ cancels out that one ovér, I iV‘“pF @y oF (10)
sinceX’ and3 are isometric hypersurfaces. At spatial infin- ™ s e

ity i° the scalar field modulup approaches to one of the

nonvanishing values,, minimizing the potential function WhereF=F ,,F*f/4, G=*F ,,F*f/4, and*F ,, stands for
U(p), which implies[see Lagrangiar(3)] that the gauge the Hodge dual(F ;= 7,,.5F""/2). It is important to note
field behaves as an effective massive field at spatial infinithat the previous Egs. only differ in the sign inside the fourth
i°, due to the spontaneous breaking of the gauge symmetry rm, and in the fact that the last term is written in each case
this region. The usual Yukawa fall-off of massive fields atwith *F,; andF ,z, respectively.

infinity cause the boundary integral ové?N) vanishes Since the horizon is a smooth surface, the left hand side of
[9,11]. For the remaining boundary integral at the portion ofthe above Egs. is bounded on it. For the purely electric case
the horizor * NV we make use of the standard measure orf!); the last two terms in the right-hand side of E§) are

this regiond X ;=2n4l ,y*do [18,19, wherel is the null nonnegative, the remaining terms are perfect square, and

generator of the horizom is the other future-directed null consequently each term in the _right—hand side of @0.is .
vector (,1#=—1), orthogonal to the spacelike cross Sec_bounded at the horizon. In particular, the bounded behavior
M 1

tions of the horizon, andio is the surface element —the Of the sixth term involving the quantitids(p) andV ,pV*p
standard measure follows from choosing the natural volum plies, from the non-negauvenesg of these quantities, that
they are also bounded at the horizon. It follows from the
-P_ounded behavior of the perfect-square terms whéfp)
ten as andV,pV#p are combined with the quantitiel,J*/e?p?
and F, respectively, that the last mentioned quantities are
also bounded at the horizon. Thus, any quantity appearing in
the right-hand side of Eq9) is bounded at the horizon, in
JaFaB|B JaFaﬂnB particularU(p), F and JMJ”/pZ. The same conclusions can
—JaFPd3 = >+ ———(,*)]do. (8  Dbe achieved, along the same lines of reasoning, for the purely
p P p magnetic caséll), but this time using the right-hand side of
Eq. (10). Other invariants can be built from the Ricci curva-

. ) _ ture(4) by means of andn, which are well-defined smooth
In order to demonstrate that the last integrand vanishes it iSector fields on the horizon. The first invariant reads

sufficient to prove that the quantities appearing at the right
hand side of Eq(8) are such that.ﬂaFC'BIB/p2 vanishes and

JaF.aﬁnB/p2 remai_ns bounded at the_ _horizon. We shall es- ERWnﬂnyziwanﬂV#p)q (Jﬂnﬂ)z
tablish the behavior of these quantities at the horizon by K 4 e?p?
studying some invariants constructed from the curvature. By
using Einstein equation§}), we obtain the following two n,n* F

; N - 5=—U(p)], 11
equivalent expressions: 2 \27w
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wherel*=F#"n,. The last term above vanishes because the For the second quantity we note tliaand| are orthogo-

bounded behavior of both the invariaftand the potential
U(p). Sincel is orthogonal to the null vectan, it must be
spacelike or null (,1#=0), therefore each one of the re-
maining terms on the right hand side of E41) must be

nal to the null vectord and n, respectively. Therefore]
must be spacelike or proportional itoand|! must be space-
like or proportional ton. Using a null tetrad basis, con-
structed withl, n, and a pair of linearly independent space-

bounded. The next invariant to be considered, which vanlike vectors, these last ones being tangent to the spacelike
ishes at the horizon due to the Raychaudhuri equation for theross sections of the horizon, tlleand | vectors can be

null generatof20], reads
1 mv 1 ” M 2 1 )2
;RMVl | :EEME +(| Vﬂp) +e2_p2(JMI )

12

whereE#*=F*#"| , is the electric field at the horizon. Once
again the bounded behavior of the invari&rand the poten-

tial U(p) can be used to achieve the vanishing of the Ias@v

term of Eq.(12). SinceE is orthogonal to the null generator
[, it must be spacelike or nulH,E#=0), consequently each
term on the right-hand side of Eq12) vanishes indepen-
dently, which implies that ,1“/p=0 and thatE is propor-
tional to the null generatot at the horizon, i.e.E=
—(E,n®) I. The vanishing ofi“V ,p, only reproduces the
fact thatl coincides with the Killing field at the horizon. The
last invariant to be studied gives the following relation:

U 1
% = = (E,n2(17,p)(n"V )

ool

where it has been used that — (E_n“) |. Becausen’V ,p
and J,n"/p are bounded at the horizon, anlj|*/p=0
=I#V ,p, the last two terms in the right-hand side of Eq.

1
P

F
l#n"— —

4
J,n”
ep

13

(13) vanish, thusE ,n* is bounded at the horizon as conse-

written as

J=—(J NN+, (15)

== Jn+I1*, (16)
whereJ* andl+ are the projections, orthogonal k@andn,

on the spacelike cross sections of the horizon. Using Egs.
(15 and (16) it is clear thatJMJ“:JtJL”, and I ,1*
=I;I“‘, i.e., the contribution to these bounded magnitudes
omes only from the spacelike sector orthogondl amdn.

ith the help of Egs(15) and (16) the other quantity ap-
pearing in the integran(B) can be written as

1 Jgnf It
=~ (Eon®)——+ ;
P p p

JFPng 3¢

2 p2

17
p

where the identityl ,|*=—E_n® has been used. The first
term inside the braces in E¢L7) is bounded becaude, n®
and Jﬁn[’/p are bounded. To the second term the Schwarz
inequality applies, since}* and It belong to a space-
like subspace. Thus, J{I*%/p)*<(J3,3"*Ip?)(I,1"")
=(J,9*/p?(1,1") and sincel ,J*/p? andl I* are bounded
at the horizon, the second term inside the braces of Ef.
is also bounded. Since the term enclosed by the braces in Eq.
(17) is bounded, it follows that the bounded behavior at the
horizon of the whole expression depends again in the nonva-
nishing property of the scalar field modulpsn this region.

The analysis of the sufficient conditions for the vanishing
of the integrand8) over the horizon shows that, the quantity

guence of the bounded behavior of the left-hand side of EC{.14) vanishes at the horizon and the quantity’) remains

(13).

bounded in this region if the scalar field modulgsis a

Summarizing, the study of the quoted invariants at thenonvanishing function at the horizon. All the conclusions

horizon leads to the following  conclusions:
E.n*, J,n*p,n*V ,p,J3,3"/p? andl I* are bounded at
the horizon, whileJ,|*/p=0 and E=—(E,n“)| in the

achieved up to now, can be applied to both cases the purely
electric (1) and the purely magneti@dl) ones. To finish the
demonstration of the vanishing of the integra®i over the

same region. Now we are in position to make a more deta"eﬁorizon, it remains only to show that is a nonvanishing
analysis of the sufficient conditions for the vanishing of thefunction in this region. We are able, by using the functign

integrand (8) over the harizon, i.e.,JO(F“‘BIB/p2 vanishes

below, to complete the demonstration for the purely electric

andJaF"BnB/p2 remains bounded at the horizon. Using thecase(l). Unfortunately, the purely magnetic cagb escapes

definition E#=F*#"|, and thate= — (En®) |, we obtain for
the first quantity at the horizon
JaF“ﬁIB 1(E M)J,,IV
- = n
p? p " T p

(14)

SinceE,n* is bounded and, | ”/p vanishes at the horizon, it

to be treated along a similar way and it remains still as an
open problem; we believe that the “no-hair’” conjecture ap-
plies also to this case.

We proceed now to show that for the purely electric case
(I) of spontaneously broken models, & 0) p is a strictly
positive function in all the domain of outer communications,
(TJ)), of a static asymptotically flat black hole. In fact, let

follows that the last expression vanishes at the horizon if the >0 be any positive real number such that 8<v, (see

scalar field modulug does not vanishes in this region. We
shall show at the end of this section thais a honvanishing

function at the horizon and in all the domain of outer com-

munications((.7)).

Fig. 1), wherev,#0 is the least value minimizing the poten-
tial functionU(p), then we shall show thgt=¢>0 in all of
(J)). This result implies, by continuity op, that p=¢
>0 also at the horizon. In order to arrive at this conclusion,

104004-4
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1) f(p)VAp d2,=f,(p)[1, V¥ p+(1,1")N,V*p] do,
041 (21
where the vanishing df,V#p and the bounded behavior of
02y n,V#p at the horizon, together with the null characterl of
and the bounded behavior &f(p) (19) imply the vanishing
o of the whole integrand at the horizon. Since there are no
g U t contributions at the left-hand side of E(O0), the volume
integral vanishes and we have for the purely electric ¢Bse
_0.2,,
o 1 f.(p)
4 Wi j - ’ ERVALALSAE 13V
oa] Jv(fe(p)%,V pVip+ 5T(p)U"(p) V4ep3(J) dv
=0, (22

FIG. 2. The graph of the auxiliar functiof(t).

) ) . where the coordinates from E(L) has been used. From the
the equation of motion(6) for p will be used. Letf,  properties off,, U, V, andy it follows that each term in the

€ C*(R) be the real function defined by integrand above is non-negative, so, E2p) is fulfilled only
1 5 if each of them vanishes identically iw. In particular,

f )= exf —Ue—0)7], t<e, (1  f«(p)U’(p)y=0, this condition can be satisfied f ()|

¢ 0, t=e¢. =0 which implies, from the definition of, (18), thatp|,

=g>0. Conversely, let us now suppose ttiatp)|,#0 for
Such function satisfies the following conditions, see Fig. 2: somepe V this requires, from the quoted condition, that
U’(p)|,=0 and, from the definition of . (18), that O<p|,
<e, but the only extreme ob(p) in this interval is atp
=0 (see Fig. 1, hencef.(p)|,#0=p|,=0. The functiorp
cannot vanish in all ofY because it asymptotically ap-
proaches one of the valueg for which U(p) achieves its
minima. Thus, by the connectednessloand the continuity
of the functionp, p(V) is an interval inR* containing the
1 points {0 .}, which implies that the inverse image of the
f f.(p)V¥p dsz (f;(p)vﬂpvﬂpjuzfs(p)u'(p) open interval ]Gs[ Cp()) under the functiorp is a non-
v v empty open subset df; it is clear that on this subset both
f.(p) andU’(p) are nonvanishing functior(see Figs. 1 and
fs(p)J 34 | do (20) 2). Summarizing, the assumption(p)|p¢0 for somep
4ep® " ' eV, implies the existence of a nonempty open subsey of
for which the conditionf (p)U’(p)|,=0 is violated. So,
We would like to point out that the termY in the integrand  this contradiction implies the vanishing 6f(p) in all of V),
above is well behaved in the domain of outer communicawhich requires, by the definition df, (18), thatp|,=¢>0,
tions((7)). This rests in the following: the integral identity result which can be extended to all ¢f7)). This result
(20) is obtained from the equation of moti¢6). In order for  finally implies, by the continuity of the functiop that
this equation to be satisfied in the domain of outer commuyp|,,+=¢>0.
nications ((7)), the functionp must beC*(((7))), i.e., With the nonvanishing of at the horizon we have that
twice differentiable in this region. On the other hand, most ofgq. (14) vanishes and Eq17) remains bounded in this re-
the physically relevant potentials are smooth functions, ingion, which implies, together with the null character|adt
fact, the mayor part of them are polynomial. In this sensethe horizon, the vanishing of the whole integraBilover the
the fulfillment of Eq.(6) implies, by the well-behaved nature horizon. With no contribution from boundary integrals in Eq.
of both its left-hand side and the term involving the deriva-(7), the volume integral for the purely electric cade is
tive of the potential, that the remaining term in this Ed.,written, using the coordinates from Ed), as
going as 14°, is also well behaved in the domain of outer
communicationg{.7)).

In 9V the boundary integrals ov&d’ and X cancel out f —V
again in the left-hand side of E(R0). The boundary integral v
overi®NYy vanishes, becaugetakes asymptotically some of
the valuesv, minimizing the potential functiotJ(p), then  The nonpositiveness of the above integrand, which is minus
by the conditions(19) the integrand vanishes there. The the sum of squared terms, implies that the integral is vanish-
same happens to the integral ov&r NV; using the natural ing only if F"' andJ' vanish everywhere i, and hence in
measure at the horizon the integrand can be written as  all of ((7)).

fo(va)=0, —1=f,()=<0, fJ()=0, (19
wherev , is the value for whiciJ(p) achieves itsath mini-
mum.

Multiplying Eq. (6) by f,  p and integrating by parts over
V, after applying the Gauss theorem, one arrives at

+

.. 4
ezyith'Ftl+—2(Jt)2 dv=0. (23
p

104004-5



ELOY AYON-BEATO PHYSICAL REVIEW D 62 104004

Finally, we would like to explain why our proof on the function tanh p—v), and taking into account that,=0,
nonvanishing op fails in the purely magnetic cag#). This  arriving now at
is due to the fact that the last term in the volume inte¢2a)
must be replaced, in the purely magnetic césg by the o
nonpositive quantityf,(p)y;;J'J//4ep® (see Fig. 2 since f[SecH(p—v) i;V'pVip+tanip—v)U’(p)]dv=0,
the first two terms are again non-negative the integrand have 25
no definite sign and it is impossible to deduce the vanishing

of it from the vanishing of the integral. So, the nonvanishing,yhere the boundary integral vanishes by the same arguments
of p for the purely magnetic cagél) must be justified using yjelding to the vanishing of the boundary integral in Eq.

a different approach. We are looking for a shortcut to solvg2(). SinceU(p) has a single minimum at, again the inte-

this impasse, since we believe that the “no-hair” conjecturegrang at the left-hand side of E(p5) is non-negative, so the
applies also to this case. For any successful justification Gfytegral vanishes only jp=v in all of V, and hence in all of

the conditionp|,, + #0, the rest of the proof follows in this ((J7)). We believe that this result can be extended to more
way: the nonvanishing op implies again the vanishing of general Abelian models.

the integrand(8) over the horizon, having no contribution
from boundary integrals in Eq7), the volume integral for
the purely magnetic cag#l) can be written, using the coor-
dinates from Eq(1), as The “no-hair” theorem for purely electric configurations
of spontaneously broken Abelian models has been extended
2 to general static asymptotically flat black holes. The theorem
e oA o . . . . . ;
j (_yijyklplkpll+_27ij3|31 dv=0, (24) s gauge invariant, and is estgbllshed for any model with
v\ 2 p nonvanishing vacuum expectation values. It is shown that the
) ) . ~_gauge field vanishes outside the black hole. This vanishing is
where again the non-negativeness of the integrand impliggnysically due to the effective behavior of the gauge field as

IV. CONCLUSIONS

vanish everywhere i, and hence in all of(7)). the particular case of the Abelian Higgs model—Mexican-
hat potential—it is additionally shown that the scalar field is

. “NO-HAIR” THEOREM FOR THE SCALAR FIELD confined to the vacuum in all the black hole exterior, which
IN THE ABELIAN HIGGS MODEL implies a zero contribution to the right-hand side of the Ein-

stein equations$4), and that the only black hole admitted is
' the Schwarzschild solution. We discuss the main conditions

that the only possible solutions for a scalar model in the[o establish the theorem for purely magnetic configurations,

doma|r_1 of outer communicatior.7)) of a stationary as” put the problem remains still open; we believe that the “no-
ymptotically flat black hole become the vacuum expectatior} i conjecture applies also to this case

values of the self-interaction. In the models considered in
this paper this implies the uniqueness of the scalar states
d,=v.exph, wherev,#0 are the values minimizing the
potential functionU(p). We now concentrate our attention  The author thanks Alberto Gagecfor useful discussions

in the Abelian Higgs model, for whiclu(p) has a single and very valuable hints, and Thomas Zannias for some con-
minimum atv, and we shall show the truthfulness of the lastsideratons, in the early stage of the work, about the correct
statement for the purely electric ca@dg without any depen- measure that must be used in the integrals at the horizon.
dence on the specific choice of the potential. The result i§his research was partially supported by the CONACyT
obtained by applying the same procedure used above for th@rant No. 32138E and the Sistema Nacional de Investiga-
Eq. (6), with the functionf,(p) replaced this time by the dores(SNI).

It is reasonable to expect, from the “no-hair” conjecture
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