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Precision of slow-roll predictions for the cosmic microwave background radiation anisotropies
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Inflationary predictions for the anisotropy of the cosmic microwave background radiation are often based on
the slow-roll approximation. We study the precision with which the multipole moments of the temperature
two-point correlation function can be predicted by means of the slow-roll approximation. We ask whether this
precision is good enough for the forthcoming high precision observations by means of the MAP and Planck
satellites. The error in the multipole moments due to the slow-roll approximation is demonstrated to be bigger
than the error in the power spectrum. For power-law inflation wigk 0.9 the error from the leading order
slow-roll approximation is~5% for the amplitudes ane&20% for the quadrupoles. For the next-to-leading
order the errors are within a few percent. The errors increase|mith1|. To obtain a precision of 1% it is
necessary, but in general not sufficient, to use the next-to-leading order. In the case of power-law inflation this
precision is obtained for the spectral indice$nf— 1|<0.02 and for the quadrupoles|iis—1|<0.15 only.

The errors in the higher multipoles are even larger than those for the quadrupotle 18%. forl =100, with
ns=0.9 at the next-to-leading order. We find that the accuracy of the slow-roll approximation may be im-
proved by shifting the pivot scale of the primordial spectr(the scale at which the slow-roll parameters are
fixed) into the regime of acoustic oscillations. Nevertheless, the slow-roll approximation cannot be improved
beyond the next-to-leading order in the slow-roll parameters.

PACS numbd(s): 98.80.Cq, 98.70.Vc

[. INTRODUCTION In this article, we will restrict our considerations to slow-
roll inflation with one scalar field. This represents only a first
High quality measurements of the cosmic microwavestep towards a more general study. Our aim is to address the
background radiatioiCMBR) anisotropies have been pub- following problems: What is the precision of the predicted
lished recently by the balloon borne experiments BOOMERyjtinole moments from the slow-roll approximation? Is this
anG[1] and MAXIMA-1 [2]. A large number of multipoles o ecision sufficient to reach the level of accuracy expected

(26<1<625 for BOOMERanG and 36I<785 for ¢ he ol ions? he slow-roll i
MAXIMA-1 ) have been covered by both experiments. Dur-r;%rgotn ebepi?nnprf)sl/e%bts(,)eg/riﬁtr)gé. p?eatl:ri]sitoreﬁs OW-ToT approx

ing the next years, high precision measurements will be per- So far. the o ;
' . , precision of the predicted power spectrum has
formed by the Microwave Anisotropy ProbAP) and been examined by Grivell and LiddIE]. However, the

Planck satelliteg3]. Inflation [4] provides a mechanism to i . t directly ob ble wh a
produce the primordial fluctuations of space-time and mattePOWe' SPectrum is not directly observable whereasQlis

[5-8], which lead to the CMBR anisotropies and to the large?'®: We show that the error from the slow-_roll _approximation
scale structure. This mechanism rests on the principles df important in the multipole moments. It is bigger than the
general relativity and quantum field theory. It thus can befmor in the power spectrum. It turns out that the next-to-
expected to get a hand on the physics of the very early Unileading order slow-roll approximatiof.0] is compulsory,
verse with help of the upcoming high precision measurebut it may not be sufficient to reach an accuracy of a few %
ments. or less.

The CMBR anisotropies are most conveniently expressed Wang, Mukhanov and Steinharfit1] have shown that
by the multipole moment€,. The computation of the mul- predictions based on the time delay arguméfjtor on the
tipole moments requires knowledge of the primordial specBessel function approach at horizon crossifneg., the slow-
trum and the transfer functions. The latter depend on theoll approximation [10,127] are not reliable for general mod-
cosmological parametersiy,Qy,Q,, ... . The transfer els of inflation. There have been various attempts to improve
function characterizes the evolution of cosmological perturthe slow-roll approximation to higher orders; see e.g.
bations during the radiation and matter epochs. The primort10,13,14,12 The conclusion of Wang et dl11] has been
dial spectrum is predicted by inflation and depends on theontested by Copeland et &l5]: “We ... conclude that
evolution of the long wavelength perturbations during infla-any theoretical errors from the use of the slow-roll equations
tion and reheating. It can be predicted from a given model ofire likely to be subdominant.” We show in this work that
inflation. this claim is not correct unless the slow-roll parameters are

extremely small. Typically, we find that the slow-roll param-

eters must be less than 0.01 in order for the next-to-leading
*Email address: martin@edelweiss.obspm.fr order to reach the level of precision of MAP or Planck. This
"Email address: dschwarz@hep.itp.tuwien.ac.at means that there are models where the slow-roll error is
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dominant and the slow-roll approximation is valid. We find the background quantity( ») defined byy=—H/H2, where

in agreement with the analysis [d1] that a slow-roll ap-  an overdot means differentiation with respect to cosmic time
proximation that goes beyond the next-to-leading order cans g4 i the Hubble ratet{=a/a. Using conformal time we
not exist. All higher order corrections are thus meaningless '

In the derivati  thi it | L th ¢ fmay write y=1—"H'/H?, whereH=a'/a, and a prime de-
n the derivation ot this result we Close a gap In th€ proot ol a4 gitferentiation with respect to the conformal time.

the next-to-leading order equations. For some reason this gap We assume that inflation is driven by a single scalar field.

was not noticed pefore in the I|t_erature. For this PUrpOSE W&\ the perturbations we introduce gauge-invariant variables
use and generalize a new family of exact solutions, whlcrh?& which reduce the equations of motion, in the small

wa_f_hrecently fo:;lr;g by Starqbl?sIEyG]. {ifv th ¢ th scale limit, to equations of harmonic oscillatpt8—-21,8. In
€ Scope of this paper 1S 1o quan ify the error rom e e tensor sectofwhich is gauge invariantwe define the
slow-roll approximation. We compute the scalar multipole

. : . quantity ut for each mode k according to h;
moments and the rati@= C;/C3 for power-law inflation for ~ Z " J
= a)Q;i(k), whereQ;; (k) are the(transverse and trace-
which the exact result is known. Then, we calculate the sam (kr/2)Q;i(K) Qij (K) &

fesy eigentensors of the Laplace operator on the spacelike
guantities for the same model but in the context of the slowsx 9 eig P P P

I S Th . £ th | sections anck? is the corresponding eigenvalue. Gravita-
roll approximation. The comparison of the two results pro-j,na| waves do not couple to scalar fields. Thus the equation
vides an estimate of the error made by using the slow-rol

approximation. We do not convolute this error with the un- f motion is given by 18]
certainties in the transfer functions. For the sake of clarity

and simplicity we only make use of the transfer functions in ur+
the long wavelength limit. This approximation only mildly

affects the estimates of the error in the multipole MOMeNtSyp. <ealar sector is gauge dependent and the scalar pertur-

;I'hlen,dwe coyp?retr':he SIOV\.HO” errors gt 'e?‘d'”g andlnexi[bations of the metric are coupled to the perturbations of the
0-léading orderto the cosmic variance. binning several Muley o oo tangor describing the matter. Fluctuations in the stress
tipoles together allows us to reduce the cosmic variance, b

) Lf&nsor involve perturbations in the energy dens&ty,, and
e T 1 SO0l he four-veooty, o~ (~ d1a./). Wi descrbe per
) y y turbations in the density contrast by the gauge invariant
values of the slow-roll parameters<(L0" <). We propose to

reduce the slow-roll error by optimizing the pivot scélee quantity 6= p/p +(p'/p)(B—E'). Perturbations in the ve-

scale at which the slow-roll parameters are fixefthe spec- locity can be written aw;=dw-+w;. Since we are inter-
| b L 1€ SPEC~  asted in the scalar sector, only the first term has to be taken
trum. However, this method is not sufficient to hide entirely

the slow-roll error in the cosmic variance into account. We choose to work with the gauge invariant

This article is organized as follows: iﬁ the next section quantityv=w+E’. Scalar perturbations of the geometry can
gan L .~ 'be characterized by the two gauge invariant Bardeen poten-

the theory of cosmological perturbations and the caIcuIauon%als Q=+ (1/a)[(B—E')a]’ andWQ=y—H(B—E')

of the CMBR anisotropies are reviewed. Then, the IOV.V' [17], whereQ(k) is a scalar harmonic. During inflation, the

multlpo(le moml)entsdare computedI exfactlyI for p(l)lwe;I-IaW IN-Universe is dominated by the scalar field=oo(7)

flation (Sec. 1l and approximately for slow-roll inflation . ) X .

(Sec. IV). Comparison of the two results allows us to test the;y(P'[lrgg)géuzlgcitrl:\?;r?;]:tIz:giti;ala—r f'ef a}r(eBchgt?ct:ai:lzed

P=@17T o™ .

precision of the CMBR multipoles obtained from the slow- 7 =" . r .

roll approximation in the last section. The slow-roll errors this simple case, the time EVOIUU_O” of qucFuatlons can b_e

are shown to be observationally significant by comparingreduced to the study of th/e equation of motion for the vari-

them with the cosmic variance. We set%=1 throughout ~aPIe #s=— @a[§¢+(¢O{H) ¢1, where k=8nG. Its

the paper. equation of motion is very similar to that of the gravitational
waves[19,20:

n

k? pr=0. @)

a

Il. FROM QUANTUM FLUCTUATIONS TO CMBR &
ANISOTROPIES Mg+[k2—(a Y)

(avy)

The integration of Eqg2) and(3) leads to the primordial
spectrum of the fluctuations. For the initial conditions we
2_ .2 _ 2 i assume that the scalar and tensor perturbations were in the
ds*=a(m){~(1+24)dn"+2(sB)ax'dy guantum vacuum state when the scale of interest was well
+[(1—24) 8 +20;0;E+ h;; ]dx'dx}. (1)  within the Hubble radius (kf,<c/H) during the early
stages of inflation. Therefore all fluctuation variables are
In this equation, the functiong, B, ¢ and E represent the quantum operators during inflation. After inflation, the Uni-
scalar sector whereas the tendgy, satisfying h;'=h;;"’ verse is filled with baryons, photons, neutrinos dodld)
=0, represents the gravitational waves. There are no vectatark matter. For that epoch, the perturbed Einstein equations
perturbations because a single scalar field cannot seed rotaannot be reduced to the simple form of E(3.and(3) and
tional perturbations. The conformal timgis related to the need to be integrated numerically. This leads to the transfer
cosmic timet by dt=a(#)d». It is convenient to introduce functions.

ms=0. €)

The line element for the spatially flat Friedmann-
Lemaitre-Robertson-Walker background plus perturbations
can be written a$8]
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The cosmological perturbations induce anisotropies in the . .
temperature of the CMBR, which have been detected by the (O0[®(7,x)®(7,x+ r)|0>5f ke < Pa(7.k).
Cosmic Background ExplordlCOBE) [22] first. This is the 0 ®)
Sachs-Wolfe effecf23]. Since it does not depend on the
photo_n frequency, the blackbody shape_: of the photon_ Spe%imilarly, the power spectrum of gravitational waves is de-
trum is conserved from the last scattering surface to its Obfined as
servation today24]. The measured anisotropies in the pho-
ton intensity translate into anisotropies in the temperature of A A =dk sinkr
the blackbody. <0|h”(,,,x)hu(,,,x+r)|o>EJ dk

For the temperature fluctuations we introduce the abbre- o kkr
viation A(e)=(8T/T)(e), wheree characterizes the direc- ©
tion of the beam on the celestial sphere. The contributions
the scalar and tensor perturbations are given by

w% sinkr 3

K3Ph(7,K).

0,& priori, the primordial power spectra are time dependent
quantities. However, for the multipoles betwden2 andl

1 =2000, we are interested in scales which are well beyond
N . 9 —0d . . . . . .
As(e)zzfsy"'q’—e'ﬂil)*‘f dyp—(®+W¥), (4 the horizon at the end of inflation. In a first approximation

nss 07 for those scales the power spectra do not evolve in time
during inflation and they can be written as
R 1 (7 —0
AT(e)=— Ee'e‘f dy—=h;;. (5) . . k\ns—1

nss 0N k Pq,(k):AIS(kO) k—o) s (10)
The first three terms of the scalar contribution are evaluated
on the last scattering surface, i.e.zat;. They represent the 3 i k\"T
intrinsic fluctuations, the Sachs-Wolfe effect and the Doppler k*P(k) =Az(ko) k_o ' (12)

effect. Terms that depend on the observers position or veloc-

ity have been omitted because they are not observable @jhere the spectral indices;, ny and the amplitudeA‘S, AiT
describe the QMBR dipole, respectively. The four_th term isgre independent quantities akglis an arbitrarily fixed scale
the so-called integrated Sachs-Wolfe effect. The integratiogyich is introduced to link various notations in the literature.
is performed along the photon trajectory, which is param-tpe spectral indices can also be determined frogr 1
etrized by the conformal time hergg denotes the conformal _ In(Py)/d Ink andny=d In(k®P,)/d Ink.

time at observation today, is the perturbed density con-  ap accurate calculation of the multipole moments re-
trast of the photons angl the perturbed velocity of the pho- quires numerical computations. However, for snhathe ap-

ton fluid. For large angular scales only the first two terms arg)oximate equatior(6) can be used. For density perturba-
important. For isentropi¢sometimes called adiabatiper-  tjons[26] this leads to

turbations the scalar part reduces to

o Am =k ks
CI:?J ?JI(krlss)-RD(krlss"O)AS Ko , (12

S(&)= (&) + (.-
AS(@)=3B(&)+(---). (6) 0

Usually, the CMBR anisotropies are expressed through th&/herej, is the spherical Bessel function of ordeand r f}

multipole momentsC,. The C, are the coefficients in an =a(70)"iss=ao(70~ 71sd ~Ao70~2Ry is the comoving

expansion over Legendre po'ynomia|s of the CMBR tem_line'of‘sight distance to the |aSt Scattering Surface.
perature two-point correlation: Te(kriss—0) is approximately the transfer function for

superhorizon modes. It is independent and therefore only
R R 1 the amplitude is modified but not the spectral index. The
<AS’T(91)AS'T(92)>=E > (21+1)CPPy(cosd), (7)  domain of validity of the latter approximation can be evalu-
! ated as follows. In the integrdll2) the main contribution

s - comes from the modes aroutkd s~ +1. We use that to
where cosi=e,-&,. The angular brackety denote the aver- estimate for which multipole moments tHeindependent

aging over many ensembles. Averages over many ensemblﬁ%nsfer function is good enough. The mode whose wave-
cannot be replaced by spatial averages on the celestigl Sph%&ﬁgth is equal to the Hubble radius today, i.e. such that
due to the lack of ergodicity of the stochastic procA$8);  27a,/k=1,(7,), haskz,=4m. Therefore the constant su-
see Ref[25]. If, nevertheless, we do this, the error made canperhorizon transfer function is a reasonably good approxima-
be quantified by means of the cosmic variance. tion if (1+1)/r,cc<4/ 70, that is to say<10. This is a very
The computation of the multipoles for a given model re-gptimistic estimate since it does not take into account the

and of the transfer function. The power spectrum of thegq, (12) rests.

Bardeen potential is dAefined in terms of the two-point cor- \ith the above approximations the ldwmultipoles can
relator for the operato® ( 7,X): be calculated exactlj26]. The result reads

103520-3
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CS_ 32 I'[(3—ng)/2]T'[1+(ng—1)/2] Ko, S)l—nsA_S 12F e
: I'[(4—ng)/2]T[1+2—(ng—1)/2] S 9’ - oz ]
(13 . 10¢ :
| 8 8t . ]
whereAs=AsT 4 (krss—0). For gravitational waves we ob- . 1 L°
tain the following expressiof27]: o 6f . -
S 4f K ]
r 9w _ X .
C|=T(I—1)I(I+l)(l+2)(k0r|ss) nT oL e .
C.... 1%
g Ot : s s .
X J i) PAY™, (14 ¢ S
oy Multipole 1
where the function(y), y=krs, is defined by FIG. 1. Error due to the long wavelength approximation in the
transfer function for the scalar multipoles with a flat primordial
B Yjo(X)j(y—X) spectrum. The exact multipoles are calculated by means afvbe
h(y)= X(y—x)? dx. (19 FAST code and are normalized to the quadrupole.

The superhorizon transfer function for gravitational wavesdy the banq powers &, /To)?=I(1+1)C,/(2m), where
does not appear explicitly because it is equal to 1. As do0~2.73 K is the average temperature of the CMBR. For a
consequence we can writd=A;. The computation o€ flat (ng=1) primordial spectrum,CMBFAST gives 4T,

is more complicated than the calculation@f. The integral ~ ~27-5#K OF Qmns.ps=17.8 uK, where the quadrupole rms

I, can be calculated exactly in terms of special functions; sefluctuation is given byQims.ps=ToV(5/4m)C,. We normal-

Ref.[27]. However, the second integration ovecannot be  12€ the amplitudeAs in Eq. (12) is to the latter value of the
performed analytically and we must rely on numerical inte-duadrupole. In Fig. 1 we plot the differences of both calcu-

gration. lations, divided by thecMBFAST results, and express this
Below we will be interested in the ratio of tensor to scalarnu”_mher afbthe err(t)r mt'%. ;I'Ee er;_orﬁlr;)thﬁ qua(zrr]urtigth_[?
quadrupole contributiong28—31: vanishes “by construction.” Equatio shows thats T,
=ToVAd3(Kol 159t "9"2=Q,ns.ps/12/5, Whereas thems-
crI FAST 6T, is | dependent, despite both band powers being
E—g. (16)  calculated from the same primordial spectrum. The differ-
C3 ence between both band powers is exclusively due to the use

of different transfer functions and to the neglect of the Dop-

Expressed in terms of the tensor spectral index this is thgjer and integrated Sachs-Wolfe effects. In this way, we can
so-called consistency equation of inflation. isolate and estimate the error coming from the long wave-

We have seen that the calculation@f requires knowl-  |ength approximation, given that the spectrum is normalized
edge of the transfer function and of the primordial spectrum¢g COBE.
In principle, Te(krisg is known accurately as the result of A similar study has been done in R¢B4]. The errors
numerical calculations; e.g. see RE¥2]. When we calculate  given in that article differ from those obtained here because a
the multipoles using Eq12) or (14) we make two approxi-  different normalization is used. In RdB4], the spectrum is
mations: a long wavelength approximation for the transfemormalized to the multipole mome@Y,, instead of the quad-
function and we neglect the contribution of radiati(pure rupo|e_ As a consequence, in that case the err@l'uqvan-
matter assumptiorto the expansion of the Universe at pho- jshes “by construction.”
ton decoupling. The long wavelength approximation results  Figure 1 confirms the importance of the transfer function
in neglecting other contributions besides E®) in the  and the analytical estimates made at the beginning of this
Sachs-Wolfe effect for scalars and in considering that theyrticle. The error is below 1% only for< 4. ForC,q, which
tensor and scalar superhorizon transfer functions are cofis often used to normalize the spectrum, the effect of the
stant. The pure matter assumption results in a small error iBubIeading terms ik is already 5%. The error from the pure
the numerical value of 4(kriss—0). For small values of  matter assumption has not been fully accounted for by this
these errors are small. method, because we do not test the error in the numerical

In order to test this claim quantitatively and to quantify value OfT(I)(krISSHO) when we normalize the quadrupo|e to
the contribution to the total error coming from the transferthe COBE result. Since this error is a pure overall numerical
function (see Fig. 1, we compute the scalar multipole mo- factor, it does not affect our conclusions.
ments for lowl numerically withcmBFAST [33] for the fol-
lowing values of the cosmological parametersi,
=50 km/s/Mpc{g=1,Qcpu=0.9505=0.05. We compare
them to the multipole moments given by E@.2) with a In this section, we turn to the study of power-law infla-
constant transfer function. The cod®BFAST automatically  tion. This model is of particular importance because it allows
normalizes to the COBE resyl22]. The result is expressed us to calculate all quantities of interest exactly. Moreover,

Ill. PREDICTIONS OF POWER-LAW INFLATION
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this exact result is at the basis of the slow-roll approxima- 25
tion. o Power-law inflation
Power-law inflation is given by the following solution for 420
the scale factor and the scalar field: L2
<l ¥ 15
-]
Mp [y X
a(m)=lo|n|*"7, ¢=¢i+7\£(1+3)|n|7}|, a7 % 10
ul v
ek 5
wheremyp, is the Planck mass ang is the initial value of the “L
scalar field at conformal timeyp;. In this model inflation
occurs if B<—2 (we do not consider the case where2 0.05 0.1 0.15 0.2
<B<-—1 which cannot be realized with a single scalar Y

field). The quantityl, has the dimension of a length and its
value will roughly determine the amplitude of the CMBR
fluctuations today. In the particular case of power-law infla-
tion, the functiony(#) is a constant equal to 28)/(1
+B). For —»<B<—2, y goes from 1 to 0O, this last value 9 K \ns1
corresponding to the de Sitter spacetime. The scale factor As(ko):|2|H2 _f(ﬁ)|1+ﬂ|2(ﬁ+l)<_0) )
and scalar field of Eqs(17) are solutions of the Einstein PI* 25y a,H,
equations for the scalar field potential: (22

FIG. 2. The amplitudes of scalar and tensor perturbations. In the
de Sitter limity— 0 the scalar amplitude diverges. For larger values
of v the perturbations are dominated by the tensor mode.

The amplitudeAg is displayed as a function of in Fig. 2. It

, (18)  diverges in the de Sitter limity—0. COBE measured the
spectral index to bag=1.2+0.3 [22]. The 1(2) value
ns=0.9(0.6) corresponds tp~0.048(0.167).

4
V(g) =viexp[m—ﬁﬁ(¢»— ¢
Pl

whereV,; is the value of the potential af; .
A. Density perturbations B. Gravitational waves
The calculation of the spectrum for gravitational waves is
performed along the same lines as above. The effective po-

tential is the same as for density perturbations, Us-

The effective potential for density perturbationd,g
=(a\y)"/(a\/y) [see Eq(3)] reads

(B+1)8 =a"/a=B(1+ B)/ . Since the superhorizon transfer func-
()= —F (199  tion is equal to 1At andny can be written as

This simple form of the potential allows an exact integration _ 151 16 ny — __ 2%y
of Eq.(3)F.) The solution ig expressed in terms of Be_ssgl func- Arko) =15 ™ B)k", nr=2p+4= 1-vy @3
tions. This provides the initial power spectrum, A and

ns. In order to evolve the superhorizon spectrum, we carf-or power-law inflation, the relatiomg=n;+1 holds. In
rely on the conservation lay35,21] for the quantity:¢  terms ofH, the amplitude is given by

=(H @'+ d)/y+P. This gives the szuperhozrizon traznsfer 16 o \m
function: Te(kriss—0)=[9(28+3)°]/[ 25y (1+ 1. 122 =" 2(8+1) 0

Then the ampli%)u(delséf thg scal(arﬁquaérupole aﬁld trllge) spectral Arlko) =laH, ZH(B)1+ Al (a*H*> - (29
index take the form

1o

Figure 2 shows the scalar and tensor amplitu(s and
2 1-3y (24), respectively. Fory>9/400=0.0225 the tensor mode

I 9 _
'A\s(ko)=—Pl—f(B)k3S ', ng=2p+5= = dominates.
(20

2
15 25my
C. Multipole moments

where The multipole moments predicted by power-law inflation
can easily be computed from Eq4.3) and (14). The qua-
drupoles are displayed in Fig. 3. Compared to the amplitudes
the importance of the tensor mode is slightly suppressed; it
becomes the dominant mode gt 0.07, which corresponds

which is unity for 3= —2. As expected, the amplitude of 0 ns=0.85.

2
; (21

1

Ir—B-1/2

2ﬁ+l

scalar perturbations is roughly determined by the rititl . We calculate the rati® for power-law inflation:

Very often the final spectrum is expressed in terms of the n

Hubble rate at some time, , insteadizoif the scall. We R=13.86yF[n(y)]= —6.93—— F(ny), (25)
haveH, =H(75,)=—[(1+B)/lo]| 7| 2 #. Therefore the 1— nr

amplitude reads 2
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Power-law inflation

X (T]SSG*H*)nS_l

ST
——2
(tp1Ha)?

0.05 0.1

v

0.15 0.2

FIG. 3. The quadrupole moments of scalar and tensor perturba-

tions.

where the functiorf(n) is given by:

F(ny)=496.1
3—n n
r2 =—Tir|a-
2 2) (=
x 21707 - fdkk"T—1||2(k)|2.
r(z—nT)r(2+7T °

(26)

In this expression we have used the equatgFnr+1,
valid for power-law inflation only, to express everything in
terms ofny. We havefgdkk |1,(k)|2=2.139x 10" 4 such
that F(ny=0)=1. Notice that the factorskyriss and
ko/(a,H,) cancel inR becauseng=n;+1. R versusy is
plotted in Fig. 4. This plot demonstrates that within the 2

error bars of COBE, there is a large parameter space where
the tensor mode dominates the scalar modes; see e.g. Refs.

[29,31] for a more detailed discussion.

IV. PREDICTIONS OF SLOW-ROLL INFLATION

For a general model of inflation exact solutions are not

available. Generically, the potentidlss andU+ are different

but nevertheless their shape is similar. A sketch of the ge

neric form ofUgandU+ is displayed in Fig. 5. The details of
the realistic reheating transition are not taken into account i
this simple figure. During the radiation dominated era th

3

Power-law inflation
2.5

2
R 15
1

0.5

0.05 0.1

v

0.15 0.2

FIG. 4. The tensor to scalar ratio of the quadrupole moments.

n,
e
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Irizflot'\oiﬂ Rodiation_:

Potential U

oo~ 0 O

-5 -4 -3 -2 =1 0 1
Time

FIG. 5. Sketch of the effective potential for density perturba-
tions and/or gravitational waves during inflation and radiation.

potential goes to zero, sine@ex 7.

For a given modé, the inflationary epoch can be divided
into three stages; see Fig. 5. In region | the mé&ds sub-
horizon. In that case the effective potential is small com-
pared tok?. In the limit k/(aH)— o for fixed k, the vacuum
fluctuations are given b{see Ref[21])

e ik(r=m)

NTER

respectively. In region Il the mode is superhorizon. In the
limit k/(aH)—0 at fixedk, the potential term is dominant,
and the “exact” solutions read

ps(m)=Csavy)(n)

pst(m)—Famlp (27)

X 1_k2 71—_
f (@%y)(n)
N~ o~ —
><J' (a®y)(n) dndn|, (28)
ur(n)=Cra(n). (29

Usually, density perturbations are described in terms of the
Bardeen potentiab instead of in terms of.5. The orderk?

term is necessary to obtain the leading order expression for
the Bardeen potential, sink=[Hy/(2k?) [ us/(avy)]';

see Refs[21,20. Thus, in region lll, the superhorizon Bard-
een potential is given by

CsH n —
D(n)=—> f a?ydy. (30)

2a
Our aim is to calculate the spectra at the end of inflation, i.e.
in region lll. The time dependence of the solutions in this
region is known and the difficulty lies in the calculation of
the constant€g and C;. Since the solutions are uniquely
determined in region I, this amounts to joining the super- and
subhorizon solutions. Therefore we need to know the behav-
ior of the perturbations in region Il.

A popular approach is the slow-roll approximation

[10,17. The idea is that there was an epoch during inflation
where the scalar field was rolling down its potenti&le)
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very slowly. Under certain conditionésee below this is e and § must be seen as constants in the slow-roll approxi-
close to the behavior during power-law inflation and the ex-mation, the equation of motiof8) is of the same type as in
act solutions from power-law inflation are used in region Il power-law inflation. The solutions are given by Bessel func-
to interpolate between the sub- and superhorizon solutionstions:

Slow roll is controlled by the thre€leading slow-roll

parametergsee e.g. Refl12]) defined by MS:(ky])llz[BlJV(Ssr)(kn)-F BZJ,V(Ssr)(kn)], (39
22 -1 :
653% %JFV =— iz (31)  Wwhose order is given by
. . (s) 3
e € 2 123 =—§—26+ 0. (40)
=- He T + €, (32
A comment is in order here: The potentid} depends on the
e— 3 scale factor and its derivatives only. One could think, look-

&= (33 ing at Eq.(37), thatUg also depends oa only. This is not

the case. The reason is tHat contains terms like:/ e (for
We see in particular thag( ) = € in region Il. The equations example which are linear ins; see Eqs(34). First one must

of motion for e and § can be written as calculate all derivatives, replace them with their expression
) ) in terms ofe and 8, and only then consider that the slow-roll
€ é parameters are constant.
H™ 2e(e—9), H- 2e(e—6)— ¢ (34) We would also like to stress that keeping higher orders in

e does not make sense. If terms of quadratic order in the
The slow-roll conditions are satisfied & and § are much  slow-roll parameters are kept, the solution for density pertur-
smaller than 1 and iE=O(e?, 6% €8). From Eqgs.(34), itis  bations in region Il can no longer be expressed in terms of
clear that this amounts to consideriagand & as constants. Bessel functions. This is because the slow-roll parameters
This property is crucial for the calculation of the perturba-can no longer be considered as constant in time; see Egs.
tions. (34). Therefore any considerations at this order in the frame-
For power-law inflation the slow-roll parameters satisfy work of the slow-roll approximation are meaningless. The
same conclusion has been obtained by Wang, Mukhanov,
€=0<1, £=0. (39  and Steinhardf11].
. o Let us now calculate the constat. The first step is to
Thereforg thg slow-roll conditions are S.atISerdEFEI, that  match the solutions of regions | and Il. This procedure
is to say ifB is c_Iosg tof2 (scale mv_arlanc)e In fact, the  fixes B, and B,. Using Egs.(27) and (28), one obtains
slow-roll approximation is an expansion around power—IaWBllez —eiw(ssr) and B, =27l pexti V(Ssr)('n'IZ)—i(ﬂ'M)

inflation with 0< —(B8+2)<<1. To illustrate this point, let us - .
consider the exact(gqua)tion P +ik7/(Vksinm$Y). Note thatB; and B, do not depend

on the time at which the matching between regions | and Il is
€ performed. The joining between regions Il and Ill remains to
da—. (36 be performed at some timgg, which will be fixed below.

Expanding everything up to next-to-leading order in the

. . . slow-roll parameters, one obtains
If we assume that is a constant, the previous equation re-

duces toaH~ —(1+€)/ 5. This is equivalent to a scale fac-

tor which behaves like P

I5 87
|cs|2:|—2 —[1-2(C+Ink)(2¢-9)
a(m)=loln|~*7¢ (37) 0
. . . . +2(5-€)In|nd k3, (41)

Interestingly enough, the effective power index at leading
order depends os only. With C= yg+In 2—2~—0.7296, ye~0.5772 being the Euler
constant. The Bardeen potential given in Eg0) is now
completely specified. Note that(z) in Eq. (30) is a time

The effective potential of density perturbations can be caldependent function, evaluated in region I, whereas Eq.
culated in terms of the slow-roll parameters exactly. The(41) is a constant parameter, which is fixed &y y( 7).
result is For scalar perturbations it is useful to evaluate the quan-

tity

A. Density perturbations

Ug(p)=a’H?[2— e+ (e—8)(3— 6)+ £]. (39

In the slow-roll approximatiora?H?~ 5~ 2(1+2¢) and the [=— ﬁ' (42)
effective potential reduces tdg~(2+6e—36) 5 2. Since 2a\e
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which is aconstantfor the dominant mode at superhorizon solutions is characterized by a flat spectrumg= 1. Equation
scaleq35,8,21. The quantity—{ is denotedr in Ref.[12].  (45) is a generalization of Starobinsky’s original angét@].
Instead of expressing the spectrum in terms of the ratiorhe spectrum may be calculated exactly to read

Ip/lg, it is usual to write it in terms of the Hubble rate at

some timey, . Of course, there is nothing deep in this |gl
choice and one could have kept working wigh! o. A priori, k*P (k)= —,52%T?
the value ofy, is arbitrary and could either be in region I, Il A
or lll. However, in order to make contact with the literature,
we will assume thaty, is in region Il. Then, in the slow-roll
approximation, the value dfl(#,) can be written as

k—2(a=1), (46)

1
C!+§

ko

The casar=1 givesk®P (k) =13/(7A?) and coincides with
the result of Ref[16].
We now need to calculate the slow-roll spectrum for this
1 new class of solutions. A comparison with Ed4) will al-
He=H(7,)=[1+ e(1+1In|7,]. (43 low us to fix the rations/7, . Let us first determine the
0 slow-roll parameters. In the slow-roll approximation we find

In Ref. [12], 5, is the time which satisfies the relation

a(n,)H(n,)=k for each mode. In other words, we have (a\/§)’ _ £(1+26_ 5) 47)
7. = 14 (K). In this article, we adopt another convention and a\/; i '

choosen, such that it is not a function &€ Then, a straight-

forward calculation gives whereas insertion of the ansa#b) into this equation gives

(a\y)'/(a\y)=—aln. Therefore, one has &=(a—1)

12H?2 . e - ;
3 P, B + 6 and especially 2= 6 if a=1. It is interesting to note
k=P (k) TE [1 2e=2[CHInk|7,[](2¢=0) that we no longer have the relatiar= & typical of power-
law inflation. Let us also emphasize that the two-parameter
+2(5—€)ln s _ (44) family is the onI_y family of exact soIL_Jtions which permits_ a
% slow-roll approximation. Equatiof¥7) is a necessary condi-

tion for the validity of the slow-roll approximation. This

The matching timeps remains to be fixed by a physical equation can be viewed as a first-order differential equation
argument. To our knowledge, this issue has been overlookeg the quantitya/y. Integration of this equation leads to the
in the literature so far. All works on the slow-roll approxi- ansatz given in Eqi45). Therefore our determination of the

ns! 7y =1., without further justificationA priori, an equally 5 optained fromA=a\/y| 7| and is expressed in terms of
good choice would be, for example, when the madgéd H, with the help of Eq(36). This givesAzzeH;2[1+26

; ol >
crosses the effective potential, i.e. whenH2e)/7, 1 2(2¢— 8)in|z,|]. Thus we obtain the slow roll spectrum
=Ug(7g). It is easy to show that this boils down to the fom Eq. (46):

choice 75/ 7, = /2. It is important to realize that different

choices for the ratiops/ 7, lead to different observational |§>|H§
predictions. Although a change ins would not change the k3P, (k)= o [172e=2(C+ln k| 7,])(2e=)].
spectral index, it would change the amplitude of scalar per- (48)

turbations and the ratio of tensor to scalar contributiBns
The missing physical argument comes from a new familya comparison with Eq(44) shows that
of exact solutions which has a slow-roll regime in a certain
limit. One exact solution is of course power-law inflation, Ns= 1y - (49)
but it does not help for the purpose of fixings/ 7, , be-
cause the spectrum does not dependaiin, for d=e. Note that we could have derived the slow-roll spectrung of

These solutions are found by the ansatz from the exact spectrun6) right from the beginning by
approximating it in the slow-roll regime. However, we have
ayy= A 45) chosen to take the Bessel-function—horizon crossing ap-
Y [7|*’ proach, because it is this approach which has been discussed

in the literature. Let us note that the transfer functionfas
whereA and « are two free parameters. This defines a two-unity. This means that the spectrum pfduring the matter
parameters family of exact solutions. Note that this family isdominated era is identical to the spectrum at the end of in-
not equivalent to power-law inflation. The power-law modelflation (region Il).
[A=lgVy(B), a=—1-p8] is a subclass of this two- We are mostly interested in the spectrum of the metric
parameter family. Of course, this is becaage)) ||~ * is  potential® since this quantity appears in the calculations of
just a solution of Eq(45), viewed as a second order differ- the multipole moments; see E@L2). If we assume that the
ential equation for the scale factor, but not the general soludniverse is matter dominated at the surface of last scattering,
tion. The limit of A to 0 and« close to 1 gives a slow-roll then the conservation law provides us with the relation
inflation model. The particular cage=1 was already found =(5/3)®. Then, the spectrum of the Bardeen potential fol-
recently by Starobinsky16]. This one parameter family of lows from Eq.(48) as
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(sN_1_ 25
Ns™= 1-4e+29, (50 Slow-roll inflation
20
913H2
A= ——*11-2¢ 15
ST —a:?i)z
~2(C+Inko|m,[)(2e=)]. (51 10
SV
These expressions are consistent Wit3) and(5.1) of [12]. \\\“_

The amplitude of scalar perturbations blows up when the
slow-roll approximation becomes accurate, i.e. wlaegpnes
to zero.

To end this section, let us make a last comment. Itis clear FIG. 6. The scalar and tensor amplitudes from the slow-roll
from the previous considerations that we need the slow-rolapproximation fore= . The scalar amplitude diverges in the de
approximation in region Il only. In particular, this scheme of Sitter limit e—0. The leading order is drawn by solid lines, the
approximation is not needed in region Il since the “exact” next-to-leading order by dashed lines. We havekgeg, |=1.
solution is known. However, one may wish to use it in region
[l also. Then, in this region, the Bardeen potential is given n{s=—2¢, (56)
by ®~(C42)e(1—-3e+25). The long-wavelength transfer
function, which allows the passing from the end of inflation

0.05 0.1 0.15 0.2

to the matter dominated epoch, can be expressedas AEI=12H? E[l—Z(CﬂL 1+Inko| 7, D €].
~[9/(25%)](1+6€e—46). Using the two previous formu- ™
las, one can show that one recovers the spectrum given in (57)

Egs.(50) and(51). However, in principle, this method is not _ o _
appropriate since we use an approximated solution wheredde see that there eXISFS a crucial difference between den.S|ty
an exact one is available. perturbations and gravitational waves. In the case of gravita-

tional waves, the ambiguity related to the choice of the
matching time is not present.
The amplitudes of scalar and tensor modes versus the
For gravitational waves, the same lines of reasoning caslow-roll parametee are displayed in Fig. 6 fof= e and in
be applied. In region II, the effective potential can be writtenFig. 7 for 6=2¢ at leading and next-to-leading order. The

B. Gravitational waves

as first case is an approximation to the exact power-law result;
_— the cased=2¢ is the slow-roll approximation to Starobin-
Ur(n)=a"H%(2—e), (52)  sky’s exact solution.
and gives in the slow-roll limit C. Multipole moments
Let us first start with the calculation 6. We write the
2+3e scalar multipoles as
Ur(y)~—. (53) P
Y < As
& Egl(ns)§7 (58)

Therefore the matching of sub- and superhorizon solutions is
again reduced to power-law inflation. The solutionwof is
similar to the one given in Eq(39), where the effective
index of the Bessel function is now given by

which defines the functiog,(ng); cf. Eq.(13). To compute
ClS at the next-to-leading order in the slow-roll parameters

25
(sr) 3 Slow-roll inflation
vy = 57 €. (54 20
) 15
This solution can be used to find the const@st Then, the Tt
power spectrum of gravitational waves reads 10
5 ——————
. 12,16
k®Pp(k)= = —(1-2Ce—2elnk), (55 — _—
12 0.05 0.1 0.15 02
€
from which we deduce that FIG. 7. The same as Fig. 6, but fée=2e.
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we need to expand,(ng) to first order arounchg=1, since
ng itself is a linear function ok and §:

g1(ng)=g;(ns=1) +(ng— 1) (nS 1) (59
2
ST T (sm DB =Inkorisg) ], (60
where
[+1/2
—In2+¥()+ ——F= (61)

[(1+1)

and ¥(x)=dInI'(x)/dx. For the quadrupole we havie,
~1.1463 and for largd, D;=1+In(1/2)+O(1/), due to

P (1)=Inl+O(1N). Using Egs.(50) and (51), we find the
scalar multipoles at next-to-leading order as
218HZ 1
s “PIMx N _ _
=25 11+ 1) 1-2e-2(D;+C)(2¢— )

+2(2e— 5)In| J (62

In this equation the Doppler effect, the integrated Sachs®
Wolfe effect, and the evolution of the transfer function are
neglected. In the next section we will argue that this does not

prevent the estimation of the slow-roll error.
We now calculatéR in the slow-roll regime at the leading

and next-to-leading order. The scalar quadrupole follows

from Eq. (62) and reads

| 2142

H
cs= o5 {1 2e—2(D,+C)(2e— &) +2(2e— 8)in

| *I
(63)
whereD,+ C~0.4167.

Let us now computé:; Using Egs.(14) and (57), we
find, at next-to-leading order,

PHYSICAL REVIEW D 62 103520

Slow-roll inflation
0.8
o 06
_Go
U H.)? \
0.4
N\
0.2 N
p— \
— — o
0.05 0.1 0.15 0.2

FIG. 8. The scalar and tensor quadrupole moments from the
slow-roll approximation fore= 6. The leading order is drawn by
solid lines, the next-to-leading order by dashed lines. We have set

rIss:|77>\—|-

At leading order we recover the so-callednsistency condi-
tion for slow-roll inflation[12], which reads
R=-6.9%. (66)
This equation cannot be generalized by the use of &).to
a next-to-leading order equation, because it would involve
the knowledge of the ordeP(€?) terms inny. As discussed
above, terms of that order are not meaningful in the slow-roll
approximation.

In Fig. 9, the ratioR is displayed at leading and next-to-
leading order for the two cases= § and 2e= 6.

V. DISCUSSION OF ERRORS

The aim of this section is to quantify the magnitude of the
error introduced by the slow-roll approximation. For this
purpose, we compare the slow-roll predictions with the exact
results of power-law inflation. We explicitly test the follow-
ing quantitiesQ e {ng— 1,nT,AS,AT,C,S,CT,R}, i.e. quanti-
ties related to the power spectra and the quadrupole mo-
ments.

We denote byQ the exact result of power-law inflation
and byQ©@, QW the slow-roll results at leading and next-

T_ 2 Miss
CJ1=0.18482H2 [1 2|B+C+1-1 m) , (69 3 Stomroll nfiatin —
2.5 ~ -
where the number B is defined by B -7
= [5dkkHIn(k)I5(K)/fodkk 15(k)~1.2878 so thatB+C 2 Z .-
~0.5582. For higher tensor multipoles the numerical values R 1.5 //f/ g
of the constants ii64) are modified, but not the functional S
dependence on the slow-roll parameters. In Fig. 8 the scalar 1 z
and tensor quadrupoles at leading and next-to-leading orders 0.5
are displayed for the case= 6.
Taking into account the expressions f0} andC; given 505 o1 o5 o3

previously, we finally find the following expression f&in
the slow-roll regime:

Mss

R=13.86¢| 1+ 0.5504—0.8334—2(e— 9)In

|77*|

(65

€

FIG. 9. The tensor to scalar ratio at leading org@lid line) and
at next-to-leading order fob=e¢€ (long dashed lineand §=2¢
(short dashed line The leading order is independent&fWe have

setrs= | Nx | .
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to-leading orders, respectively. The error is estimated by cal- 30

culating ’s e(c?g Error in %
,_[Q"-0Q 2
el)= ‘T X 100%. (67) 20
15

Let us start with an estimate of the errors in the prediction of
the spectral indiceag andny. For the leading order slow- 10
roll approximation nf=ng—1=0 and thus the error is

eﬁ(;),f eﬁf?= 100%, except for de Sitter inflation. It is abso-

lutely compulsory to use the next-to-leading order result for
the spectral indices. We express the error as a function of
The best slow-roll approximation to a power-law model is
given bye= 5=y, and therefora{*=n$"— 1 for this case.

Thus from Egs.(20), (23), (50), and (56) the error in the FIG. 10. The error in the scalar quantities. The solid lines are
spectral indices from the slow-roll approximation is the quadrupole moments; the dashed lines are the amplitudes. The
thin lines are the leading order corrections; the thick lines are the

next-to-leading order corrections.

el ;=e{l)=yx100%. (68)

Let us now turn to the slow-roll errors in higher scalar

Thus the next-to-leading order slow-roll approximation Pr€-multipole moments. Although we cannot obtain the exact

dicts the spectral indices with an error less than 1%y if oquit for the high- multipole moments without making use
<0.01 or 0-9&”S,<1- . . . of a Boltzmann code, we can nevertheless estimate the errors
So far, except in some of the figures, we did not specifyiom the slow-roll approximation in this regime. As already
the pivot scale,. We now choose to fiko=a, H, ; i.e..Ko  discussed in the text around Fig. 1 computing the scalar mul-
is the mode that crosses the horizon at the tyge which is tipoles from Eq.(12) is a bad approximation for high De-
the time when we determine the values of the slow-roll paxite this fact, it is clear that for a given cosmological model
rameters, where we fix them once and forever. It is easy tgne transfer function is the same for a power-law model and
show that this amounts to taking, |=Kk, ~ in the argument jts slow-roll approximation. Thus the only difference be-
of the logarithm which shows up in the equations of thetween the power-law and slow-roll multipole moments can
previous section. Stillp, remains to be fixed, which can be arise from the convolution of this transfer function with dif-
done most conveniently by fixinkprss. In the following we  ferent initial spectra. We expect that this difference is small.
will show that this choice is of physical relevance, becausero put it differenﬂy, C|(Sr, t)—C|(sr, a) is |arge, whereas
the accuracy of the slow-roll approximation can be improvedc, (sr, t)— C,(pl, t)~C,(sr, a)- C,(pl, a), where t(a) de-
by a clever choice of the pivot scale. We will discuss twonotes the use of the trapproximateditransfer function and
cases. The usual convention is to chokgg,=1. This cor- g (pl) denotes the initial spectrum. Thus we use H4$),
responds tok§"™*=h/(6000 Mpc) today. Below we show (20), and(62) to obtain the errors for the scalar multipoles as
that this leads to huge errors form the slow-roll approxima-a function ofl, Eq. (67), which are displayed in Fig. 12. It
tion. shows that these errors are large and increase wihd
To improve the precision of the slow-roll approximation |ng—1|.
we suggest to minimize the error in the region of the first
acoustic peak, i.e. arount~=200. For this purpose we  3q
choose a pivot scale such thiajris~100e, which corre- o Error in %
sponds to a physical wave numbéf¥*=h/(22 Mpc) today. 25 ecr
Let us start by analyzing the errors for the pikgt 1/r . )
The errors in the amplitudes and quadrupoles for the case 20
of power-law inflation,e= &, are displayed in Figs. 10 and ~
11. From these two plots, we can draw three conclusions. 15 | ~
The first conclusion is that the error in the quadrupoles is ey
larger than the error in the amplitudes. This confirms the 10 —
results already obtained in R¢B6]. The second conclusion - o
is that it is not possible to obtain an error at the 1% level S . AT,
with the leading order, except for very small values of the - — _ - - -
slow-roll parameters. The third conclusion is that the accu- 0.05 0.1 0.15 0.2
racy of the next-to-leading order for the quadrupoles is better
than 1% if y<<0.07, which corresponds to 0.8%5. Since
the slow-roll approximation is more accurate for power-law  FIG. 11. The same as Fig. 10, but for the tensor amplitude and
model, it is reasonable to expect larger errors for more realquadrupole moment. For the amplitude the error is the same as for
istic models. the scalar sector, because 6.

7

’}’:6:5
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100
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20
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!

FIG. 12. The error from the next-to-leading order slow-roll ap-
proximation in the scalar multipoIeG|S versus| for various values
of the spectral indexg. The approximation is best close to todays

horizon since, in this figure, we have taképrc—1, the most
common choice.

The reason for the large errors in the multipole moment
is the large errors in the spectral indices. This can be unde

stood from the relations between the errors:

(0)

ey |an) [

S A 69)

100 |g,(ng) 100

(1) 1)

o _|e@ (), %

100 |g,(n9) 100

' (0) (1)
+g|(1)(ns—1)( +eﬁ)(1— Ce-1)
9/(n9) 100 100 '

(70)

where the prime denotes a derivative with respectdoThe

S
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FIG. 13. The same as Fig. 12, but withr ;c= 100e. This opti-
mizes the accuracy in the region of the first acoustic peak.

These large errors, displayed in Fig. 12, can be shifted to
different multipoles by a change of the pivot sckje There-
fore, one may hide part of the error from the slow-roll ap-
rQroximation in the cosmic variance. Inspection of EfR)
suggests that the error is minimized for a given multipole if
D,=In(kgrs9 - For largel

e | e
ko= 5 — or kg™~ Z1Ho, (73

Mss

where H, is todays Hubble rate. The position of the first
acoustic peak suggests to choosghimalero~200. This
givesky=1/22h~1 Mpc ~1/31 Mpc forh=0.71, the Hubble
Space Telescope key project final value. Figure 13 shows the
errors at the next-to-leading order for various values of the
scalar index with the new choice for the pivot scale. It can be
seen clearly that the errors are highly suppressed arbund
~200, as expected, but increase at lower and higher multi-

signs in front of the errors in the amplitude and in the specpoles. The tiny bump betwedr=200 andl~500 is due to

tral index are model dependent. Fét e the error in the

the fact that we plot the absolute value; in this region the

amplitude always has a positive sign; the error in the spectradrror changes its sign. The new choice of the pivot scale

index has a negative sign. For small valuesl afe may
expand
9i(ng)=9i(1)+9g/(1)(ns— 1)+ O[(ns—1)’] (71

in Egs. (69 and (70). Keeping only terms linear img— 1
and terms linear in the errors we find

e~ el + (D~ Inkgr 59 (1 ng)el)_,
| S S

(72

whereD, has been introduced in E¢1). The error in the

allows us to predict the multipoles in the range <2000
for ng=0.9 better than 10%, which was not possible with the
pivot scale chosen previously. Nevertheless, the precision is
not good enough to reach the 1% accuracy léthad error is
2.4% atl=2000). In order to do so it is necessary to have
ns>0.93 ory<0.032.

The error in theT/S ratio is displayed in Fig. 14. In our
special situation the pivot scale does not elRgbecause:
=6 [see Eq.(65)]. We see that the error iR is less impor-
tant than for the amplitudes and/or the quadrupoles. There-
fore this suggests to udeto test the single scalar field and

quadrupole moment is now easily understood from the lasslow-roll paradigm. However, it is clear that any violation of
equation. As claimed above, the large error in the spectrdhe consistency check by the forthcoming data should be
index is responsible for the large error in the quadrupolénterpreted as a failure of this paradigm but not as the failure
moment. The contribution from the error in the spectral in-of inflation itself. In a more general situation wheré 6, the

dex always dominates. It is obvious from Fig. 12 that thechoice ofk, does affect the error iR. Since we do not have

error increases withand with|ng— 1|. Equation(72) under-

estimates the error for largeand|ngs— 1|, due to the break-

down of the expansiofi71).

an exact solution for scalar and tensors modes suchethat
# § at our disposal, it is difficult to predict the corresponding
effect.
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10 I+L 2

2C
Error in % 2= i2(i+1)2 !
. Te(c) (2L+1)21-:.E,LJ A T R
P Using thatl (I +1)C,~ const, ifL is not too big, we arrive at
efy) - L
R’ T&(C) 1
4 o e)=——x100%~——1\/ X ———x100%.
R | C 2L+1 V570 2j+1
2 (78
For L=0 this error reduces to the known expression for the
0.05 0.1 0.15 0.2 cosmic variancg74). In this case it is independent of the
y=e=46 spectral index, whereas far# 0 this is true as long aql
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- FIG. 14. The error in the tensor to scalar ratio in leaditign | | ]. With the same approximation we find that the slow-
line) and next-to-leading orddthick line). roll error in C, is just e(cil)%e(él) .

The errors from the slow-roll approximation displayed in  The cosmic variance for different multipoles and binning
Figs. 10, 11, 12, and 13 should be compared with the cosmit$ displayed in Table I. For comparison we give the errors in
variance. The cosmic variance is the variance of the bedfi€ multipole moments from the slow-roll approximation at
unbiased estimator for the multipole momeri5,37:  leading and next-to-leading order for the pivot scale corre-
Eaee(Cp) = 1/(21 +1)=m="! amat , where we have ex- sponding to the present horizon and we also present the er-

m=— m? . .
panded the temperature fluctuations over the basis of sphef2's @t the next-to-leading order for the pivot scale corre-
cal harmonics,A(€)=3,aY, (é) This expression is sponding to the scale of the first acoustic peak. We present
1 m*=im m "

. . r . ) the results for two values of the spectral index, correspond-
valid only if the a,,,,'s satisfy a Gaussian or a mildly non- P P

: o ; . ing to 1(2)o errors in the COBE measurement.
Gaussian statistics. The corresponding error can be written as T L
For ko=r s , the error from the slow-roll approximation

. 5 in leading order dominates over the cosmic variance already
o) Eaes(CD) ] atl =10 forng=0.9 andL=0. For the next-to-leading order
e(cl = C * 100%= 2l +1X1OO%' (74) and ng=0.9 the slow-roll error dominates over the cosmic
variance at =100, for any binning of multipoles. In the case
Over the whole range of the spectrum that will be measure@f ns=0.6 only the error in the quadrupole from the slow-
by a mission like Planck the cosmic variance is larger tharfoll approximation at next-to-leading order is smaller than
2%(1~2000) and is~7% at the first acoustic peak ( the cosmic variance. Only fojns—1|<10 2 is the error
~200). from the next-to-leading order below 1%, which is the order
It is possible to reduce the cosmic variance by binningof magnitude of the cosmic variance in the Silk damping
several multipoles together at the expense of decreasing ttiegime of the spectrum.
precision on the location of the multipoles. Therefore, we For ko=1/22h~* Mpc, the situation is improved. The

define an averaged multipol&,, on the range[l—L,| sIow—roII.error and the cosmic variance are of the same order
+L] by of magnitude up td =1000 (hg=0.9). However, this is not
sufficient to hide the slow-roll error in the cosmic variance
1 I+L for the whole spectrum. Farg=0.6, the slow-roll error ex-
C==——— > j(j+1)C;. (75)  ceeds the cosmic variance at small and large scales and is
2L+1 570 ' hidden in the cosmic variance only for a narrow range of

scales aroundy. Let us point out that values of the tilt of the
The central valud of each interval must be separated by order of 0.1 and larger are a realistic possiblity, as is clearly
2L +1. For an incomplete sky coveragas restricted by the seen from the maximum likelihood fits to the recent BOO-

form of the basis used to expande). Below we do nottake MERanG and MAXIMA-1 data. -
this issue into account and assume that the full sky is cov- We conclude that for a general model of inflation only

ered. In order to calculate the cosmic variance associategumerical mode-by-mode integration can presently provide
with the binned multipole, we define the estimator predictions for the CMBR with less than 1% error, unless alll

slow-roll parameters are less than £0To give an example
1 i(+1) j let us consider the case of chaotic inflation with a potential
> d > amaly,. (76 Ve P, for which the slow-roll parameters ake=p/200,6
L4157 2j+1 m= ~(p—2)/200, andé~(p—2)(p—4)/(20®), giving n&"
o o ~1—(p+2)/100. Thus forp=2(4) the errors from the
This estimator is clearly unbiased€(C,))=C,, and it is  slow-roll approximation at next-to-leading order are of the
very likely that this is also the best one although a rigoroussame order as the cosmic variance for lalgesince e
proof is not presented here. Its variance can be expressed a€.01(0.02) ands~0(0.01), which corresponds tn(ssr)

I+L

&C)
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TABLE I. Comparison of errors from the cosmic variance and the slow-roll approximation in leading and
next-to-leading order witlyrsc=1 and in next-to-leading order witkyr ;<= 100e, for various values of the

spectral indexag, the bin widthL, and the multipold. The “—" denotes errors that exceed 100%.
Ns L | e%cl") e(gol) e(gll) e
0.9 0 2 63% 15% 0.4% 8.1%
10 31% 34% 3.4% 4.1%
100 10% 68% 15% 0.35%
1000 3.2% - 39% 1.0%
2 10 14% 34% 3.4% 4.1%
100 4.5% 68% 15% 0.35%
1000 1.4% - 39% 1.0%
4 10 11% 34% 3.4% 4.1%
100 3.3% 68% 15% 0.35%
1000 1.1% - 39% 1.0%
0.6 0 2 63% 73% 8.6% 56%
10 31% - 92% 36%
100 10% - - 4.6%
1000 3.2% - - 22%
2 10 14% - 92% 36%
100 4.5% - - 4.6%
1000 1.4% — - 22%
4 10 11% - 92% 36%
100 3.3% - - 4.6%
1000 1.1% - - 22%

~0.96(0.94). However, already fqr=6, the slow-roll ap- We have shown in this work that the errors in the prediction
proximation in the next-to-leading order leads to errors thaPf the multipoles are easily an order of magnitude larger. A
exceed the cosmic variance at high multipoles<0.035  first attempt to go directly from inflation to the calculation of

~0.02£~0.007 thusn(ssr)~0.92). the multipole moments has been put forward by Grivell and

Forthcoming high precision missions, especially the MAPI‘iddle [38] rt_acently. In our ‘?p‘”i"’? a purely numerical ap-
and Planck satellites, will only be limited by the cosmic vari- proach to th'.s fundamental issue is not fully satisfactory —
ance up td~1000 and ~2000 respectively. Therefore pre- better analytic methods are needed.
dictions from inflationary models should be made such that
the slow-roll error does not exceed the cosmic variance. We
have shown that there are slow-roll models which cannot We would like to thank J. Hwang, A. R. Liddle, V. F.
meet this requirement. Mukhanov, and V. Shani for valuable discussions and/or

Another implication is that the large errors in the pre-comments. D.S. thanks the Austrian Academy of Sciences
dicted multipoles render all attempts to reconstruct the inflafor financial support. J.M. thanks Robert Brandenberger and
tionary potential difficult. The reason for this is that recon-the High Energy Group of Brown Universit§Providence,
struction usually assumes that the primordial spectrumRIl) and the Institute fu Theoretische Physik, Technische
instead of the multipoles, is measured to a high precisionUniversita Wien (Vienna, Austria for warm hospitality.
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