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Precision of slow-roll predictions for the cosmic microwave background radiation anisotropies
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Inflationary predictions for the anisotropy of the cosmic microwave background radiation are often based on
the slow-roll approximation. We study the precision with which the multipole moments of the temperature
two-point correlation function can be predicted by means of the slow-roll approximation. We ask whether this
precision is good enough for the forthcoming high precision observations by means of the MAP and Planck
satellites. The error in the multipole moments due to the slow-roll approximation is demonstrated to be bigger
than the error in the power spectrum. For power-law inflation withnS50.9 the error from the leading order
slow-roll approximation is'5% for the amplitudes and'20% for the quadrupoles. For the next-to-leading
order the errors are within a few percent. The errors increase withunS21u. To obtain a precision of 1% it is
necessary, but in general not sufficient, to use the next-to-leading order. In the case of power-law inflation this
precision is obtained for the spectral indices ifunS21u,0.02 and for the quadrupoles ifunS21u,0.15 only.
The errors in the higher multipoles are even larger than those for the quadrupole, e.g.'15% for l 5100, with
nS50.9 at the next-to-leading order. We find that the accuracy of the slow-roll approximation may be im-
proved by shifting the pivot scale of the primordial spectrum~the scale at which the slow-roll parameters are
fixed! into the regime of acoustic oscillations. Nevertheless, the slow-roll approximation cannot be improved
beyond the next-to-leading order in the slow-roll parameters.

PACS number~s!: 98.80.Cq, 98.70.Vc
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I. INTRODUCTION

High quality measurements of the cosmic microwa
background radiation~CMBR! anisotropies have been pub
lished recently by the balloon borne experiments BOOME
anG @1# and MAXIMA-1 @2#. A large number of multipoles
(26< l<625 for BOOMERanG and 36< l<785 for
MAXIMA-1 ! have been covered by both experiments. D
ing the next years, high precision measurements will be p
formed by the Microwave Anisotropy Probe~MAP! and
Planck satellites@3#. Inflation @4# provides a mechanism t
produce the primordial fluctuations of space-time and ma
@5–8#, which lead to the CMBR anisotropies and to the lar
scale structure. This mechanism rests on the principle
general relativity and quantum field theory. It thus can
expected to get a hand on the physics of the very early U
verse with help of the upcoming high precision measu
ments.

The CMBR anisotropies are most conveniently expres
by the multipole momentsCl . The computation of the mul
tipole moments requires knowledge of the primordial sp
trum and the transfer functions. The latter depend on
cosmological parametersH0 ,VM ,VL , . . . . The transfer
function characterizes the evolution of cosmological pert
bations during the radiation and matter epochs. The prim
dial spectrum is predicted by inflation and depends on
evolution of the long wavelength perturbations during infl
tion and reheating. It can be predicted from a given mode
inflation.

*Email address: martin@edelweiss.obspm.fr
†Email address: dschwarz@hep.itp.tuwien.ac.at
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In this article, we will restrict our considerations to slow
roll inflation with one scalar field. This represents only a fi
step towards a more general study. Our aim is to address
following problems: What is the precision of the predict
multipole moments from the slow-roll approximation? Is th
precision sufficient to reach the level of accuracy expec
from the planned observations? Can the slow-roll appro
mation be improved to arbitrary precision?

So far, the precision of the predicted power spectrum
been examined by Grivell and Liddle@9#. However, the
power spectrum is not directly observable whereas theCl ’s
are. We show that the error from the slow-roll approximati
is important in the multipole moments. It is bigger than t
error in the power spectrum. It turns out that the next-
leading order slow-roll approximation@10# is compulsory,
but it may not be sufficient to reach an accuracy of a few
or less.

Wang, Mukhanov and Steinhardt@11# have shown that
predictions based on the time delay argument@7# or on the
Bessel function approach at horizon crossing~i.e., the slow-
roll approximation! @10,12# are not reliable for general mod
els of inflation. There have been various attempts to impr
the slow-roll approximation to higher orders; see e
@10,13,14,12#. The conclusion of Wang et al.@11# has been
contested by Copeland et al.@15#: ‘‘We . . . conclude that
any theoretical errors from the use of the slow-roll equatio
are likely to be subdominant.’’ We show in this work th
this claim is not correct unless the slow-roll parameters
extremely small. Typically, we find that the slow-roll param
eters must be less than 0.01 in order for the next-to-lead
order to reach the level of precision of MAP or Planck. Th
means that there are models where the slow-roll erro
©2000 The American Physical Society20-1
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dominant and the slow-roll approximation is valid. We fin
in agreement with the analysis in@11# that a slow-roll ap-
proximation that goes beyond the next-to-leading order c
not exist. All higher order corrections are thus meaningle
In the derivation of this result we close a gap in the proof
the next-to-leading order equations. For some reason this
was not noticed before in the literature. For this purpose
use and generalize a new family of exact solutions, wh
was recently found by Starobinsky@16#.

The scope of this paper is to quantify the error from t
slow-roll approximation. We compute the scalar multipo
moments and the ratioR[C2

T/C2
S for power-law inflation for

which the exact result is known. Then, we calculate the sa
quantities for the same model but in the context of the slo
roll approximation. The comparison of the two results p
vides an estimate of the error made by using the slow-
approximation. We do not convolute this error with the u
certainties in the transfer functions. For the sake of cla
and simplicity we only make use of the transfer functions
the long wavelength limit. This approximation only mildl
affects the estimates of the error in the multipole mome
Then, we compare the slow-roll errors at leading and ne
to-leading order to the cosmic variance. Binning several m
tipoles together allows us to reduce the cosmic variance,
does not reduce the slow-roll error. We find that the slow-r
error is hidden in the cosmic variance only for very sm
values of the slow-roll parameters (,1022). We propose to
reduce the slow-roll error by optimizing the pivot scale~the
scale at which the slow-roll parameters are fixed! of the spec-
trum. However, this method is not sufficient to hide entire
the slow-roll error in the cosmic variance.

This article is organized as follows: in the next sectio
the theory of cosmological perturbations and the calculati
of the CMBR anisotropies are reviewed. Then, the lowl
multipole moments are computed exactly for power-law
flation ~Sec. III! and approximately for slow-roll inflation
~Sec. IV!. Comparison of the two results allows us to test t
precision of the CMBR multipoles obtained from the slo
roll approximation in the last section. The slow-roll erro
are shown to be observationally significant by compar
them with the cosmic variance. We setc5\51 throughout
the paper.

II. FROM QUANTUM FLUCTUATIONS TO CMBR
ANISOTROPIES

The line element for the spatially flat Friedman
Lemaitre-Robertson-Walker background plus perturbati
can be written as@8#

ds25a2~h!$2~112f!dh212~] iB!dxidh

1@~122c!d i j 12] i] jE1hi j #dxidxj%. ~1!

In this equation, the functionsf, B, c and E represent the
scalar sector whereas the tensorhi j , satisfying hi

i5hi j
, j

50, represents the gravitational waves. There are no ve
perturbations because a single scalar field cannot seed
tional perturbations. The conformal timeh is related to the
cosmic timet by dt5a(h)dh. It is convenient to introduce
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the background quantityg(h) defined byg[2Ḣ/H2, where
an overdot means differentiation with respect to cosmic ti
andH is the Hubble rate,H[ȧ/a. Using conformal time we
may writeg512H8/H 2, whereH[a8/a, and a prime de-
notes differentiation with respect to the conformal time.

We assume that inflation is driven by a single scalar fie
For the perturbations we introduce gauge-invariant variab
@17,8#, which reduce the equations of motion, in the sm
scale limit, to equations of harmonic oscillators@18–21,8#. In
the tensor sector~which is gauge invariant! we define the
quantity mT for each mode k according to hi j
5(mT /a)Qi j (k), whereQi j (k) are the~transverse and trace
less! eigentensors of the Laplace operator on the space
sections andk2 is the corresponding eigenvalue. Gravit
tional waves do not couple to scalar fields. Thus the equa
of motion is given by@18#

mT91Fk22
a9

a GmT50. ~2!

The scalar sector is gauge dependent and the scalar pe
bations of the metric are coupled to the perturbations of
stress tensor describing the matter. Fluctuations in the st
tensor involve perturbations in the energy density,d r, and
in the four-velocity,d um5(2f/a,v i /a). We describe per-
turbations in the density contrast by the gauge invari
quantityd[d r/r1(r8/r)(B2E8). Perturbations in the ve
locity can be written asv i[] iw1wi . Since we are inter-
ested in the scalar sector, only the first term has to be ta
into account. We choose to work with the gauge invaria
quantityv[w1E8. Scalar perturbations of the geometry c
be characterized by the two gauge invariant Bardeen po
tials FQ[f1(1/a)@(B2E8)a#8 and CQ[c2H(B2E8)
@17#, whereQ(k) is a scalar harmonic. During inflation, th
Universe is dominated by the scalar fieldw5w0(h)
1w1(h)Q. Fluctuations in the scalar field are characteriz
by the gauge invariant quantityd w[w11w08(B2E8). In
this simple case, the time evolution of fluctuations can
reduced to the study of the equation of motion for the va
able mS[2A2ka@d w1(w08/H)c#, where k[8pG. Its
equation of motion is very similar to that of the gravitation
waves@19,20#:

mS91Fk22
~aAg!9

~aAg!
GmS50. ~3!

The integration of Eqs.~2! and~3! leads to the primordial
spectrum of the fluctuations. For the initial conditions w
assume that the scalar and tensor perturbations were in
quantum vacuum state when the scale of interest was
within the Hubble radius (1/kph!c/H) during the early
stages of inflation. Therefore all fluctuation variables a
quantum operators during inflation. After inflation, the Un
verse is filled with baryons, photons, neutrinos and~cold!
dark matter. For that epoch, the perturbed Einstein equat
cannot be reduced to the simple form of Eqs.~2! and~3! and
need to be integrated numerically. This leads to the tran
functions.
0-2
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PRECISION OF SLOW-ROLL PREDICTIONS FOR . . . PHYSICAL REVIEW D62 103520
The cosmological perturbations induce anisotropies in
temperature of the CMBR, which have been detected by
Cosmic Background Explorer~COBE! @22# first. This is the
Sachs-Wolfe effect@23#. Since it does not depend on th
photon frequency, the blackbody shape of the photon sp
trum is conserved from the last scattering surface to its
servation today@24#. The measured anisotropies in the ph
ton intensity translate into anisotropies in the temperature
the blackbody.

For the temperature fluctuations we introduce the abb
viation D(eW )[(d T/T)(eW ), whereeW characterizes the direc
tion of the beam on the celestial sphere. The contribution
the scalar and tensor perturbations are given by

DS~eW !5
1

4
dg1F2ei] iv1E

h lss

h0
dh̄

]

]h̄
~F1C!, ~4!

DT~eW !52
1

2
eiejE

h lss

h0
dh̄

]

]h̄
hi j . ~5!

The first three terms of the scalar contribution are evalua
on the last scattering surface, i.e. ath lss. They represent the
intrinsic fluctuations, the Sachs-Wolfe effect and the Dopp
effect. Terms that depend on the observers position or ve
ity have been omitted because they are not observabl
describe the CMBR dipole, respectively. The fourth term
the so-called integrated Sachs-Wolfe effect. The integra
is performed along the photon trajectory, which is para
etrized by the conformal time here.h0 denotes the conforma
time at observation today.dg is the perturbed density con
trast of the photons andv the perturbed velocity of the pho
ton fluid. For large angular scales only the first two terms
important. For isentropic~sometimes called adiabatic! per-
turbations the scalar part reduces to

DS~eW !5
1

3
F~eW !1~••• !. ~6!

Usually, the CMBR anisotropies are expressed through
multipole momentsCl . The Cl are the coefficients in an
expansion over Legendre polynomials of the CMBR te
perature two-point correlation:

^DS,T~eW1!DS,T~eW2!&5
1

4p (
l

~2l 11!Cl
S,TPl~cosd!, ~7!

where cosd[eW1•eW2. The angular bracketŝ& denote the aver-
aging over many ensembles. Averages over many ensem
cannot be replaced by spatial averages on the celestial sp
due to the lack of ergodicity of the stochastic processD(eW );
see Ref.@25#. If, nevertheless, we do this, the error made c
be quantified by means of the cosmic variance.

The computation of the multipoles for a given model r
quires knowledge of the initial spectrum of the fluctuatio
and of the transfer function. The power spectrum of
Bardeen potential is defined in terms of the two-point c

relator for the operatorF̂(h,x):
10352
e
e

c-
-

-
of

e-

of

d

r
c-
or

s
n
-

e

e

-

les
ere

n

-

e
-

^0uF̂~h,x!F̂~h,x1r !u0&[E
0

`dk

k

sinkr

kr
k3PF~h,k!.

~8!

Similarly, the power spectrum of gravitational waves is d
fined as

^0uĥi j ~h,x!ĥi j ~h,x1r !u0&[E
0

`dk

k

sinkr

kr
k3Ph~h,k!.

~9!

A priori, the primordial power spectra are time depend
quantities. However, for the multipoles betweenl 52 and l
52000, we are interested in scales which are well beyo
the horizon at the end of inflation. In a first approximatio
for those scales the power spectra do not evolve in t
during inflation and they can be written as

k3PF~k!5AS
i ~k0!S k

k0
D nS21

, ~10!

k3Ph~k!5AT
i ~k0!S k

k0
D nT

, ~11!

where the spectral indicesnS, nT and the amplitudesAS
i , AT

i

are independent quantities andk0 is an arbitrarily fixed scale
which is introduced to link various notations in the literatur
The spectral indices can also be determined fromnS21
[d ln(k3PF)/d lnk andnT[d ln(k3Ph)/d lnk.

An accurate calculation of the multipole moments r
quires numerical computations. However, for smalll, the ap-
proximate equation~6! can be used. For density perturb
tions @26# this leads to

Cl
S5

4p

9 E
0

`dk

k
j l
2~kr lss!TF~kr lss→0!AS

i S k

k0
D nS21

, ~12!

where j l is the spherical Bessel function of orderl and r lss
ph

[a(h0)r lss5a0(h02h lss)'a0h0'2RH is the comoving
line-of-sight distance to the last scattering surface.

TF(kr lss→0) is approximately the transfer function fo
superhorizon modes. It isk independent and therefore on
the amplitude is modified but not the spectral index. T
domain of validity of the latter approximation can be eva
ated as follows. In the integral~12! the main contribution
comes from the modes aroundkr lss; l 11. We use that to
estimate for which multipole moments thek independent
transfer function is good enough. The mode whose wa
length is equal to the Hubble radius today, i.e. such t
2pa0 /k5 l H(h0), haskh054p. Therefore the constant su
perhorizon transfer function is a reasonably good approxim
tion if ( l 11)/r lss!4p/h0, that is to sayl !10. This is a very
optimistic estimate since it does not take into account
first approximation, made in Eq.~6!, on which the validity of
Eq. ~12! rests.

With the above approximations the low-l multipoles can
be calculated exactly@26#. The result reads
0-3
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Cl
S5p3/2

G@~32nS!/2#G@ l 1~nS21!/2#

G@~42nS!/2#G@ l 122~nS21!/2#
~k0r lss!

12nS
AS

9
,

~13!

whereAS[AS
i TF(kr lss→0). For gravitational waves we ob

tain the following expression@27#:

Cl
T5

9p

4
~ l 21!l ~ l 11!~ l 12!~k0r lss!

2nT

3E
0

`dy

y
uI l~y!u2ATynT, ~14!

where the functionI l(y), y[kr lss, is defined by

I l~y![E
0

y j 2~x! j l~y2x!

x~y2x!2 dx. ~15!

The superhorizon transfer function for gravitational wav
does not appear explicitly because it is equal to 1. A
consequence we can writeAT

i [AT . The computation ofCl
T

is more complicated than the calculation ofCl
S. The integral

I l can be calculated exactly in terms of special functions;
Ref. @27#. However, the second integration overk cannot be
performed analytically and we must rely on numerical in
gration.

Below we will be interested in the ratio of tensor to sca
quadrupole contributions@28–31#:

R[
C2

T

C2
S

. ~16!

Expressed in terms of the tensor spectral index this is
so-called consistency equation of inflation.

We have seen that the calculation ofCl
S requires knowl-

edge of the transfer function and of the primordial spectru
In principle, TF(kr lss) is known accurately as the result o
numerical calculations; e.g. see Ref.@32#. When we calculate
the multipoles using Eq.~12! or ~14! we make two approxi-
mations: a long wavelength approximation for the trans
function and we neglect the contribution of radiation~pure
matter assumption! to the expansion of the Universe at ph
ton decoupling. The long wavelength approximation resu
in neglecting other contributions besides Eq.~6! in the
Sachs-Wolfe effect for scalars and in considering that
tensor and scalar superhorizon transfer functions are
stant. The pure matter assumption results in a small erro
the numerical value ofTF(kr lss→0). For small values ofl
these errors are small.

In order to test this claim quantitatively and to quant
the contribution to the total error coming from the trans
function ~see Fig. 1!, we compute the scalar multipole mo
ments for lowl numerically withCMBFAST @33# for the fol-
lowing values of the cosmological parameters:H0
550 km/s/Mpc,V051,VCDM50.95,VB50.05. We compare
them to the multipole moments given by Eq.~12! with a
constant transfer function. The codeCMBFAST automatically
normalizes to the COBE result@22#. The result is expresse
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by the band powers (dTl /T0)2[ l ( l 11)Cl /(2p), where
T0'2.73 K is the average temperature of the CMBR. Fo
flat (nS51) primordial spectrum,CMBFAST gives dT2
'27.5mK or Qrms-PS'17.8mK, where the quadrupole rm
fluctuation is given byQrms-PS[T0A(5/4p)C2. We normal-
ize the amplitudeAS in Eq. ~12! is to the latter value of the
quadrupole. In Fig. 1 we plot the differences of both calc
lations, divided by theCMBFAST results, and express thi
number as the error in %. The error in the quadrupole~13!
vanishes ‘‘by construction.’’ Equation~12! shows thatd Tl

5T0AAS/3(k0r lss)
(12nS)/25Qrms-PSA12/5, whereas theCMB-

FAST dTl is l dependent, despite both band powers be
calculated from the same primordial spectrum. The diff
ence between both band powers is exclusively due to the
of different transfer functions and to the neglect of the Do
pler and integrated Sachs-Wolfe effects. In this way, we
isolate and estimate the error coming from the long wa
length approximation, given that the spectrum is normaliz
to COBE.

A similar study has been done in Ref.@34#. The errors
given in that article differ from those obtained here becaus
different normalization is used. In Ref.@34#, the spectrum is
normalized to the multipole momentC10 instead of the quad-
rupole. As a consequence, in that case the error inC10 van-
ishes ‘‘by construction.’’

Figure 1 confirms the importance of the transfer functi
and the analytical estimates made at the beginning of
article. The error is below 1% only forl ,4. ForC10, which
is often used to normalize the spectrum, the effect of
subleading terms ink is already 5%. The error from the pur
matter assumption has not been fully accounted for by
method, because we do not test the error in the numer
value ofTF(kr lss→0) when we normalize the quadrupole
the COBE result. Since this error is a pure overall numeri
factor, it does not affect our conclusions.

III. PREDICTIONS OF POWER-LAW INFLATION

In this section, we turn to the study of power-law infl
tion. This model is of particular importance because it allo
us to calculate all quantities of interest exactly. Moreov

FIG. 1. Error due to the long wavelength approximation in t
transfer function for the scalar multipoles with a flat primord
spectrum. The exact multipoles are calculated by means of theCMB-

FAST code and are normalized to the quadrupole.
0-4
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PRECISION OF SLOW-ROLL PREDICTIONS FOR . . . PHYSICAL REVIEW D62 103520
this exact result is at the basis of the slow-roll approxim
tion.

Power-law inflation is given by the following solution fo
the scale factor and the scalar field:

a~h!5 l 0uhu11b, w5w i1
mPl

2
Ag

p
~11b!lnuhu, ~17!

wheremPl is the Planck mass andw i is the initial value of the
scalar field at conformal timeh i . In this model inflation
occurs if b,22 ~we do not consider the case where22
,b,21 which cannot be realized with a single sca
field!. The quantityl 0 has the dimension of a length and i
value will roughly determine the amplitude of the CMB
fluctuations today. In the particular case of power-law infl
tion, the functiong(h) is a constant equal to (21b)/(1
1b). For 2`,b,22, g goes from 1 to 0, this last valu
corresponding to the de Sitter spacetime. The scale fa
and scalar field of Eqs.~17! are solutions of the Einstein
equations for the scalar field potential:

V~w!5ViexpF4Ap

mPl
Ag~w2w i!G , ~18!

whereVi is the value of the potential ath i .

A. Density perturbations

The effective potential for density perturbations,US

[(aAg)9/(aAg) @see Eq.~3!# reads

US~h!5
~b11!b

h2 . ~19!

This simple form of the potential allows an exact integrati
of Eq. ~3!. The solution is expressed in terms of Bessel fu
tions. This provides the initial power spectrum, i.e.AS

i and
nS. In order to evolve the superhorizon spectrum, we c
rely on the conservation law@35,21# for the quantity: z
[(H 21F81F)/g1F. This gives the superhorizon transf
function: TF(kr lss→0)5@9(2b13)2#/@25g2(11b)2#.
Then the amplitude of the scalar quadrupole and the spe
index take the form

AS~k0!5
l Pl
2

l 0
2

9

25pg
f ~b!k0

nS21 , nS52b155
123g

12g
,

~20!

where

f ~b![
1

p FG~2b21/2!

2b11 G 2

, ~21!

which is unity for b522. As expected, the amplitude o
scalar perturbations is roughly determined by the ratiol Pl / l 0.
Very often the final spectrum is expressed in terms of
Hubble rate at some timeh* , instead of the scalel 0. We
have H* [H(h* )52@(11b)/ l 0#uh* u222b. Therefore the
amplitude reads
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AS~k0!5 l Pl
2 H

*
2 9

25pg
f ~b!u11bu2(b11)S k0

a* H*
D nS21

.

~22!

The amplitudeAS is displayed as a function ofg in Fig. 2. It
diverges in the de Sitter limitg→0. COBE measured the
spectral index to benS51.260.3 @22#. The 1(2)s value
nS50.9(0.6) corresponds tog'0.048(0.167).

B. Gravitational waves

The calculation of the spectrum for gravitational waves
performed along the same lines as above. The effective
tential is the same as for density perturbations, i.e.UT
[a9/a5b(11b)/h2. Since the superhorizon transfer fun
tion is equal to 1,AT andnT can be written as

AT~k0!5
l Pl
2

l 0
2

16

p
f ~b!k0

nT , nT52b1452
2g

12g
. ~23!

For power-law inflation, the relationnS5nT11 holds. In
terms ofH* the amplitude is given by

AT~k0!5 l Pl
2 H

*
2 16

p
f ~b!u11bu2(b11)S k0

a* H*
D nT

. ~24!

Figure 2 shows the scalar and tensor amplitudes~22! and
~24!, respectively. Forg.9/40050.0225 the tensor mode
dominates.

C. Multipole moments

The multipole moments predicted by power-law inflatio
can easily be computed from Eqs.~13! and ~14!. The qua-
drupoles are displayed in Fig. 3. Compared to the amplitu
the importance of the tensor mode is slightly suppressed
becomes the dominant mode atg*0.07, which corresponds
to nS&0.85.

We calculate the ratioR for power-law inflation:

R513.86gF@nT~g!#526.93
nT

12
nT

2

F~nT!, ~25!

FIG. 2. The amplitudes of scalar and tensor perturbations. In
de Sitter limitg→0 the scalar amplitude diverges. For larger valu
of g the perturbations are dominated by the tensor mode.
0-5
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where the functionF(nT) is given by:

F~nT![496.1

3212nT

G2S 32nT

2 DGS 42
nT

2 D
G~22nT!GS 21

nT

2 D E
0

`

dkknT21uI 2~k!u2.

~26!

In this expression we have used the equationnS5nT11,
valid for power-law inflation only, to express everything
terms ofnT . We have*0

`dkk21uI 2(k)u252.13931024 such
that F(nT50)51. Notice that the factorsk0r lss and
k0 /(a* H* ) cancel inR becausenS5nT11. R versusg is
plotted in Fig. 4. This plot demonstrates that within the 2s
error bars of COBE, there is a large parameter space w
the tensor mode dominates the scalar modes; see e.g.
@29,31# for a more detailed discussion.

IV. PREDICTIONS OF SLOW-ROLL INFLATION

For a general model of inflation exact solutions are
available. Generically, the potentialsUS andUT are different
but nevertheless their shape is similar. A sketch of the
neric form ofUS andUT is displayed in Fig. 5. The details o
the realistic reheating transition are not taken into accoun
this simple figure. During the radiation dominated era

FIG. 3. The quadrupole moments of scalar and tensor pertu
tions.

FIG. 4. The tensor to scalar ratio of the quadrupole momen
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potential goes to zero, sincea}h.
For a given modek, the inflationary epoch can be divide

into three stages; see Fig. 5. In region I the modek is sub-
horizon. In that case the effective potential is small co
pared tok2. In the limit k/(aH)→` for fixed k, the vacuum
fluctuations are given by~see Ref.@21#!

mS,T~h!→74Ap l Pl

e2 ik(h2h i)

A2k
, ~27!

respectively. In region III the mode is superhorizon. In t
limit k/(aH)→0 at fixedk, the potential term is dominant
and the ‘‘exact’’ solutions read

mS~h!5CS~aAg!~h!

3F12k2Eh 1

~a2g!~h̄ !

3E h̄
~a2g!~h̃ ! dh̃ dh̄G , ~28!

mT~h!5CTa~h!. ~29!

Usually, density perturbations are described in terms of
Bardeen potentialF instead of in terms ofmS. The orderk2

term is necessary to obtain the leading order expression
the Bardeen potential, sinceF5@Hg/(2k2)#@mS/(aAg)#8;
see Refs.@21,20#. Thus, in region III, the superhorizon Bard
een potential is given by

F~h!5
CSH
2a2 Eh

a2gdh̄. ~30!

Our aim is to calculate the spectra at the end of inflation,
in region III. The time dependence of the solutions in th
region is known and the difficulty lies in the calculation
the constantsCS and CT . Since the solutions are uniquel
determined in region I, this amounts to joining the super- a
subhorizon solutions. Therefore we need to know the beh
ior of the perturbations in region II.

A popular approach is the slow-roll approximatio
@10,12#. The idea is that there was an epoch during inflat
where the scalar field was rolling down its potentialV(w)

a-

.

FIG. 5. Sketch of the effective potential for density perturb
tions and/or gravitational waves during inflation and radiation.
0-6
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very slowly. Under certain conditions~see below! this is
close to the behavior during power-law inflation and the
act solutions from power-law inflation are used in region
to interpolate between the sub- and superhorizon solutio

Slow roll is controlled by the three~leading! slow-roll
parameters~see e.g. Ref.@12#! defined by

e[3
ẇ2

2
S ẇ2

2
1VD 21

52
Ḣ

H2
, ~31!

d[2
ẅ

Hẇ
52

ė

2He
1e, ~32!

j[
ė2 ḋ

H
. ~33!

We see in particular thatg(h)5e in region II. The equations
of motion for e andd can be written as

ė

H
52e~e2d!,

ḋ

H
52e~e2d!2j. ~34!

The slow-roll conditions are satisfied ife and d are much
smaller than 1 and ifj5O(e2,d2,ed). From Eqs.~34!, it is
clear that this amounts to consideringe andd as constants
This property is crucial for the calculation of the perturb
tions.

For power-law inflation the slow-roll parameters satisf

e5d,1, j50. ~35!

Therefore the slow-roll conditions are satisfied ife!1, that
is to say ifb is close to22 ~scale invariance!. In fact, the
slow-roll approximation is an expansion around power-l
inflation with 0,2(b12)!1. To illustrate this point, let us
consider the exact equation

h52
1

aH
1E da

e

a2H
. ~36!

If we assume thate is a constant, the previous equation r
duces toaH'2(11e)/h. This is equivalent to a scale fac
tor which behaves like

a~h!' l 0uhu212e. ~37!

Interestingly enough, the effective power index at lead
order depends one only.

A. Density perturbations

The effective potential of density perturbations can be c
culated in terms of the slow-roll parameters exactly. T
result is

US~h!5a2H2@22e1~e2d!~32d!1j#. ~38!

In the slow-roll approximationa2H2'h22(112e) and the
effective potential reduces toUS'(216e23d)h22. Since
10352
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e andd must be seen as constants in the slow-roll appro
mation, the equation of motion~3! is of the same type as in
power-law inflation. The solutions are given by Bessel fun
tions:

mS5~kh!1/2@B1Jn
S
(sr)~kh!1B2J2n

S
(sr)~kh!#, ~39!

whose order is given by

nS
(sr)52

3

2
22e1d. ~40!

A comment is in order here: The potentialUS depends on the
scale factor and its derivatives only. One could think, loo
ing at Eq.~37!, that US also depends one only. This is not
the case. The reason is thatUS contains terms likeė/e ~for
example! which are linear ind; see Eqs.~34!. First one must
calculate all derivatives, replace them with their express
in terms ofe andd, and only then consider that the slow-ro
parameters are constant.

We would also like to stress that keeping higher orders
e does not make sense. If terms of quadratic order in
slow-roll parameters are kept, the solution for density pert
bations in region II can no longer be expressed in terms
Bessel functions. This is because the slow-roll parame
can no longer be considered as constant in time; see
~34!. Therefore any considerations at this order in the fram
work of the slow-roll approximation are meaningless. T
same conclusion has been obtained by Wang, Mukhan
and Steinhardt@11#.

Let us now calculate the constantCS. The first step is to
match the solutions of regions I and II. This procedu
fixes B1 and B2. Using Eqs.~27! and ~28!, one obtains

B1 /B252eipnS
(sr)

and B152ip l Plexp@inS
(sr)(p/2)2 i (p/4)

1 ikh i#/(AksinpnS
(sr)). Note thatB1 and B2 do not depend

on the time at which the matching between regions I and I
performed. The joining between regions II and III remains
be performed at some timehS, which will be fixed below.
Expanding everything up to next-to-leading order in t
slow-roll parameters, one obtains

uCSu25
l Pl
2

l 0
2

8p

e
@122~C1 ln k!~2e2d!

12~d2e!lnuhSu#k23, ~41!

with C[gE1 ln 222'20.7296,gE'0.5772 being the Euler
constant. The Bardeen potential given in Eq.~30! is now
completely specified. Note thatg(h) in Eq. ~30! is a time
dependent function, evaluated in region III, wherease in Eq.
~41! is a constant parameter, which is fixed bye5g(hS).

For scalar perturbations it is useful to evaluate the qu
tity

z52
mS

2aAe
, ~42!
0-7
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which is aconstantfor the dominant mode at superhorizo
scales@35,8,21#. The quantity2z is denotedR in Ref. @12#.
Instead of expressing the spectrum in terms of the r
l Pl / l 0, it is usual to write it in terms of the Hubble rate
some timeh* . Of course, there is nothing deep in th
choice and one could have kept working withl Pl / l 0. A priori,
the value ofh* is arbitrary and could either be in region I,
or III. However, in order to make contact with the literatur
we will assume thath* is in region II. Then, in the slow-roll
approximation, the value ofH(h* ) can be written as

H* [H~h* !5
1

l 0
@11e~11 lnuh* u!#. ~43!

In Ref. @12#, h* is the time which satisfies the relatio
a(h* )H(h* )5k for each modek. In other words, we have
h* 5h* (k). In this article, we adopt another convention a
chooseh* such that it is not a function ofk. Then, a straight-
forward calculation gives

k3Pz~k!5
l Pl
2 H

*
2

pe H 122e22@C1 ln kuh* u#~2e2d!

12~d2e!lnUhS

h*
UJ . ~44!

The matching timehS remains to be fixed by a physica
argument. To our knowledge, this issue has been overloo
in the literature so far. All works on the slow-roll approx
mation, starting with Ref.@10#, have tacitly assumed tha
hS/h* 51, without further justification.A priori, an equally
good choice would be, for example, when the modea* H*
crosses the effective potential, i.e. when (112e)/h

*
2

5US(hS). It is easy to show that this boils down to th
choicehS/h* 5A2. It is important to realize that differen
choices for the ratiohS/h* lead to different observationa
predictions. Although a change inhS would not change the
spectral index, it would change the amplitude of scalar p
turbations and the ratio of tensor to scalar contributionsR.

The missing physical argument comes from a new fam
of exact solutions which has a slow-roll regime in a cert
limit. One exact solution is of course power-law inflatio
but it does not help for the purpose of fixinghS/h* , be-
cause the spectrum does not depend onhS/h* for d5e.
These solutions are found by the ansatz

aAg5
A

uhua
, ~45!

whereA anda are two free parameters. This defines a tw
parameters family of exact solutions. Note that this family
not equivalent to power-law inflation. The power-law mod
@A5 l 0Ag(b), a5212b] is a subclass of this two
parameter family. Of course, this is becausea(h)}uhu2a is
just a solution of Eq.~45!, viewed as a second order diffe
ential equation for the scale factor, but not the general s
tion. The limit of A to 0 anda close to 1 gives a slow-rol
inflation model. The particular casea51 was already found
recently by Starobinsky@16#. This one parameter family o
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solutions is characterized by a flat spectrum,nS51. Equation
~45! is a generalization of Starobinsky’s original ansatz@16#.
The spectrum may be calculated exactly to read

k3Pz~k!5
l Pl
2

p2A2
22aG2S a1

1

2D k22(a21). ~46!

The casea51 givesk3Pz(k)5 l Pl
2 /(pA2) and coincides with

the result of Ref.@16#.
We now need to calculate the slow-roll spectrum for th

new class of solutions. A comparison with Eq.~44! will al-
low us to fix the ratiohS/h* . Let us first determine the
slow-roll parameters. In the slow-roll approximation we fin

~aAg!8

aAg
52

1

h
~112e2d!, ~47!

whereas insertion of the ansatz~45! into this equation gives
(aAg)8/(aAg)52a/h. Therefore, one has 2e5(a21)
1d and especially 2e5d if a51. It is interesting to note
that we no longer have the relatione5d typical of power-
law inflation. Let us also emphasize that the two-parame
family is the only family of exact solutions which permits
slow-roll approximation. Equation~47! is a necessary condi
tion for the validity of the slow-roll approximation. This
equation can be viewed as a first-order differential equa
for the quantityaAg. Integration of this equation leads to th
ansatz given in Eq.~45!. Therefore our determination of th
ratio hS/h* is general. The value ofA in the slow-roll limit
is obtained fromA5aAguhua and is expressed in terms o
H* with the help of Eq.~36!. This givesA25eH

*
22@112e

12(2e2d)lnuh* u#. Thus we obtain the slow roll spectrum
from Eq. ~46!:

k3Pz~k!5
l Pl
2 H

*
2

pe
@122e22~C1 ln kuh* u!~2e2d!#.

~48!

A comparison with Eq.~44! shows that

hS5h* . ~49!

Note that we could have derived the slow-roll spectrum oz
from the exact spectrum~46! right from the beginning by
approximating it in the slow-roll regime. However, we ha
chosen to take the Bessel-function–horizon crossing
proach, because it is this approach which has been discu
in the literature. Let us note that the transfer function forz is
unity. This means that the spectrum ofz during the matter
dominated era is identical to the spectrum at the end of
flation ~region III!.

We are mostly interested in the spectrum of the me
potentialF since this quantity appears in the calculations
the multipole moments; see Eq.~12!. If we assume that the
Universe is matter dominated at the surface of last scatter
then the conservation law provides us with the relationz
5(5/3)F. Then, the spectrum of the Bardeen potential f
lows from Eq.~48! as
0-8
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nS
(sr)5124e12d, ~50!

AS
(sr)5

9l Pl
2 H

*
2

25pe
@122e

22~C1 ln k0uh* u!~2e2d!#. ~51!

These expressions are consistent with~4.3! and~5.1! of @12#.
The amplitude of scalar perturbations blows up when
slow-roll approximation becomes accurate, i.e. whene goes
to zero.

To end this section, let us make a last comment. It is c
from the previous considerations that we need the slow-
approximation in region II only. In particular, this scheme
approximation is not needed in region III since the ‘‘exac
solution is known. However, one may wish to use it in regi
III also. Then, in this region, the Bardeen potential is giv
by F'(CS/2)e(123e12d). The long-wavelength transfe
function, which allows the passing from the end of inflati
to the matter dominated epoch, can be expressed asTF

'@9/(25e2)#(116e24d). Using the two previous formu
las, one can show that one recovers the spectrum give
Eqs.~50! and~51!. However, in principle, this method is no
appropriate since we use an approximated solution whe
an exact one is available.

B. Gravitational waves

For gravitational waves, the same lines of reasoning
be applied. In region II, the effective potential can be writt
as

UT~h!5a2H2~22e!, ~52!

and gives in the slow-roll limit

UT~h!;
213e

h2
. ~53!

Therefore the matching of sub- and superhorizon solution
again reduced to power-law inflation. The solution ofmT is
similar to the one given in Eq.~39!, where the effective
index of the Bessel function is now given by

nT
(sr)52

3

2
2e. ~54!

This solution can be used to find the constantCT . Then, the
power spectrum of gravitational waves reads

k3Ph~k!5
l Pl
2

l 0
2

16

p
~122Ce22e ln k!, ~55!

from which we deduce that
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nT
(sr)522e, ~56!

AT
(sr)5 l Pl

2 H
*
2 16

p
@122~C111 ln k0uh* u!e#.

~57!

We see that there exists a crucial difference between den
perturbations and gravitational waves. In the case of grav
tional waves, the ambiguity related to the choice of t
matching time is not present.

The amplitudes of scalar and tensor modes versus
slow-roll parametere are displayed in Fig. 6 ford5e and in
Fig. 7 for d52e at leading and next-to-leading order. Th
first case is an approximation to the exact power-law res
the cased52e is the slow-roll approximation to Starobin
sky’s exact solution.

C. Multipole moments

Let us first start with the calculation ofCl
S. We write the

scalar multipoles as

Cl
S[gl~nS!

AS

9
, ~58!

which defines the functiongl(nS); cf. Eq. ~13!. To compute
Cl

S at the next-to-leading order in the slow-roll paramete

FIG. 6. The scalar and tensor amplitudes from the slow-
approximation fore5d. The scalar amplitude diverges in the d
Sitter limit e→0. The leading order is drawn by solid lines, th
next-to-leading order by dashed lines. We have setk0uh* u51.

FIG. 7. The same as Fig. 6, but ford52e.
0-9
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we need to expandgl(nS) to first order aroundnS51, since
nS itself is a linear function ofe andd:

gl~nS!5gl~nS51!1~nS21!
dgl

dnS
~nS51! ~59!

5
2p

l ~ l 11!
@11~nS21!~Dl2 ln k0r lss!#, ~60!

where

Dl[12 ln 21C~ l !1
l 11/2

l ~ l 11!
~61!

and C(x)[d lnG(x)/dx. For the quadrupole we haveD2
'1.1463 and for largel, Dl511 ln(l/2)1O(1/l ), due to
C( l )5 ln l1O(1/l ). Using Eqs.~50! and ~51!, we find the
scalar multipoles at next-to-leading order as

Cl
S5

2l Pl
2 H

*
2

25e

1

l ~ l 11! F122e22~Dl1C!~2e2d!

12~2e2d!ln
r lss

uh* uG . ~62!

In this equation the Doppler effect, the integrated Sac
Wolfe effect, and the evolution of the transfer function a
neglected. In the next section we will argue that this does
prevent the estimation of the slow-roll error.

We now calculateR in the slow-roll regime at the leadin
and next-to-leading order. The scalar quadrupole follo
from Eq. ~62! and reads

C2
S5

l Pl
2 H

*
2

75e F122e22~D21C!~2e2d!12~2e2d!ln
r lss

uh* uG ,
~63!

whereD21C'0.4167.
Let us now computeC2

T . Using Eqs.~14! and ~57!, we
find, at next-to-leading order,

C2
T50.1848l Pl

2 H
*
2 F122S B1C112 ln

r lss

uh* u D eG , ~64!

where the number B is defined by B
[*0

`dkk21ln(k)I2
2(k)/*0

`dkk21I 2
2(k)'1.2878 so thatB1C

'0.5582. For higher tensor multipoles the numerical val
of the constants in~64! are modified, but not the functiona
dependence on the slow-roll parameters. In Fig. 8 the sc
and tensor quadrupoles at leading and next-to-leading or
are displayed for the casee5d.

Taking into account the expressions forC2
S andC2

T given
previously, we finally find the following expression forR in
the slow-roll regime:

R513.86eF110.5504e20.8334d22~e2d!ln
r lss

uh* uG .
~65!
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At leading order we recover the so-calledconsistency condi-
tion for slow-roll inflation @12#, which reads

R526.93nT . ~66!

This equation cannot be generalized by the use of Eq.~65! to
a next-to-leading order equation, because it would invo
the knowledge of the orderO(e2) terms innT . As discussed
above, terms of that order are not meaningful in the slow-
approximation.

In Fig. 9, the ratioR is displayed at leading and next-to
leading order for the two casese5d and 2e5d.

V. DISCUSSION OF ERRORS

The aim of this section is to quantify the magnitude of t
error introduced by the slow-roll approximation. For th
purpose, we compare the slow-roll predictions with the ex
results of power-law inflation. We explicitly test the follow
ing quantities:QP$nS21,nT ,AS,AT ,Cl

S,C2
T ,R%, i.e. quanti-

ties related to the power spectra and the quadrupole
ments.

We denote byQ the exact result of power-law inflation
and byQ(0), Q(1) the slow-roll results at leading and nex

FIG. 8. The scalar and tensor quadrupole moments from
slow-roll approximation fore5d. The leading order is drawn by
solid lines, the next-to-leading order by dashed lines. We have
r lss5uh* u.

FIG. 9. The tensor to scalar ratio at leading order~solid line! and
at next-to-leading order ford5e ~long dashed line! and d52e
~short dashed line!. The leading order is independent ofd. We have
set r lss5uh* u.
0-10
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to-leading orders, respectively. The error is estimated by
culating

eQ
( i )[UQ( i )2Q

Q U3100%. ~67!

Let us start with an estimate of the errors in the prediction
the spectral indicesnS and nT . For the leading order slow
roll approximation nT5nS2150 and thus the error is
enS21

(0) 5enT

(0)5100%, except for de Sitter inflation. It is abs

lutely compulsory to use the next-to-leading order result
the spectral indices. We express the error as a function og.
The best slow-roll approximation to a power-law model
given bye5d5g, and thereforenT

(sr)5nS
(sr)21 for this case.

Thus from Eqs.~20!, ~23!, ~50!, and ~56! the error in the
spectral indices from the slow-roll approximation is

enS21
(1) 5enT

(1)5g3100%. ~68!

Thus the next-to-leading order slow-roll approximation p
dicts the spectral indices with an error less than 1%, ig
,0.01 or 0.98,nS,1.

So far, except in some of the figures, we did not spec
the pivot scalek0. We now choose to fixk0[a* H* ; i.e., k0
is the mode that crosses the horizon at the timeh* , which is
the time when we determine the values of the slow-roll
rameters, where we fix them once and forever. It is eas
show that this amounts to takinguh* u5k0

21 in the argument
of the logarithm which shows up in the equations of t
previous section. Stillh* remains to be fixed, which can b
done most conveniently by fixingk0r lss. In the following we
will show that this choice is of physical relevance, becau
the accuracy of the slow-roll approximation can be improv
by a clever choice of the pivot scale. We will discuss tw
cases. The usual convention is to choosek0r lss51. This cor-
responds tok0

phys5h/(6000 Mpc) today. Below we show
that this leads to huge errors form the slow-roll approxim
tion.

To improve the precision of the slow-roll approximatio
we suggest to minimize the error in the region of the fi
acoustic peak, i.e. aroundl'200. For this purpose we
choose a pivot scale such thatk0r lss'100e, which corre-
sponds to a physical wave numberk0

phys5h/(22 Mpc) today.
Let us start by analyzing the errors for the pivotk051/r lss.

The errors in the amplitudes and quadrupoles for the c
of power-law inflation,e5d, are displayed in Figs. 10 an
11. From these two plots, we can draw three conclusio
The first conclusion is that the error in the quadrupoles
larger than the error in the amplitudes. This confirms
results already obtained in Ref.@36#. The second conclusion
is that it is not possible to obtain an error at the 1% le
with the leading order, except for very small values of t
slow-roll parameters. The third conclusion is that the ac
racy of the next-to-leading order for the quadrupoles is be
than 1% ifg,0.07, which corresponds to 0.85,nS. Since
the slow-roll approximation is more accurate for power-la
model, it is reasonable to expect larger errors for more r
istic models.
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Let us now turn to the slow-roll errors in higher scal
multipole moments. Although we cannot obtain the ex
result for the high-l multipole moments without making us
of a Boltzmann code, we can nevertheless estimate the e
from the slow-roll approximation in this regime. As alread
discussed in the text around Fig. 1 computing the scalar m
tipoles from Eq.~12! is a bad approximation for highl. De-
spite this fact, it is clear that for a given cosmological mod
the transfer function is the same for a power-law model a
its slow-roll approximation. Thus the only difference b
tween the power-law and slow-roll multipole moments c
arise from the convolution of this transfer function with di
ferent initial spectra. We expect that this difference is sm
To put it differently, Cl(sr, t)2Cl(sr, a) is large, wherea
Cl(sr, t)2Cl(pl, t)'Cl(sr, a)2Cl(pl, a), where t ~a! de-
notes the use of the true~approximated! transfer function and
sr ~pl! denotes the initial spectrum. Thus we use Eqs.~13!,
~20!, and~62! to obtain the errors for the scalar multipoles
a function of l, Eq. ~67!, which are displayed in Fig. 12. I
shows that these errors are large and increase withl and
unS21u.

FIG. 10. The error in the scalar quantities. The solid lines
the quadrupole moments; the dashed lines are the amplitudes
thin lines are the leading order corrections; the thick lines are
next-to-leading order corrections.

FIG. 11. The same as Fig. 10, but for the tensor amplitude
quadrupole moment. For the amplitude the error is the same a
the scalar sector, becausee5d.
0-11
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The reason for the large errors in the multipole mome
is the large errors in the spectral indices. This can be un
stood from the relations between the errors:

eC
l
S

(0)

100
5U gl~1!

gl~nS!
S 11

eAS

(0)

100
D 21U, ~69!

eC
l
S

(1)

100
5U gl~1!

gl~nS!
S 11

eAS

(1)

100
D

1
gl8~1!~nS21!

gl~nS!
S 11

eAS

(0)

100
D S 12

enS21
(1)

100
D 21U,

~70!

where the prime denotes a derivative with respect tonS. The
signs in front of the errors in the amplitude and in the sp
tral index are model dependent. Ford5e the error in the
amplitude always has a positive sign; the error in the spec
index has a negative sign. For small values ofl we may
expand

gl~nS!5gl~1!1gl8~1!~nS21!1O@~nS21!2# ~71!

in Eqs. ~69! and ~70!. Keeping only terms linear innS21
and terms linear in the errors we find

eC
l
S

( i )
'eAS

( i )1~Dl2 ln k0r lss!~12nS!enS21
( i ) , ~72!

whereDl has been introduced in Eq.~61!. The error in the
quadrupole moment is now easily understood from the
equation. As claimed above, the large error in the spec
index is responsible for the large error in the quadrup
moment. The contribution from the error in the spectral
dex always dominates. It is obvious from Fig. 12 that t
error increases withl and withunS21u. Equation~72! under-
estimates the error for largel and unS21u, due to the break-
down of the expansion~71!.

FIG. 12. The error from the next-to-leading order slow-roll a
proximation in the scalar multipolesCl

S versusl for various values
of the spectral indexnS. The approximation is best close to toda
horizon since, in this figure, we have takenk0r lss51, the most
common choice.
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These large errors, displayed in Fig. 12, can be shifted
different multipoles by a change of the pivot scalek0. There-
fore, one may hide part of the error from the slow-roll a
proximation in the cosmic variance. Inspection of Eq.~72!
suggests that the error is minimized for a given multipole
Dl5 ln(k0r lss). For largel

k0'
e

2

l

r lss
or k0

phys'
e

4
lH 0 , ~73!

where H0 is todays Hubble rate. The position of the fir
acoustic peak suggests to choosel minimal error'200. This
givesk051/22h21 Mpc '1/31 Mpc forh50.71, the Hubble
Space Telescope key project final value. Figure 13 shows
errors at the next-to-leading order for various values of
scalar index with the new choice for the pivot scale. It can
seen clearly that the errors are highly suppressed aroul
'200, as expected, but increase at lower and higher m
poles. The tiny bump betweenl'200 andl'500 is due to
the fact that we plot the absolute value; in this region
error changes its sign. The new choice of the pivot sc
allows us to predict the multipoles in the range 2< l<2000
for nS50.9 better than 10%, which was not possible with t
pivot scale chosen previously. Nevertheless, the precisio
not good enough to reach the 1% accuracy level~the error is
2.4% atl 52000). In order to do so it is necessary to ha
nS.0.93 org,0.032.

The error in theT/S ratio is displayed in Fig. 14. In ou
special situation the pivot scale does not enterR, becausee
5d @see Eq.~65!#. We see that the error inR is less impor-
tant than for the amplitudes and/or the quadrupoles. Th
fore this suggests to useR to test the single scalar field an
slow-roll paradigm. However, it is clear that any violation
the consistency check by the forthcoming data should
interpreted as a failure of this paradigm but not as the fail
of inflation itself. In a more general situation whereeÞd, the
choice ofk0 does affect the error inR. Since we do not have
an exact solution for scalar and tensors modes such the
Þd at our disposal, it is difficult to predict the correspondin
effect.

FIG. 13. The same as Fig. 12, but withk0r lss5100e. This opti-
mizes the accuracy in the region of the first acoustic peak.
0-12
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PRECISION OF SLOW-ROLL PREDICTIONS FOR . . . PHYSICAL REVIEW D62 103520
The errors from the slow-roll approximation displayed
Figs. 10, 11, 12, and 13 should be compared with the cos
variance. The cosmic variance is the variance of the b
unbiased estimator for the multipole moments@25,37#:
EBest(Cl)51/(2l 11)(m52 l

m5 l almalm* , where we have ex-
panded the temperature fluctuations over the basis of sp
cal harmonics,D(eW )5( lmalmYlm(eW ). This expression is
valid only if the alm’s satisfy a Gaussian or a mildly non
Gaussian statistics. The corresponding error can be writte

eCl

(cv)[
sEBest(Cl )

Cl
3100%5A 2

2l 11
3100%. ~74!

Over the whole range of the spectrum that will be measu
by a mission like Planck the cosmic variance is larger th
2%(l'2000) and is'7% at the first acoustic peak (l
'200).

It is possible to reduce the cosmic variance by binn
several multipoles together at the expense of decreasing
precision on the location of the multipoles. Therefore,
define an averaged multipole,C̄l , on the range@ l 2L,l
1L# by

C̄l[
1

2L11 (
j 5 l 2L

l 1L

j ~ j 11!Cj . ~75!

The central valuel of each interval must be separated
2L11. For an incomplete sky coverageL is restricted by the
form of the basis used to expandD(eW ). Below we do not take
this issue into account and assume that the full sky is c
ered. In order to calculate the cosmic variance associ
with the binned multipole, we define the estimator

E~C̄l ![
1

2L11 (
j 5 l 2L

l 1L
j ~ j 11!

2 j 11 (
m52 j

j

ajmajm* . ~76!

This estimator is clearly unbiased,^E(C̄l)&5C̄l , and it is
very likely that this is also the best one although a rigoro
proof is not presented here. Its variance can be expresse

FIG. 14. The error in the tensor to scalar ratio in leading~thin
line! and next-to-leading order~thick line!.
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sE(C̄l )
2

5
1

~2L11!2 (
j 5 l 2L

l 1L

j 2~ j 11!2
2Cj

2

2 j 11
. ~77!

Using thatl ( l 11)Cl' const, ifL is not too big, we arrive at

eC̄l

(cv)
[

sE(C̄l )

C̄l

3100%'
1

2L11
A (

j 5 l 2L

l 1L 2

2 j 11
3100%.

~78!

For L50 this error reduces to the known expression for
cosmic variance~74!. In this case it is independent of th
spectral index, whereas forLÞ0 this is true as long asl ( l
11)Cl is approximately constant within the range@ l 2L,
l 1L#. With the same approximation we find that the slo
roll error in C̄l is just eC̄l

( i )
'eCl

( i ) .

The cosmic variance for different multipoles and binni
is displayed in Table I. For comparison we give the errors
the multipole moments from the slow-roll approximation
leading and next-to-leading order for the pivot scale cor
sponding to the present horizon and we also present the
rors at the next-to-leading order for the pivot scale cor
sponding to the scale of the first acoustic peak. We pres
the results for two values of the spectral index, correspo
ing to 1(2)s errors in the COBE measurement.

For k05r lss
21 , the error from the slow-roll approximation

in leading order dominates over the cosmic variance alre
at l 510 for nS50.9 andL50. For the next-to-leading orde
and nS50.9 the slow-roll error dominates over the cosm
variance atl 5100, for any binning of multipoles. In the cas
of nS50.6 only the error in the quadrupole from the slow
roll approximation at next-to-leading order is smaller th
the cosmic variance. Only forunS21u,1022 is the error
from the next-to-leading order below 1%, which is the ord
of magnitude of the cosmic variance in the Silk dampi
regime of the spectrum.

For k051/22h21 Mpc, the situation is improved. The
slow-roll error and the cosmic variance are of the same or
of magnitude up tol 51000 (nS50.9). However, this is not
sufficient to hide the slow-roll error in the cosmic varian
for the whole spectrum. FornS50.6, the slow-roll error ex-
ceeds the cosmic variance at small and large scales an
hidden in the cosmic variance only for a narrow range
scales aroundk0. Let us point out that values of the tilt of th
order of 0.1 and larger are a realistic possiblity, as is clea
seen from the maximum likelihood fits to the recent BO
MERanG and MAXIMA-1 data.

We conclude that for a general model of inflation on
numerical mode-by-mode integration can presently prov
predictions for the CMBR with less than 1% error, unless
slow-roll parameters are less than 1022. To give an example
let us consider the case of chaotic inflation with a poten
V}wp, for which the slow-roll parameters aree'p/200,d
'(p22)/200, andj'(p22)(p24)/(200p), giving nS

(sr)

'12(p12)/100. Thus forp52(4) the errors from the
slow-roll approximation at next-to-leading order are of t
same order as the cosmic variance for largel, since e
'0.01(0.02) andd'0(0.01), which corresponds tonS

(sr)
0-13
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TABLE I. Comparison of errors from the cosmic variance and the slow-roll approximation in leading
next-to-leading order withk0r lss51 and in next-to-leading order withk0r lss5100e, for various values of the
spectral indexnS, the bin widthL, and the multipolel. The ‘‘2 ’’ denotes errors that exceed 100%.

nS L l eC̄l

(cv)
eC̄l

(0)
eC̄l

(1)
eC̄l

impr

0.9 0 2 63% 15% 0.4% 8.1%
10 31% 34% 3.4% 4.1%
100 10% 68% 15% 0.35%
1000 3.2% 2 39% 1.0%

2 10 14% 34% 3.4% 4.1%
100 4.5% 68% 15% 0.35%
1000 1.4% 2 39% 1.0%

4 10 11% 34% 3.4% 4.1%
100 3.3% 68% 15% 0.35%
1000 1.1% 2 39% 1.0%

0.6 0 2 63% 73% 8.6% 56%
10 31% 2 92% 36%
100 10% 2 2 4.6%
1000 3.2% 2 2 22%

2 10 14% 2 92% 36%
100 4.5% 2 2 4.6%
1000 1.4% 2 2 22%

4 10 11% 2 92% 36%
100 3.3% 2 2 4.6%
1000 1.1% 2 2 22%
ha
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'0.96(0.94). However, already forp56, the slow-roll ap-
proximation in the next-to-leading order leads to errors t
exceed the cosmic variance at high multipoles (e'0.03,d
'0.02,j'0.007, thusnS

(sr)'0.92).
Forthcoming high precision missions, especially the MA

and Planck satellites, will only be limited by the cosmic va
ance up tol'1000 andl'2000 respectively. Therefore pre
dictions from inflationary models should be made such t
the slow-roll error does not exceed the cosmic variance.
have shown that there are slow-roll models which can
meet this requirement.

Another implication is that the large errors in the pr
dicted multipoles render all attempts to reconstruct the in
tionary potential difficult. The reason for this is that reco
struction usually assumes that the primordial spectru
instead of the multipoles, is measured to a high precis
://

up

/S

v.
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We have shown in this work that the errors in the predict
of the multipoles are easily an order of magnitude larger
first attempt to go directly from inflation to the calculation
the multipole moments has been put forward by Grivell a
Liddle @38# recently. In our opinion a purely numerical ap
proach to this fundamental issue is not fully satisfactory
better analytic methods are needed.
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