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The Lame equation in parametric resonance after inflation
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We show that the most general inflaton potential in Minkowski spacetime for which the differential equation
for the Fourier modes of the matter fields reduces to Laraquation is of the fornV(¢) =X\ ¢*/4+ K $?/2
+ul(2¢%) +V,. As an application, we study the preheating phase after inflation for the above potential with
K=0 and arbitraryr,>0. For certain values of the coupling constant between the inflaton and the matter
fields, we calculate the instability intervals and the characteristic exponents in closed form.

PACS numbd(s): 98.80.Cq, 98.80.Hw

[. INTRODUCTION the associated characteristic exponents in closed f6r6j.
In this paper we extend the above results and derive the most
The phenomenon of parametric resonance plays a fundgeneral inflaton potential in Minkowski spacetime for which
mental role in modern theories of preheating after inflationthe corresponding matter modes equation reduces to the
[1-3]. At the end of the slow-roll phase, the inflaton field Lameform. The resulting potential possesses a term of the
starts oscillating around the minimum of the potential in aform ¢~ 2, appearing typically in the context of certain su-
coherent way. If this field is coupled to some other matterpersymmetric inflation models, see R€8,9].
fields, the periodic evolution can give rise to an explosive The paper is organized as follows. In Sec. Il we present
production of matter quanta thanks to the resonant amplifiour main result, obtaining the most general potential for the
cation of vacuum fluctuations. This production is typically inflaton field in a Minkowskian background leading to the
characterized by the exponential growing of the occupation.ame equation for the matter fields via the usggkp?x?/2
number of those states whose momentum lies within certainoupling. For a certain choice of the parameters of this po-
resonance bands. This effect is essentially nonperturbativéential, we explicitly determine the scaling factors necessary
and the corresponding production of particles is much moréo reduce the equation for the Fourier modes of the matter
efficient than the traditional perturbative decay of the infla-fields to the Lameequation. In Sec. lll, we determine the
ton field during reheating. However, this nonperturbativerange of values of these parameters compatible with the
character makes it extremely difficult to obtain exact resultsslow-roll approximation and the amplitude of the density
in most inflation models and, as a consequence, one mugerturbations observed by the Cosmic Background Explorer
rely on numerical computations in order to obtain informa-(COBE). For several values of the coupling constgnive
tion about spectra or time evolution of the particle produc-compute (using the results of Refd5,6]) the resonance
tion. Despite this fact, a few models are known for which itbands, the corresponding characteristic exponents, and the
is possible to obtain the width of the resonance bands and th&umber density of particles produced. Our results show that
characteristic exponents in an analytical fashion. In particuthe particle production in the preheating phase remains un-
lar, the pure quadratic potentid{ ¢) =m2¢2/2 for the infla-  changed if a termu/(2¢?) is added to the ¢*/4 model for
ton field in Minkowski space yields the Mathieu equation for a broad range of values of the parameieiVe finally sum-
the Fourier modes of a scalar fieldcoupled to the inflaton marize in Sec. IV the main results of our paper.
asg?¢?x?/2 [4,1]. In an expanding background, the quartic
inflaton potentialV(¢$) =\ ¢*/4 leads to the Lamequation
for the corresponding matter fields mod&$. This equation
also appears in connection with some other combinations of Let us consider the following Lagrangian density for the

Il. THE INFLATON POTENTIAL

these inflaton potentials, such a4 ¢)=(4>—a?)? [6]. inflaton field ¢» coupled to a scalar massless matter figld
Parametric resonance driven by the latter potential has also
been proposed as a mechanism for the generation of long- 1 1 2

. - : g
wavelength pion modes from disoriented chiral condensates £= 509’3, ¢d, ¢+ 9", xd,x —V(p)— 5 $?x>.
2 K 2 K 2
(DCO) [7].
The relevance of the Lameguation in the study of para-
metric resonance stems from its unique analytical propertie
which makes it possible to compute the resonance bands a

()

iﬁe will assume our background fields to be homogeneous
and isotropic, i.e., the space-time metric is of the Friedmann-
Robertson-Walker fornils?>=dt?>—a?(t)dx?, and the infla-

ton field ¢(t) depends only on time. The corresponding clas-
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o1

X+ 3Hk— 2 didix+g*d*x =0, 3
whereH=2a/a, and the prime denotes differentiation with
respect to the argument &. Note that we are neglecting
back reaction effects from thg fields in the inflaton equa-
tion (2) assuming that the expectation val(g?) is negli-
gible during the first inflaton oscillations.

Let us rescale the field ap=a¢, y=ay, and work in
conformaly time defined bya d»=dt. It is then possible to
rewrite the equations of motion as

d’¢ . . 1d%a.
d—772+aV(a ¢)_5d_772¢20’ 4
d2y " oma. 1 d?a _
a2 Gdxtd ¢ _EWXZO' 5

In the particular case in which the potential &(¢)
=\ ¢*4, it can be showii5] that the scale factor grows as
a(#n)«n, and hence the last terms in E¢4) and(5) vanish,

while the terma3V’(a~1¢) reduces to\ 3. The equations
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In the latter equationsn=«?e (0,1) is the square of the
modulus of the elliptic sine function st=sn(x, x). Compar-
ing Egs.(8) and(9) we see that we can take without loss of
generality

f(x)==(B—srtx)? (11)
and
E=72(K2+ Bg?#3), mn(n+1)=72g2¢3. (12
Note thatB=1 for f to be real for allx e R.
It follows from Eg. (6) that
! (dq& i V =E 13
7\ gr) TV(@=E (13

where the integration constahtis the energy density of the
inflaton field. Using the well-known identities

d
—snx=cnx dnx
dx

and

of motion are thus expressed in Minkowskian form in terms

of the rescaled fields. However, this is not true for an arbi-

trary potential, and for that reason in the following we will
concentrate only in the Minkowskian limie&1). This can

be considered as a first approximation to the full problem

and, in particular, it will allow us to obtain analytic results in

some cases. Nevertheless, we expect that our results will
carry over to an expanding universe with minimal quantita

tive changedthough rather important analytic differenges
when the potential differs from ¢*/4 by a small perturba-
tion.

Let us then consider the equations of motion
Minkowski space-time

d’¢

W+V (¢)=0, (6)
d2
d_t)z(_ ddix+9°p°x=0. (7)

We shall now derive the most general inflaton potential

V(¢) for which the differential equation for the Fourier
modes of the matter fields

Xk 12, 50
gz T (K97 x=0 8
reduces to the Lamequation
d2X,
W+((€'_mn(n+1)sr\2X)xk:0 (9)
under a change of scale
t=7X,  d(t)=dof(x), xu(t)=Xu(x). (10

in

crPx=1—B+f2(x), drfx=1—mpB+mf3(x),

we immediately show that

2

+U(f)=E;, (14

2la

with U andE; given by

4 — —
U(f)= %"- %(1+ m—3mp)f2+ AB 12):5 mA) ,

Ei=— %[3m,6’2—2(1+ m)B+1].

Comparison of Eq913) and(14) using Eq.(10) shows that
the inflaton potentiaV/(¢) must be of the forni16]
¢t P u

4 2 (19

V(é)

where the potential coefficienta (K, ) and the energy den-
sity E are related to the parametei8,(n, 7, ¢) through the
following equations:

2m

1
)\27_2—%, K=;(1+m—3mﬂ), (16)
Rz
p=—B(B=1)(1-mp), (17)
$o .
E=—55[3mg°—2(1+m)B+1]+V,.
(18
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Note that the positivity ok forcesu to be non-negative for

V to have a global minimum. We have thus shown that, in o-¢

order for Eq.(8) to reduce under scaling to Lareeequation

(9), the inflaton potentiaV(¢) must necessarily be of the

form (15).
One must now prove thatny potential of the form(15)

leads to Lamis equation(9). For this to be the case, Egs.

(16)—-(18) should have a solution foarbitrary values of
A>0, K, =0 andE>V,,,, whereV ., is the minimum
value of the potentia(15) (the valueE=V,, must be dis-

carded, since thegh reduces to the trivial constant solution

&= dmin)- We shall verify this only for the cad€=0, which
we shall study in detail in the following sections.

For K=0 the second Eq16) can be used to solve f@
in terms ofm, obtaining

1
1+ —

o) (19

1
F=3

The conditionB=1 then implies that

N| -

o<ms

When 0<m< 1/2 the remaining equatiori4?), (18) are eas-
ily solved, with the following result:

2 ) ) m 1/3
_Z\2,\-13 == —
. m?—m+1
E_V1W+V01 (21
where
1 1/3
D(m)= (1+m)(2—m)<§—m” ,

and V;=3/4(\ u?) " is the minimum of the potentiall5)
for K=Vy=0. Since

(22)

grows monotonically in the intervahe (0,1/2), withE(0)
=1 and lim, ., »E(m)=+o, it follows that Eq. (21)
uniquely determinesne (0,1/2) for arbitrary values ot
>V,+Vo=Vpmin- Equation(20) then yieldsr and ¢, for
arbitrary\,u>0. Form=1/2 Eqs.(16)—(18) simplify to

A ! 0, E g
:—7 M: , = —s
7'29”0

47%"
These are the equations obtained in RB}.for the A ¢*/4
potential, which again uniquely determineand ¢, in terms
of A\>0 andE>V,,;;,=0. In fact, form=1/2 Eq.(19) implies
that 8=1, so that Eq(11) yields f?(x) =cré(x,1/2).
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FIG. 1. Oscillations after inflation of the inflaton field (in
units of Mp) as a function of timé (in units of 1(?/Mp) computed
from the exact formulag10), (11). We have taken\=9.091
x 1071 pY6=5553<10"3Mp, m=0.417, corresponding ta
=1; see the discussion in the text for details. The horizontal axis is
placed atg,/M,=1//.

lIl. EXACT RESULTS FOR THE A ¢*/4+/(2¢?) MODEL

Potential terms of the formw¢ P have been considered
in different contexts in the literature. They appear in hybrid
inflation models[10], or in the so-called intermediate infla-
tion[11]. But it is probably in the context of supersymmetric
models of inflation where this kind of terms is more relevant.
In fact, these contributions arise generically due to nonper-
turbative effects in supersymmetric gauge theofies, the
scale u and the exponenp depending on the particular
gauge group in the theory. Inflationary models based on this
kind of potentials have been studied in Rg¢9].

Motivated by the connection with the Lanegjuation es-
tablished in the previous section, we shall consider an effec-
tive potential during inflation and preheating of the form

4

v<¢):v0+>\%+ -

287 (23

We shall derive an analytic expression for the instability in-
tervals and the characteristic exponents for certain values of
the ratiog?/\. In principle, higher-order terms could appear
in the full potential, but we will assume that their effect is
negligible during inflation and preheating. We could also
have considered the contribution of a mass term as shown in
the previous section, but in order to obtain closed expres-
sions we will ignore it in what follows.

The minimum of the potential is placed éty,=(u/\)"®
= «, while the constanV¥, must be taken a¥,=—V,, i.e.
Vmin=0, for the cosmological constant to vanish. The infla-
ton field ¢ oscillates around,,;, with amplitudea(/1+m
—J1-2m)/(2/D(m)) and period 2K («), whereK () is
the complete elliptic integral of the first kirjd 3]. Note that,
in contrast to the purk ¢*/4 model, ¢, is nonzero and the
oscillations are not symmetric abodt,, (see Fig. 1

Let us introduce the following notationh= ¢/« and @

=+ mal/Mp. The slow-roll parameterg and # for this
model are given by

103515-3
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log;,(1012 ))

L logg(w/®/Mp)

-2 -1 o 1 3 loglo @

FIG. 2. Log-log plots of 1¥\ and u*®Mp versus@ for
10 3<a=<10.

~ ~ 2
M2 (v \? 1 $*+P2+1
e=—o | —| ==| ——— (24)
167\ V) @\ G5+ $3-2%
and
MV’ 3 #o+1

7 (25

8w V262 38_33t4 232

The end of inflation occurs when the slow-roll approxima-

tion breaks down, i.e., foe=1 or »=1. In the cas&x<1
the valueg,nqat the end of inflation is given to a very goo
approximation byen=v3/2a 1. However foras>1 the
corresponding value behaves @s,&~1+1/2Z&"*. The ini-

tial value ¢4, corresponding to 6@folds before inflation
ends is determined by the condition

60=—

87T ¢end V
j (26

Mg’ b60 A
It follows that ¢go=+123/Zx 1 if @<l and ¢g=1

+11/Z&~ 1 if @>1. Accordingly, the amplitude of the den-
sity perturbations ath= ¢¢, can be written as

5.(K) 16 [2m V32
s N o3 M3V

2 [2n_ (3o~ 3dget2)%?
En— — .
sm V3 $oo—1

#=deo

(27)

We thus getsy (k) = (V4IN/ 7) (123/5+ 96/41x%) for <1
and 5, (k)=242/(57) 2\& for @>1. The COBE normal-
ization 8(k)=5x10"° determines\ (and thusu) as a
function of @, see Fig. 2. In the limita=0 we getA
=10"12 while A\=5%10 *?%a? for a>1. Sinceu*<M5p
we getA=2x10 8 whena>1. This in turn implies that
a=2x10°.

The value ofmis obtained from Eq(21), with the energy
density of the inflaton field given by

PHYSICAL REVIEW D 62 103515
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FIG. 3. Value of the square modulusas a function ofa.

Zbgnd_ 3a§nd+ 2
agnd

E=V(dend =V1 (28)

For @<1, to a very good approximation we have
=3/4a~*. From EQ.(22) we thus getm=1/2—4/9a°. On
the other hand, fof>1 we haveE=1+% 2, leading to
m=2/3a"1. In Fig. 3 we present the plot @h as a function
of @ for @ between 0 and 10.

If nis a positive integer, the Lamaguation(9) possesses
exactlyn+1 instability zones as the parametatakes val-

d ues on the real line, whose corresponding solutions grow

exponentially at either-c [14]. However, only those insta-
bility bands for which the squared momentuh given by
Eg. (12) is non-negative are physically significant. Accord-
ing to Floquet’s theorem, the solutions of the Laawgiation

in an instability band can be written asXi(x)
=eM*P,(x), whereP,(x) is a periodic function and the
characteristic exponent, has a nonzero real part. The oc-
cupation number for particles with momentlproduced in

the preheating phase can be estimated in terms of the char-

acteristic exponent abl,(t)~e**'7 [6]. Remarkably, for
integern the characteristic exponent for the Laewgguation is
given by an exact formula involving a quadrature which, at
least for the lowest values of can be expressed in terms of
elliptic integrals[5,6]. We shall omit here most details and

quote from the above references only the main steps for the

derivation of this formula.

The key ingredient for obtaining the formula is the con-
struction of an exact expression for the product of two lin-
early independent solutions of the Laraguation[17]. The
product of two such solutions satisfies the third-order differ-
ential equation given by

2p(z)M"(2)+3p'(2)M"(2) +[p"(2)
+2(E+mn(n+1)(z—1))]M'(2)

+mn(n+1)M(z)=0, (29

wherez=cr? x, and

p(z)=(1—-m)z+(2m—1)z>—mZ.

103515-4
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If nis a nonnegative integer, E(R9) is satisfied by a suit-
able polynomial of degres, which (following [6]) shall be
written as

n

M(n)(z)z__z0 amz" (30)

with the normalization conditiom{"=1. Sincez is a peri-
odic function ofx, the polynomialM,(z) coincides with
the product of two linearly independent solutions of the
Lame equation(9) when & belongs to an instability zone. It
was shown in Refd.5,6] that the characteristic exponent is
determined by the definite integral

Cn)

f 1 dz
Mk= '
2K(x) Jo \p(2)M 1(2)
P " FIG. 4. Characteristic exponent as a functionaofind 16%2

where for n=1.

(31)

C(zn)z(mn(nJr 1)-&@")?+(m-1)a",al”. (320  since it would force the momentuknto take imaginary val-

ues. Using Eq(36), the second instability zone leads to the

The instability intervals can be obtained imposing that the’eésonance condition

right-hand side of Eq(32) be positive. The sign o€ is s s

chosen so that the real part pf, is positive if £ lies in an Na"(1-2m) _, Na"(m+1)

instability zone. 27D(m) 27D(m)

If all the roots of the polynomiaM ,(z) are real and
different, the definite integral in E§31) can be expressed in Thus form# 1/2 (i.e., fora#0), there is an initial threshold
terms of elliptic integrals. Indeed, let=1—y, and let the for the resonant values of the momentum. If jhéeld had a

(37

constantss;, D;, i=1, ... n, be defined by massm, , the instability interval37) would be shifted by an
amount—m2/M2. Form, large enough, this could result in
1 _i D; 33 the disappearance of the threshold, or even of the whole
Mm(l-y) E1-81y interval.

The polynomialM (1)(2) is given by
The formula(31) for the characteristic exponent, then

-&
reduces to M(l)(z)zz+_m .
_ o % s (3%  Theref
Mk Kx) 24 D) i , erefore
with l_Dj=—
Pr=Di=1 e
RO 1 (0l it g <1,
(B = 35
BrlO0=) o-pw2n) it pris1, 2 and
1
wherell(s|«) is the complete elliptic integral of the third C(Zl)z—z(S— m)(E—-1)(1+m—¢&).
kind [13]. m

We shall now compute the characteristic exponentnfor
=1,2,3 using Eq(34). It shall be convenient to define the

dimensionless momentuk=k/Mp. Using Eq.(20) and the plot the characteristic exponent as a functiof@aind 16
definition of &, Eq. (12) becomes for @ between 0 and 10. The absolute maximum of the char-

acteristic exponent fon=1 is u,=0.147 atz=0 andk?
1(27D(m)-, =1.08x10 '3, in agreement withi6]. The maximum of the
=3 gz KHm+n(n+1)). (86)  characteristic exponent for fixé#l decreases monotonically
with @. In contrast, the width of the resonance band of the
For n=1, the Lameequation(9) possesses two instability squared momenturk? increases fofa small, reaching its
zones, namelfe (—,m) and £ (1,1+m); see for in- maximum afe=2.442. In order to compare the efficiency of
stance Ref[15]. The first instability zone is not admissible, the particle production with the puve¢?/4 model, we esti-

Note that,6’1‘1> 1 in the second instability zone. In Fig. 4 we
X2
k
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log,o N(&) located afix=0.858. The coefficiental?) andal?) defining
the polynomialM ,y(z) are given by[omitting the super-
75\ script (2)]
-10 4—-2m—-& (1+m=&)(4+m—=¢)
a=————, ay= ~ . (40

10

FIG. 5. Plot of loggN(@) as a function ofx for n=1,2,3.

mate the number density in units bf3 after 30 oscillations
of the inflaton field(when the back reaction becomes signifi-
cant in thex ¢* mode) as

1 (. .
NQ@2§;§ﬁk%HWW“MK (39

wherel is the union of all the instability intervals. In Fig. 5
we plot the logarithm of the number density vergudn Fig.
6 we represent the ratid$(@)/N(0) for small values otx.
The number density fan=1 (i.e.,g>=\) is almost constant
for @=<0.2. Therefore, in this case the effect of the term
wl(2¢?) in the energy transfer from the inflaton field is neg-
ligible provided u*<10"3Mp. The number density de-
creases sharply fa#=0.5.

We next examine the case=2. In this case the Lame
equation (9) possesses three instability zones, out of
which the only relevant one is Am<&<2(1l+m

+ym?—m+1), leading to
3\&%(2—m) P2<3)\’Eu2\/m2—m+1

27wD(m) 7D (m)

(39

The width of the resonance band of the squared momentum

k2 also increases in this case for snia)lwith its maximum

0.

N(&)/N(0)

FIG. 6. Number densities ratid(@)/N(0) for small values of
@ andn=1,2,3.

Wi

3m 9m

One can immediately show that the roots\f,(z) are real
and different if€ lies in the above instability band. The co-

efficients 8, , and D , are respectively given by

1

Bia=5(2+a,¥ Jaj—4ay), (41)
*(2+a;)+ai—4a,

D1 (42)

" 2(1+a,+ay) Jai—4a,’

ith a; , given by Eq.(40). Note that,81’5>1 in the insta-
bility zone. The coefficienC(Zz) is given by

1
C@:§EFu+m_5ﬂ4+m—&m+4m—a

X (E2—4(1+m)E+ 12m).

The maximum of the characteristic exponent in the instabil-
ity band also decreases monotonically with The absolute
maximum is u,=0.036 at@=0, k’=7.67x10 '3 four
times smaller than the absolute maximum for 1. Corre-
spondingly, the particle production is also much less efficient
than in the casen=1; see Fig. 5. The maximum particle
production forn=2 occurs where=0.245; see Fig. 6.

The casen=3 presents some unexpected effects. In this
case, the Lameequation (9) possesses four instability
zones, out of which the only relevant ones aée
e (4(1+m),2+5m+2 J4m?’—m+1) and Ee(5+2m

+2Jm?—m+4,5(m+1)+2/4m?’—~7m+4). In terms of

the dimensionless momentukn these are

3\a? .
—m)(m—2+2\/4m -m+1), (43

T2
o<k <27-rD(

and

)\"’2
m(1—2m+2\/m —m+4)
3\G?
27D(m)

(1+ m+2\/4m2—7m+4).

(44)

<k?<

For both resonance bands, the width increases for sinall
with the respective maxima located &=1.052 anda
=0.533. The coefficients of the polynomill 3)(z) defined
in Eq. (30) are given by

_9-6m-¢

A 5m

103515-6
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282+ (4m—26)E+27Tm?—51m+ 72 45 IV. CONCLUSIONS
2 75m? ’ In this paper we have characterized the most general sca-

lar potential for the inflaton field leading to the Laragua-
tion for the matter field modes in a Minkowskian back-

az=— 5 (E3-2(4m+T7)&2 ground. The resulting potential possesses a term of the form
225m wl(24?) in addition to the terms\ ¢*/4+K $2/2 already
+[16m(m+5) +49]E— 12(m+1)(8m+3)). studied in the literature. We have analyzed the effect of this

new term in the preheating era after inflation in the particular

caseK=0. Exact expressions for the resonance bands and
The coefficientsC(23) and B;, D;, i=1,2,3, are then easily the characteristic exponents have been derived for certain
obtained from Eqs(32) and(33). The resulting expressions values of the coupling constant between the inflaton and the
are very cumbersome and shall not be displayed here. It mayatter fields. The effect of the new term in the particle pro-
be shown that the coefficieng; are all real and different in  duction is virtually negligible providegt*<1073Mp, even
the resonance bands. though the inflaton potential is modified in an essential way

Just as in the previous cases 1,2, the maximum of the near the origin. However, fon¥/®>10"3M matter produc-

characteristic exponent decreases monotonically wittor ~ tion is heavily suppressed by the new term as compared to
both resonance bands. For the lower resonance band giventime pure\ ¢*/4 model. The situation in this respect is ex-
Eq. (43), the absolute maximum ig,=0.159 atw=0, k>  pected to remain unchanged for other values of the coupling
=2.09x10 3 while for the higher one in Eq(44) the  constant.

maximum value isu,=0.0078 ata=0, k?=1.857x 10 12
The particle production & =0 is two orders of magnitude
more efficient than in the case=1. However, it decreases A.L.M. wishes to thank J. GaraiBellido for useful dis-
with @ much faster than in the previous cases1,2; see cussions. This work was partially supported by grants DGES
Figs. 5 and 6. PB98-0821 and DGICYT AEN97-1693.
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