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The Lamé equation in parametric resonance after inflation
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We show that the most general inflaton potential in Minkowski spacetime for which the differential equation
for the Fourier modes of the matter fields reduces to Lame´’s equation is of the formV(f)5lf4/41Kf2/2
1m/(2f2)1V0 . As an application, we study the preheating phase after inflation for the above potential with
K50 and arbitraryl,m.0. For certain values of the coupling constant between the inflaton and the matter
fields, we calculate the instability intervals and the characteristic exponents in closed form.

PACS number~s!: 98.80.Cq, 98.80.Hw
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I. INTRODUCTION

The phenomenon of parametric resonance plays a fu
mental role in modern theories of preheating after inflat
@1–3#. At the end of the slow-roll phase, the inflaton fie
starts oscillating around the minimum of the potential in
coherent way. If this field is coupled to some other mat
fields, the periodic evolution can give rise to an explos
production of matter quanta thanks to the resonant amp
cation of vacuum fluctuations. This production is typica
characterized by the exponential growing of the occupa
number of those states whose momentum lies within cer
resonance bands. This effect is essentially nonperturba
and the corresponding production of particles is much m
efficient than the traditional perturbative decay of the infl
ton field during reheating. However, this nonperturbat
character makes it extremely difficult to obtain exact resu
in most inflation models and, as a consequence, one m
rely on numerical computations in order to obtain inform
tion about spectra or time evolution of the particle produ
tion. Despite this fact, a few models are known for which
is possible to obtain the width of the resonance bands and
characteristic exponents in an analytical fashion. In parti
lar, the pure quadratic potentialV(f)5m2f2/2 for the infla-
ton field in Minkowski space yields the Mathieu equation f
the Fourier modes of a scalar fieldx coupled to the inflaton
asg2f2x2/2 @4,1#. In an expanding background, the quar
inflaton potentialV(f)5lf4/4 leads to the Lame´ equation
for the corresponding matter fields modes@5#. This equation
also appears in connection with some other combination
these inflaton potentials, such asV(f)5(f22s2)2 @6#.
Parametric resonance driven by the latter potential has
been proposed as a mechanism for the generation of l
wavelength pion modes from disoriented chiral condens
~DCC! @7#.

The relevance of the Lame´ equation in the study of para
metric resonance stems from its unique analytical proper
which makes it possible to compute the resonance bands
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the associated characteristic exponents in closed form@5,6#.
In this paper we extend the above results and derive the m
general inflaton potential in Minkowski spacetime for whic
the corresponding matter modes equation reduces to
Lamé form. The resulting potential possesses a term of
form f22, appearing typically in the context of certain s
persymmetric inflation models, see Refs.@8,9#.

The paper is organized as follows. In Sec. II we pres
our main result, obtaining the most general potential for
inflaton field in a Minkowskian background leading to th
Laméequation for the matter fields via the usualg2f2x2/2
coupling. For a certain choice of the parameters of this
tential, we explicitly determine the scaling factors necess
to reduce the equation for the Fourier modes of the ma
fields to the Lame´ equation. In Sec. III, we determine th
range of values of these parameters compatible with
slow-roll approximation and the amplitude of the dens
perturbations observed by the Cosmic Background Explo
~COBE!. For several values of the coupling constantg we
compute ~using the results of Refs.@5,6#! the resonance
bands, the corresponding characteristic exponents, and
number density of particles produced. Our results show
the particle production in the preheating phase remains
changed if a termm/(2f2) is added to thelf4/4 model for
a broad range of values of the parameterm. We finally sum-
marize in Sec. IV the main results of our paper.

II. THE INFLATON POTENTIAL

Let us consider the following Lagrangian density for t
inflaton fieldf coupled to a scalar massless matter fieldx:

L5
1

2
gmn]mf]nf1

1

2
gmn]mx]nx2V~f!2

g2

2
f2x2.

~1!

We will assume our background fields to be homogene
and isotropic, i.e., the space-time metric is of the Friedma
Robertson-Walker formds25dt22a2(t)dx2, and the infla-
ton fieldf(t) depends only on time. The corresponding cla
sical equations of motion for the different fields are

f̈13Hḟ1V8~f!50, ~2!
©2000 The American Physical Society15-1
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ẍ13Hẋ2
1

a2 ] i] ix1g2f2x50, ~3!

where H5ȧ/a, and the prime denotes differentiation wi
respect to the argument ofV. Note that we are neglectin
back reaction effects from thex fields in the inflaton equa
tion ~2! assuming that the expectation value^x2& is negli-
gible during the first inflaton oscillations.

Let us rescale the field asf̂5af, x̂5ax, and work in
conformalh time defined bya dh5dt. It is then possible to
rewrite the equations of motion as

d2f̂

dh2 1a3V8~a21f̂ !2
1

a

d2a

dh2 f̂50, ~4!

d2x̂

dh2 2] i] i x̂1g2f̂2x̂2
1

a

d2a

dh2 x̂50. ~5!

In the particular case in which the potential isV(f)
5lf4/4, it can be shown@5# that the scale factor grows a
a(h)}h, and hence the last terms in Eqs.~4! and~5! vanish,
while the terma3V8(a21f̂) reduces tolf̂3. The equations
of motion are thus expressed in Minkowskian form in ter
of the rescaled fields. However, this is not true for an ar
trary potential, and for that reason in the following we w
concentrate only in the Minkowskian limit (a51). This can
be considered as a first approximation to the full probl
and, in particular, it will allow us to obtain analytic results
some cases. Nevertheless, we expect that our results
carry over to an expanding universe with minimal quanti
tive changes~though rather important analytic difference!
when the potential differs fromlf4/4 by a small perturba-
tion.

Let us then consider the equations of motion
Minkowski space-time

d2f

dt2
1V8~f!50, ~6!

d2x

dt2
2] i] ix1g2f2x50. ~7!

We shall now derive the most general inflaton poten
V(f) for which the differential equation for the Fourie
modes of the matter fields

d2xk

dt2
1~k21g2f2!xk50 ~8!

reduces to the Lame´ equation

d2Xk

dx2 1„E2mn~n11!sn2 x…Xk50 ~9!

under a change of scale

t5tx, f~ t !5f0f ~x!, xk~ t !5Xk~x!. ~10!
10351
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In the latter equationsm5k2P(0,1) is the square of the
modulus of the elliptic sine function snx[sn(x,k). Compar-
ing Eqs.~8! and~9! we see that we can take without loss
generality

f ~x!56~b2sn2 x!1/2 ~11!

and

E5t2~k21bg2f0
2!, mn~n11!5t2g2f0

2. ~12!

Note thatb>1 for f to be real for allxPR.
It follows from Eq. ~6! that

1

2 S df

dt D
2

1V~f!5E, ~13!

where the integration constantE is the energy density of the
inflaton field. Using the well-known identities

d

dx
snx5cnx dnx

and

cn2 x512b1 f 2~x!, dn2 x512mb1m f2~x!,

we immediately show that

1

2 S d f

dxD
2

1U~ f !5Ef , ~14!

with U andEf given by

U~ f !5
m f4

2
1

1

2
~11m23mb! f 21

b~b21!~12mb!

2 f 2 ,

Ef52
1

2
@3mb222~11m!b11#.

Comparison of Eqs.~13! and~14! using Eq.~10! shows that
the inflaton potentialV(f) must be of the form@16#

V~f!5l
f4

4
1K

f2

2
1

m

2f2 1V0 , ~15!

where the potential coefficients (l,K,m) and the energy den
sity E are related to the parameters (b,m,t,f0) through the
following equations:

l5
2m

t2f0
2 , K5

1

t2 ~11m23mb!, ~16!

m5
f0

4

t2 b~b21!~12mb!, ~17!

E52
f0

2

2t2 @3mb222~11m!b11#1V0 .

~18!
5-2
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Note that the positivity ofl forcesm to be non-negative for
V to have a global minimum. We have thus shown that,
order for Eq.~8! to reduce under scaling to Lame´’s equation
~9!, the inflaton potentialV(f) must necessarily be of th
form ~15!.

One must now prove thatany potential of the form~15!
leads to Lame´’s equation~9!. For this to be the case, Eq
~16!–~18! should have a solution forarbitrary values of
l.0, K, m>0 andE.Vmin , whereVmin is the minimum
value of the potential~15! ~the valueE5Vmin must be dis-
carded, since thenf reduces to the trivial constant solutio
f5fmin!. We shall verify this only for the caseK50, which
we shall study in detail in the following sections.

For K50 the second Eq.~16! can be used to solve forb
in terms ofm, obtaining

b5
1

3 S 11
1

mD . ~19!

The conditionb>1 then implies that

0,m<
1

2
.

When 0,m,1/2 the remaining equations~17!, ~18! are eas-
ily solved, with the following result:

t25
2

3
~l2m!21/3D~m!, f0

25S m

l D 1/3 3m

D~m!
, ~20!

E5V1

m22m11

D2~m!
1V0 , ~21!

where

D~m!5F ~11m!~22m!S 1

2
2mD G1/3

,

and V153/4(lm2)1/3 is the minimum of the potential~15!
for K5V050. Since

Ẽ~m!5
m22m11

D2~m!
~22!

grows monotonically in the intervalmP(0,1/2), with Ẽ(0)
51 and limm→1/2 Ẽ(m)51`, it follows that Eq. ~21!
uniquely determinesmP(0,1/2) for arbitrary values ofE
.V11V05Vmin . Equation ~20! then yieldst and f0 for
arbitraryl,m.0. Form51/2 Eqs.~16!–~18! simplify to

l5
1

t2f0
2 , m50, E5

f0
2

4t2 .

These are the equations obtained in Ref.@5# for the lf4/4
potential, which again uniquely determinet andf0 in terms
of l.0 andE.Vmin50. In fact, form51/2 Eq.~19! implies
that b51, so that Eq.~11! yields f 2(x)5cn2(x,1/&).
10351
n

III. EXACT RESULTS FOR THE lf4Õ4¿µÕ„2f2
… MODEL

Potential terms of the formmf2p have been considere
in different contexts in the literature. They appear in hyb
inflation models@10#, or in the so-called intermediate infla
tion @11#. But it is probably in the context of supersymmetr
models of inflation where this kind of terms is more releva
In fact, these contributions arise generically due to nonp
turbative effects in supersymmetric gauge theories@12#, the
scale m and the exponentp depending on the particula
gauge group in the theory. Inflationary models based on
kind of potentials have been studied in Refs.@8,9#.

Motivated by the connection with the Lame´ equation es-
tablished in the previous section, we shall consider an ef
tive potential during inflation and preheating of the form

V~f!5V01l
f4

4
1

m

2f2 . ~23!

We shall derive an analytic expression for the instability
tervals and the characteristic exponents for certain value
the ratiog2/l. In principle, higher-order terms could appe
in the full potential, but we will assume that their effect
negligible during inflation and preheating. We could al
have considered the contribution of a mass term as show
the previous section, but in order to obtain closed expr
sions we will ignore it in what follows.

The minimum of the potential is placed atfmin5(m/l)1/6

5a, while the constantV0 must be taken asV052V1 , i.e.
Vmin50, for the cosmological constant to vanish. The infl
ton field f oscillates aroundfmin with amplitudea(A11m
2A122m)/„2AD(m)… and period 2tK(k), whereK(k) is
the complete elliptic integral of the first kind@13#. Note that,
in contrast to the purelf4/4 model,fmin is nonzero and the
oscillations are not symmetric aboutfmin ~see Fig. 1!.

Let us introduce the following notation:f̃5f/a and ã
5Apa/M P . The slow-roll parameterse and h for this
model are given by

FIG. 1. Oscillations after inflation of the inflaton fieldf ~in
units of M P! as a function of timet ~in units of 106/M p! computed
from the exact formulas~10!, ~11!. We have takenl59.091
310213, m1/655.55331023M P , m50.417, corresponding toã
51; see the discussion in the text for details. The horizontal axi
placed atfmin /Mp51/Ap.
5-3



a

d

-

row
-

d-

c-

har-

at
f

d
the

n-
in-

er-

F. FINKEL et al. PHYSICAL REVIEW D 62 103515
e5
M P

2

16p
S V8

V
D 2

5
1

ã2 S f̃41f̃211

f̃51f̃322f̃
D 2

~24!

and

h5
M P

2

8p

V9

V
5

3

2ã2

f̃611

f̃823f̃412f̃2
. ~25!

The end of inflation occurs when the slow-roll approxim
tion breaks down, i.e., fore.1 or h.1. In the caseã!1
the valuef̃end at the end of inflation is given to a very goo
approximation byf̃end.A3/2ã21. However for ã@1 the
corresponding value behaves asf̃end.111/2ã21. The ini-
tial value f̃60 corresponding to 60e-folds before inflation
ends is determined by the condition

60.2
8p

M P
2 E

f60

fend V

V8
df. ~26!

It follows that f̃60.A123/2ã21 if ã!1 and f̃60.1
111/2ã21 if ã@1. Accordingly, the amplitude of the den
sity perturbations atf5f60 can be written as

dH~k!5
16

5
A2p

3

V3/2

M P
3 uV8u

U
f5f60

5
2

5p
A2l

3
ã3

~f̃60
6 23f̃60

2 12!3/2

f̃60
6 21

. ~27!

We thus getdH(k).(A41l/p)(123/5196/41ã4) for ã!1
and dH(k).242/(5p)A2lã for ã@1. The COBE normal-
ization dH(k).531025 determinesl ~and thusm! as a
function of ã, see Fig. 2. In the limitã50 we get l
.10212, while l.5310212ã22 for ã@1. Sincem1/6&M P
we getl*2310218 when ã@1. This in turn implies that
ã&23103.

The value ofm is obtained from Eq.~21!, with the energy
density of the inflaton field given by

FIG. 2. Log-log plots of 1012l and m1/6/M P versus ã for
1023<ã<103.
10351
-

E5V~fend!5V1

f̃end
6 23f̃end

2 12

3f̃end
2

. ~28!

For ã!1, to a very good approximation we haveẼ
.3/4ã24. From Eq.~22! we thus getm.1/224/9ã6. On
the other hand, forã@1 we haveẼ.11ã22, leading to
m.2/3ã21. In Fig. 3 we present the plot ofm as a function
of ã for ã between 0 and 10.

If n is a positive integer, the Lame´ equation~9! possesses
exactlyn11 instability zones as the parameterE takes val-
ues on the real line, whose corresponding solutions g
exponentially at either6` @14#. However, only those insta
bility bands for which the squared momentumk2 given by
Eq. ~12! is non-negative are physically significant. Accor
ing to Floquet’s theorem, the solutions of the Lame´ equation
in an instability band can be written asXk(x)
5e6mkxPk(x), wherePk(x) is a periodic function and the
characteristic exponentmk has a nonzero real part. The o
cupation number for particles with momentumk produced in
the preheating phase can be estimated in terms of the c
acteristic exponent asNk(t);e2mkt/t @6#. Remarkably, for
integern the characteristic exponent for the Lame´ equation is
given by an exact formula involving a quadrature which,
least for the lowest values ofn, can be expressed in terms o
elliptic integrals@5,6#. We shall omit here most details an
quote from the above references only the main steps for
derivation of this formula.

The key ingredient for obtaining the formula is the co
struction of an exact expression for the product of two l
early independent solutions of the Lame´ equation@17#. The
product of two such solutions satisfies the third-order diff
ential equation given by

2p~z!M-~z!13p8~z!M 9~z!1@p9~z!

12„E1mn~n11!~z21!…#M 8~z!

1mn~n11!M ~z!50, ~29!

wherez5cn2 x, and

p~z!5~12m!z1~2m21!z22mz3.

FIG. 3. Value of the square modulusm as a function ofã.
5-4



he
t
is

th

n

d

r
e

y

,

e

n
ole

e

ar-

y
the

of
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If n is a nonnegative integer, Eq.~29! is satisfied by a suit-
able polynomial of degreen, which ~following @6#! shall be
written as

M ~n!~z!5(
i 50

n

ai
~n!zn2 i , ~30!

with the normalization conditiona0
(n)51. Sincez is a peri-

odic function of x, the polynomialM (n)(z) coincides with
the product of two linearly independent solutions of t
Laméequation~9! whenE belongs to an instability zone. I
was shown in Refs.@5,6# that the characteristic exponent
determined by the definite integral

mk5
C~n!

2K~k!
E

0

1 dz

Ap~z!M ~n!~z!
, ~31!

where

C~n!
2 5„mn~n11!2E…~an

~n!!21~m21!an21
~n! an

~n! . ~32!

The instability intervals can be obtained imposing that
right-hand side of Eq.~32! be positive. The sign ofC(n) is
chosen so that the real part ofmk is positive if E lies in an
instability zone.

If all the roots of the polynomialM (n)(z) are real and
different, the definite integral in Eq.~31! can be expressed i
terms of elliptic integrals. Indeed, letz512y, and let the
constantsb i , Di , i 51, . . . ,n, be defined by

1

M ~n!~12y!
5(

i 51

n
Di

12b i
21y

. ~33!

The formula ~31! for the characteristic exponentmk then
reduces to

mk5
C~n!

K~k! (i 51

n

DiP̂~b i
21uk!, ~34!

with

P̂~b i
21uk!5H P~b i

21uk! if b i
21,1,

K~k!2P~b ik
2uk! if b i

21.1,
~35!

whereP(suk) is the complete elliptic integral of the thir
kind @13#.

We shall now compute the characteristic exponent fon
51,2,3 using Eq.~34!. It shall be convenient to define th
dimensionless momentumk̃5k/M P . Using Eq.~20! and the
definition of ã, Eq. ~12! becomes

E5
1

3 S 2pD~m!

lã2 k̃21~m11!n~n11! D . ~36!

For n51, the Lame´ equation~9! possesses two instabilit
zones, namelyEP(2`,m) and EP(1,11m); see for in-
stance Ref.@15#. The first instability zone is not admissible
10351
e

since it would force the momentumk to take imaginary val-
ues. Using Eq.~36!, the second instability zone leads to th
resonance condition

lã2~122m!

2pD~m!
, k̃2,

lã2~m11!

2pD~m!
. ~37!

Thus formÞ1/2 ~i.e., for ãÞ0!, there is an initial threshold
for the resonant values of the momentum. If thex field had a
massmx , the instability interval~37! would be shifted by an
amount2mx

2/M P
2 . For mx large enough, this could result i

the disappearance of the threshold, or even of the wh
interval.

The polynomialM (1)(z) is given by

M ~1!~z!5z1
12E

m
.

Therefore

b1
215D15

m

11m2E ,

and

C~1!
2 5

1

m2 ~E2m!~E21!~11m2E!.

Note thatb1
21.1 in the second instability zone. In Fig. 4 w

plot the characteristic exponent as a function ofã and 1012k̃2

for ã between 0 and 10. The absolute maximum of the ch
acteristic exponent forn51 is mk50.147 atã50 and k̃2

51.08310213, in agreement with@6#. The maximum of the
characteristic exponent for fixedã decreases monotonicall
with ã. In contrast, the width of the resonance band of
squared momentumk̃2 increases forã small, reaching its
maximum atã52.442. In order to compare the efficiency
the particle production with the purelf4/4 model, we esti-

FIG. 4. Characteristic exponent as a function ofã and 1012k̃2

for n51.
5-5
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mate the number density in units ofM P
3 after 30 oscillations

of the inflaton field~when the back reaction becomes sign
cant in thelf4 model! as

N~ ã !.
1

2p2 E
I
k̃2e120mkK~k!dk̃, ~38!

whereI is the union of all the instability intervals. In Fig.
we plot the logarithm of the number density versusã. In Fig.
6 we represent the ratiosN(ã)/N(0) for small values ofã.
The number density forn51 ~i.e., g25l! is almost constan
for ã&0.2. Therefore, in this case the effect of the te
m/(2f2) in the energy transfer from the inflaton field is ne
ligible provided m1/6&1023M P . The number density de
creases sharply forã*0.5.

We next examine the casen52. In this case the Lame´
equation ~9! possesses three instability zones, out
which the only relevant one is 41m,E,2(11m
1Am22m11), leading to

3lã2~22m!

2pD~m!
, k̃2,

3lã2Am22m11

pD~m!
. ~39!

The width of the resonance band of the squared momen
k̃2 also increases in this case for smallã, with its maximum

FIG. 5. Plot of log10N(ã) as a function ofã for n51,2,3.

FIG. 6. Number densities ratioN(ã)/N(0) for small values of
ã andn51,2,3.
10351
f

m

located atã50.858. The coefficientsa1
(2) anda2

(2) defining
the polynomialM (2)(z) are given by@omitting the super-
script ~2!#

a15
422m2E

3m
, a25

~11m2E!~41m2E!

9m2 . ~40!

One can immediately show that the roots ofM (2)(z) are real
and different ifE lies in the above instability band. The co
efficientsb1,2 andD1,2 are respectively given by

b1,25
1

2
~21a17Aa1

224a2!, ~41!

D1,25
6~21a1!1Aa1

224a2

2~11a11a2!Aa1
224a2

, ~42!

with a1,2 given by Eq.~40!. Note thatb1,2
21.1 in the insta-

bility zone. The coefficientC(2)
2 is given by

C~2!
2 5

1

81m4 ~11m2E!~41m2E!~114m2E!

3„E224~11m!E112m….

The maximum of the characteristic exponent in the insta
ity band also decreases monotonically withã. The absolute
maximum is mk50.036 at ã50, k̃257.67310213, four
times smaller than the absolute maximum forn51. Corre-
spondingly, the particle production is also much less effici
than in the casen51; see Fig. 5. The maximum particl
production forn52 occurs whenã50.245; see Fig. 6.

The casen53 presents some unexpected effects. In t
case, the Lame´ equation ~9! possesses four instabilit
zones, out of which the only relevant ones areE
P„4(11m),215m12A4m22m11… and EP„512m
12Am22m14,5(m11)12A4m227m14…. In terms of
the dimensionless momentumk̃, these are

0, k̃2,
3lã2

2pD~m!
~m2212A4m22m11!, ~43!

and

3lã2

2pD~m!
~122m12Am22m14!

, k̃2,
3lã2

2pD~m!
~11m12A4m227m14!.

~44!

For both resonance bands, the width increases for smalã,
with the respective maxima located atã51.052 and ã
50.533. The coefficients of the polynomialM (3)(z) defined
in Eq. ~30! are given by

a15
926m2E

5m
,
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a25
2E21~4m226!E127m2251m172

75m2 , ~45!

a352
1

225m3 „E322~4m17!E2

1@16m~m15!149#E212~m11!~8m13!….

The coefficientsC(3)
2 and b i , Di , i 51,2,3, are then easily

obtained from Eqs.~32! and ~33!. The resulting expression
are very cumbersome and shall not be displayed here. It
be shown that the coefficientsb i are all real and different in
the resonance bands.

Just as in the previous casesn51,2, the maximum of the
characteristic exponent decreases monotonically withã for
both resonance bands. For the lower resonance band giv
Eq. ~43!, the absolute maximum ismk50.159 atã50, k̃2

52.09310213, while for the higher one in Eq.~44! the
maximum value ismk50.0078 atã50, k̃251.857310212.
The particle production atã50 is two orders of magnitude
more efficient than in the casen51. However, it decrease
with ã much faster than in the previous casesn51,2; see
Figs. 5 and 6.
tt.

v.

y,

10351
ay

in

IV. CONCLUSIONS

In this paper we have characterized the most general
lar potential for the inflaton field leading to the Lame´ equa-
tion for the matter field modes in a Minkowskian bac
ground. The resulting potential possesses a term of the f
m/(2f2) in addition to the termslf4/41Kf2/2 already
studied in the literature. We have analyzed the effect of t
new term in the preheating era after inflation in the particu
caseK50. Exact expressions for the resonance bands
the characteristic exponents have been derived for cer
values of the coupling constant between the inflaton and
matter fields. The effect of the new term in the particle p
duction is virtually negligible providedm1/6&1023M P , even
though the inflaton potential is modified in an essential w
near the origin. However, form1/6@1023M P matter produc-
tion is heavily suppressed by the new term as compare
the purelf4/4 model. The situation in this respect is e
pected to remain unchanged for other values of the coup
constant.

ACKNOWLEDGMENTS

A.L.M. wishes to thank J. Garcı´a-Bellido for useful dis-
cussions. This work was partially supported by grants DG
PB98-0821 and DGICYT AEN97-1693.
l

e

@1# L. Kofman, A. Linde, and A. A. Starobinsky, Phys. Rev. Le
73, 3195~1994!.

@2# L. Kofman, A. Linde, and A. A. Starobinsky, Phys. Rev. D56,
3258 ~1997!.

@3# Y. Shtanov, J. Traschen, and R. Brandenberger, Phys. Re
51, 5438~1995!.

@4# J. H. Traschen and R. H. Brandenberger, Phys. Rev. D42,
2491 ~1990!.

@5# P. B. Greene, L. Kofman, A. Linde, and A. A. Starobinsk
Phys. Rev. D56, 6175~1997!.

@6# D. I. Kaiser, Phys. Rev. D57, 702 ~1998!.
@7# D. Kaiser, Phys. Rev. D59, 117901~1999!.
@8# W. H. Kinney and A. Riotto, Phys. Lett. B435, 272 ~1998!.
@9# W. H. Kinney and A. Riotto, Astropart. Phys.10, 387 ~1999!.

@10# E. D. Stewart, Phys. Lett. B345, 414 ~1995!.
D

@11# J. D. Barrow and A. R. Liddle, Phys. Rev. D47, R5219
~1993!.

@12# I. Affleck, M. Dine, and N. Seiberg, Nucl. Phys.B256, 557
~1985!.

@13# M. Abramowitz and I. Stegun,Handbook of Mathematica
Functions~Dover, New York, 1965!.

@14# W. Magnus and S. Winkler,Hill’s Equation ~Dover, New
York, 1979!.
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