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Frame dragging in the spacetime of a superconducting cosmic string
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In this paper we calculate particle geodesics in the spacetime of a supermassive superconducting cosmic
string (Gm.1023). Numerical techniques are used to compare the spacetime of a string supporting a fermi-
onic supercurrent with a string supporting a stationary spin-0 current condensate. In both cases it is found that
frame dragging leads to exotic behavior of geodesics, in which particles are trapped by the string spacetime,
without the string violating the dominant energy condition. In the case of a string with a fermionic current it is
also found that the string core is completely isolated from nonrelativistic particles in the ‘‘outside’’ universe.

PACS number~s!: 98.80.Cq, 04.62.1v, 11.27.1d
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I. INTRODUCTION

Grand unified theories~GUTs! predict topological defects
which formed during phase transitions in the early Unive
@1#. Of particular interest is cosmic string defects having u
usual spacetime properties, capable of generating the co
microwave background~CMB! anisotropy@2–4# and large
scale structure@5–7#. Present observational constraints r
strict the mass per unit length of a cosmic stringm to satisfy
Gm<1026 ~where G is Newton’s constant!. It is possible
that supermassive cosmic strings existed in the early U
verse and became unstable at a subsequent phase tran

In a previous paper@8# we considered the spacetime of
supermassive superconducting cosmic string (Gm.1023).
Although the spacetime of superconducting cosmic stri
has been examined previously~see, e.g.,@9–13#!, we were
motivated to examine the spacetime near a ‘‘vorton’’@14#. In
this case it is appropriate to consider a frame where the
mentum is nonzero. Analytic and numerical solutions to
exterior spacetime of a supermassive superconducting
mic string suggest that such objects are associated with
otic spacetime properties. In particular, the solution exhib
oscillatory metric components, resulting in the isolation
the string from particles~geodesics! in the ‘‘outside’’ Uni-
verse.

It was subsequently pointed out by Gleiser and Tiglio@15#
that for a string to have an oscillatory spacetime metric,
string must violate the dominant energy condition~DEC!.
However, this is not to say that realistic superconduct
cosmic strings do not exhibit exotic spacetime behavior.
this paper we show that the spacetime of a~realistic! super-
massive superconducting cosmic string does indeed pre
particles from escaping, or reaching, the string core. Furth
more, the rotation of timelike vectors and apparent cau
paradoxes discussed in@8# are still exhibited by the string
spacetime when the DEC is not violated. This is because
exotic effects are a consequence of frame dragging due to
spacetime, and are not dependent on the oscillatory beha
of the metric components. In particular, we consider
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spacetime of a string with a fermionic supercurrent wh
cannot be boosted to a frame where the current condensa
stationary. The results are compared to the spacetime
string with a spin-0 supercurrent in a frame where the curr
condensate is stationary.

The organization of this paper is as follows. In Sec. II w
briefly review the oscillatory spacetime solution and its e
otic properties. In Sec. III we numerically calculate th
spacetime of a supermassive string with a fermionic sup
current. The numerical solution is employed in Sec. IV
examine the behavior of particle geodesics in the str
spacetime and to demonstrate exotic effects. In Sec. V th
results are compared to a string with a spin-0 supercurr
The main results and implications of this work are summ
rized in Sec. VI.

II. OSCILLATORY SPACETIME

In @8# we obtained a spacetime solution for a straight
perconducting cosmic string~orientated along thez direc-
tion! of the form

ds25cos@4GM ln~r !#~dt22dz2!22 sin@4GM ln~r !#dtdz

2dr22~124Gm!2r 2du2, ~1!

whereM is the momentum per unit length,m is the mass per
unit length andG56.72310239 GeV22 is Newton’s con-
stant in natural units. However, as pointed out by Gleiser
Tiglio @15#, Eq. ~1! is not regular atr 50. The regular exte-
rior ~vacuum! solution is

ds25r b/2cos@4GM ln~r !#~dt22dz2!

22r b/2sin@4GM ln~r !#dtdz2dr2

2~124Gm!2r 22bdu2, ~2!

whereb is a constant determined by

b5
4

3
$16@1112~GM!2#1/2%. ~3!

To accord with a conical spacetime in the limitM→0 we
need only consider the negative solution forb in Eq. ~2!.
©2000 The American Physical Society14-1
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In @8# we showed that the oscillatory spacetime is asso
ated with exotic spacetime properties. In particular, timel
vectors were found to rotate through the directionst, t2z, z,
t1z, and back tot with increasing radial distance from th
string core. This indicates that the light cone is forced
rotate with radial distance, resulting in restrictions on parti
trajectories. For example, it is found that all particle geo
sics became undefined at a finite radial distance from
string. In this case particles are dragged in the string sp
time until they are moving at the local speed of light in thez
direction and cannot continue to move radially outwards.
a similar way particles in the ‘‘outside’’ Universe are pr
vented from reaching the string. It is found that particles c
move backwards in coordinate time and according to an
server at the string core particles return to the string c
prior to departing. However, an object moving backwards
coordinate time results in the particle moving along thez
direction. Hence causal paradoxes are avoided, since th
turning particle is always spacelike separated from the o
going particle.

Gleiser and Tiglio have shown that for the metric comp
nents~2! to be oscillatory requires a violation of the DEC
However, the exotic spacetime effects discussed in this p
are a consequence of frame dragging in the spacetime
superconducting cosmic string. Although realistic cosm
strings do not possess an oscillatory spacetime, they stil
tain exotic properties as is shown in Sec. III.

III. STRINGS WITH FERMIONIC SUPERCURRENTS

To demonstrate exotic spacetime effects for a reali
string we consider a string with a fermionic supercurrent. W
choose a fermionic supercurrent since it is moving at
speed of light and cannot be boosted to a frame where
momentum is zero. In this case the relationship betw
frame dragging and exotic effects~see Sec. IV! is empha-
sized.

We begin by writing the general form of the spacetim
metric of a straight string with constant momentum

ds25L~r !dt222F~r !dtdz2dr22C2~r !du22V~r !dz2,
~4!

where the string is orientated along thez axis andgtz5gzt
5F(r ). The Ricci tensor components and boundary con
tions atr 50 have been discussed previously in@8#. To sim-
plify the equations of motion we use the relation

2F~r !5L~r !2V~r !, ~5!

for which the field equation forRtz is automatically satisfied
Equation~5! is a consequence of invariance under Lore
boosts in thez direction.

To describe a cosmic string we use the Abelian symme
breaking model, with metric signature diag(1,2,2,2):

L5~Dmf!†Dmf1 1
4 FmnFmn2 1

2 l~f†f2h2!2, ~6!

where f is the Higgs field,Dm5¹m2 iqAm is the gauge
covariant derivative,¹m is the ‘‘conventional’’ covariant de-
rivative, Am is the U(1) vector boson field,Fmn5]mAn
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2]nAm , q is the coupling strength between the vector a
Higgs fields andl andh determine the form of the Mexican
hat ~symmetry breaking! potential. We have chosen a loc
string to avoid singularities typically associated with t
spacetime of a global string@16–18#. The fermionic current
fields are coupled to the Higgs field in the usual fashion~see,
e.g.,@19#!:

LF5 icL
†g0gm¹mcL1 icR

†g0gm¹mcR2gfcL
†g0fcR

2gfcR
†g0f†cL , ~7!

wherecL andcR are the left and right helicity lepton field
and gf is the coupling between the lepton and Higgs fie
For simplicity we have neglected gauge fields in the desc
tion of the fermionic supercurrent~i.e., we consider a neutra
current!. However, because of the coupling between
Higgs and lepton fields, the Lagrangian is only invariant u
der global gauge transformations of the Higgs field. Nev
theless, the results can be generalized to charged fermi
supercurrents and therefore the model provides a descrip
of a general fermionic current.

To reduce the number of independent parameters we
cale according tot→dt, x→dx, f→hf, Am→hAm , cL,R
→h3/2(l/2)1/4cL,R , q→(l/2)1/2q, and gf→(l/2)1/2gf ,
where d5(lh2/2)1/2 is the Compton width of the Higgs
field. We write the equations of motion for the Higgs, vect
boson and fermion fields for an arbitrary spacetime~in the
Lorentz gauge!:

DmDmf1f~ ufu221!2gfcR
†g0cL50 ~8a!

¹m¹mAn12qIm@f†Dnf#50 ~8b!

igm¹mcL2gffcR50 ~8c!

igm¹mcR2gff
†cL50.

~8d!

To solve for the superconducting cosmic string in a curv
spacetime we use theAnsätze

f~r ,u!5 f ~r !eiu ~9a!

Au5
au~r !

qC~r !
~9b!

At5Ar5Az50 ~9c!

cL~ t,r ,z!5xs~r !eik(z2t) ~9d!

cR~ t,r ,z!52 ig1cL~ t,r ,z!, ~9e!

where k is a constant andx is a spinor, defined byx5
2g5x and x5 ig1g2x. This form of x results in a zero
contribution from the fermionic fields in Eq.~8a! ~i.e., no
backreaction!. TheAnsätze~9! represent the conventional de
scription of a cosmic string supporting a fermionic curre
condensate~i.e., a zero mode@19#!. From an index theorem
due to Weinberg@20#, we know that this is the only zero
4-2
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mode solution for a cosmic string with winding numbern
51. Substituting the superconducting stringAnsätze~9! into
the equations of motion~8! gives

¹ r
2f ~r !2

f ~r !

C2~r !
~au~r !21!22 f ~r !~ f 2~r !21!50 ~10a!

V~r !

F2~r !1L~r !V~r !
S d2au~r !

dr2 D 1
C2~r !

A2g~r !
F d

dr S V~r !

A2g~r !
D G

3S dau~r !

dr D22q2f 2~r !~au~r !21!50 ~10b!

ds~r !

dr
1gf f ~r !s~r !50

~10c!

@2F~r !2L~r !1V~r !#s~r !eik~z2t !50,
~10d!

where¹ r
2 is

¹ r
25

d2

dr2
1

1

A2g~r !
S dA2g~r !

dr D d

dr
, ~11!

andg(r ) is the determinant of the metric:

g~r !52C2~r !@F2~r !1L~r !V~r !#. ~12!

The equation of motion fors(r ) in Eq. ~10c! is identical to
the Minkowski spacetime form and has the exact solutio

s~r !5expS 2gfE
0

r

f ~r!dr D . ~13!

The equation of motion~10d! governing the current conden
sate is also readily solved using the relationship betw
metric components in Eq.~5!. Therefore, we only need to
numerically solve forf (r ) and au(r ) in curved spacetime
The boundary conditions imposed on the Higgs field a
vector boson field must reconcile an undefined phase at
center of the defect and finite energy far from the defect,

f ~0!50, f ~r→`!51, ~14!

au~0!50, au~r→`!51. ~15!

To determine the field equations we first calculate
components of the energy-momentum tensor for the su
conducting cosmic string:

Tmn52
dL

dgmn
2gmnL. ~16!

The nonzero components are
10351
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Ttt5
h2

d2
@4ks2~r !1L~r !L~r !# ~17a!

Trr 5
hf

2

d2 F2S d f~r !

dr D 2

1
1

q2C2~r !
S dau~r !

dr D 2

2L~r !G
~17b!

Tuu5
h2

d2 F2 f 2~r !@au~r !21#21
1

q2 S dau~r !

dr D 2

2C2~r !L~r !G ~17c!

Tzz5
h2

d2
@4ks2~r !2V~r !L~r !# ~17d!

Ttz5Tzt5
h2

d2
@24ks2~r !2F~r !L~r !#, ~17e!

where

L~r !5S d f~r !

dr D 2

1
f 2~r !~au~r !21!2

C2~r !

1
1

2q2C2~r !
S dau~r !

dr D 2

1
1

2
@ f 2~r !21#2. ~18!

FIG. 1. The metric components for a cosmic string with a f
mionic supercurrent (k5531024d andgfdh51). Some aspects o
the spacetime behavior observed in the analytic solution~2! are
retained in our numerical model. In particular it is noted thatV(r )
becomes negative at some distance from the string core.
4-3
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MARCUS J. THATCHER AND MICHAEL J. MORGAN PHYSICAL REVIEW D62 103514
The derivation ofL(r ) in Eq. ~18! has been simplified by
using Eq.~5!.

To highlight the exotic spacetime properties we choo
the energy scale of the string to be supermassive, whe
Gh25331022 (h;1018 GeV). The momentum per uni
length of the string is calculated from theTtz component
~17d!, and depends on the parameterk according to

M522pE
0

`

drTtzC~r !52ph2E
0

`

dr@4ks2~r !

1F~r !L~r !#C~r !. ~19!

In the limit k→0, the contributions to the energy-momentu
tensor from the fermionic current vanish. In this case
obtain F50 andTtz50 as a solution to the Einstein fiel
equations~i.e., zero momentum!. In this situation, we find
Ttt52Tzz ~i.e., equivalent to a nonsuperconducting cosm
string! which results in a conical metric@21#. To calculate
the spacetime for a cosmic string with a fermionic superc
rent we first numerically solve for the equations of motion
the particle fields~10! using a relaxation technique. Th
spacetime curvature is calculated from the Einstein fi
equations~see @8#! and the energy-momentum tensor~17!
using a fourth-order Runge-Kutta scheme. The coupled v
tex and Einstein field equations are solved iteratively u
the solution converges.

An example of a numerical solution to the spacetime o
string with a fermionic supercurrent is shown in Fig. 1. It
important to note that the numerical spacetime solution
t

o
e
p
e
e
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tains aspects of the analytic metric~2!, with the metric com-
ponentV(r ) becoming negative. This is indicative of a ro
tation of timelike vectors which restricts the ability o
particles to escape from the string~Sec. IV!. However,L(r )
does not become negative for any parameter choice
hence the spacetime never exhibits oscillatory behavior. T
is consistent with Gleiser and Tiglio@15# who argue that the
oscillatory behavior of the metric components,gtt , gtz , and
gzz, necessitates a violation of the DEC.

Using Eq.~5!, the determinant~12! becomes

g~r !52
1

4
C2~r !@L~r !1V~r !#2. ~20!

If L(r ) decreases sufficiently, so thatL(r )52V(r ) @i.e.,
for V(r ),0#, then the determinant vanishes. Consequen
L(r ) is prevented by the Einstein field equations from ado
ing the value2V(r ), and henceL(r ) is bounded and neve
becomes negative. Nevertheless, as we show in Sec. IV
spacetime of a superconducting string can exhibit exo
properties.

IV. PARTICLE GEODESICS

In @8# we showed that a particle moving outwards fro
the string core is prevented from escaping from the str
due to frame dragging in thez direction ~i.e., along the cur-
rent!. Consider the geodesic equation forṙ ~where an overdot
denotes differentiation with respect to the affine paramet!:
ṙ 25
L~r !@V~r !2BF~r !#212F~r !@V~r !2BF~r !#@F~r !1BL~r !#2 V~r !@F~r !1BL~r !#2

@F2~r !1L~r !V~r !#2
. ~21!
for

lly

de-
tion
ate
In Eq. ~21! coordinate timet is identified with proper time a
r 50 andB52 ż at r 50. For B50, we have shown in@8#

that the geodesic equation forṙ becomes undefined ifV(r )
,0. This behavior is observed in Fig. 1, where photons c
responding toB50 are trapped by the string spacetime d
spite the absence of oscillatory spacetime metric com
nents. However, since the spacetime is not oscillatory, th
exists a choice ofB for which photons can escape to th
‘‘outside’’ Universe. This can be seen by defining a functi
b(r ), which corresponds to the value ofB at a given distance
r, for which ṙ 50, i.e.,

ṙ „B5b~r !,r …50. ~22!

After some straightforward algebra we can write the funct
b(r ) in terms of the metric components

b~r !5
2F~r !6@F2~r !1L~r !V~r !#1/2

L~r !
. ~23!
r-
-
o-
re

n

In the case of fermionic supercurrents the expression
b(r ) can be simplified further by using Eq.~5!, i.e.,

b~r !5
V~r !

L~r !
or 21. ~24!

In Fig. 2, we have plotted the functionb(r ) for the numeri-
cal spacetime solution in Fig. 1. As we move out radia
from the string core we find that the two solutions forb(r )
approach each other. This means that the range ofB values,
describing geodesics which extend to some distancer, de-
creases asr increases.

There is a relationship between imaginary photon geo
sics at a finite distance from the string core and the rota
of a timelike vector. To see this we make the coordin
transformation

t5k sina~r !1z cosa~r ! ~25a!

z5k cosa~r !2z sina~r !, ~25b!
4-4
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FRAME DRAGGING IN THE SPACETIME OF A . . . PHYSICAL REVIEW D62 103514
wherea(r ) is an angle which varies with distance from th
string core. In terms of the componentsF(r ), C(r ), L(r ),
andV(r ), the metric in thez-k frame becomes

ds25@L~r !cos2a~r !12F~r !cosa~r !sina~r !

2V~r !sin2a~r !#dz212$@L~r !

1V~r !#cosa~r !sina~r !22F~r !@cos2a~r !

2sin2a~r !#%dzdk1@L~r !sin2a~r !

22F~r !cosa~r !sina~r !2V~r !cos2a~r !#dk22dr2

2C2~r !du2. ~26!

In order thatz remain timelike andk spacelike for allr, we
definea(r ) by settinggzk50, which gives

tan@2a~r !#5
2F~r !

L~r !1V~r !
. ~27!

This equation can be further simplified by using Eq.~5! to
obtain

tan@2a~r !1p/4#5
V~r !

L~r !
. ~28!

At the string corea(0)50, which is consistent with a
Minkowski spacetime. As we move out radially from th
string core,V(r ) andL(r ) decreases~see Fig. 1!, with V(r )
vanishing at some distance. This behavior results ina(r )
decreasing from zero to a negative value and describes
rotation of timelike vectors relative to thet-z coordinate sys-
tem. SinceV(r )/L(r ) is always greater than21, the angle

FIG. 2. The functionb(r ) is plotted for the numerical solution
to the metric in Fig. 1. The shaded region represents the rangeB
values corresponding to geodesics which are defined at some
tancer. As we move out radially from the string core the range
B, which describes possible geodesics, becomes increasingl
stricted. For incoming photons originating at large radial distan
all geodesics reach the string core.
10351
he

a(r ) can never decrease below2p/4. Timelike vectors are
not forced to rotate into thez direction and not all photon
trajectories are trapped by the string spacetime.

To explore the dependence of the cutoff function,b(r ),
on the momentum per unit length, we plotb(r ) for a super-
conducting cosmic string with different values ofk ~see Fig.
3!. In the limit k→0, the spacetime becomes conical a
there is no impediment to particles moving outwards fro
the string. However, ask increases, geodesics which exte
to a given distance,r, are more restricted. Therefore we ca
reduce the range ofb(r ), describing geodesics which exten
to a distancer, to arbitrarily small values by choosing a
appropriate value ofk.

The spacetime curvature prevents photons from leav
the vicinity of the string, but does not prevent photons fro
reaching the string core. For the string to be isolated fr
incoming photons, we require the solutions tob(r ) @see Eq.
~24!# to be equal at some distancer, i.e.,

L~r!52V~r!. ~29!

However, as discussed in Sec. III this corresponds to
determinant vanishing. Hence it is not possible for a realis
superconducting cosmic string to be cut off from photons
the Universe. This can only be achieved by an oscillat
spacetime for which the string must violate the DEC. Ne
ertheless, particles which reach the string are constraine
have a velocity in thez direction which is comparable to th
speed of the current condensate.

We can extend our analysis to massive uncharged
ticles moving at speeds less than the local speed of light,
which

K5gmndxmdxn.0, ~30!

whereK is a constant. In this case the geodesic equation~21!
becomes

f
is-

f
re-
s

FIG. 3. Dependence ofb(r ) on the parameterk. By increasing
k, the range ofB values, which describes particle geodesics exte
ing to a distancer, is reduced.
ṙ 25
L~r !@V~r !2BF~r !#212F~r !@V~r !2BF~r !#@F~r !1BL~r !# 2 V~r !@F~r !1BL~r !#2

@F2~r !1L~r !V~r !#2
2K. ~31!
4-5



e

cs

MARCUS J. THATCHER AND MICHAEL J. MORGAN PHYSICAL REVIEW D62 103514
The maximum radial velocity of a massive particle at a giv
distancer @i.e., ż(r )50# is determined by the choice ofK
according to

ṙ max5F 1

L~r !
2KG1/2

. ~32!

The speed of a massive particle~measured atr 50) is given
by
-
tl
a
t

e

-

ing

e

10351
n v5@12K#1/2. ~33!

Furthermore, the maximum value ofK for particles at a ra-
dius r is

Kmax5L21~r !. ~34!

The function b(r ), which defines where the geodesi
become undefined, is modified for a nonzero value ofK ac-
cording to
b~r !5
2F~r !6„F2~r !1L~r !$V~r !2K@F2~r !1L~r !V~r !#%…1/2

L~r !
. ~35!
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In Figs. 4 and 5 we have plotted the functionb(r ) for vari-
ous values ofK. Unlike photon geodesics in Fig. 2, un
charged massive particles which are moving sufficien
slowly cannot escape from the string core. Moreover, p
ticles which originate in the ‘‘outside’’ Universe canno
reach the string core. This is because the maximum valu
K is proportional toL21(r ). SinceL(r ) decreases with in-

FIG. 4. The functionb(r ) is plotted for various choices ofK.
The shaded region represents values ofB corresponding to geode
sics which extend fromr 50. Note that forK50.5 ~corresponding
to 0.87c at r 50), massive particles can still escape from the str
core. However, forK50.8 ~corresponding to 0.6c at r 50), un-
charged massive particles which originate atr 50 cannot escape th
string, and particles corresponding toK50.8 in the ‘‘outside’’ Uni-
verse cannot reach the string core.
y
r-

of

creasingr, it is possible to choose geodesics which are w
defined forK.1 ~at sufficiently larger ).

V. STRINGS WITH SPIN-0 SUPERCURRENTS

Although the previous analysis applies to strings supp
ing fermionic supercurrents, exotic spacetime effects are
apparent in models with spin-0 supercurrents. We can ill
trate this for a neutral spin-0 current, based on the Wit
model@22#. Our numerical scheme for the calculation of th
spacetime of a string with a spin-0 supercurrent has b
discussed in@8#. To calculate the string vortex, we emplo
the Ansätze

f~r ,u!5 f ~r !eiu ~36a!

Au~r !5
au~r !

qC~r !
~36b!

s~ t,r ,z!5s~r !e2 ivt, ~36c!

wheres(t,r ,z) is the spin-0 current condensate~see@8#! and
v is a constant. Note that we have chosen a frame in wh
the current condensate is stationary.

Figure 6 shows the spacetime behavior of a string wit
spin-0 current condensate. The spacetime in the boo

FIG. 5. The functionb(r ) is plotted for K52. The shaded
region corresponds to values ofB for which geodesics are wel
defined. WhenK52 geodesics are only defined for uncharged m
sive particles at large radial distances from the string core.
4-6
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frame exhibits exotic behavior, as can be seen in Fig
where we have plottedb(r ) for the numerical solution co
responding to the supercurrent shown in Fig. 6. Although
current condensate is stationary, photon geodesics are u
fined at sufficiently larger. Furthermore, objects at larg
radial distances from the string are constrained to move
the z direction at speeds comparable to the speed of the
rent condensate~as measured by an observer located at
string core!. There is no requirement for the current conde
sate to be moving at the speed of light in order to exh
exotic spacetime behavior.

However, there are some differences between the sp
time generated by a cosmic string with a fermionic superc

FIG. 6. The metric components for a cosmic string with a spi
supercurrent @v50.2d, k50, b52.381(dhf)22, ls

520.928(dhf)22, hs50.466hf , qdhf51, and e50#. The
spacetime has been calculated for a frame in which the momen
is zero.

FIG. 7. The functionb(r ) ~corresponding to photons for whic
K50) is plotted for the numerical spacetime shown in Fig. 6. A
though the geodesics are calculated in a frame where the mo
tum is zero, photons are still deflected and the string exhibits ex
behavior.
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rent~Fig. 1! and that generated by a spin-0 supercurrent~Fig.
6!. For example, in Fig. 6 the magnitude of the metric co
ponent,L(r ), increases withr, compared to the fermionic
current condensate solution in Fig. 1, where the magnitud
the metric component,L(r ), decreases withr. As a conse-
quence massive uncharged particles moving slower than
local speed of light (K.0) haveKmax decreasing with in-
creasing radius. This is the opposite situation to the fer
onic current condensate, whereKmax increases with radius
This means that the spacetime of a string supporting a sp
supercurrent hasK restricted to

0<K<1, ~37!

and all geodesics can reachr 50. Hence it is not possible fo
particles to be isolated from the string core~i.e., no geodesics
correspond toK.1). Nevertheless, massive particles a
still trapped in the vicinity of the cosmic string as illustrate
in Fig. 8.

VI. CONCLUSION

In this paper we have used two numerical models to sh
that exotic effects are associated with string defects which
not violate the DEC. The principal difference between t
strings considered in this paper and the spacetime discu
in @8,15# is that strings which violate the DEC are complete
isolated from particles in the ‘‘outside’’ Universe, where
for strings which satisfy the DEC, particles can escape
reach the string core if they possess a velocity compon
parallel to the current condensate~which is comparable to
the speed of the condensate!. Since the trapping of particle
by supermassive superconducting cosmic strings is a co
quence of frame dragging, the results of this work can
generalized to other types of superconducting cosmic strin

We have also considered the behavior of nonrelativis
particles in the spacetime of supermassive superconduc
cosmic strings. For both superconducting string models n
relativistic particles are trapped by the string spacetime
are prevented from escaping to the ‘‘outside’’ Universe. S
nificantly, in the case of a cosmic string with a fermion
supercurrent it is possible for nonrelativistic massive p
ticles to be isolated from the string core, despite the str

0

m

n-
ic

FIG. 8. The functionb(r ) is plotted forK50.1, corresponding
to massive particle geodesics. The shaded region indicates ge
sics which are well defined at some distancer. Although the current
condensate is stationary, nonrelativistic massive particles are
vented from escaping from the vicinity of the string core.
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satisfying the DEC. This differs dramatically from the con
cal spacetime of a nonsuperconducting cosmic string
which there is no impediment to particles reaching the str
core.
d,
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