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Frame dragging in the spacetime of a superconducting cosmic string
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In this paper we calculate particle geodesics in the spacetime of a supermassive superconducting cosmic
string (Gu>10"%). Numerical techniques are used to compare the spacetime of a string supporting a fermi-
onic supercurrent with a string supporting a stationary spin-0 current condensate. In both cases it is found that
frame dragging leads to exotic behavior of geodesics, in which particles are trapped by the string spacetime,
without the string violating the dominant energy condition. In the case of a string with a fermionic current it is
also found that the string core is completely isolated from nonrelativistic particles in the “outside” universe.

PACS numbds): 98.80.Cq, 04.62:v, 11.27+d

[. INTRODUCTION spacetime of a string with a fermionic supercurrent which
cannot be boosted to a frame where the current condensate is

Grand unified theorie€GUTS) predict topological defects stationary. The results are compared to the spacetime of a
which formed during phase transitions in the early Universestring with a spin-0 supercurrent in a frame where the current
[1]. Of particular interest is cosmic string defects having un-condensate is stationary.
usual spacetime properties, capable of generating the cosmic The organization of this paper is as follows. In Sec. Il we
microwave backgroundCMB) anisotropy[2—4] and large  briefly review the oscillatory spacetime solution and its ex-
scale structurd5—7]. Present observational constraints re-otic properties. In Sec. Il we numerically calculate the
strict the mass per unit length of a cosmic strjndo satisfy ~ spacetime of a supermassive string with a fermionic super-
Glug 106 (WhereG is Newton’s COﬂStal)Lt It is possib|e current. The numerical solution is employed in Sec. IV to
that supermassive cosmic strings existed in the early Uniexamine the behavior of particle geodesics in the string
verse and became unstable at a subsequent phase transitispacetime and to demonstrate exotic effects. In Sec. V these

In a previous papdi8] we considered the spacetime of a results are compared to a string with a spin-0 supercurrent.
Supermassive Superconducting cosmic Stri@@ _’]_0_3)_ The main results and implications of this work are summa-
Although the spacetime of superconducting cosmic string&ized in Sec. VI.
has been examined previoudisee, e.g.[9-13]), we were
motivated to examine the spacetime near a “vort¢h4]. In Il. OSCILLATORY SPACETIME
this case it is appropriate to consider a frame where the mo-
mentum is nonzero. Analytic and numerical solutions to the
exterior spacetime of a supermassive superconducting col
mic string suggest that such objects are associated with eflo
otic_spacetime properties. In particula_r, th_e solut.ion elxhibitsdszz(:05{4(3 M In(r)](dt2—dz2)— 2 sif4GM In(r)]dtdz
oscillatory metric components, resulting in the isolation of
the string from particle$geodesicsin the “outside” Uni- —dr’—(1-4Gu)?r?de?, (1)
verse.

It was subsequently pointed out by Gleiser and Tifli6]  whereM is the momentum per unit lengtjp, is the mass per
that for a string to have an oscillatory spacetime metric, thaunit length andG=6.72x 10 %° GeV ? is Newton’s con-
string must violate the dominant energy conditiiEC).  stant in natural units. However, as pointed out by Gleiser and
However, this is not to say that realistic superconductingTiglio [15], Eq. (1) is not regular at =0. The regular exte-
cosmic strings do not exhibit exotic spacetime behavior. Irrior (vacuum solution is
this paper we show that the spacetime dfealistig super-
massive superconducting cosmic string does indeed prevent ds’=r2co§4GM In(r)](dt?*~dZ)
particles from escaping, or reachlng, the string core. Further- 225/ AGM In(r)]dtdz— dr?
more, the rotation of timelike vectors and apparent causal
paradoxes discussed 8] are still exhibited by the string —(1—4Gu)?r?>~°de?, 2)
spacetime when the DEC is not violated. This is because the
exotic effects are a consequence of frame dragging due to thehereb is a constant determined by
spacetime, and are not dependent on the oscillatory behavior

In [8] we obtained a spacetime solution for a straight su-
erconducting cosmic strin¢prientated along the direc-
n) of the form

of the metric components. In particular, we consider the 4
P P b= S {1+ [1+12GM)*]3. &)
*Email address: Marcus.Thatcher@sci.monash.edu.au To accord with a conical spacetime in the limht—0 we
TEmail address: Michael.Morgan@sci.monash.edu.au need only consider the negative solution oin Eq. (2).
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In [8] we showed that the oscillatory spacetime is associ-—g,A,, q is the coupling strength between the vector and

ated with exotic spacetime properties. In partigular, timelikeHiggs fields anc\ and » determine the form of the Mexican
vectors were found to rotate through the directiors-z, z ~ pat (symmetry breakingpotential. We have chosen a local
t+2, and back ta with increasing radial distance from the string” to avoid singularities typically associated with the
string core. This indicates that the light cone is forced tospacetime of a global string.6—18. The fermionic current

rotate with radial distance, resulting in restrictions on particlefie|ds are coupled to the Higgs field in the usual fashiee,
trajectories. For example, it is found that all particle geode g, [19)):

sics became undefined at a finite radial distance from the

string. In this case particles are dragged in the string space-  Lr=iy{ Y y*V g +iygLy° vV b= 9r i Y’ bt
time until they are moving at the local speed of light in the

direction and cannot continue to move radially outwards. In ISR )

a similar way particles in the “outside” Universe are pre- ) . i
vented from reaching the string. It is found that particles cavhere#. and g are the left and right helicity lepton fields

move backwards in coordinate time and according to an ob@nd s is the coupling between the lepton and Higgs field.
server at the string core particles return to the string cor&Or simplicity we have neglected gauge fields in the descrip-
prior to departing. However, an object moving backwards intOn of the fermionic supercurrefite., we consider a neutral

coordinate time results in the particle moving along the Ccurren. However, because of the coupling between the
direction. Hence causal paradoxes are avoided, since the rB199s and lepton fields, the Lagrangian is only invariant un-

turning particle is always spacelike separated from the outder global gauge transformations of the Higgs field. Never-
going particle. theless, the results can be generalized to charged fermionic

Gleiser and Tiglio have shown that for the metric c:Ompo_supercurrents anq th_erefore the model provides a description
nents(2) to be oscillatory requires a violation of the DEC. ©f @ general fermionic current.
However, the exotic spacetime effects discussed in this paper 10 reduce the number of independent parameters we res-
are a consequence of frame dragging in the spacetime of @I€ according ta— ot, x—ox, ¢—n¢, A,—nh,, g
superconducting cosmic string. Although realistic cosmic— 7" (M2) VR q—(\/2)"7, and gi—(M2)Y7y,
strings do not possess an oscillatory spacetime, they still revhere 6=(A7/2)~* is the Compton width of the Higgs

tain exotic properties as is shown in Sec. IIl. field. We write the equations of motion for the Higgs, vector
boson and fermion fields for an arbitrary spacetifimethe
lll. STRINGS WITH FERMIONIC SUPERCURRENTS Lorentz gaugk
To demonstrate exotic spacetime effects for a realistic D“D, ¢+ (| p|?— 1) —grhky°v =0 (8a)
string we consider a string with a fermionic supercurrent. We
choose a fermionic supercurrent since it is moving at the VAV ,A,+2qIm[¢'D,¢]=0 (8b)
speed of light and cannot be boosted to a frame where the
momentum is zero. In this case the relationship between 1YV, b~ 9t pyr=0 (8c)
frame dragging and exotic effectsee Sec. IY is empha-
sized. YV ,r—0rd ¢ =0.
We begin by writing the general form of the spacetime (8d)

metric of a straight string with constant momentum . . L
To solve for the superconducting cosmic string in a curved

ds?=A(r)dt?—2d(r)dtdz—dr2—W(r)de?— Q(r)dz2, ~ Spacetime we use thensdze

4 .
@ b(r,0)=1(r)e"’ (9a)
where the string is orientated along thexis andg;,=g,;
=®d(r). The Ricci tensor components and boundary condi- ay(r)
tions atr =0 have been discussed previously&}. To sim- Ap= qv(r) (9b)
plify the equations of motion we use the relation
20(1)=A(1) - Q(1), 5) ATA=A0 (99
for which the field equation foR,, is automatically satisfied. u(t,r,z)=xs(r)e v (9d)
Equation(5) is a consequence of invariance under Lorentz Y
boosts in thez direction. Yr(t,r,z)=—iy ¢ (t,r,2), (9¢)
To describe a cosmic string we use the Abelian symmetr _ _ _ , _
breaking model, with metric signature diag(—,—,—): %vherek is a constant andy is a spinor, defined by =

—vysx and y=iy;y.x. This form of y results in a zero
£:(DM¢)TDM¢+%FMVFMD_%)\(Q‘)TQS— 7%)?%, ~ (6)  contribution from the fermionic fields in Eq8a) (i.e., no
backreactiop TheAnsdze(9) represent the conventional de-
where ¢ is the Higgs field,D,=V ,—igA, is the gauge scription of a cosmic string supporting a fermionic current
covariant derivativey , is the “conventional” covariant de- condensatgi.e., a zero mod¢19]). From an index theorem
rivative, A, is the U(1) vector boson fieldF,,=d,A,  due to Weinberd20], we know that this is the only zero
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mode solution for a cosmic string with winding number
=1. Substituting the superconducting stridgsaze (9) into
the equations of motiofB) gives

2 _ f(l’) _ 2_ 2 _ —
Vit(r) \Pz(r)(aa(r) D=f(r)(f%r)—1)=0 (109
o) (dzaa(r))+ W2(r) g( o) )
OAr)+AMQr) | dr? | J=g(rn)[dr|J=g(r)
X daj#)—Zquz(w(a@(r)—lFo (10D
d
—z(rr)+gff(r)s(r)=0
(100
[2D(r)—A(r)+Q(r)]s(r)ek@ =0,
(109
whereV? is
d? 1 (d\/—g(r))d
2_ - —
V? dr2+m g (11)
andg(r) is the determinant of the metric:
g(r)=—W2(r)[P*(r)+A(r)Q(r)]. (12

The equation of motion fos(r) in Eq. (109 is identical to

the Minkowski spacetime form and has the exact solution

13

s(r>=exp(—gff;f<p>dp).

The equation of motioii10d) governing the current conden-
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FIG. 1. The metric components for a cosmic string with a fer-
mionic supercurrent(=5x10"48 andg;8»=1). Some aspects of
the spacetime behavior observed in the analytic solut®)nare

retained in our numerical model. In particular it is noted tdt)
becomes negative at some distance from the string core.

2

sate is also readily solved using the relationship between

metric components in Eq5). Therefore, we only need to
numerically solve forf(r) anda,(r) in curved spacetime.
The boundary conditions imposed on the Higgs field and
vector boson field must reconcile an undefined phase at the
center of the defect and finite energy far from the defect, i.e.,

f(0)=0, f(r—=)=1, (14

a,(0)=0, ayr—w)=1. (15

To determine the field equations we first calculate the
components of the energy-momentum tensor for the supetvhere

conducting cosmic string:

—9..L. (16)

v P

The nonzero components are

Ttt=%[4ksz(r)+A(r)L(r)] (173
2 2 2
) df(r)) 1 (dayn)\?
Te=— 2( ar ) * e\ L(r)
(17b)
2 1 [day(r)\?
T | 2P0 -1+ | ==
—‘Pz(r)L(r)] (179
7
Tzz=§[4k52(f)—9(r)|-(f)] (179
772
th=th:g[—4k32(f)—q>(f)|-(f)], (17¢
[ df(r) 2 f2(r)(ay(r)—1)2
L(r)_( dr ) " W2(r)
1 day(r)\? 1
+2q2w2(r) T +§[f2(r)—1]2. (18)
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The derivation ofL(r) in Eq. (18) has been simplified by tains aspects of the analytic met(®), with the metric com-
using Eq.(5). ponent()(r) becoming negative. This is indicative of a ro-
To highlight the exotic spacetime properties we choosedation of timelike vectors which restricts the ability of
the energy scale of the string to be supermassive, whengearticles to escape from the strifg§ec. I\). However,A (r)
G7?*=3x10"2 (5~10*® GeV). The momentum per unit does not become negative for any parameter choice and
length of the string is calculated from thg, component hence the spacetime never exhibits oscillatory behavior. This
(170, and depends on the paramekeaccording to is consistent with Gleiser and Tiglid5] who argue that the
oscillatory behavior of the metric componengs,, g;,, and
__ - _ 2 [~ 0,,, hecessitates a violation of the DEC.
M= wao drTe¥(r)=2my fo dr{4ks’(r) Using Eq.(5), the determinant12) becomes
+O(r)L(r)]W(r). (19 1
. L g(r)=—Z‘I’Z(r)[A(r)+Q(r)]2- (20)
In the limit k— 0, the contributions to the energy-momentum
tensor from the fermionic current vanish. In this case we - )
obtain®=0 andT,,=0 as a solution to the Einstein field If A(r) decreases sufficiently, so that(r) = —Q(r) [i.e.,
equations(i.e., zero momentujn In this situation, we find for £(r)<0], then the determinant vanishes. Consequently,
Tu=—T,, (i.e., equivalent to a nonsuperconducting cosmic/(r) is prevented by the Einstein field equations from adopt-
string which results in a conical metrii21]. To calculate ing the value—€Q(r), and hence\(r) is bounded and never
the spacetime for a cosmic string with a fermionic supercurbecomes negative. Nevertheless, as we show in Sec. IV, the
rent we first numerically solve for the equations of motion ofSpacetime of a superconducting string can exhibit exotic
the particle fields(10) using a relaxation technique. The Properties.
spacetime curvature is calculated from the Einstein field
equations(see[8]) and the energy-momentum tensdr7) IV. PARTICLE GEODESICS
using a fourth-order Runge-Kutta scheme. The coupled vor- _ )
tex and Einstein field equations are solved iteratively until " [8] we showed that a particle moving outwards from
the solution converges. the string core is prevented from escaping from the string
An example of a numerical solution to the spacetime of adue to frame dragging in thedirection i.e., along the cur-
string with a fermionic supercurrent is shown in Fig. 1. It is ren). Consider the geodesic equation fofwhere an overdot
important to note that the numerical spacetime solution redenotes differentiation with respect to the affine parameter

_A(r)[Q(r)—B(I)(r)]2+2<b(r)[Q(r)—BCD(r)][CD(r)+BA(r)]— Q(N[D(r)+BA(r)]?

"2
r [D2(1)+ A (1) Q1) 2

(21)

In Eq. (21) coordinate time is identified with proper time at In the case of fermionic supercurrents the expression for
r=0 andB=—z atr=0. ForB=0, we have shown ifig] ~ B(r) can be simplified further by using E¢), i.e.,

that the geodesic equation forbecomes undefined {2 (r)
< 0. This behavior is observed in Fig. 1, where photons cor- (r)= M or —1. (24)
responding tdBB=0 are trapped by the string spacetime de- A(r)
spite the absence of oscillatory spacetime metric compo-
nents. However, since the spacetime is not oscillatory, thertn Fig. 2, we have plotted the functig8(r) for the numeri-
exists a choice oB for which photons can escape to the cal spacetime solution in Fig. 1. As we move out radially
“outside” Universe. This can be seen by defining a functionfrom the string core we find that the two solutions &fr)
B(r), which corresponds to the value Bfat a given distance approach each other. This means that the rand# walues,
r, for whichr=0, i.e., describing geodesics which extend to some distanae-
creases as increases.
. There is a relationship between imaginary photon geode-
r(B=4A(r).,n=0. (22) sics at a finite distance from the string core and the rotation
of a timelike vector. To see this we make the coordinate
After some straightforward algebra we can write the functionygnsformation
B(r) in terms of the metric components
t=xksina(r)+cosa(r) (259
—D(r)=[D3(r)+A(r)Q(r)]¥?
B(r)= NG :

23 Z=k cosa(r)—{sina(r), (25b)
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FIG. 2. The functiong(r) is plotted for the numerical solution
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FIG. 3. Dependence g8(r) on the parametek. By increasing

to the metric in Fig. 1. The shaded region represents the ranBe of k, the range oB values, which describes particle geodesics extend-
values corresponding to geodesics which are defined at some dii§lg to a distance, is reduced.

tancer. As we move out radially from the string core the range of

B, which describes possible geodesics, becomes increasingly rex(r) can never decrease belowsr/4. Timelike vectors are
stricted. For incoming photons originating at large radial distancesot forced to rotate into the direction and not all photon

all geodesics reach the string core.

trajectories are trapped by the string spacetime.
To explore the dependence of the cutoff functigtr),

wherea(r) is an angle which varies with distance from the on the momentum per unit length, we pj@tr) for a super-

string core. In terms of the componenkgr), ¥ (r), A(r),
and((r), the metric in the-« frame becomes

ds®=[A(r)coSa(r)+2d(r)cosa(r)sina(r)
—Q(r)sirfa(r)]d2+2{[A(r)
+Q(r)]cosa(r)sina(r)—2®(r)[coga(r)
— sirfa(r)idedi+[A(r)sira(r)
—2®d(r)cosa(r)sina(r)—Q(r)cofa(r)]dx?—dr?
—W2(r)d6?. (26)

In order that{ remain timelike andc spacelike for all, we
definea(r) by settingg,,=0, which gives

20(r)

taf 2a(r)]= W

(27

This equation can be further simplified by using Eg). to
obtain

B Q(r)
tar[2a(r)+rr/4]—m. (29

conducting cosmic string with different valueslofsee Fig.

3). In the limit k—0, the spacetime becomes conical and
there is no impediment to particles moving outwards from
the string. However, ak increases, geodesics which extend
to a given distance,, are more restricted. Therefore we can
reduce the range @(r), describing geodesics which extend

to a distancer, to arbitrarily small values by choosing an

appropriate value of.

The spacetime curvature prevents photons from leaving
the vicinity of the string, but does not prevent photons from
reaching the string core. For the string to be isolated from
incoming photons, we require the solutions@gr) [see Eq.
(24)] to be equal at some distanpei.e.,

A(p)=—Q(p). (29

However, as discussed in Sec. lll this corresponds to the
determinant vanishing. Hence it is not possible for a realistic
superconducting cosmic string to be cut off from photons in
the Universe. This can only be achieved by an oscillatory
spacetime for which the string must violate the DEC. Nev-
ertheless, particles which reach the string are constrained to
have a velocity in the direction which is comparable to the
speed of the current condensate.

We can extend our analysis to massive uncharged par-

At the string corea(0)=0, which is consistent with @ icjes moving at speeds less than the local speed of light, for
Minkowski spacetime. As we move out radially from the ;ich

string core)(r) andA(r) decreaseésee Fig. 1, with Q(r)
vanishing at some distance. This behavior results{n)

K=g,,dx*dx">0, (30)

decreasing from zero to a negative value and describes the

rotation of timelike vectors relative to thez coordinate sys-
tem. SinceQ)(r)/A(r) is always greater thar 1, the angle

r2

_A(r)[Q(r)—B@(r)]2+ 20(r)[Q(r)—B®(r)][®(r)+BA(r)] — Q(r)[P(r)+BA(r)]? B

whereK is a constant. In this case the geodesic equdidn
becomes

K. (31)

[P2(r)+A(NQ(N)]?
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The maximum radial velocity of a massive particle at a given v=[1-K]¥"2 (33

distancer [i.e., z(r)=0] is determined by the choice ¢

according to Furthermore, the maximum value &f for particles at a ra-

diusr is
(32 Kmax= A~ 1( r. (34)

The function 8(r), which defines where the geodesics
The speed of a massive parti¢leeasured at=0) is given  become undefined, is modified for a nonzero valu& @fc-
by cording to

1 1/2

rmaxz[m_ K

— ()= (P*(r) + A(N{Q(r) —K[®*(r) + A() Q(r) ]DY?

B(r)= A

(35

In Figs. 4 and 5 we have plotted the functigr) for vari-  creasingr, it is possible to choose geodesics which are well
ous values ofK. Unlike photon geodesics in Fig. 2, un- defined forK>1 (at sufficiently larger).

charged massive particles which are moving sufficiently
slowly cannot escape from the string core. Moreover, par-
ticles which originate in the “outside” Universe cannot  Although the previous analysis applies to strings support-

reach the string core. This is because the maximum value dpg fermionic supercurrents, exotic spacetime effects are also

; ; -1 ; . apparent in models with spin-0 supercurrents. We can illus-
K'is proportional toA ~(r). SinceA(r) decreases with in trate this for a neutral spin-O current, based on the Witten

model[22]. Our numerical scheme for the calculation of the

V. STRINGS WITH SPIN-0 SUPERCURRENTS

1 spacetime of a string with a spin-0 supercurrent has been
0.8 1+ discussed iri8]. To calculate the string vortex, we employ
0.6 N the Ansdze
0.4 + i
ol K=05 ¢(r,0)="f(r)e'’ (363
= 0
o ay(r)
0.2 ¢ Ay(r)= 36b
P o(1) qvr) (36b
45 \ o(t,r,z)=s(r)e 1, (360
-1 - whereao(t,r,z) is the spin-0 current condensdgsze[8]) and

Ln( Radius /&) w is a constant. Note that we have chosen a frame in which

the current condensate is stationary.
Figure 6 shows the spacetime behavior of a string with a
spin-0 current condensate. The spacetime in the boosted

1__

[
= 0.8 +
0.6
0.4 +
. 02+
= 02 : : : : |
Ln( Radius / § ) s f{ 100 200 300 400 500
FIG. 4. The functionB(r) is plotted for various choices df. 08+
The shaded region represents value8aforresponding to geode- a4
sics which extend frorm=0. Note that forK =0.5 (corresponding Ln( Radius/ &)
to 0.8% atr=0), massive particles can still escape from the string
core. However, forkK =0.8 (corresponding to O at r=0), un- FIG. 5. The functiong(r) is plotted for K=2. The shaded
charged massive particles which originate &0 cannot escape the region corresponds to values 8f for which geodesics are well
string, and particles correspondingKe=0.8 in the “outside” Uni-  defined. WherK =2 geodesics are only defined for uncharged mas-
verse cannot reach the string core. sive particles at large radial distances from the string core.
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FIG. 8. The function3(r) is plotted forKk=0.1, corresponding
to massive particle geodesics. The shaded region indicates geode-
sics which are well defined at some distancAlthough the current
condensate is stationary, nonrelativistic massive particles are pre-
vented from escaping from the vicinity of the string core.

rent(Fig. 1) and that generated by a spin-0 supercur(eig.
6). For example, in Fig. 6 the magnitude of the metric com-
0 5 10 15 20 25 30 ponent,A(r), increases withr, compared to the fermionic
Ln{ Radius/3 ) current condensate solution in Fig. 1, where the magnitude of
Othe metric component) (r), decreases with. As a conse-
quence massive uncharged particles moving slower than the
local speed of light K>0) haveK,,.x decreasing with in-
greasing radius. This is the opposite situation to the fermi-
onic current condensate, whelg, ., increases with radius.
This means that the spacetime of a string supporting a spin-0
7supercurrent hak restricted to

FIG. 6. The metric components for a cosmic string with a spin-
supercurrent [0=0.25, k=0, B=2.381(F7n,) 2% X\,
=20.928(577¢)’2, 7,=0.466n,, qdény=1, and e=0]. The
spacetime has been calculated for a frame in which the momentu
is zero.

frame exhibits exotic behavior, as can be seen in Fig.
where we have plotte@(r) for the numerical solution cor 0=K=1, (37
responding to the supercurrent shown in Fig. 6. Although the

current condensate is stationary, photon geodesics are undand all geodesics can reack 0. Hence it is not possible for
fined at sufficiently larger. Furthermore, objects at large particles to be isolated from the string cdre., no geodesics
radial distances from the string are constrained to move iorrespond toK>1). Nevertheless, massive particles are
the z direction at speeds comparable to the speed of the custill trapped in the vicinity of the cosmic string as illustrated
rent condensatéas measured by an observer located at thén Fig. 8.

string core. There is no requirement for the current conden-

sate to be moving at the speed of light in order to exhibit VI. CONCLUSION

exotic spacetime behavior.

. In this paper we have used two numerical models to show
However, there are some differences between the spacg- . . . : .
. . . . C at exotic effects are associated with string defects which do
time generated by a cosmic string with a fermionic supercur-

not violate the DEC. The principal difference between the
strings considered in this paper and the spacetime discussed

127 in [8,15] is that strings which violate the DEC are completely
0.8 + isolated from particles in the “outside” Universe, whereas
for strings which satisfy the DEC, particles can escape or
0.4+ reach the string core if they possess a velocity component
<, parallel to the current condensatehich is comparable to
@ d the speed of the condenspat8ince the trapping of particles
-0.4 by supermassive superconducting cosmic strings is a conse-
quence of frame dragging, the results of this work can be
B8 generalized to other types of superconducting cosmic strings.
ol We have also considered the behavior of nonrelativistic
Ln( Radius /3 particles in the spacetime of supermassive superconducting

cosmic strings. For both superconducting string models non-

FIG. 7. The functiond(r) (corresponding to photons for which relativistic particles are trapped by the string spacetime and
K=0) is plotted for the numerical spacetime shown in Fig. 6. Al- are prevented from escaping to the “outside” Universe. Sig-
though the geodesics are calculated in a frame where the momenificantly, in the case of a cosmic string with a fermionic
tum is zero, photons are still deflected and the string exhibits exotisupercurrent it is possible for nonrelativistic massive par-

behavior. ticles to be isolated from the string core, despite the string
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satisfying the DEC. This differs dramatically from the coni- ACKNOWLEDGMENTS
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