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Topological defects: Fossils of an anisotropic era?
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We consider the evolution of domain walls produced during an anisotropic phase in the very early universe,
showing that the resulting network can be very anisotropic. If the domain walls are produced during an
inflationary era, the network will soon freeze-out in comoving coordinates retaining the imprints of the aniso-
tropic regime, even though inflation makes the universe isotropic. Only at late times, when the typical size of
the major axis of the domain walls becomes smaller than the Hubble radius, does the network evolve rapidly
towards isotropy. Hence, we may hope to see imprints of the anisotropic era if by today the typical size of the
major axis of the domain walls is of the order of the Hubble radius or if the walls reentered it only very
recently. Depending on the mass scale of the domain walls, there is also the possibility that they reenter at
earlier times, but their evolution remained friction dominated until recently, in which case the signatures of the
anisotropic era will be much better preserved. These effects are expected to occur in generic topological defect
models.

PACS numbd(s): 98.80.Cq, 95.30.5f

[. INTRODUCTION back inside; so if the inflationary epoch is not too long, they
can still have important cosmological consequences.
It is well know that the “hot big bang” modd]1], despite Cosmic strings are even more successful, being able to

its numerous successes, is plagued by a number of “initiapurvive about 5@-foldings. The reason for this difference is
conditions” problems, of which the horizon, flatness and un-that their non-trivial dynamicgl1-13,1Q makes them come
wanted relic ones are the best known. The standard way tBack inside the horizon faster than one might naively have
solve them is to invoke an epoch of cosmological inflationXpected. The above two numbers are typical, but there are
[2-4], a relatively brief period of exponentidor quasi- SPecific models where defects can survive even longer. One
exponential cosmological expansion. The way inflation €xample is that of open inflation scenar(dgl]. In this case
solves these problems is, loosely speaking, by erasing aife universe undergoes two different inflationary epochs—
traces of earlier epochs and re-setting the universe to a rathEpUghly speaking, a period of “old inflation” followed by
simple state. Indeed, inflation is so efficient in this task that £2n€ of “new inflation.” As pointed out by Vilenkir{15],
number of scientists have wondered if one can ever hope t8N€ can expect that defects will form between the two infla-
probe the physics of a pre-inflationary epoch. tionary epochs. In this case, a collaborat{d®] including _
There are, however, a small number of possible preIhe present authors_ has rece_ntly shown_that_not only will
inflationary relics. For example, the recent work by Gratton,COSMIC strings survive the entire second inflationary epoch,
Hertog, and Turok5] shows that curvature can, in some regardiess of how long it lastsput they will in fact be back
sense, survive inflation. Another class of inflationary survi-inside the horizon by the time of equal matter and radiation
vors is composed of topological defe¢6, formed at phase den3|t|e§. In such models, monopoles can survive up to about
transitions either before or during inflatigfi—-9]. It is known 30 e-foldings. _
(see, e.g.[1,3,10) that one needs about 28foldings of ~ NOW, given that defects seem to be so successful surviv-
inflation® to solve the monopole problem. One can reversdnd inflation, and that one expects them to be frozen out
the argument and say that monopoles can survive about 2ghile they are outside the horizon, one can think of a further
e-foldings of inflation. The inflationary epoch itself will ob- interesting possibility. For the best-studied case of cosmic
viously push the monopoles outside the horizon, but the substrings, it is well known that the scaling properties of the
sequent evolution of the universe tends to make them com@etwork depend on the background cosmolddy—13.

*Electronic address: pedro@astro.up.pt 2Note that in these models the duration of the second inflationary
"Electronic address: C.J.A.P.Martins@damtp.cam.ac.uk epoch is fixed by the present value of the density of the universe
The exact number is of course model dependent. [14].
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Moreover, in some casdsypically when their evolution is 1

friction dominatedl they can retain a “memory” of the ini- L=~ E(§¢,a¢’a+V(¢>)), 2
tial conditions or the general properties of the cosmology in

which they find themselves at early times for quite a largayhere we will takeV(¢) to be the generiey* potential with
number of orders of magnitude in tim#1,13). Itis therefore  two degenerate minima given by

conceivable that if such an imprint of an early cosmological

epoch is retained by a defect network which manages to ? 2
survive inflation, we might still be able to observe it today. V(é)=V, ¢T§_1 : ()]

We believe that this is a general feature of defect models,
and a number of non-trivial pieces of information about theThis obviously admits domain wall solutiof§]. By varying
very early universe can probably be preserved in this way. Inhe action
the present paper we will restrict ourselves to a simple ex-
ample. We will discuss the possibility of a domain wall net- _ 3
work retaining information about an early anisotropic phase S_f dtf d x\/—_gﬁ, “)
of the universe. There are very strong constrdih& on the ] ) ] ) )
mass of domain walls formed after inflation, due to the factWith respect tog, we obtain the field equation of motion

that their density decays more slowly than the radiation and

2
matter densities. However, these can be evaded by walls @Jﬂg@_vzd,:_ﬂ (5)
forming before or during inflation. In a subsequent paper, we ot ot dp
will discuss the more interesting, but also more complicatedwhere
case of cosmic strings.
The plan of the paper is as follows. In Sec. Il we briefly 1 2 1 02 1 2

describe our backgroun@ianchi ) cosmology and the ba- v'2 (6)
sic evolutionary properties of the domain walls. In particular,
we focus on the approach to isotropy during inflation, which
is discussed through both analytic arguments and numeric
simulations. We emphasize that these simulatdm$otin-
clude the defects. However, they serve an important purpos
as they are used in the subsequent discussion to show that t
time scale needed for isotropization is compatible with the _ 1

“survival” on anisotropic defect networks. 6+ A%+ B2+ C%=— -k(p+3p), (7)

We provide a description of our numerical simulations of 2
domain wall evolution in Sec. lll. These are analogous t
those of Press, Ryden, and Sperffel], and the interested
reader is referred to this paper for a more detailed discussion ] ) . 1
of some relevant numerical issues. Here defect networks are A+ 60A=B+60B=C+ 0C=§k(p— P, 8
evolved in an isotropic matter-dominated(i.e., post-
inflationary) universe, and their main purpose is to show that . L 3 i _
isotropic and anisotropic networks will evolve in different Vi”g] é/_ )2(/X,dl3_—_\£/;(,3arl1;j_C—tZ/Z_,h¢t9f—A+§J;C andbk_
ways, so two such networks can in principle be observation—g 777 ¢ 8atn Ib_t 240 (LIS straightiorward o combine
ally distinguished as they re-enter the horizon. Our main re- gs-(7), (8) to obtain
sults are presented and discussed in Sec. 1V, and finally we AB+BC+CA=kp. (9)
present our conclusions and discuss future work in Sec. V.

Throughout this paper we will use fundamental units in|n the following discussion we will make the simplification
whichc=1. that X(t)=2Z(t) (and thereforeA=C) and consider the dy-
namics of the universe during an inflationary phase with
= —p=const. In this caskl?=kp/3=const and the Einstein

field Eqgs.(7)—(9) imply

=t =t =5 —
X? ox? Y? a9y? 7% 97%’

ith 6(t) =W/W andW(t)=XY Z The dynamics of the uni-
verse is described by the Einstein field equations. Here we
%hall seek perfect fluid solutions. The time component of the

g}stein equation then becomes

Qwhile the spatial components give

II. EVOLUTION EQUATIONS FOR DOMAIN WALLS

We consider the evolution of a network of domain walls
in a k=0 anisotropic universe of Bianchi type | with line A+ §(A2—H2):O (10)
element 18]: 2 '

while B can be found from the suggestive relation

3H? )

ds?=dt?— X2(t)dx?— Y?(t)dy?— Z?(t)d 2 )

B

whereX(t), Y(t), andZ(t) are the cosmological expansion A
factors in thex, y, andz directions respectively, andis the

physical time. The dynamics of a scalar fiedds determined Equation (10) has two solutions, depending on the initial

by the Lagrangian density conditions. IfA;<H, thenA is the smaller of the two dimen-

1
=5\ 70

x a
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FIG. 1. Evolution of the asymmetry parameter=Y(t)/X(t) [according to Egs(7) and (8)] for several values ofx;=10g,o(D;)
assumingy=0 (left pane) and y= 2/3 (right pane) respectively. Note that time is given in units df (t;).

sions and the shape of spatial hyper-surfaces is similar to thatrong energy condition Note that we do not include the

of a rugby ball. Then the solution is defect network in the simulatiorfWe assume that the net-
work at the initial timet; is statistically isotropig. We take
é =tan}{§H(t—t-) +tanh1(ﬁ” (12) X(t;)=Y(t;). We can see that depending on the initial degree
H 2 : H/| of anisotropy, specified by; , the value ofE can grow to be

. ) ) very large, especially ity; is large. Moreover, although for
with Aj=A(t;). On the other hand, iA;>H, thenAis the  ,_0 the value o becomes approximately constant in one
larger of the dimensions and the shape of spatial hyperyypple time that does not happen so rapidly for inflating
surfaces is similar to that of a pumpkin. Then the solution is;piverses with largety. This removes the necessity of pro-

A 3 A ducing the domain walls right at the onset of the inflationary
ﬁzcotk{EH(t—ti)choth‘l(ﬁ') .

(13 era. . )
What about the evolution of the domain walls? Based on
. . rather general grounds, we expect it to have a number of
Eg:\%;ﬂ;tf;gtb(:g dcﬁ(saii;h;eraz:r:etig%;;suC\'l%/het);]%o'raﬁsimilarities with the much better studied case of cosmic
B/A. In other words, inflation tends to make the universe
more isotropic, as expected. An easy way to see this is t

gtrings [6]. In particular, one can define a “characteristic
length scale,” which we shall denote Hy, which can be

consider the ratio of the two different dimensioilssB/A,

and to study its evolution equation. One easily finds

Poughly interpreted as a typical curvature radius or a corre-
lation length of the wall network. It is also a length scale that
measures the total energy of the domain wall network per

_ 1/2 unit volume, since we can define
D=/6H D+5| (1-D), (14)
g
which has an obvious attractor Bt=1. P=1 (16)

Note that even though we have so far assurtfedsim-
plicity) thatp= — p, the same analysis can be carried out for . _ . .
an inflating universe witp=(y—1)p with y#0 by numeri- Whereo is the domain wall energy per unit area. Note that in

cally solving the conservation equation a more rigorous treatment that allowed for the expected build
up of small-scale “wiggles” on the wall$in analogy with
,')+ 6(p+p)=0, (15 what happens for the case of cosmic strifi@8]) each of

these three length scales would be different. However, for
together with Eqs(8) and(9). Indeed, the more general case our present purposes it is adequate to suppose that they are
will be relevant for what follows. all similar.

In Fig. 1 we plot the evolution of the asymmetry param- Then we can expect to find two different evolution re-
eterE=Y(t)/X(t), according to Eqs.7) and(8), for several gimes. While the network is non-relativistic, we expect it to
values of a;=log;¢(D;) assumingy=0 and y=2/3 (note  be conformally stretched by the cosmological expansion, and
that y=2/3 is the maximum value of which violates the hence
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Lxa, pyxa L (17) curate description of their evolution and, hence, for a reliable
analysis of their observational consequences. For our pur-

In this case there is essentially no dynamics. An extrem@oses in the present work, however, the PRS algorithm is
example of this regime happens during inflation. We can seenough as an approximation to the true wall dynamics. In a
from Eq. (5) that as a result of the very rapid expansionsubsequent, more detailed publication we shall compare re-
which occurs in the inflationary regime the time derivativessults obtained using this algorithm with those from the true
of the field ¢ rapidly approach zero so that the network of wall dynamics.
domain walls will simply be frozen in comoving coordinates.  Having clarified this point, we will modify the evolution

On the other hand, once the network becomes relativisticequation for the scalar fielgh in the isotropic phase accord-
one expects it to evolve in a linear scaling regime where ing to the PRS prescription

Loct, ot L, (18 .
P Pp  adp _, 5,V
This is the case of “maximal” dynamics, in the sense that EZ“L'Bla %‘V ¢=-a 2% (22)

the network is evolvindin particular, losing energy by wall

collisions and re-connectionas fast as allowed by causality. where 8, and 3, are constants. We choog=0 in order
1 2 . -

We note that previous work of Press, Ryder and Spefigl for the walls to have constant comoving thickness #@hd

suggests that there may be logarithmic corrections to this i )
Iinggr regime y 9 =3 by requiring that the momentum conservation law for

how a wall slows down in an expanding universe is main-
tained[17].
lll. NUMERICAL SIMULATIONS We perform two-dimensional simulations of domain wall

At late times(after the inflationary epogtthe universe is  evolution for whicha”#/9z°=0. These have the advantage
homogeneous and isotropic wih=B=C with the average ©f allowing a larger dynamic range and better resolution than
dynamics of the universe being specified by the evolution ofhree-dimensional simulations.
the scale factoa(t). We now consider the evolution of iso- ~ We solve Eq.(21) numerically assuming a_matter-
tropic and anisotropic defect networks in this background. Irdominated Einstein—de Sitter cosmology wid 7°. We
particular, we are interested in determining how the networkéised a standard difference scheme second-order accurate in
evolve as they re-enter the horizon, since if one finds differspace and time and periodic boundary condititsee[17]
ences in the dynamics of the two cases, then this shoulfpr a more detailed description of the algorithm and other
translate into observational tests that will allow us to dis-related numerical issues

criminate between then and hence probe pre-inflationary The initial properties of the network of domain walls de-
physics. pend strongly on the details of the phase transition which

It is useful for numerical purposes to re-write Ef) as a originated them. It is conceivable that the initial network is
function of the conformal time; defined byds=dt/a. In already formed asymmetric with the walls being elongated

this case Eq(5) becomes along preferred directions. However, this is beyond the scope
of the present paper. For our present purposes, we can ignore
Pp  adp IV this possibility and assume that the initial domain wall net-
—+2- ——Vip=—a’— (19 work is statistically isotropic. This assumption will not
an adny do ) . : .
modify the conclusions of the paper—if anything, aaly
with initio anisotropies would only enhance the effects we are
describing.
) 2 9?9 Hence, we assume the initial value ¢fto be a random
v :(9_)(2"' WZ"' 02" 20 yariable between- &0 and ¢, and the initial value ofp to

be equal to zero everywhere. We normalize the numerical
When making numerical simulations of the evolution of do-simulations so that,=1. We set the conformal time at the
main wall networkgor indeed other defectdt is also often  start of the simulation and the comoving spacing between the
convenient to modify the equation of motion for the scalarmesh points to be respectively=1 andAx=1.
field ¢ in such a way that the comoving thickness of the The wall thickness, defined by
walls is fixed in comoving coordinates. This is known as the
Press-Ryden-SpergéPRS algorithm[17], and it is gener-

ally believed not to significantly affect the large-scale dy- wo= 77(;50’ (22)
namics of domain walls. V2V,

We note, however, that recent high-resolution simulations
[19] have revealed that the accuracy of this algorithm is nofg set to be equal to 5. The kinetic energy of the figids
as good as has been claimed. This effect is expected t0 iRz culated by
crease with increasing dynamic range. In particular, the PRS
algorithm artificially prevents the buildup of small-scale fea-
tures on the domain wallgor, for that matter, any other E,. :i E ¢ (23)
defec). This turns out to be crucial for a quantitatively ac- kin"'g h
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On the other hand, the rest energy of the walls is calculated
by multiplying the comoving area of the wallg, by the
energy density per comoving area, which can be written as

2ywVowg
o= ————

372 24

with y,=(1—0v2)~*2 andv,, is the value of the physical
velocity of the domain walls. Finally the total area of the
walls is defined as the area of the surfaces on wigiehO
and is computed using the method described in Rif].

IV. RESULTS AND DISCUSSION

As pointed out above, it will be of fundamental impor-
tance to study the dynamics of the wall network at late times,
as the Hubble length becomes larger than the typical size of
the major axis of a domain wall. A crucial issue will be the
time scale required for the wall network to switch from the
non-relativistic regime to the relativistic one. For our present
purposes, the main difference between these two regimes is
that a friction-dominated network can remain anisotropic if it
was frozen out that way, whereas a relativistic network will
rapidly become isotropic and erase any imprints from the
earlier anisotropic phase. In our simulations we ignore the
possibility that the network can be friction dominated due to
particle scattering13] when the domain walls come back
inside the horizon—again, this would only enhance the ef-
fects we are describing.

We consider three simulations with different initial con-
ditions. In the first onécase } we evolve the initial network
generated in the manner specified in the previous section
from the conformal timep;=1. In the second oné&ase |)
the initial conditions at the timey; =1 were specified by the
network configuration of the previous simulation at the con-
formal time n,, = 20, with the velocities reset to zero. Physi-
cally, this corresponds to starting with the network outside
the horizon. Finally, case Il is similar to the second one but
with the initial network of case Il stretched in tlyedirection
by a factor ofE=2 (see Fig. 2, and corresponds to the
anisotropic case. We have performed 1Dg#nulations for
each of the three cases, plus an additional 2048 of case
[, in order to test for possible box effects.

For each run we platsee Fig. 3the ratiosA/V andA»n/V
(note thatA andV are thecomovingarea and volume, respec-
tively), as well as the ratio of the kinetic and rest energies, as FIG. 2. The same physical size of the same domain wall simu-
in Press, Ryden and Sperdél7]. These are plotted from the lation. The bottom one however has been stretched along the
beginning of the simulation until the time when the horizon direction by a factor of 2. The horizon size of the tOp box is 1/8 of
becomes one-halfor the 1024 runs or one-quarteffor the the linear siz_e of the box shovyn, an_d this is itself only a fraction
2048 run) of the box size. In addition to thegevhich we  1/16 of the side of the whole simulation box.
plot mainly for the purposes of comparison with previous
work [17]) we plot a “scaling coefficient” which will be our ~ then what we plot is the “instantaneous” or “effective”
main analysis tool. We will define it by analogy with the value of\ as a function of conformal time. For a given

cosmic string casgl1,13, as follows. Assume that the physicalnetwork correlatiori. length will be evolving as
A L
nvoc”)\; (25) L:xtlf)\IS’ 5‘:x,?lf)\. (26)
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FIG. 3. Evolution of several properties of a domain wall network as a function of the conformaltuhoeing the matter era. Herg,
andE,; are the kinetic and rest energies associated with the scalargfieddV is the comoving wall area per unit comoving volume of
the two-dimensional simulations, is a “scaling coefficient” defined by = dIn(A»/V)/diny and 7 is the conformal time. The solid, dashed
and dash-dotted curves correspond to f0@thulations with different initial conditions. Cases | and Il have isotropic initial conditions but
in case Il the size of the domain walls becomes comparable with horizon only at a conformaj,tie®0. Case Ill is similar to case Il but
with the initial network of case Il stretched in tlyadirection by a factor oE =2 (see text The dotted curve corresponds to a 24 of
case I.

10°

Note that\ can, in general, be a time-dependent quantityin the non-relativistc regime and
However, for the two scaling regimes discussed above, we
expect it to be a constant, namely

A A 1 30
=1 27 7y const, o7 (30)
in the non-relativistic limit where the network is being con-
formally stretched and in the linear scaling regime. Similarly, the raty /E s
should be a constant in the linear scaling regiwéh its
=0 (28 numerical value providing a measure of the characteristic
_ _ ) ) network scaling speedand it should approach zero in the
in the linear scaling regime. non-relativistic limit.
From these itis trivial to deduce the behaviorAdlv and First, we note that the two case | runs produce very simi-
Anl/V in both scaling regimes. One expects lar results: significant differences can only be seen at late

times. This is an indication that the resolution we are using is

adequate for our present purposes. As expected, the network
(29 ; S . ;

in case | becomes relativistic very quickly, while those of

A A

—xpy, —xconst
KAVARERY
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cases Il and Il start in the extreme non-relativistic regimescaling than an isotropic one. Hence, if the very early uni-
and only evolve away from it fairly slowly, after they re- verse had an anisotropic phase which was erased by an in-
enter the horizon. flationary epoch, and if domain walls are present, then the
More importantly, there are two non-trivial observationswalls can retain an imprint of the earlier phase, and this can
to be made. First, we confirm that there is a correction to thévave important observational consequences, e.g., for struc-

linear scaling regime. We find ture formation scenarios.
As is well known, there are quite strong constrajrits, 6|
Asc~0.12, (3D on the mass of domain walls formed after inflation. These are

basically due to the fact that their density will decay more
%Iowly than the radiation and matter densities. However, es-
Loct®% 5 ot =096 (32  sentially all of these can be evadent at least significantly
relaxed by walls forming before or during inflatiofand also
in agreement with the previous result by Press, Ryden anbly walls evolving in a friction-dominated regimeHaving
Spergel[17]. This means that the network is not straighten-said this, how could these anisotropies be detected? The
ing out as fast as allowed by causality. Second, the rates atost naive answer would be through their imprint on the
which the networks in cases Il and Il approach the relativ-cosmic microwave backgrourl@€MB), but this is only true
istic regime are different. One might expect this on physicaif their energy density is not too low, and such models are
grounds: if the network is stretched in one direction, thenconstrained in a variety of other waysot only from the
there are in fact different “network correlation lengths” for cosmology side, but also from the high-energy physics)side
each direction, and interactions between the domain wall§he case of “light” walls is therefore more interesting: note
will tend to occur faster along the directions with smallerthat just like in the case of “light strings13], these are
correlation lengths, and more slowly in the others. expected to be friction dominated throughout most of cosmic
Another way of saying this is that the network will only history. Here the observational detection of the effects we
start evolving towards the relativistic regime when its largerhave described becomes somewhat non-trivial. The best way
axis has re-entered the horizon. Note that this mechanismf doing it should be through observations of numbers of
also tends to make the domain wall network more isotropicobjects as a function of redshift in different directiofs-
So one can naively say that the approach to the linear scalinguming that one has a reliable understanding of other pos-
regime takes longer in an anisotropic universe because thgble evolutionary effecs Two specific examples would be
dynamics of the walls must accomplish two tagksake the large-scale velocity flow§20] and gravitational lensing sta-
wall network relativistic and isotropjaather than just one. tistics of extragalactic survey21].
Finally, there is also an important implication of our work
V. CONCLUSION if at least one of the minima of the scalar field potential has
a non-zero energy density, which is an anisotropic non-zero
In this paper we have discussed a simple example of whafacuum density. In a subsequent, more detailed publication,
we believe to be a rather generic feature of topological defeGle shall discuss this scenario in more detail, as well as the
models, namely that they can easily retain information abougnalogous one for cosmic strings.
the properties of the very early universe. This information is To Conc'ude, we have shown that the importance of topo_
encoded in the scaling.e., “macroscopic’) and statistical  |ogical defects as a probe of cosmological physics goes well
(i.e., “microscopic”) properties of the defect networks. This peyond structure formation. Even if defects turn out to be
is even more relevant given the fact that defects can survivgnimportam for structure formation, they can stif de-
significant amounts of inflation. Hence, they can provide aected provide us with extremely valuable information about

unique probe of the pre-inflationary universe. The two cruthe physical conditions of the very early universe.
cial scales in the problem are the defect mass scale and the
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