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Topological defects: Fossils of an anisotropic era?
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We consider the evolution of domain walls produced during an anisotropic phase in the very early universe,
showing that the resulting network can be very anisotropic. If the domain walls are produced during an
inflationary era, the network will soon freeze-out in comoving coordinates retaining the imprints of the aniso-
tropic regime, even though inflation makes the universe isotropic. Only at late times, when the typical size of
the major axis of the domain walls becomes smaller than the Hubble radius, does the network evolve rapidly
towards isotropy. Hence, we may hope to see imprints of the anisotropic era if by today the typical size of the
major axis of the domain walls is of the order of the Hubble radius or if the walls reentered it only very
recently. Depending on the mass scale of the domain walls, there is also the possibility that they reenter at
earlier times, but their evolution remained friction dominated until recently, in which case the signatures of the
anisotropic era will be much better preserved. These effects are expected to occur in generic topological defect
models.

PACS number~s!: 98.80.Cq, 95.30.Sf
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I. INTRODUCTION

It is well know that the ‘‘hot big bang’’ model@1#, despite
its numerous successes, is plagued by a number of ‘‘in
conditions’’ problems, of which the horizon, flatness and u
wanted relic ones are the best known. The standard wa
solve them is to invoke an epoch of cosmological inflati
@2–4#, a relatively brief period of exponential~or quasi-
exponential! cosmological expansion. The way inflatio
solves these problems is, loosely speaking, by erasing
traces of earlier epochs and re-setting the universe to a ra
simple state. Indeed, inflation is so efficient in this task tha
number of scientists have wondered if one can ever hop
probe the physics of a pre-inflationary epoch.

There are, however, a small number of possible p
inflationary relics. For example, the recent work by Gratto
Hertog, and Turok@5# shows that curvature can, in som
sense, survive inflation. Another class of inflationary sur
vors is composed of topological defects@6#, formed at phase
transitions either before or during inflation@7–9#. It is known
~see, e.g.,@1,3,10#! that one needs about 20e-foldings of
inflation1 to solve the monopole problem. One can reve
the argument and say that monopoles can survive abou
e-foldings of inflation. The inflationary epoch itself will ob
viously push the monopoles outside the horizon, but the s
sequent evolution of the universe tends to make them c

*Electronic address: pedro@astro.up.pt
†Electronic address: C.J.A.P.Martins@damtp.cam.ac.uk
1The exact number is of course model dependent.
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back inside; so if the inflationary epoch is not too long, th
can still have important cosmological consequences.

Cosmic strings are even more successful, being able
survive about 50e-foldings. The reason for this difference
that their non-trivial dynamics@11–13,10# makes them come
back inside the horizon faster than one might naively ha
expected. The above two numbers are typical, but there
specific models where defects can survive even longer.
example is that of open inflation scenarios@14#. In this case
the universe undergoes two different inflationary epoch
roughly speaking, a period of ‘‘old inflation’’ followed by
one of ‘‘new inflation.’’ As pointed out by Vilenkin@15#,
one can expect that defects will form between the two in
tionary epochs. In this case, a collaboration@10# including
the present authors has recently shown that not only
cosmic strings survive the entire second inflationary epo
regardless of how long it lasts,2 but they will in fact be back
inside the horizon by the time of equal matter and radiat
densities. In such models, monopoles can survive up to a
30 e-foldings.

Now, given that defects seem to be so successful sur
ing inflation, and that one expects them to be frozen
while they are outside the horizon, one can think of a furth
interesting possibility. For the best-studied case of cos
strings, it is well known that the scaling properties of t
network depend on the background cosmology@11–13#.

2Note that in these models the duration of the second inflation
epoch is fixed by the present value of the density of the unive
@14#.
©2000 The American Physical Society10-1
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Moreover, in some cases~typically when their evolution is
friction dominated! they can retain a ‘‘memory’’ of the ini-
tial conditions or the general properties of the cosmology
which they find themselves at early times for quite a la
number of orders of magnitude in time@11,13#. It is therefore
conceivable that if such an imprint of an early cosmologi
epoch is retained by a defect network which manages
survive inflation, we might still be able to observe it toda

We believe that this is a general feature of defect mod
and a number of non-trivial pieces of information about t
very early universe can probably be preserved in this way
the present paper we will restrict ourselves to a simple
ample. We will discuss the possibility of a domain wall ne
work retaining information about an early anisotropic pha
of the universe. There are very strong constraints@16# on the
mass of domain walls formed after inflation, due to the f
that their density decays more slowly than the radiation
matter densities. However, these can be evaded by w
forming before or during inflation. In a subsequent paper,
will discuss the more interesting, but also more complicat
case of cosmic strings.

The plan of the paper is as follows. In Sec. II we brie
describe our background~Bianchi I! cosmology and the ba
sic evolutionary properties of the domain walls. In particul
we focus on the approach to isotropy during inflation, wh
is discussed through both analytic arguments and nume
simulations. We emphasize that these simulationsdo not in-
clude the defects. However, they serve an important purp
as they are used in the subsequent discussion to show tha
time scale needed for isotropization is compatible with
‘‘survival’’ on anisotropic defect networks.

We provide a description of our numerical simulations
domain wall evolution in Sec. III. These are analogous
those of Press, Ryden, and Spergel@17#, and the interested
reader is referred to this paper for a more detailed discus
of some relevant numerical issues. Here defect networks
evolved in an isotropic, matter-dominated~i.e., post-
inflationary! universe, and their main purpose is to show th
isotropic and anisotropic networks will evolve in differe
ways, so two such networks can in principle be observati
ally distinguished as they re-enter the horizon. Our main
sults are presented and discussed in Sec. IV, and finally
present our conclusions and discuss future work in Sec.

Throughout this paper we will use fundamental units
which c51.

II. EVOLUTION EQUATIONS FOR DOMAIN WALLS

We consider the evolution of a network of domain wa
in a k50 anisotropic universe of Bianchi type I with lin
element@18#:

ds25dt22X2~ t !dx22Y2~ t !dy22Z2~ t !dz2 ~1!

whereX(t), Y(t), andZ(t) are the cosmological expansio
factors in thex, y, andz directions respectively, andt is the
physical time. The dynamics of a scalar fieldf is determined
by the Lagrangian density
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L52
1

4p S 1

2
f ,af ,a1V~f! D , ~2!

where we will takeV(f) to be the genericf4 potential with
two degenerate minima given by

V~f!5V0S f2

f0
2 21D 2

. ~3!

This obviously admits domain wall solutions@6#. By varying
the action

S5E dtE d3xA2gL, ~4!

with respect tof, we obtain the field equation of motion

]2f

]t2 1u
]f

]t
2¹82f52

]V

]f
~5!

where

¹825
1

X2

]2

]x21
1

Y2

]2

]y21
1

Z2

]2

]z2 , ~6!

with u(t)5Ẇ/W andW(t)5XYZ. The dynamics of the uni-
verse is described by the Einstein field equations. Here
shall seek perfect fluid solutions. The time component of
Einstein equation then becomes

u̇1A21B21C252
1

2
k~r13p!, ~7!

while the spatial components give

Ȧ1uA5Ḃ1uB5Ċ1uC5
1

2
k~r2p!, ~8!

with A5Ẋ/X, B5Ẏ/Y, and C5Ż/Z, u5A1B1C and k
58pG/c2 and i 51,2,3. It is straightforward to combine
Eqs.~7!, ~8! to obtain

AB1BC1CA5kr. ~9!

In the following discussion we will make the simplificatio
that X(t)5Z(t) ~and thereforeA5C) and consider the dy-
namics of the universe during an inflationary phase withr
52p5const. In this caseH2[kr/35const and the Einstein
field Eqs.~7!–~9! imply

Ȧ1
3

2
~A22H2!50, ~10!

while B can be found from the suggestive relation

B

A
5

1

2 S 3H2

A2
21D . ~11!

Equation ~10! has two solutions, depending on the initi
conditions. IfAi,H, thenA is the smaller of the two dimen
0-2
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FIG. 1. Evolution of the asymmetry parameterE5Y(t)/X(t) @according to Eqs.~7! and ~8!# for several values ofa i5 log10(Di)
assumingg50 ~left panel! andg52/3 ~right panel! respectively. Note that time is given in units ofH21(t i).
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sions and the shape of spatial hyper-surfaces is similar to
of a rugby ball. Then the solution is

A

H
5tanhF3

2
H~ t2t i !1tanh21S Ai

H D G , ~12!

with Ai5A(t i). On the other hand, ifAi.H, thenA is the
larger of the dimensions and the shape of spatial hyp
surfaces is similar to that of a pumpkin. Then the solution

A

H
5cothF3

2
H~ t2t i !1coth21S Ai

H D G . ~13!

Note that in both cases the ratioA/H tends to unity expo-
nentially fast, and hence the same happens with the r
B/A. In other words, inflation tends to make the univer
more isotropic, as expected. An easy way to see this i
consider the ratio of the two different dimensions,D5B/A,
and to study its evolution equation. One easily finds

Ḋ5A6HS D1
1

2D 1/2

~12D !, ~14!

which has an obvious attractor atD51.
Note that even though we have so far assumed~for sim-

plicity! that p52r, the same analysis can be carried out
an inflating universe withp5(g21)r with gÞ0 by numeri-
cally solving the conservation equation

ṙ1u~r1p!50, ~15!

together with Eqs.~8! and~9!. Indeed, the more general ca
will be relevant for what follows.

In Fig. 1 we plot the evolution of the asymmetry param
eterE5Y(t)/X(t), according to Eqs.~7! and~8!, for several
values ofa i5 log10(Di) assumingg50 and g52/3 ~note
that g52/3 is the maximum value ofg which violates the
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strong energy condition!. Note that we do not include the
defect network in the simulation.~We assume that the ne
work at the initial timet i is statistically isotropic.! We take
X(t i)5Y(t i). We can see that depending on the initial deg
of anisotropy, specified bya i , the value ofE can grow to be
very large, especially ifa i is large. Moreover, although fo
g50, the value ofE becomes approximately constant in o
Hubble time that does not happen so rapidly for inflati
universes with largerg. This removes the necessity of pro
ducing the domain walls right at the onset of the inflationa
era.

What about the evolution of the domain walls? Based
rather general grounds, we expect it to have a numbe
similarities with the much better studied case of cosm
strings @6#. In particular, one can define a ‘‘characterist
length scale,’’ which we shall denote byL, which can be
roughly interpreted as a typical curvature radius or a co
lation length of the wall network. It is also a length scale th
measures the total energy of the domain wall network
unit volume, since we can define

r[
s

L
, ~16!

wheres is the domain wall energy per unit area. Note that
a more rigorous treatment that allowed for the expected b
up of small-scale ‘‘wiggles’’ on the walls~in analogy with
what happens for the case of cosmic strings@13#! each of
these three length scales would be different. However,
our present purposes it is adequate to suppose that the
all similar.

Then we can expect to find two different evolution r
gimes. While the network is non-relativistic, we expect it
be conformally stretched by the cosmological expansion,
hence
0-3
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P. P. AVELINO AND C. J. A. P. MARTINS PHYSICAL REVIEW D62 103510
L}a, rw}a21. ~17!

In this case there is essentially no dynamics. An extre
example of this regime happens during inflation. We can
from Eq. ~5! that as a result of the very rapid expansi
which occurs in the inflationary regime the time derivativ
of the field f rapidly approach zero so that the network
domain walls will simply be frozen in comoving coordinate

On the other hand, once the network becomes relativis
one expects it to evolve in a linear scaling regime where

L}t, rw}t21. ~18!

This is the case of ‘‘maximal’’ dynamics, in the sense th
the network is evolving~in particular, losing energy by wal
collisions and re-connections! as fast as allowed by causality
We note that previous work of Press, Ryder and Spergel@17#
suggests that there may be logarithmic corrections to
linear regime.

III. NUMERICAL SIMULATIONS

At late times~after the inflationary epoch! the universe is
homogeneous and isotropic withA5B5C with the average
dynamics of the universe being specified by the evolution
the scale factora(t). We now consider the evolution of iso
tropic and anisotropic defect networks in this background
particular, we are interested in determining how the netwo
evolve as they re-enter the horizon, since if one finds diff
ences in the dynamics of the two cases, then this sho
translate into observational tests that will allow us to d
criminate between then and hence probe pre-inflation
physics.

It is useful for numerical purposes to re-write Eq.~5! as a
function of the conformal timeh defined bydh5dt/a. In
this case Eq.~5! becomes

]2f

]h2 12
ȧ

a

]f

]h
2¹2f52a2

]V

]f
~19!

with

¹25
]2

]x21
]2

]y21
]2

]z2 . ~20!

When making numerical simulations of the evolution of d
main wall networks~or indeed other defects! it is also often
convenient to modify the equation of motion for the sca
field f in such a way that the comoving thickness of t
walls is fixed in comoving coordinates. This is known as t
Press-Ryden-Spergel~PRS! algorithm @17#, and it is gener-
ally believed not to significantly affect the large-scale d
namics of domain walls.

We note, however, that recent high-resolution simulatio
@19# have revealed that the accuracy of this algorithm is
as good as has been claimed. This effect is expected to
crease with increasing dynamic range. In particular, the P
algorithm artificially prevents the buildup of small-scale fe
tures on the domain walls~or, for that matter, any othe
defect!. This turns out to be crucial for a quantitatively a
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curate description of their evolution and, hence, for a relia
analysis of their observational consequences. For our
poses in the present work, however, the PRS algorithm
enough as an approximation to the true wall dynamics. I
subsequent, more detailed publication we shall compare
sults obtained using this algorithm with those from the tr
wall dynamics.

Having clarified this point, we will modify the evolution
equation for the scalar fieldf in the isotropic phase accord
ing to the PRS prescription

]2f

]h2 1b1

ȧ

a

]f

]h
2¹2f52ab2

]V

]f
~21!

whereb1 and b2 are constants. We chooseb250 in order
for the walls to have constant comoving thickness andb1
53 by requiring that the momentum conservation law
how a wall slows down in an expanding universe is ma
tained@17#.

We perform two-dimensional simulations of domain wa
evolution for which]2f/]z250. These have the advantag
of allowing a larger dynamic range and better resolution th
three-dimensional simulations.

We solve Eq. ~21! numerically assuming a matter
dominated Einstein–de Sitter cosmology witha}h2. We
used a standard difference scheme second-order accura
space and time and periodic boundary conditions~see@17#
for a more detailed description of the algorithm and oth
related numerical issues!.

The initial properties of the network of domain walls d
pend strongly on the details of the phase transition wh
originated them. It is conceivable that the initial network
already formed asymmetric with the walls being elonga
along preferred directions. However, this is beyond the sc
of the present paper. For our present purposes, we can ig
this possibility and assume that the initial domain wall n
work is statistically isotropic. This assumption will no
modify the conclusions of the paper—if anything, anyab
initio anisotropies would only enhance the effects we
describing.

Hence, we assume the initial value off to be a random
variable between2f0 andf0 and the initial value ofḟ to
be equal to zero everywhere. We normalize the numer
simulations so thatf051. We set the conformal time at th
start of the simulation and the comoving spacing between
mesh points to be respectivelyh i51 andDx51.

The wall thickness, defined by

v05
pf0

A2V0

, ~22!

is set to be equal to 5. The kinetic energy of the fieldf is
calculated by

Ekin5
1

8p (
i , j

ḟ i , j . ~23!
0-4
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TOPOLOGICAL DEFECTS: FOSSILS OF AN . . . PHYSICAL REVIEW D62 103510
On the other hand, the rest energy of the walls is calcula
by multiplying the comoving area of the walls,A, by the
energy density per comoving area, which can be written

s5
2gwV0v0

3p2
~24!

with gw5(12vw
2 )21/2, and vw is the value of the physica

velocity of the domain walls. Finally the total area of th
walls is defined as the area of the surfaces on whichf50
and is computed using the method described in Ref.@17#.

IV. RESULTS AND DISCUSSION

As pointed out above, it will be of fundamental impo
tance to study the dynamics of the wall network at late tim
as the Hubble length becomes larger than the typical siz
the major axis of a domain wall. A crucial issue will be th
time scale required for the wall network to switch from t
non-relativistic regime to the relativistic one. For our pres
purposes, the main difference between these two regime
that a friction-dominated network can remain anisotropic i
was frozen out that way, whereas a relativistic network w
rapidly become isotropic and erase any imprints from
earlier anisotropic phase. In our simulations we ignore
possibility that the network can be friction dominated due
particle scattering@13# when the domain walls come bac
inside the horizon—again, this would only enhance the
fects we are describing.

We consider three simulations with different initial co
ditions. In the first one~case I! we evolve the initial network
generated in the manner specified in the previous sec
from the conformal timeh i51. In the second one~case II!
the initial conditions at the timeh i51 were specified by the
network configuration of the previous simulation at the co
formal timeh* 520, with the velocities reset to zero. Phys
cally, this corresponds to starting with the network outs
the horizon. Finally, case III is similar to the second one
with the initial network of case II stretched in they direction
by a factor of E52 ~see Fig. 2!, and corresponds to th
anisotropic case. We have performed 10242 simulations for
each of the three cases, plus an additional 20482 run of case
I, in order to test for possible box effects.

For each run we plot~see Fig. 3! the ratiosA/V andAh/V
~note thatA andV are thecomovingarea and volume, respec
tively!, as well as the ratio of the kinetic and rest energies
in Press, Ryden and Spergel@17#. These are plotted from th
beginning of the simulation until the time when the horiz
becomes one-half~for the 10242 runs! or one-quarter~for the
20482 run! of the box size. In addition to these~which we
plot mainly for the purposes of comparison with previo
work @17#! we plot a ‘‘scaling coefficient’’ which will be our
main analysis tool. We will define it by analogy with th
cosmic string case@11,13#, as follows. Assume that

h
A

V
}hl; ~25!
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then what we plot is the ‘‘instantaneous’’ or ‘‘effective’
value of l as a function of conformal time. For a givenl,
thephysicalnetwork correlationL length will be evolving as

L}t12l/3,
L

a
}h12l. ~26!

FIG. 2. The same physical size of the same domain wall sim
lation. The bottom one however has been stretched along thy
direction by a factor of 2. The horizon size of the top box is 1/8
the linear size of the box shown, and this is itself only a fracti
1/16 of the side of the whole simulation box.
0-5



of
d
but
t

P. P. AVELINO AND C. J. A. P. MARTINS PHYSICAL REVIEW D62 103510
FIG. 3. Evolution of several properties of a domain wall network as a function of the conformal timeh during the matter era. Here,Ek

andErest are the kinetic and rest energies associated with the scalar fieldf, A/V is the comoving wall area per unit comoving volume
the two-dimensional simulations,l is a ‘‘scaling coefficient’’ defined byl5dln(Ah/V)/dlnh andh is the conformal time. The solid, dashe
and dash-dotted curves correspond to 10242 simulations with different initial conditions. Cases I and II have isotropic initial conditions
in case II the size of the domain walls becomes comparable with horizon only at a conformal timeh* 520. Case III is similar to case II bu
with the initial network of case II stretched in they direction by a factor ofE52 ~see text!. The dotted curve corresponds to a 20482 run of
case I.
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Note thatl can, in general, be a time-dependent quant
However, for the two scaling regimes discussed above,
expect it to be a constant, namely

lnr51 ~27!

in the non-relativistic limit where the network is being co
formally stretched and

l r50 ~28!

in the linear scaling regime.
From these it is trivial to deduce the behavior ofA/V and

Ah/V in both scaling regimes. One expects

h
A

V
}h,

A

V
}const ~29!
10351
.
e
in the non-relativistc regime and

h
A

V
}const,

A

V
}h21 ~30!

in the linear scaling regime. Similarly, the ratioEk /Erest
should be a constant in the linear scaling regime~with its
numerical value providing a measure of the characteri
network scaling speed!, and it should approach zero in th
non-relativistic limit.

First, we note that the two case I runs produce very si
lar results: significant differences can only be seen at
times. This is an indication that the resolution we are usin
adequate for our present purposes. As expected, the net
in case I becomes relativistic very quickly, while those
0-6
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TOPOLOGICAL DEFECTS: FOSSILS OF AN . . . PHYSICAL REVIEW D62 103510
cases II and III start in the extreme non-relativistic regim
and only evolve away from it fairly slowly, after they re
enter the horizon.

More importantly, there are two non-trivial observatio
to be made. First, we confirm that there is a correction to
linear scaling regime. We find

lsc;0.12, ~31!

which corresponds to evolve in a linear scaling regime wh

L}t0.96, rw}t20.96, ~32!

in agreement with the previous result by Press, Ryden
Spergel@17#. This means that the network is not straighte
ing out as fast as allowed by causality. Second, the rate
which the networks in cases II and III approach the rela
istic regime are different. One might expect this on physi
grounds: if the network is stretched in one direction, th
there are in fact different ‘‘network correlation lengths’’ fo
each direction, and interactions between the domain w
will tend to occur faster along the directions with smal
correlation lengths, and more slowly in the others.

Another way of saying this is that the network will on
start evolving towards the relativistic regime when its larg
axis has re-entered the horizon. Note that this mechan
also tends to make the domain wall network more isotrop
So one can naively say that the approach to the linear sca
regime takes longer in an anisotropic universe because
dynamics of the walls must accomplish two tasks~make the
wall network relativistic and isotropic! rather than just one.

V. CONCLUSION

In this paper we have discussed a simple example of w
we believe to be a rather generic feature of topological de
models, namely that they can easily retain information ab
the properties of the very early universe. This information
encoded in the scaling~i.e., ‘‘macroscopic’’! and statistical
~i.e., ‘‘microscopic’’! properties of the defect networks. Th
is even more relevant given the fact that defects can sur
significant amounts of inflation. Hence, they can provide
unique probe of the pre-inflationary universe. The two c
cial scales in the problem are the defect mass scale and
epoch when the defects come back inside the horizon.

Specifically, we have discussed the role of domain wa
We have highlighted the existence of two scaling regimes
the domain wall network, in agreement with previous wo
@17#. Furthermore, we have shown that an anisotropic n
work re-entering the horizon will take longer to approa
y
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scaling than an isotropic one. Hence, if the very early u
verse had an anisotropic phase which was erased by a
flationary epoch, and if domain walls are present, then
walls can retain an imprint of the earlier phase, and this
have important observational consequences, e.g., for s
ture formation scenarios.

As is well known, there are quite strong constraints@16,6#
on the mass of domain walls formed after inflation. These
basically due to the fact that their density will decay mo
slowly than the radiation and matter densities. However,
sentially all of these can be evaded~or at least significantly
relaxed! by walls forming before or during inflation~and also
by walls evolving in a friction-dominated regime!. Having
said this, how could these anisotropies be detected?
most naive answer would be through their imprint on t
cosmic microwave background~CMB!, but this is only true
if their energy density is not too low, and such models a
constrained in a variety of other ways~not only from the
cosmology side, but also from the high-energy physics sid!.
The case of ‘‘light’’ walls is therefore more interesting: no
that just like in the case of ‘‘light strings’’@13#, these are
expected to be friction dominated throughout most of cosm
history. Here the observational detection of the effects
have described becomes somewhat non-trivial. The best
of doing it should be through observations of numbers
objects as a function of redshift in different directions~as-
suming that one has a reliable understanding of other p
sible evolutionary effects!. Two specific examples would b
large-scale velocity flows@20# and gravitational lensing sta
tistics of extragalactic surveys@21#.

Finally, there is also an important implication of our wo
if at least one of the minima of the scalar field potential h
a non-zero energy density, which is an anisotropic non-z
vacuum density. In a subsequent, more detailed publicat
we shall discuss this scenario in more detail, as well as
analogous one for cosmic strings.

To conclude, we have shown that the importance of to
logical defects as a probe of cosmological physics goes w
beyond structure formation. Even if defects turn out to
unimportant for structure formation, they can still~if de-
tected! provide us with extremely valuable information abo
the physical conditions of the very early universe.
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