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Exhaustive study of cosmic microwave background anisotropies in quintessential scenarios
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Recent high-precision measurements of the CMB anisotropies performed by the BOOMERanG and
MAXIMA-1 experiments provide an unmatched set of data allowing us to probe different cosmological
models. Among these scenarios, motivated by the recent measurements of the luminosity distance versus
redshift relation for type Ia supernovas, is the quintessence hypothesis. It consists of assuming that the accel-
eration of the Universe is due to a scalar field whose final evolution is insensitive to the initial conditions.
Within this framework we investigate the cosmological perturbations for two well-motivated potentials: the
Ratra-Peebles and the SUGRA tracking potentials. We show that the solutions of the perturbed equations
possess an attractor and that, as a consequence, the insensitivity to the initial conditions is preserved at the
perturbed level. Then, we study the predictions of these two models for structure formation and CMB anisotro-
pies and investigate the general features of the multipole moments in the presence of quintessence. We also
compare the CMB multipoles calculated with the help of a full Boltzmann code with the BOOMERanG and
MAXIMA-1 data. We pay special attention to the location of the second peak and demonstrate that it signifi-
cantly differs from the location obtained in the cosmological constant case. Finally, we argue that the SUGRA
potential is compatible with all the recent data with standard values of the cosmological parameters. In
particular, it fits the MAXIMA-1 data better than a cosmological constant or the Ratra-Peebles potential.
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I. INTRODUCTION

Recent measurements of the luminosity distance ve
redshift relation for type Ia supernovas@1#, if confirmed, are
compatible with an expanding~accelerating! universe driven
by a new type of matter whose equation of statep5vr is
characterized by a negativev. One of the possible explana
tions is the existence of a nonzero vacuum energy, i.e
‘‘cosmological constant.’’ Another pragmatic possibilit
which has been proposed is to assume the existence of
unknown mechanism guaranteeing that the true cosmolog
constant vanishes, the remaining energy density being
due to the presence of a scalar field, the quintessence
almost decoupled from ordinary matter@2–5#. The main dif-
ference between a quintessence fluid and a cosmolog
constant comes from their equation of state wherevL521
for a cosmological constant and21<vQ<0 for the quin-
tessence fluid.

One of the puzzles in the interpretation of these data
the extremely small value of the energy density due
the new form of matter. From the point of view of par
icle physics a vanishing value for the cosmological co
stant is one of the major challenges@6#. At present there
is no known mechanism which prevents the vacu
energy from picking large values due to radiative c
rections and one expects typically a contribution equal
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(\c/2)* dkk/(2p)3.\ckmax
4 /(16p2), wherekmax is a cutoff

which can naturally be taken as the Planck wave numb
This gives a contribution which is 120 orders of magnitu
above the observed one. One possibility which is often
vocated is the presence of some global supersymm
~SUSY! which would guarantee that the energy of t
vacuum is zero. Unfortunately SUSY has to be broken
take into account the absence of experimental evidenc
favor of particle superpartners leading to a natural contri
tion to the vacuum energy of orderMSUSY

4 whereMSUSY is
the SUSY breaking scale estimated around 1 TeV@7#. The
measurement of a vacuum energy some 60 orders of ma
tude below this expected value indicates that some n
physics must be at play here.

In the quintessence hypothesis, the small vacuum ene
density is due to the rolling down of the quintessence fieldQ
along a decreasing potential. A typical potential is the Ra
Peebles potentialV(Q)5L41a/Qa @2#. From the particle
physics point of view one would like to justify the existenc
of the quintessence field. Several natural candidates h
been ruled out such as the axion-dilaton field@8#, the moduli
fields of toroidal compactifications in string theory@9#, and
finally the meson fields of supersymmetric gauge theo
@10#. Nevertheless, it seems reasonable to expect that SU
will play a role in the solution. Within this framework it is a
matter of fact that the quintessence field must be part
supergravity~SUGRA! models@10,11#. This comes from the
large valueQ.mPl of the field at small redshift which im-
plies that SUGRA corrections cannot be neglected. In@11#
an effective theory approach has been used to deduce
general form of quintessence SUGRA potentials; they are
the type

-
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PHILIPPE BRAX, JÉRÔME MARTIN, AND ALAIN RIAZUELO PHYSICAL REVIEW D 62 103505
V~Q!5
L41a

Qa
ekQ2/2, ~1!

wherek[8pG, G being the Newton constant, and whe
the exponential factor comprises the SUGRA correctionsL
anda are free parameters. The fine-tuning is not too sev
as for typical valuesa56 the scaleL.106 GeV is compat-
ible with high-energy scales. Notice that the SUGRA corr
tions become relevant towards the end of the evolution
decouple at smallQ!mPl . Different types of potentials can
be distinguished because they lead to different values of
equation of state parameter. For example, fora511, the
Ratra-Peebles potential is such thatvQ.20.29 whereas the
SUGRA potential givesvQ.20.82 @11# ~for VQ50.7).

It is also worth noticing that there exists quintessen
models where the field is non-minimally coupled with t
metric. Such models induce a time variation of the New
constant and are therefore already constrained, for exam
by observations in the solar system or by pulsar timing m
surements@12,13#. They lead to the same tracking behavio
as stressed in Refs.@14,15#, as soon as the coupling term
proportional to a power of the potential. However, some i
portant differences occur when the field starts dominati
for example, its effective equation of state can reach extre
values such thatv.23 @16#. Also, these models can lea
~especially in the context of quintessential inflation@17#! to
clear observable features in the gravitational wave spect
@18#.

In view of the numerous phenomenological successe
quintessence, it is relevant to deduce its consequence
cosmic microwave background~CMB! anisotropies and
structure formation. The aim is twofold. First, we have
study whether quintessence leads to acceptable scen
and, second, we have to learn how we could use h
precision measurements recently obtained by the BOOM
anG @19–21# and MAXIMA-1 @22,23# experiments or to be
performed in the near future by NASA’s Microwave Aniso
ropy Probe~MAP! satellite@24#, ESA’s Planck satellite@25#,
or the Sloan Digital Sky Survey~SDSS! @26# to put con-
straints on the quantities characterizing quintessence likeVQ
or vQ . The second possibility has of course already be
investigated for the cosmological constant case. For
ample, the fractionVL of the critical density is not deter
mined entirely from the supernova data. Indeed, the d
from the supernova observations are degenerate in the p
(Vm,VL), where Vm is the matter~i.e., cold dark matter
plus baryons! component preventing a clear cut determin
tion of the fractionVL . The situation changes drastically
one includes the measurements of the CMB anisotropies@27#
~even without the BOOMERanG or MAXIMA-1 data!. In
that case, the degeneracy is removed, leading to a prob
70% of the total energy density of the universe carried by
negative pressure fluid while the remaining 30% are the m
ter components ensuring thatV051, in agreement with a
spatially flat universe. This conclusion can be drawn fro
the measurements of the location of the first Doppler pe
This result has been confirmed by other measurements@28–
30#. Another use of combined data has been to put c
10350
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straints on the equation of state parameter. However, this
been done only for constant or for very simple tim
dependentvQ @31–33#.

CMB anisotropies and the power spectrum are calcula
with the help of the theory of cosmological perturbation
Cosmological perturbations in the presence of quintesse
have been studied by Ratra and Peebles but only in the tr
ing regime@2#. CMB multipoles moments and/or the powe
spectrum have already been calculated for the Ratra-Pee
potential in Ref.@34# and for other models of quintessence
Refs.@35–39#. One important issue is to understand wheth
the final evolution of the various perturbed quantities d
pends on the initial conditions imposed at reheating~of the
inflationary type or not!. Another way to put the same prob
lem is the following: do the multipole moments depend
the value ofdQ(h i) and dQ8(h i) at initial time? In Ref.
@34#, it was noticed that the answer to this question is no
no explanations were provided. Here, we confirm the rem
of Ref. @34# and show that this is due to the fact that t
perturbed Einstein equations also possess an attractor w
renders the multipole moments insensitive to the initial co
ditions.

One of the main purposes of this article is the study of
general properties of the multipoles moments of the CM
anisotropies in the presence of the quintessence field.
present the CMB multipole moments for the Ratra-Peeb
potential and, for the first time, for the SUGRA trackin
potential. In addition, we also display the matter power sp
trum for these two models. Recently, it has been shown
Kamionkowski and Buchalter@40# that the location of the
second peak in the CMB power spectrum is an efficient w
of revealing some features of the dark energy sector. Th
fore, we pay special attention to this question. In particu
in Ref. @40#, only the cosmological constant case was stud
and it was argued that the quintessence case~the authors
refer to the Ratra-Peebles potential! must not differ signifi-
cantly from the cosmological constant case. In the pres
article, we demonstrate that this is not the case and that,
matter of fact, quintessence leads to a different location~de-
noted, in the following,l 2) of the second peak. In addition
we show that the location of the second peak in the quin
sence case and in the cosmological constant case can be
ily distinguished. Following Ref.@40#, we display the con-
tour plots of l 2 in the plane (Vm,h) for the Ratra-Peebles
and SUGRA tracking potentials.

The article is organized as follows. In Sec. II, we give
description of the background evolution in terms of tw
physical quantities: the equation of state parametervQ and
the sound velocitycs

2
Q . In Sec. III, we study the cosmologi

cal perturbations for the quintessence field. In Sec. IV,
present the results of full numerical calculations with t
help of a Boltzmann code developped by one of us~A.R.!
@41# for the CMB anisotropies and power spectra in the c
of the Ratra-Peebles and SUGRA potentials. Then, deta
comparisons with the recent BOOMERanG@20,21# and
MAXIMA-1 @22,23# data are performed. We end with ou
main conclusions in Sec. V.
5-2
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II. BACKGROUND EVOLUTION

We suppose that the Universe can be described b
Friedmann-Lemaıˆtre-Robertson-Walker metric the spaceli
sections of which are flat:

ds25a2~h!~2dh21d i j dxi dxj !. ~2!

In this equation,h is the conformal time related to the co
mic time bya(h)dh[dt. The matter content is as follows
The Universe is filled with a mixture of five fluids: photon
(g), neutrinos (n), baryons (b), cold dark matter~CDM!,
and a scalar fieldQ named quintessence. The stress ene
tensor of each of these species is the one of a perfect fl
Tmn5(p1r)umun1pgmn , whereum is the four-velocity of
the fluid. The energy density and the pressure of the sc
field are given by rQ5 1

2 (Q8/a)21V(Q) and pQ
5 1

2 (Q8/a)22V(Q), whereV(Q) is the potential of quintes
sence whose shape will be very important in what follow
Each fluid is also characterized by its equation of statepi
[v ir i where i5g,n,b,CDM, or Q. We have vg5vn

51/3 andvb5vCDM50. The case ofvQ is more compli-
cated since this is a time-dependent function such that21
<vQ<11. Its expression readsvQ5122V(Q)/rQ . The
fact that vQ is a time-dependent function directly com
from the fact that, for a scalar field, the sound velocity, d
fined as@42#

cs
2

Q[
pQ8

rQ8
511

4a2

3HQ8

dV~Q!

dQ
52

1

3 S 2
Q9

HQ8
11D , ~3!

is not equal to the equation of state parametervQ . As a
consequencevQ has to change in time as revealed by t
following equation:

vQ8 523H~11vQ!~cs
2

Q2vQ!, ~4!

unlessvQ521.
The evolution of the Universe can be calculated with

help of the Friedmann and conservation equations

1

a2
H25

8p

mPl
2 (

i
r i , ~5!

r i8523H~11v i!r i ,

i5g,n,b,CDM, orQ, ~6!

wheremPl is the Planck mass andH[a8/a is related to the
Hubble constant by the equationH5H/a. The equations of
conservation simply express the fact that the energy is c
served for each species which do not interact. The equa
of conservation of the quintessence field can also be wri
as the Klein-Gordon equation

Q912HQ81a2
dV

dQ
50. ~7!

We now need to give the last piece of information necess
to have a complete description of the system, i.e., the sh
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of the potentialV(Q). In order to be an interesting theor
and to represent an improvement over the current situat
quintessence has to address the following four problems:
fine-tuning problem, the coincidence problem, the equat
of state problem, and the model building problem. The fin
tuning problem amounts to understanding whether one
haveVQ.0.7 with the free parameters of the potential ta
ing ‘‘natural’’ values, i.e., close to the energy scale of t
theory under consideration. The coincidence problem is
question of the initial conditions: does the final value ofrQ
strongly depend on the chosen initial values ofQ and Q8?
The equation of state problem is the question of the value
vQ . In order to be compatible with observational data,
should be such that21,vQ,0. According to recent pa-
pers, even more stringent restrictions can be put, name
21,vQ,20.6 @29# or even21,vQ,20.8 @33#. In par-
ticular, this already rules out a network of cosmic strin
since the corresponding fluid has an equation of state par
eter equal to21/3. Finally, the model building problem
consists in justifying the shape of the potential from t
high-energy physics point of view. Many different shapes
potential which allow, at least partially, to solve these pro
lems have been investigated in the literature and Tab
summarizes these proposals.

In particular, the first possibility has been studied tho
oughly in the past years. In this article, we will mainly co
centrate on the Ratra-Peebles potential@2# and the SUGRA
tracking potential@10,11#.

Let us briefly see how the four questions evoked pre
ously can be addressed with these potentials.

A. Fine-tuning problem

Let us start with the fine-tuning problem whic
is clearly a delicate question. This problem is crucial@6#
for the cosmological constant. Indeed, from ve
simple high-energy physics considerations, one typic
ly expects rL.mPl

4 .1076 GeV4 whereas one measure

rL.VLr c.10247 GeV4 since the critical energy density i
r c.8.1h2310247GeV4. Do we gain something in the cas
of quintessence? This question is controversial. For exam
in Ref. @43#, the authors clearly answer no and write ‘‘Tw
proposals to explain these observations are a non-vanis
cosmological constant or a very slowly rolling scalar fie

TABLE I. Quintessence potentials that have been used in
literature.

Potential References

L41a/Qa @2#

L4e2lQ @2,3#

(L41a/Qa)ek/2Q2 @10,11#

L4(coshlQ21)p @44#

L4(eakQ1ebkQ) @45#

L4e2lQ(11A sinnQ) @39#

L4@(Q2B)a1A#e2lQ @46#

L4@11cos(Q/f)# @47#
5-3
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often dubbedquintessence. Both proposals, however, ar
plagued with formidable fine tuning problems.’’ Howeve
one should look more carefully at this point. To illustrate th
issue, let us consider the general argument given aga
quintessence. If we consider the potentialV(Q)
5(m2/2)Q2, then the mass of such a field, which is also t
only free parameter of the potential, should bem
5A2VQrc/mPl.10233 eV, a very tiny mass indeed. Justify
ing such a value for the free parameterm is probably the
same problem as justifying a very low value forrL . How-
ever, such a model has never been advocated for the q
tessence field. As already mentioned above, one typic
considers models such thatV(Q)5L41a/Qa. This changes
the argument. Now, the free parameter of the theory isL. In
order to haverQ5VQrc today, one hasL.1011 GeV, for
a511. This time, the free parameter of the theory ha
value comparable to the natural scales of high-energy p
ics. Therefore, something has been gained and it seems
fair not to emphasize this point. On the other hand, the m
of the field is given bym5a(a11)VQrc /mPl

2 .10233 eV
but this number should be interpreted completely differen
Here the massm is just a ‘‘by-product’’ and its value is
naturally very small without any artificial fine-tuning ofL.
Of course the very small value of the mass implies that
quintessence field is almost completely decoupled from
other matter fields. This renders the model building iss
even more acute.

B. Coincidence problem

The coincidence problem as formulated in the Introd
tion, i.e., the dependence upon the initial conditions,
solved because the Klein-Gordon equation possesses a
tion which is an attractor. In order to prove this property,
have to rely either on numerical calculations or on appro
mate methods. All the plots and numerical estimates
played in this article will be made with the help of numeric
calculations. However, it is always useful to understand
tracking property by means of analytical methods and
now turn to this question. It is convenient, for analytic
calculations, to consider that there is in fact only one ‘‘bac
ground’’ fluid with a time-dependent equation of state su
that vB51/3 during the radiation-dominated epoch andvB
50 during the matter-dominated era. In addition to the ba
ground fluid, we assume that there also exists the quin
sence scalar field field. Following the treatment of Ratra a
Peebles@2#, it will be considered that this scalar field is a te
field. This is a good approximation since this field must
subdominant in particular during big bang nucleosynthe
~BBN! in order not to modify the behavior of the scale fact
and, as a consequence, not to spoil the success of BBN.
means that the behavior of the scale factor is essentially
termined by the background fluid and that( ir i.rB . This
hypothesis breaks down at very small redshift when quin
sence starts dominating the matter content of the Unive
Since quintessence is only a test field which does not inte
with the background fluid, the scale factor and the quan
H can be written as
10350
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a~h!}h2/(113vB), H~h!5
2

~113vB!h
. ~8!

For the sake of illustration, let us now consider the radiatio
dominated era wherevB51/3. Under the previous assump
tions, the Klein-Gordon equation has a particular solut
given by

Qp5Q0h4/(a12), ~9!

whereQ0 is a constant which depends on the free parame
of the potential, i.e.,L and a. The tracking behavior is re
vealed by the behavior of small perturbations aroundQp . Let
us introduce the new timet defined byh[et and defineu
and p by Q5Qpu and p5du/dt. The Klein-Gordon equa-
tion, viewed as a dynamical system in the plane (p,u), pos-
sesses a critical point (0,1) and small perturbations aro
this pointdu,dp obey the following equation:

d

dt S dp

duD 5S 2
a110

a12
2

4~a16!

a12

1 0
D S dp

duD . ~10!

Solutions to the equation det(M2lI )50, whereM is the
matrix defined above, are given by

l652
a110

2~a12!
6

i

2~a12!
A15a21108a192. ~11!

The real part ofl6 is always negative and the critical poin
is a spiral point. Therefore, every solution will tend toQ
5Qp after an intermediate regime:Q5Qp is an attractor and
no fine-tuning of the initial conditions is required.

Before reaching the attractor, the quintessence field
dergoes different regimes that we are now going to descr
These regimes are in fact characterized by two phys
quantities already introduced previously: the equation
state parametervQ and the sound velocitycs

2
Q . We study

the case of an ‘‘overshoot,’’ in the terminology of Ref.@5#,
since this corresponds to initial conditions that are physica
more relevant~in particular this includes the case of equipa
tition, i.e., rQ.1024rB initially !. We also assume that th
background is radiation dominatedv B51/3.

Initially, the kinetic energy dominates the potential e
ergy, i.e., Q82/(2a2)@V(Q). This means that the energ
density redshifts asrQ}1/a6 and that the equation of stat
parameter isvQ51. As a consequence, due to the constan
of vQ and Eq.~4! ~and alsovQÞ21), we havecs

2
Q51 as

well. The scalar field itself evolves like

Q5Qf2
A

a
, ~12!

whereQf andA are constant. These constants are such
the termA/a becomes rapidly small in comparison with th
frozen valueQf and we have the amusing situation that t
field can be~almost! considered as frozen even if the kinet
energy still dominates. This is illustrated in Fig. 1.
5-4
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As a consequence, during this regime the potential ene
is also almost constant except at the very beginning. Us
the definition ofvQ and cs

2
Q @see Eq.~3!#, we deduce that

during the kinetic regime, we have

vQ21}a6, cs
2

Q21}a5. ~13!

The fact that, in the parametrization adopted here, the s
factor is very small during the kinetic regime explains th
there is no contradiction between these equations and
values ofvQ andcs

2
Q deduced above.

Since the kinetic energy decreases while the potential
ergy is almost constant, the kinetic regime cannot last
ever. When the potential energy becomes larger than the
netic one, the equation of state parameter suddenly ju
from 11 to 21 while the sound velocity still remains equ
to 11 since Eq.~4! does not imply a change of this quanti
in the casevQ521. The fact that the equation of state p
rameter changes before the sound velocity is explained
Eq. ~13!. We call this regime the transition regime. Durin
this regime, the kinetic energy still redshifts as 1/a6 and
V(Q) is approximately constant but of course nowrQ
.V(Q).

Because of the second equation of Eqs.~13!, the sound
velocity has also to change at some later time. This imp
that the quintessence field can no longer behave accordin
Eq. ~12!. This is the starting point of the potential regime.
order to study the behavior of the system in this regime,
need to find an expression for the second derivative of
potential. Differentiating once the definition of the sound v
locity, Eq. ~3!, we arrive at

d2V~Q!

dQ2
5

3

2
H2H 1

Hcs
2

Q8 1~cs
2

Q21!FH8

H2
2

1

2
~3cs

2
Q15!G J .

~14!

No approximation has been made in the derivation of t
relation. This formula generalizes Eq.~3! of Ref. @4#. This
formula will turn out to be very useful when we study th

FIG. 1. Evolution of the kinetic energy~solid line! and of the
potential energyV(Q) ~dashed line! from zi51030 to z50.
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perturbations in the next section. With the scale factor giv
by Eqs.~8!, this relation can be rewritten as

2

3H2

d2V~Q!

dQ2
5

1

Hcs
2

Q8 23~cs
2

Q21!~vB1cs
2

Q12!.

~15!

In the regime we are interested in, the right-hand side of
previous formula is small. The only way to satisfy this rel
tion is to ensure that the sound velocity changes to the c
stant cs

2
Q5222vB . This gives cs

2
Q527/3 for the

radiation-dominated era. This evolution is displayed in F
2.

The fact that the sound velocity is a constant implies t
the factor (4a2)/(3HQ8)dV(Q)/dQ is also a constant
Therefore, the behavior of the quintessence field is n
given by

Q5Qf1Ba4, ~16!

which implies that the kinetic energy redshifts asa4.
Again this regime cannot last forever since the kine

energy increases while the potential energy still remains c
stant. At some later time, both contributions become eq
andvQ andcs

2
Q have to change once more. This is the end

the potential regime and the beginning of the tracking regi
which has already been described above. The quantitiespQ ,
rQ , V, and the kinetic energy reach a fixed ratio such th

vQ5cs
2

Q52
22avB

21a
. ~17!

The definitions of the different regimes and the correspo
ing evolutions of the physically relevant quantities a
summed up in Table II.

C. Equation of state parameter problem

The third question evoked previously was the question
the value of the parametervQ today. As already mentioned

FIG. 2. Evolution of the equation of state parametervQ ~dashed
line! and of the sound velocitycs

2
Q ~solid line! from zi51030 to z

50.
5-5
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this is an important issue since constraints on this quan
are already available. This problem is also solved by qu
tessence in the sense that we always have21,vQ,0.
Here, however, it is relevant to distinguish betwe
the Ratra-Peebles potential and the SUGRA potential. W
the first potential, it seems difficult to reach sufficient
small value ofvQ . On the other hand, this is automatical
achieved in the second case. The reason for this is
presence of the factor exp(kQ2/2) in the potential, a generic
feature of SUGRA-based potentials, which drivesvQ
towards 21. For a511 and VCDM.0.3, the prediction
is vQ.20.82, a value in agreement with the curre
data@10,11#.

D. Model building problem

From the particle physics point of view, one would like
justify the existence of the quintessence field and the sha
of the ~so far! phenomenological potentials. Several attem
have already been made in the framework of supersymm
field theory. In particular, it was shown by Bine´truy @8# that
the Ratra-Peebles potential can be recovered in the conte
global SUSY. However, as already mentioned, SUGRA c
rections must be taken into account and this implies that
corresponding potential can be of the type of the SUG
tracking potential displayed in Eq.~1! which leads to a bette
agreement with the available data.

Nevertheless, it should be clear that considerable pr
lems remain to be addressed in order to reach a satisfac
situation @12,48#. Maybe the most crucial question is th
problem of SUSY breaking. SUSY must certainly be brok
but the models evoked previously do not take into acco
this basic fact. This could have dramatic consequences
modify the shape of the potential which is so important
order to solve the three previous problems.

III. COSMOLOGICAL PERTURBATIONS

We now turn to the study of the cosmological perturb
tions. A detailed study has already been performed by R
and Peebles in Ref.@2# but only for the tracking regime
Cosmological perturbations in a fluid with a constant ne
tive equation of state parameter have been investigate
Ref. @49#. In this article, we study the cosmological pertu
bations ~in the long wavelength approximation! in all the
regimes previously described and point out some additio
properties. The evolution of the cosmological perturbatio
mainly depends on the equation of state parameter and

TABLE II. Summary of the different regimes described in th
text.

Regime Q82/(2a2) V(Q) Q vQ cs
2

Q

Kinetic 1/a6 a0 Qf2A/a 1 1

Transition 1/a6 a0 Qf2A/a 21 1

Potential a4 a0 Qf1Ba4 21 27/3

Tracking a23(11vQ) a23(11vQ) a4/(a12) avB22

a12
vQ
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sound velocity. We have shown in the previous section t
they can be considered as constant in each regime. This
simplify the analysis a lot.

The fate of the perturbations depends on the initial con
tions. It has been noticed for the first time in Ref.@34# that
‘‘the observable fluctuation spectrum is insensitive to
broad range of initial conditions, including the case in whi
the amplitudes ofdQ,dQ8 are set by inflation.’’ In that pa-
per, the authors choosedQ5dQ850 initially ~in the syn-
chronous gauge!. We demonstrate, in this section, that th
insensitivity of the spectrum described in Ref.@34# has an
origin similar to the insensitivity of the background prope
ties with respect to the initial conditionsQ andQ8, namely
the presence of an attractor for the perturbed quantities.
prove that during all the four regimes undergone by the qu
tessence field, the attractor is characterized by a ‘‘spiral fi
point’’ as it is the case for the background.

A. General framework

Without loss of generality, the perturbed line element c
be written in the synchronous gauge. In this class of coo
nates systems, scalar perturbations are completely desc
by two arbitrary functions. The spatial dependence of
perturbations is given byX(xi) which is the eigenfunction of
the Laplace operator on the flat spacelike hypersurfa
There exist two ways to construct a two-rank tensor from
scalar function: either by multiplying it by the spatial bac
ground flat metricd i j or by differentiating it twice. The two
arbitrary functions mentioned above are simply the coe
cients of these two terms in a Fourier expansion. Theref
the perturbed metric can be expressed as@50#

ds25a2~h!H 2dh21F „11h~h!X…d i j

1hl~h!
1

k2
X,i , j Gdxi dxjJ . ~18!

In this equation, the dimensionless quantityk is the comov-
ing wave vector related to the physical wave vectorkphys

through the relationkphys[k/a(h). As a consequence o
Einstein equations, perturbations in the metric are couple
perturbations in the different matter components. We cho
to write the perturbed stress-energy tensor according to@50#

T0
052

e1

a2
X, T0

i5
j8

a2
X,i , Ti

052
j8

a2
X,i , ~19!

Ti
j5

p1

a2
Xd i

j , ~20!

where we have assumed that the longitudinal pressurepl
vanishes for each component. As for the background,
considers that the Universe is filled with two fluids: the bac
ground fluid, a hydrodynamical perfect fluid which is eith
radiation or dust~again, the corresponding quantities w
carry the index B), and a scalar fieldQ describing the quin-
tessence field~in this case the corresponding quantities w
5-6
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carry the indexQ). The perturbed Einstein equations whic
govern the evolution of the quantitiesh andhl are given by

3Hh81k2h2Hhl85ke1B1ke1Q , ~21!

h85kjB81kjQ8 , ~22!

2h922Hh85kp1B1kp1Q , ~23!

hl912Hhl82k2h50. ~24!

Finally, it turns out to be more convenient to work with th
density contrastd and the velocity divergenceu defined by
the equations

d[
e1

a2e0

, j8[2
a3e0

k2
~11v!u. ~25!

In the following, we study analytically the time evolution o
the density contrast for the background fluid and for quint
sence in the long-wavelength limit.

B. Background fluid

The equation satisfied by the background density c
strast has been established in the Appendix@see Eq.~A5!#
and can be written as

d B9 1HdB82
3

2
H2~113vB!~11vB!dB

523HvB~11vB!auB . ~26!

Its general solution can be easily found and reads

dB~h!5A1S a

a0
D x1

1A2S a

a0
D x2

1
vB~11vB!~113vB!a0uB0h0

~12vB!~116vB! S a

a0
D (9vB21)/2

,

~27!

where we have defined

x6[2
~123vB!

4
6

1

4
A~123vB!2124~11vB!~123vB!.

~28!

The results for the radiation dominated and matter domina
epochs are summarized in Table III. These results are c
sistent with those obtained in Ref.@51#. In particular, it can
be shown that the branchdB}ax2 corresponds in fact to a

TABLE III. Time dependence of the background fluid dens
contrast during the radiation- and matter-dominated eras.

vB x2 x1 (9vB21)/2

1/3 22 2 1
0 23/2 1 21/2
10350
-

-

d
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residual gauge mode; i.e., there exists a synchronous sy
of coordinates such that this mode can be removed and th
fore must not be considered as a physical mode.

C. Quintessential perturbations

We now describe how the long-wavelength quintessen
perturbations evolve with time. A similar study has alrea
been performed by Ratra and Peebles but only on the tr
ing solution. We give here a complete description of t
evolution of the quintessence density contrast in the f
regimes defined in the previous section. In addition,
prove that there exists an attractor for the perturbations a
the case for the background solution. As a consequence
final value of the density contrast is always the same wh
ever the initial conditions are.

The Klein-Gordon equation satisfied by the perturb
quintessence fielddQ has been established in the Append
@see Eq.~A12!# and reads

dQ912HdQ81Fk21a2
d2V~Q!

dQ2 GdQ1
Q8

2
~3h82hl8!50.

~29!

This is similar to Eq.~7.20! of Ref. @2#. One can check tha
Eq. ~A8! of the Appendix is automatically verified since it
equivalent to the unperturbed Klein-Gordon equation~times
an unimportant factor!. Using Eq.~A1! of the Appendix to
express the factor 3h82hl8 and neglecting thek2 term, we
arrive at

dQ912HdQ81a2
d2V~Q!

dQ2
dQ5Q8auB1

Q8

11vB
dB8 .

~30!

We are now going to analyze this equation in detail. We n
need to utilize the general expression for the second der
tive of the potential, Eq.~14!. On the tracking solution, we
havevQ5cs

2
Q andvQ5(221avB)/(21a) and this equa-

tion reduces to

d2V~Q!

dQ2
5

9

2
H2

a11

a
~12vQ

2 !. ~31!

For our purpose, as proved in the previous section, it is s
ficient to consider a regime wherecs

2
Q is constant and where

the scalar field is a test field. Under these conditions,
obtain

d2V~Q!

dQ2
5

3

4
H2~12cs

2
Q!~613vB13cs

2
Q!. ~32!

Let us now concentrate on the homogeneous part of Eq.~30!.
Using the previous equation, it can be expressed as
5-7
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dQ91
4

113vB

1

h
dQ8

1
3

~113vB!2

1

h2
~12cs

2
Q!~613vB13cs

2
Q!dQ50.

~33!

This linear equation can easily be solved: its solutions
just the power law of the conformal time. However, in ord
to show explicitly the complete analogy with the backgrou
attractor, we choose to analyze it in a rather roundabout w
Let us proceed exactly as for the unperturbed Klein-Gord
equation@see the discussion around Eq.~10!#. We define the
time t by h[et and introduce the quantitydu and dp de-
fined by du[dQ and dp[d(dQ)/dt. Then, Eq.~33! can
reexpressed as

d

dt S dp

duD 5S 3~vB21!

113vB

9~cs
2

Q21!

~113vB!2
~21vB1cs

2
Q!

1 0
D

3S dp

duD . ~34!

The form of this equation clearly shows the complete an
ogy with Eq.~10!. The eigenvalues of the system are fou
by solving the equation det(M2lI )50, whereM is the ma-
trix defined above andI the identity matrix. Straightforward
calculations show that the solutions are given by

l65
3

2

vB21

113vB
F16A114

cs
2

Q21

~vB21!2
~21vB1cs

2
Q!G .

~35!

Of course, this is just a simple rephrasing of the fact that
solution of Eq.~33! is dQ}A1hl11A2hl2. The presence
of an attractor is linked to the negative sign of the real par
l6 . It is easy to see that the real part is always negative
all four regimes; in particular this is true for any value ofa.
This is displayed in Fig. 3 in the plane (vB ,cs

2
Q). The light

grey and dark grey regions are the regions where these
parts are negative. The light grey region is the region wh
the argument of the square root is negative, i.e., where
square root is an imaginary number. The exact ‘‘trajec
ries’’ of the system for the usual tracking potential~short
line! and for the SUGRA tracking potential~long line! are
also shown for the casea511. They have been obtained b
full numerical integration. The remarkable property is th
these trajectories are always in the stable region. This me
that, in each region, the system tends to an attractor whic
given by the inhomogeneous part of the perturbed Kle
Gordon equation. The system starts atvB51/3 and goes
from cs

2
Q51 to cs

2
Q527/3. Then, the system approach

the transition to the matter-dominated era and leaves the
tical line. Finally, it stops when the redshift vanishes atvB
.20.29 for the tracking potential and atvB.20.82 for the
10350
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SUGRA tracking potential. The two lines separate when
exponential factor becomes important in the SUGRA tra
ing potential.

The conclusion is that the final value of the quintesse
perturbations is insensitive to the initial conditions, a pro
erty completely similar to what has been shown in Ref.@5#
for the background. Strictly speaking, this property has b
demonstrated for long-wavelength modes only. However,
have checked by numerical calculations that this is also
for shorter-wavelength modes. Having proved that the fi
result does not depend on the initial conditions of the qu
tessence perturbations, we can now proceed further and
bark in a rather detailed study of the CMB anisotropies p
dictions in the presence of quintessence.

IV. PREDICTIONS FOR THE POWER SPECTRUM
AND THE MULTIPOLE MOMENTS

The presence of cosmological perturbations induces di
tional variations in the CMB photon redshift. This is th
so-called Sachs-Wolfe effect@52#. Since these variations ar
the same regardless of the wavelength of the photons,
translate into variations in the temperature of the blackbo
on the celestial sphere. Their amplitude has been meas
by the Cosmic Background Explorer~COBE! satellite and is
of the order of magnitudedT/T0.1025 @53#. The detailed
angular structure of the CMB anisotropies is usually char
terized by the two-point correlation function which can
expanded according to

K dT

T
~e1!

dT

T
~e2!L 5

1

4p (
l

~2l 11!Cl Pl~cosg!, ~36!

whereg is the angle between the directionse1 ande2 andPl
is a Legendre polynomial. The coefficientsCl are the multi-
pole moments. In what follows, we will be mainly intereste
in the so-called band powerdTl defined by the following
expression:

FIG. 3. Stability region for the quintessential perturbations. T
light grey and the dark grey regions constitute the stable region.
light grey region is the region where the square root is an imagin
number. Two trajectories of the system for the tracking poten
~shortest line! and the SUGRA tracking potential~longest line! are
also displayed for the valuea511.
5-8
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dTl[T0Al ~ l 11!
Cl

2p
, ~37!

whereT0.2.7 K. The band power has now been measu
on a wide range of angular scales from 108 to 90° corre-
sponding roughly tol P@2,700#. Almost 80 data points have
been measured. Recently new data obtained by the ball
borne experiments BOOMERanG@20,21# and MAXIMA-1
@22,23# have been published. They clearly show a detect
of the first Doppler peak at the expected angular scale.1°
corresponding to the size of the Hubble radius at recomb
tion.

On the theoretical side, the multipole moments depend
the initial spectra for scalar and tensor modes and on how
perturbations evolve from the initial time~after inflation! un-
til now. This evolution is determined by the values of t
cosmological parameters, i.e., by the value of the Hub
constant (h), of the total amount of matter present in o
Universe (V0), of the cosmological constant (VL), of the
baryon density parameter (Vb), and of the cold dark matte
density parameter (VCDM). Constraints already exist o
some of these parameters. In particular, as already menti
above,VL.0.7 according to the SNIa measurements a
h2Vb.0.01960.002 according to BBN@54,55#. We also as-
sumeV051 in agreement with the inflation paradigm whic
has been confirmed by the recent CMB anisotropy meas
ments. For the initial spectra, it is traditional to assume t
they are of the power-law form

k3PF~k!5ASk
nS21, k3Ph~k!5ATknT, ~38!

where the scalar and tensor spectral indicesnS and nT are
related bynS215nT . This last equation is also valid fo
zeroth-order slow-roll inflation. It should be noticed that,a
priori , this choice is not the most relevant one since slow-
inflation is certainly more physically motivated. For spect
indices close tonS51, we expect a small difference. This
no longer true for larger tilts. Inflation predicts the presen
of gravitational perturbations and the tensor to scalar am
tude ratio is given by

AT

AS
.2

200

9
nT . ~39!

This equation is valid for power-law inflation withnT not too
large1 or for zeroth-order slow-roll inflation. A last remark i
in order at this point. All the plots displayed in this article a
COBE normalized in the following way: the position of th
Sachs-Wolfe plateau is tuned such that it best fits the CO
data points. In practice, this almost amounts to normaliz
the spectrum toC10.

In this section, we first study the general properties of
multipoles moments in the quintessence cold dark ma
model ~QCDM! and point out the main differences with th
standard cold dark matter~SCDM! and the cosmic concor

1For power-law inflation, the exact expression is given
AT /AS52(200/9)nT /(12nT /2).
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dance model (LCDM). We also display the correspondin
baryonic matter power spectra, given by

ud~k!u2[Udrb

rb
U2

, ~40!

which is the square of the Fourier transform of the baryo
density contrast. Then, we compare the predictions of
QCDM model for the Ratra-Peebles and SUGRA track
potentials with the COBE@53#, BOOMERanG @20,21#,
MAXIMA-1 @22,23#, and Saskatoon@56# data. We do not
attempt to perform a detailed statistical analysis but
rather indicate roughly how the different models can fit t
observational data.

We now turn to simple considerations about the shape
the CMB spectrum. The corresponding band power for
Ratra-Peebles and SUGRA potentials is displayed in Fig
and 5 for h50.5, Vb50.05, VQ50.7, VCDM512Vb
2VQ , andnS50.99 and the tensor contribution neglecte
The former set of cosmological parameters has been ch
just for the sake of illustration and discussion. For simplici
we start with a comparison of the quintessence multip
moments with those obtained in theLCDM model with
similar cosmological parameters. First, sinceVm[VCDM
1Vb is the same in the two models, the redshift of equiv
lence between matter and radiation,zeq[Vm/V r , where
V r[Vg1Vn , is also the same in both cases. Therefore,
first peak is boosted in the same way by the early integra
Sachs-Wolfe effect~due to the time variation of the two
Bardeen potentials during recombination; see@57#! and, a
priori , one expects the same first peak height. Second,
dark energy component~cosmological constant or quintes
sence! has a negligible contribution before recombinati
and, as a consequence, the evolution of the perturbat
before the last scattering surface is the same in the two m
els ~see the previous section!. Thus, one expects again iden

FIG. 4. Multipole moments for the Ratra-Peebles potential
two values ofa, a56 ~solid curve! anda511 ~long dashed curve!
and with cosmological parameters equal toh50.5, Vb50.05, VQ

50.7, VCDM512Vb2VQ , nS50.99, AT50. The curves are
compared with those obtained in the SCDM model~short dashed
curve! and in theLCDM model ~dotted curve!.
5-9
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tical acoustic peak patterns. However, despite the prev
considerations, the position of the peaks differs because
angular distance-redshift relation is modified at small r
shift since the equation of state of the cosmological cons
and of quintessence is not the same. The closest to21 the
equation of state parameter is, the largest the shift of
peaks to small angular scales is. As a consequence, the p
in theLCDM model are more shifted to the right than in th
QCDM model. Another feature is that the height of the fi
peak is not the same in the two types of scenarios. Indee
small redshift, the gravitational potential does not beha
exactly in the same way in the two models especially
cause there are scalar field perturbations in the QCDM
nario. This results in a different contribution of the late int
grated Sach-Wolfe effect@57# which affects the overal
normalization of the spectrum. As a consequence, the he
of the first peak is lower in the model which produces
strong late integrated Sachs-Wolfe effect, i.e., in the QCD
model.

The exact shape of the quintessence potential also ma
and different potentials lead to different CMB anisotropie
The SUGRA potential and the cosmological constant lead
very similar CMB anisotropy spectra, whereas the differen
is stronger in the case of the Ratra-Peebles potential. Th
mainly due to the fact that the equation of state paramete
generically closer to21 in the first case than in the secon
one. Another difference is that the Ratra-Peebles poten
produces a larger late integrated Sachs-Wolfe contribu
than the SUGRA potential. This results in a different norm
ization for both models~note that the normalization depend
on a) which has for consequence different height of the fi
Doppler peak. Of course, this difference is also visible in
power spectrum at large scales. Maybe the most interes
property is the following one. The cosmic equation of st
~almost! does not depend ona in the case of the SUGRA
potential. Then, in the same manner, the CMB anisotrop
do not depend ona contrary to the case of the Ratra-Peeb

FIG. 5. Multipole moments for the SUGRA potential for tw
values ofa, a56 ~solid curve! anda511 ~long dashed curve! and
with cosmological parameters equal toh50.5, Vb50.05, VQ

50.7, VCDM512Vb2VQ , nS50.99, AT50. The curves are
compared with those obtained in the SCDM model~short dashed
curve! and in theLCDM model ~dotted curve!.
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potential. This means that the multipole moments displa
in Fig. 5 are a generic predictions of the SUGRA QCD
model.

For the sake of completness, let us now describe the
responding matter power spectra. They are displayed in F
6 and 7. The matter power spectrum also depends on
nature of the dark energy component~cosmological constan
or quintessence! but the difference between the cosmologic
constant scenario and a quintessence scenario is less im
tant. The matter power spectrum shows a peak the loca
of which is given by the Hubble radius at equivalence. In t
LCDM and QCDM scenarios, the peak is at the same lo
tion contrary to the SCDM case for which the peak is loca
at smaller scales. Also, in models with low matter conte

FIG. 6. Matter power spectrum for the Ratra-Peebles poten
for two values ofa, a56 ~solid curve! and a511 ~long dashed
curve! and with cosmological parameters equal toh50.5, Vb

50.05, VQ50.7, VCDM512Vb2VQ , nS50.99, AT50. The
curves are compared with those obtained in the SCDM model~short
dashed curve! and in theLCDM model ~dotted curve!.

FIG. 7. Matter power spectrum for the SUGRA potential for tw
values ofa, a56 ~solid curve! anda511 ~long dashed curve! and
with cosmological parameters equal toh50.5, Vb50.05, VQ

50.7, VCDM512Vb2VQ , nS50.99, AT50. The curves are
compared with those obtained in the SCDM model~short dashed
curve! and in theLCDM model ~dotted curve!.
5-10
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the ratioVb /VCDM is higher which results in the presence
smooth oscillations at small scales. As for the CMB anis
ropy spectrum, the small scales are similar in theLCDM and
QCDM scenarios and important differences only occur
larger scales which are more affected by the change in
cosmic equation of state.

Let us now study in more detail and for more realis
values of the cosmological parameters the position and
height of the first Doppler peak. We start with the location
the first peak~denoted in what follows byl 1) and we study it
in the plane (Vm,h) with the following values of the othe
cosmological parameters:h2Vb50.019~the value predicted
by standard BBN!, VL,Q50.7, AT50, andnS50.99. The
case of the cosmological constant is displayed in Fig. 8,
case of the Ratra-Peebles QCDM model in Fig. 9, and
case of the SUGRA QCDM model in Fig. 10. These plo
confirm the qualitative predictions made above and in p

FIG. 8. Contour plots of the first Doppler peak location in t
(Vm ,h) plane for the cosmological constant case. The other c
mological parameters areh2Vb50.019, VL50.7, AT50, andnS

50.99.

FIG. 9. Contour plots of the first Doppler peak location in t
(Vm ,h) plane for the Ratra-Peebles QCDM case. The other cos
logical parameters areh2Vb50.019, VQ50.7, AT50, and nS

50.99.
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ticular the fact that, in general,l 1
L. l 1

SUGRA. l 1
RP. If one

assumes thatVm.0.3 ~since we have assumedVL.0.7)
andh.0.62, this last value being consistent with the Hubb
Space Telescope~HST! and SNIa measurements, then w
obtainl 1

L.225, l 1
SUGRA.220, andl 1

RP.200. It is interesting
to compare these values with the recent measurements o
first peak performed by BOOMERanG and MAXIMA-1
The BOOMERanG data indicate thatl 1519766 @20,21#
which is compatible with the Ratra-Peebles potential an
spatially flat Universe. On the other hand, the MAXIMA-
data are consistent with a first peak located atl 1.220
@22,23# which is, this time, in agreement with a cosmologic
constant or the SUGRA QCDM model.

Let us now study the height of the first Doppler peak. W
study its variation in the plane (Vb ,nS) for the following
values of the cosmological parameters:h50.62, VL,Q50.7.
The case of theLCDM model is displayed in Fig. 11
whereas the cases of the Ratra-Peebles QCDM and SUG

s-

o-

FIG. 10. Contour plots of the first Doppler peak location in t
(Vm ,h) plane for the SUGRA QCDM case. The other cosmolo
cal parameters areh2Vb50.019,VQ50.7, AT50, andnS50.99.

FIG. 11. Contour plots of the height of the first peak in t
(Vb ,nS) plane withh50.62, VL50.7 for the case of theLCDM
model.
5-11
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QCDM are presented in Figs. 12 and 13, respectively.
would like to emphasize that the importance of gravitatio
waves is crucial in this case. Indeed, as already mentio
the presence of gravitational waves modifies the normal
tion and, as a consequence, the height of the peaks.
BOOMERanG data indicate thatdT200.6968 m K @20,21#
whereas the MAXIMA-1 ones givedT220.7866 m K
@22,23#, this discrepancy being possibly explained by pro
lems in the calibration of these experiments. If we adopt
valueVb.0.0595, compatible with BBN, we see that, in th
Ratra-Peebles QCDM model, a height of the first peak co
patible with the BOOMERanG and MAXIMA-1 data lead
to a value of the scalar spectral index such thatnS.1. For
the cases ofLCDM and SUGRA QCDM, we learn from the
previous plots that the spectral index must be very close t

We now turn to the study of the second Doppler pe
First of all, we should say something about the observatio
situation. With regards to the detection of a second peak,

FIG. 12. Contour plots of the height of the first peak in t
(Vb ,nS) plane withh50.62, VQ50.7 for the case of the Ratra
Peebles QCDM model.

FIG. 13. Contour plots of the height of the first peak in t
(Vb ,nS) plane withh50.62, VQ50.7 for the case of the SUGRA
QCDM model.
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difficult to deduce something from the BOOMERanG da
The error bars are still large and the data are, for the mom
compatible with a second peak~with a height maybe smalle
than predicted by standard inflation! but also with no peak a
all, even if one can see a small rise of the signal atl 2.550
@20,21#. Only 5% of the data of this experiment have be
analyzed so far and one should wait for the rest of the d
analysis to be completed. On the other hand,
MAXIMA-1 data show ‘‘a suggestion of a peak atl 2.525’’
@22#, the height of which would bedT525.48mK. One could
even argue that the beginning of a third peak has been
served. In fact, considering all the uncertainties in such m
surements, we are of the opinion that a reasonable attitud
simply to wait for more data. On the theoretical side, it w
argued by Kamionkowski and Buchalter@40# that the loca-
tion of the second peak can probe the dark energy den
The main idea is to study the contour plots ofl 2 in the plane
(Vm,h). Then, a measurement ofl 2, knowing h by other
means , immediately determines the value ofVm. It was
claimed in Ref.@40# that this strategy does not depend
whether the dark energy is a cosmological constant o
quintessence field. We show that this claim is not correct
that the nature of the dark energy matters. The contour p
of l 2 in the case of a cosmological constant are displayed
Fig. 14 for the cosmological parameters given byh50.62,
VL50.7, h2Vb50.019,nS50.99. These plots are in agree
ment with the results found in Ref.@40#. The corresponding
contour plots for the Ratra-Peebles and SUGRA CDM m
els are presented in Figs. 15 and 16. In addition, in orde
show that there is indeed an important difference, we a
display the contour plots for a cosmological constant whi
for a given value ofl 2, is always above the QCDM curve
The fact that there is a difference does not totally invalid
the idea of Ref.@40#. But it means that, in order to use it, w
should first identify the physical nature of the dark energ
for example with a measurement of its equation of state
rameter. As for the first peak, we havel 2

L. l 2
SUGRA. l 2

RP.
Roughly speaking, forh.0.62, V m.0.3, we have l 2

L

.550, l 2
SUGRA.525, and l 2

RP.500. Interestingly enough

FIG. 14. Contour plots of the location of the second peak in
(Vm ,h) plane withh50.62, VL50.7, h2Vb50.019,nS50.99 for
the cosmological constant case.
5-12
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the SUGRA QCDM model seems to predict the correct
cation of the ‘‘suggested second peak’’@22#, just in between
the location predicted by theLCDM model and the Ratra
Peebles QCDM model. Of course, it is premature to c
clude and only more data could allow to know whether t
is indeed the case or whether this is just a coincidence.

Finally, we display the multipole moments for theLCDM
model, the Ratra-Peebles QCDM model and the SUG
QCDM model in Figs. 17, 18, and 19, respectively, for t
following cosmological parameters~deduced from the previ
ous considerations!: h50.62, VL50.7, Vb50.0595, and
nS50.99. The data points of COBE, BOOMERanG
MAXIMA-1, and Saskatoon have been added to the plots
comparison. These curves represent the predictions of
model and special attention must be paid to the third p

FIG. 15. Contour plots of the location of the second peak in
(Vm ,h) plane withh50.62, VL,Q50.7, h2Vb50.019, nS50.99
for the Ratra-Peebles QCDM model. The corresponding con
plots for the cosmological constant~upper curves! are also dis-
played for comparison.

FIG. 16. Contour plots of the location of the second peak in
(Vm ,h) plane withh50.62, VL,Q50.7, h2Vb50.019, nS50.99
for the SUGRA QCDM model. The corresponding contour plots
the cosmological constant~upper curves! are also displayed for
comparison.
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which is certainly one of the next important experimen
challenges. In Fig. 20, we present the three curves togeth
order to make the comparison easier. It should be emp
sized again that the multipole moments predicted by
SUGRA QCDM model are unique in the sense that they
not depend on the free parameter in the potential. From th
plots, we see that the SUGRA QCDM model is, among
three models studied here, the best fit of the MAXIMA
data. It is the only model for which the theoretical curvedT
versusl goes through all the 1s error bars of this experi-
ment. However, we should be careful not to overestimate
relevance of this result since uncertainties are still large,
instance, because the comparison of the calibrations of
ferent experiments is always a difficult task. We should a
keep in mind that 2s deviations are always possible. Thu
we are waiting eagerly for the new data to see whether q
tessence, and especially SUGRA quintessence, can con
the hints of this article and fits the data better than the ot
QCDM models.

e

ur

e

r

FIG. 17. Band powerdTl for the LCDM model withh50.62,
VL50.7, Vb50.595, andnS50.99. The data points are those
the COBE, BOOMERanG, MAXIMA-1, and Saskatoon expe
ments.

FIG. 18. Band powerdTl for the Ratra-Peebles QCDM mode
with h50.62, VQ50.7, Vb50.0595, andnS50.99. The data
points are those of the COBE, BOOMERanG, MAXIMA-1, an
Saskatoon experiments.
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V. CONCLUSION

The quintessence scenario provides a general framew
within which the issue of the energy density of the Unive
can be tackled. In particular long-standing issues such as
coincidence problem~and maybe the fine-tuning problem!
receive reasonable answers for a class of models posse
the property of tracking fields; i.e., the evolution of the qu
tessence field is driven at small redshift towards an attra
independently of the initial conditions. In the same spirit
seems very enticing to draw the consequences of the q
tessence hypothesis on other cosmological observables
most prominent ones being the cosmological anisotrop
Recent measurements of the CMB anisotropies by
BOOMERanG and MAXIMA-1 experiments give a first in
dication of the location of the peaks in the CMB multipole
It seems therefore topical to understand the consequenc
the quintessence hypothesis on the CMB anisotropies.

FIG. 19. Band powerdTl for the SUGRA QCDM model with
h50.62, VQ50.7, Vb50.0595, andnS50.99. The data points ar
those of the COBE, BOOMERanG, MAXIMA-1, and Saskato
experiments.

FIG. 20. Band powerdTl for the LCDM model, Ratra-Peeble
QCDM model, and the SUGRA QCDM model withh50.62,
VL,Q50.7, Vb50.0595, andnS50.99. The data points are those
the COBE, BOOMERanG, MAXIMA-1, and Saskatoon expe
ments.
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In this paper we have confronted analytical methods w
numerical results. Using the former we establish that
quintessence perturbations are independent of the initial c
ditions. This is confirmed by a full numerical computatio
This allows us to study the CMB anisotropies. In particu
we have paid particular attention to the comparison betw
three possible models: the cosmological constant model,
Ratra-Peebles model, and the SUGRA quintessence mo
We have also compared these three models with the exis
data from the BOOMERanG and MAXIMA-1 experiment
As a rule the location of the first peak is shifted to the rig
for models having an equation of statev closer to21. This
entails that the location of the first peak for the first peak
the MAXIMA-1 data is fitted by the SUGRA model. Simi
larly the location of the second peak aroundl 2.525 as sug-
gested by MAXIMA-1 seems to indicate that the SUGR
model comes closer to be the best of these three models.
of the foreseeable challenges will be to carry out a thorou
analysis of the forthcoming data in order to distinguish the
three models even more clearly.

From the particle physics point of view most of the qui
tessence models discussed so far have neglected the c
effects of SUSY breaking. It may well be that the effects
SUSY breaking, on top of necessitating a severe fine-tun
of the cosmological constant, will induce drastic modific
tions in the functional form of the quintessence potential
is certainly a tantalizing challenge to include the effects
SUSY breaking within the supergravity models of quinte
sence@58#. On the other hand, there exists the possibility th
the cosmological constant problem will be resolved us
ideas stemming from extra-dimension scenarios involving
effective supersymmetry in four dimensions@7#. The inves-
tigation of such models might well shed new light on t
origin of the quintessence field.

As must be clear by now the issues raised by the cos
logical constant problem, the quintessence scenario, an
proper understanding within particle physics are manyfo
The experimental results which will be available in the ne
future might help in disentangling some of these very co
spicuous matters.

APPENDIX: PERTURBATION EQUATIONS

1. Background fluid

The equations satisfied by the background density c
trast and divergence can be obtained either from comb
tions of the Einstein equations~21!–~24! or, more directly,
from the conservation of the perturbed background fl
stress-energy tensor~since the background fluid and quinte
sence only interact gravitationally!. They read

dB81a~11vB!uB1
11vB

2
~3h82hl8!50, ~A1!

uB81~223vB!HuB2
k2csB

2

~11vB!a
dB50. ~A2!
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These two equations are equivalent to Eqs.~7.15! and~7.16!
of Ref. @2#. From them, we can derive the relation

3h92hl95
22

11vB
dB912~123vB!a8uB2

2k2csB
2

11vB
dB ,

~A3!

where we have assumed thatvB is a constant. On the othe
hand, from the Einstein equations we get

2~3h92hl9!2H~3h82hl8!

53H2@~113clB
2 !VBdB1~113clQ

2 !VQdQ#,

~A4!

whereclQ
2 [p1Q /e1Q which need not coincide with the defi

nition of cs
2

Q . In order to derive the formula satisfied by th
density contrast of the background fluid in the lon
wavelength limit, we neglect the term proportional tok2 in
Eq. ~A3! and we use the fact thatVQ!VB . Then, straight-
forward manipulations lead to

dB91HdB82
3

2
H2~113vB!~11vB!dB

523HvB~11vB!auB , ~A5!

where we used the fact thatclB
2 5vB for an hydrodynamical

fluid. This equation shows that the evolution of the bac
ground density contrast is essentially unaffected by the p
ence of quintessence. This is of course an expected re
since we have assumedVQ!V B .

2. Quintessential perturbations

In order to obtain the fundamental equation satisfied
the perturbed quintessence field, we can proceed as fo
background fluid. However, it is important to notice that t
link between the perturbed energy density and the pertur
pression, which is just a constant for the background fluid
more complicated in the case of quintessence. In genera
can writep1Q5cs

2
Qe1Q1a2tdS where the second term rep

resents entropy perturbations. In the synchronous gauge
obtain

p1Q5cs
2

Qe1Q1~12cs
2

Q!
1

k
~hl91Hhl8!. ~A6!
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We can now establish the equations satisfied by the q
tessence density contrast and divergence. The conserv
of the perturbed stress-energy tensor leads to

dQ8 13H~cs
2

Q2vQ!dQ1a~11vQ!uQ

1
1

2
~11vQ!~3h82hl8!

5
H21

VQ
~cs

2
Q21!~hl91Hhl8!, ~A7!

uQ8 1~223vQ!HuQ2
k2cs

2
Q

~11vQ!a
dQ

52
vQ8

11vQ
uQ1

~12cs
2

Q!k2

3aH2~11vQ!VQ

~hl91Hhl8!.

~A8!

In these two equations, no approximations have been m
they are valid for any wave number, any equation of st
parameter, and any sound velocity. In practice, it turns ou
be more convenient to use the perturbed Klein-Gordon eq
tion to analyze the problem. This can be obtained direc
from the first of the two previous equations if one notic
that the quantities describing the perturbed scalar field str
energy tensor can be expressed in terms of the pertu
scalar fielddQ(h,x) according to

e1Q5Q8dQ81a2dQ
dV~Q!

dQ
, ~A9!

jQ8 52Q8dQ, ~A10!

p1Q5Q8dQ82a2dQ
dV~Q!

dQ
. ~A11!

Inserting the corresponding expression for the density c
trast and the divergence in Eq.~A7!, we get

dQ912HdQ81Fk21a2
d2V~Q!

dQ2 GdQ1
Q8

2
~3h82hl8!50.

~A12!

This equation is solved in Sec. III C, where it is demo
strated that its solutions possess an attractor as in the un
turbed case.
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