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Recent high-precision measurements of the CMB anisotropies performed by the BOOMERanG and
MAXIMA-1 experiments provide an unmatched set of data allowing us to probe different cosmological
models. Among these scenarios, motivated by the recent measurements of the luminosity distance versus
redshift relation for type la supernovas, is the quintessence hypothesis. It consists of assuming that the accel-
eration of the Universe is due to a scalar field whose final evolution is insensitive to the initial conditions.
Within this framework we investigate the cosmological perturbations for two well-motivated potentials: the
Ratra-Peebles and the SUGRA tracking potentials. We show that the solutions of the perturbed equations
possess an attractor and that, as a consequence, the insensitivity to the initial conditions is preserved at the
perturbed level. Then, we study the predictions of these two models for structure formation and CMB anisotro-
pies and investigate the general features of the multipole moments in the presence of quintessence. We also
compare the CMB multipoles calculated with the help of a full Boltzmann code with the BOOMERanG and
MAXIMA-1 data. We pay special attention to the location of the second peak and demonstrate that it signifi-
cantly differs from the location obtained in the cosmological constant case. Finally, we argue that the SUGRA
potential is compatible with all the recent data with standard values of the cosmological parameters. In
particular, it fits the MAXIMA-1 data better than a cosmological constant or the Ratra-Peebles potential.

PACS numbd(s): 98.80.Cq

. INTRODUCTION (hcl2) [ dkk/(27)3=hck ./ (1672), wherekais a cutoff
which can naturally be taken as the Planck wave number.
Recent measurements of the luminosity distance versushis gives a contribution which is 120 orders of magnitude
redshift relation for type la supernovgs|, if confirmed, are  above the observed one. One possibility which is often ad-
compatible with an expandin@cceleratinguniverse driven vocated is the presence of some global supersymmetry
by a new type of matter whose equation of statewp is  (SUSY) which would guarantee that the energy of the
characterized by a negative. One of the possible explana- vacuum is zero. Unfortunately SUSY has to be broken to
tions is the existence of a nonzero vacuum energy, i.e., take into account the absence of experimental evidence in
“cosmological constant.” Another pragmatic possibility favor of particle superpartners leading to a natural contribu-
which has been proposed is to assume the existence of a yn to the vacuum energy of ordd&.ll‘éUSY whereMgygy IS
unknown mechanism guaranteeing that the true cosmologicghe SUSY breaking scale estimated around 1 T&Y The
constant vanishes, the remaining energy density being themeasurement of a vacuum energy some 60 orders of magni-
due to the presence of a scalar field, the quintessence fieltide below this expected value indicates that some new
almost decoupled from ordinary mat{@-5|. The main dif-  physics must be at play here.
ference between a quintessence fluid and a cosmological In the quintessence hypothesis, the small vacuum energy
constant comes from their equation of state whefe=—1  density is due to the rolling down of the quintessence figld
for a cosmological constant and1l<wqo<0 for the quin-  along a decreasing potential. A typical potential is the Ratra-
tessence fluid. Peebles potential/(Q)=A*"%/Q* [2]. From the particle
One of the puzzles in the interpretation of these data iphysics point of view one would like to justify the existence
the extremely small value of the energy density due toof the quintessence field. Several natural candidates have
the new form of matter. From the point of view of part- been ruled out such as the axion-dilaton figd3i the moduli
icle physics a vanishing value for the cosmological con-fields of toroidal compactifications in string thedi§], and
stant is one of the major challengg8]. At present there finally the meson fields of supersymmetric gauge theories
is no known mechanism which prevents the vacuuni10]. Nevertheless, it seems reasonable to expect that SUSY
energy from picking large values due to radiative cor-will play a role in the solution. Within this framework it is a
rections and one expects typically a contribution equal tamatter of fact that the quintessence field must be part of
supergravit SUGRA) models[10,11]. This comes from the
large valueQ=myp, of the field at small redshift which im-
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Adte straints on the equation of state parameter. However, this has
V(Q)=——e"? (1)  been done only for constant or for very simple time-
Q dependentyg [31-33.

CMB anisotropies and the power spectrum are calculated
where k=87G, G being the Newton constant, and where with the help of the theory of cosmological perturbations.
the exponential factor comprises the SUGRA correctidns. Cosmological perturbations in the presence of quintessence
and « are free parameters. The fine-tuning is not too sever@ave been studied by Ratra and Peebles but only in the track-
as for typical valuest=6 the scale\ =10° GeV is compat-  ing regime[2]. CMB multipoles moments and/or the power
ible with high-energy scales. Notice that the SUGRA correcspectrum have already been calculated for the Ratra-Peebles
tions become relevant towards the end of the evolution anggtential in Ref[34] and for other models of quintessence in
decouple at smalQ<mp,. Different types of potentials can Refs [35-39. One important issue is to understand whether
be d|§t|ngu|shed because they lead to different values of thg,o final evolution of the various perturbed quantities de-
equation of state parameter. For example, dor1l, the  hongs on the initial conditions imposed at reheatioythe
Ratra-Peebles 'pote.ntlal is such thag=—0.29 whereas the inflationary type or ndt Another way to put the same prob-
SUGRA potential givesog=—0.82[11] (for o=0.7). lem is the following: do the multipole moments depend on

It is also worth noticing that there exists quintessencc-:[he value of6Q(7;) and 8Q’ () at initial time? In Ref.

models where the field is non-minimally coupled with then[34], it was noticed that the answer to this question is no but

constant and are therefore already constrained, for exampl@O explanations were provided. Here, we confirm the remark

by observations in the solar system or by pulsar timing mea®! Ref. [34] and show that this is due to the fact that the

surement§12,13. They lead to the same tracking behavior, perturbed Einste_in equations als_o possess an attr_a_c'_[or which
as stressed in Reffl4,15, as soon as the coupling term is re_r_lders the multipole moments insensitive to the initial con-
proportional to a power of the potential. However, some im-ditions.
portant differences occur when the field starts dominating; ©One of the main purposes of this article is the study of the
for example, its effective equation of state can reach extremgeneral properties of the multipoles moments of the CMB
values such thab=—3 [16]. Also, these models can lead anisotropies in the presence of the quintessence field. We
(especially in the context of quintessential inflatidi7]) to present the CMB multipole moments for the Ratra-Peebles
clear observable features in the gravitational wave spectrurpotential and, for the first time, for the SUGRA tracking
[18]. potential. In addition, we also display the matter power spec-
In view of the numerous phenomenological successes dafum for these two models. Recently, it has been shown by
quintessence, it is relevant to deduce its consequences fBfamionkowski and Buchaltef40] that the location of the
cosmic microwave backgroundCMB) anisotropies and second peak in the CMB power spectrum is an efficient way
structure formation. The aim is twofold. First, we have toof revealing some features of the dark energy sector. There-
study whether quintessence leads to acceptable scenarigsre, we pay special attention to this question. In particular,
and, second, we have to learn how we could use highy Ref.[40], only the cosmological constant case was studied
precision measurements recently obtained_ by the BOOMERsq it was argued that the quintessence d#ise authors
anG[19-21 and MAXIMA-1 [22,23 experiments or to be refer to the Ratra-Peebles potentilust not differ signifi-
performed in the near future by NASA's Microwave Anisot- contiy from the cosmological constant case. In the present
ropy Probe(MAE) 'satelllte[24], ESA's Planck satellitg25], article, we demonstrate that this is not the case and that, as a
or the Sloan Digital Sky SurveySDS3 [26] to put con- matter of fact, quintessence leads to a different locatiten

straints on the quantities characterizing quintessencelike noted, in the following) ,) of the second peak. In addition,

or wg. The second possibility has of course already been . . .
investigated for the cosmological constant case. For ex/© show that the location of the second peak in the quintes

ample, the fractior2, of the critical density is not deter- sence case and in the cosmological constant case can be eas-

mined entirely from the supernova data. Indeed, the datdy distinguished. Following Ref[40], we display the con-
from the supernova observations are degenerate in the plaf@’ Plots ofl in the plane 2;,h) for the Ratra-Peebles
(Q,Q,), where Q,, is the matter(i.e., cold dark matter and SUGRA tracking potentials. _

plus baryons component preventing a clear cut determina- Thg Qrtlcle is organized as follows. .In S.ec. II, we give a
tion of the fractionQ, . The situation changes drastically if description of the background evolution in terms of two
one includes the measurements of the CMB anisotrd@igls ~ Physical quantities: the equation of state parameigrand
(even without the BOOMERanG or MAXIMA-1 dataln  the sound velocit)cﬁQ. In Sec. Ill, we study the cosmologi-
that case, the degeneracy is removed, leading to a probabdal perturbations for the quintessence field. In Sec. IV, we
70% of the total energy density of the universe carried by theresent the results of full numerical calculations with the
negative pressure fluid while the remaining 30% are the mathelp of a Boltzmann code developped by one of(AsR.)

ter components ensuring th&,=1, in agreement with a [41] for the CMB anisotropies and power spectra in the case
spatially flat universe. This conclusion can be drawn fromof the Ratra-Peebles and SUGRA potentials. Then, detailed
the measurements of the location of the first Doppler peakcomparisons with the recent BOOMERan@0,21] and
This result has been confirmed by other measurenj@gts  MAXIMA-1 [22,23 data are performed. We end with our
30]. Another use of combined data has been to put conmain conclusions in Sec. V.
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1. BACKGROUND EVOLUTION TABLE I. Quintessence potentials that have been used in the
. . literature.
We suppose that the Universe can be described by a
Friedmann-Lemare-Robertson-Walker metric the spacelike Potential References
sections of which are flat:
. . A4+a/Qa [2]
ds?=a’(n)(—dp®+ §; dx' dx!). 2) Ate™NQ [2,3]
) ) ) ) (A4+a/Qa)eKI2Q2 [10'1]]
In this equation,n is the conformal time related to the cos- 4 1w
. . A%(coshanQ—1) [44]
mic time bya(#z)dn=dt. The matter content is as follows. A4(exQ gfrQ) [45]
The Universe is filled with a mixture of five fluids: photons 4,20 .
. Ae M (1+AsinrQ) [39]
(), neutrinos ¢), baryons b), cold dark matte(CDM), AY(O—B)"+ AJe 1@ (48]
n lar fieldd nam in nce. Th r ner
and a scalar field@@ named quintessence e stress energy A1+ cosQIf] [47]

tensor of each of these species is the one of a perfect fluid,
T,,=(p+p)u,u,+pg,,, whereu, is the four-velocity of

the fluid. The energy density and the pressure of the scalar ) . .
field are given by pQ=%(Q’/a)2+V(Q) and po of the potentialV(Q). In order to be an interesting theory

—1(/[a\2_ i : ; and to represent an improvement over the current situation,
=5(Q’'/a)*—V(Q), whereV(Q) is the potential of quintes- ; .
se%ce whose shape will be very important in what follows quintessence has to address the following four problems: the

Each fluid is also characterized by its equation of sfate fifne—tuning glroblem,dthﬁ coingidleﬁc_?d.proble?l, theTehqu?tion
=wp; where i7,»,b,CDM, or Q. We have v, =, of state problem, and the model building problem. The fine-

—1/3 andwy,= wepou=0. The case ofag is more compli- tuning pE)bIem _amounts to understanding whether one can
cated since this is a time-dependent function such that .haV(iQQ_O'Z with the. free parameters of the potential tak-
o= 1. s expression readso1-2V(Qllpo. The 19 ML valies e, close lo e eneroy scae o e
fact that wg is a time-dependent function directly comes y : problem 1S the

- : _question of the initial conditions: does the final valug
Iirr?ggi tgse[ig]ct that, for a scalar field, the sound velocity, de strongly depend on the chosen initial values@fnd Q'?

The equation of state problem is the question of the value of
Q" ) wq. In order to be compatible with observational data, it
)

A 4> v 1
2=Po s (Q):__( 1
PG 3HQ' dQ 3\ HQ'
is not equal to the equation of state paramebgy. As a

consequenceg has to change in time as revealed by the
following equation:

should be such that 1<wo<0. According to recent pa-
pers, even more stringent restrictions can be put, namely,
—1<wqo<—0.6[29] or even—1<wqo<—0.8[33]. In par-
ticular, this already rules out a network of cosmic strings
since the corresponding fluid has an equation of state param-
eter equal to—1/3. Finally, the model building problem

P 2 _ consists in justifying the shape of the potential from the
0= ~3H(1+wg)(Cso~ o), @ high-energy physics point of view. Many different shapes of
unlesswg=—1. potential which allow, at least partially, to solve these prob-
The evolution of the Universe can be calculated with thelems have been investigated in the literature and Table |
help of the Friedmann and conservation equations summarizes these proposals.
In particular, the first possibility has been studied thor-
1 8 oughly in the past years. In this article, we will mainly con-
—H=— > pis (5)  centrate on the Ratra-Peebles poterfdland the SUGRA
a Mpy ! tracking potentia[10,11].

Let us briefly see how the four questions evoked previ-

pi=—3H(1+wi)pi, ously can be addressed with these potentials.

i=7v,v,b,CDM, orQ, (6)
A. Fine-tuning problem
wheremp, is the Planck mass arld=a’/a is related to the

Hubble constant by the equatiéh=H/a. The equations of . lear] deli X Thi bl . a
conservation simply express the fact that the energy is corE ¢ e?]ry a de 'C?te. quJest|on. IS plrod egn |sf crudial
served for each species which do not interact. The equatio r the cosmological constant. Indeed, from very

of conservation of the quintessence field can also be writte§™PIe hlgh-enerQAy ph%s'cs considerations, one typical-
as the Klein-Gordon equation ly expects p,=mp=10"° GeV* whereas one measures

pa=Q,p ~10*" GeV* since the critical energy density is
, L p =8.1?x 10 4" GeV*. Do we gain something in the case
Q"+2HQ'+a*—==0. (7) i 5 Thi o i i
dQ of quintessence? This question is controversial. For example,
in Ref.[43], the authors clearly answer no and write “Two
We now need to give the last piece of information necessarproposals to explain these observations are a non-vanishing
to have a complete description of the system, i.e., the shapmsmological constant or a very slowly rolling scalar field,

Let us start with the fine-tuning problem which
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often dubbedquintessenceBoth proposals, however, are 2

plagued with formidable fine tuning problems.” However, a(m)ocp?/(308) H(p)= (153097 (8)
one should look more carefully at this point. To illustrate this 87

issue, let us consider the general argument given againglor the sake of illustration, let us now consider the radiation-
quintessence. If we consider the potentiaf(Q)  dominated era whereg=1/3. Under the previous assump-
=(m?/2)Q?, then the mass of such a field, which is also thetions, the Klein-Gordon equation has a particular solution
only free parameter of the potential, should be  given by

=2Qqpdmp=10" eV, a very tiny mass indeed. Justify- -

ing such a value for the free parametaris probably the Qp=Qo7 (ar2), ©)
same problem as justifying a very low value fof . How-
ever, such a model has never been advocated for the qui
tessence field. As already mentioned above, one typicall
considers models such the{Q)=A*"%/Q*. This changes
the argument. Now, the free parameter of the theor.i$n

H\{herer is a constant which depends on the free parameters
f the potential, i.e.A and «. The tracking behavior is re-
ealed by the behavior of small perturbations aroQ@pd Let

us introduce the new time defined byn=e™ and defineu

- Al andp by Q=Quu and p=du/dr. The Klein-Gordon equa-
order to havepg={lqp. today, one has\ = 10! GeV, for tion, viewed as a dynamical system in the plapeu(, pos-

a=11. This time, the free parameter of the theory has geqqes 4 critical point (0,1) and small perturbations around
value comparable to the natural scales of high-energy physp;ig point su, 8p obey the following equation:
ics. Therefore, something has been gained and it seems un-

fair not to emphasize this point. On the other hand, the mass a+10 4(a+6)
of the field is given bym=a(a+1)Qgpe/m3=10 eV da(om | - T p 10
but this number should be interpreted completely differently. dr\ du '

Here the massn is just a “by-product” and its value is 1 0

naturally very small without any artificial fine-tuning of. Solutions to the equation dé&—\1)=0, whereM is the
Of course the very small value of the mass implies that th?natrix defined above, are given by '

quintessence field is almost completely decoupled from the

other matter fields. This renders the model building issue a+10 i

= _ +
even more acute. A 2(a+2) 2(a+2)

1502+ 1082+ 92. (11)

B. Coincidence problem The real part of\ . is always negative and the critical point

The coincidence problem as formulated in the IntroducdS @ spiral point. Therefore, every solution will tend @
tion, i.e., the dependence upon the initial conditions, is=Qp after an intermediate regimQ=Q, is an attractor and
solved because the Klein-Gordon equation possesses a soliR fine-tuning of the initial conditions is required.
tion which is an attractor. In order to prove this property, we Before reaching the attractor, the quintessence field un-

have to rely either on numerical calculations or on approxi-d€rgoes different regimes that we are now going to describe.

mate methods. All the plots and numerical estimates dis]’hesg_regm:es darg n Lact gharacyerlzleq tr’]y two physma;l
played in this article will be made with the help of numerical quantities already introduced previously: the equation o

o2
calculations. However, it is always useful to understand thStale parametenq and the sound velocitgsg . We study

tracking property by means of analytical methods and wén€ case of an “overshoot,” in the terminology of Rg8],
now turn to this question. It is convenient, for analytical SINce this corrgsponds to |n|t_|al_ conditions that are phys_lcally
calculations, to consider that there is in fact only one “back-More relevantin pirltlcu!ar this includes the case of equipar-
ground” fluid with a time-dependent equation of state suchfltion, i.e., po=10""pg initially). We also assume that the
that wg=1/3 during the radiation-dominated epoch ang ~ Packground is radiation dominateds=1/3. _

=0 during the matter-dominated era. In addition to the back- Initially, th2e km;etlc energy dominates the potential en-
ground fluid, we assume that there also exists the quinte&'9Y: i-€.,Q"“/(2a )>V(Q%- This means that the energy
sence scalar field field. Following the treatment of Ratra an@l€nsity redshifts apg1/a” and that the equation of state
Peebleg2], it will be considered that this scalar field is a test Parameter isog=1. As a consequence, due to tr21e constancy
field. This is a good approximation since this field must beof @g and Eq.(4) (and alsowq# —1), we havecgo=1 as
subdominant in particular during big bang nucleosynthesigvell. The scalar field itself evolves like

(BBN) in order not to modify the behavior of the scale factor

and, as a consequence, not to spoil the success of BBN. This Q=0Q,— é (12)
means that the behavior of the scale factor is essentially de- T ar

termined by the background fluid and thatp;=pg. This

hypothesis breaks down at very small redshift when quinteswhereQ; and A are constant. These constants are such that
sence starts dominating the matter content of the Universdéhe termA/a becomes rapidly small in comparison with the
Since quintessence is only a test field which does not interadtozen valueQ; and we have the amusing situation that the
with the background fluid, the scale factor and the quantityfield can be(almos} considered as frozen even if the kinetic
‘H can be written as energy still dominates. This is illustrated in Fig. 1.
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FIG. 1. Evolution of the kinetic energgsolid line) and of the FIG. 2. Evolution of the equation of state parameigy (dashed
potential energW(Q) (dashed lingfrom z;=10°" to z=0. line) and of the sound velocitgz§Q (solid line) from z=10%"to z

=0.
As a consequence, during this regime the potential energy
is also almost constant except at the very beginning. Usingerturbations in the next section. With the scale factor given
the definition ofwq andc?, [see Eq.(3)], we deduce that, by Egs.(8), this relation can be rewritten as

during the kinetic regime, we have ’
2 TV _1 . -3(c2o—1)(wp+Cin+2)
wo— 1oca6, CgQ_ 1oca5. (13) 3H2 dQ2 H sQ sQ B sQ .
(15

The fact that, in the parametrization adopted here, the scalle h . . din. the riaht-hand side of th
factor is very small during the kinetic regime explains that nt € regflme V‘I’e are |ntﬁreTere ml, the right- an S'h.e 0 It €
there is no contradiction between these equations and ﬂ{tféreV!OLiS ormu atﬁ ?Tha - 1he donxwf"t‘y t% satlsfytt Itsh rela-
values ofwg andcﬁQ deduced above. ion is to ensure that the sound velocity changes to the con-

2 ; ; 2
Since the kinetic energy decreases while the potential ens—tar‘t CsQ™ __2_“’5' This _gives C.SQ:._7./3 for t_he .
ergy is almost constant, the kinetic regime cannot last for_radlatlon-dommated era. This evolution is displayed in Fig.
ever. When the potential energy becomes larger than the kf= oo T
netic one, the equation of state parameter suddenly jump% The fact thag the sou/nd velocity is a constant implies that
from +1 to — 1 while the sound velocity still remains equal the factor (& )/(3HQ )aV(Q)/dQ s also a c.:onst.ant.
to + 1 since Eq(4) does not imply a change of this quantity T.herefore, the behavior of the quintessence field is now
in the casewgo=—1. The fact that the equation of state pa- given by
rameter changes before the sound velocity is explained by Q=0Q,+Ba’ (16)
Eqg. (13). We call this regime the transition regime. During '
this regime, the kinetic energy still redshifts asaﬁ./and which |mp||es that the kinetic energy TEdShiftS£S
V(Q) is approximately constant but of course nqws Again this regime cannot last forever since the kinetic
=V(Q). energy increases while the potential energy still remains con-
Because of the second equation of E(s3), the sound stant. At some later time, both contributions become equal
velocity has also to change at some later time. This implie%nde andch have to change once more. This is the end of
that the quintessence field can no longer behave according {fe potential regime and the beginning of the tracking regime
Eq.(12). This is the starting point of the potential regime. In \yhich has already been described above. The quanfifies

order to study the behavior of the system in this regime, wq,Q, V, and the kinetic energy reach a fixed ratio such that
need to find an expression for the second derivative of the

potential. Differentiating once the definition of the sound ve- ) 2—awp

locity, Eq. (3), we arrive at wQ=CsQ=— 2t o (17)
dv(Q) 3 1, ) H 1, The definitions of the different regimes and the correspond-
d—QZ: >H ﬁCsQ_’_(CsQ_ 1) 1z 5(3C5o+D) |- ing evolutions of the physically relevant quantities are

summed up in Table II.
(14

No approximation has been made in the derivation of this C. Bquation of state parameter problem

relation. This formula generalizes E(B) of Ref. [4]. This The third question evoked previously was the question of
formula will turn out to be very useful when we study the the value of the parameter, today. As already mentioned,
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TABLE Il. Summary of the different regimes described in the sound velocity. We have shown in the previous section that

text. they can be considered as constant in each regime. This will
: o . simplify the analysis a lot.

Regime  Q'“/(2a%)  V(Q) Q wQ Cso The fate of the perturbations depends on the initial condi-
Kinetic 1/a8 20 Q,—Ala 1 1 :[Jons. It has been notlced_ for the first time in RBQ]_ that

- . o the observable fluctuation spectrum is insensitive to a
Transiton 1A a Q—-Aa -1 1 broad range of initial conditions, including the case in which
Potential a* a® Qs+Ba* -1 -7/3  the amplitudes 0BQ,5Q’ are set by inflation.” In that pa-

. - .

) Caite Cate Aasz) Qwp—2 per, the authors choos&Q= 6Q =O_ mmglly (|n_ the syn-

Tracking a 3(*@e g 30teq g#(at2) Ttz e chronous gauge We demonstrate, in this section, that the

insensitivity of the spectrum described in RE34] has an
origin similar to the insensitivity of the background proper-
this is an important issue since constraints on this quantityies with respect to the initial conditior®@ andQ’, namely

are already available. This problem is also solved by quinthe presence of an attractor for the perturbed quantities. We
tessence in the sense that we always have<wo<0.  prove that during all the four regimes undergone by the quin-
Here, however, it is relevant to distinguish betweentessence field, the attractor is characterized by a “spiral fixed
the Ratra-Peebles potential and the SUGRA potential. Witlpoint” as it is the case for the background.

the first potential, it seems difficult to reach sufficiently

small value ofwqg . On the other hand, this is automatically A. General framework

achieved in the second case. The reason for this is the
presence of the factor exg?/2) in the potential, a generic be
feature of SUGRA-based potentials, which drives,
towards —1. For =11 and Qcpy=0.3, the prediction
is wg=—0.82, a value in agreement with the current
data[10,11].

Without loss of generality, the perturbed line element can
written in the synchronous gauge. In this class of coordi-
nates systems, scalar perturbations are completely described
by two arbitrary functions. The spatial dependence of the
perturbations is given b¥(x') which is the eigenfunction of

the Laplace operator on the flat spacelike hypersurfaces.
There exist two ways to construct a two-rank tensor from a

D. Model building problem scalar function: either by multiplying it by the spatial back-

From the particle physics point of view, one would like to ground flat metrics;; or by differentiating it twice. The two
justify the existence of the quintessence field and the shapébitrary functions mentioned above are simply the coeffi-
of the (so fa) phenomenological potentials. Several attemptscients of these two terms in a Fourier expansion. Therefore,
have already been made in the framework of supersymmetriéie perturbed metric can be expressedS}
field theory. In particular, it was shown by Bimey [8] that
the Ratra-Peebles potential can be recovered in the context of
global SUSY. However, as already mentioned, SUGRA cor-
rections must be taken into account and this implies that the
corresponding potential can be of the type of the SUGRA 1
tracking potential displayed in E¢L) which leads to a better +hi(n) Ex,i,j
agreement with the available data.

Nevertheless, it should be clear that considerable probm, this equation, the dimensionless quantitys the comov-
lems remain to be addressed in order to reach a satisfactopyy wave vector related to the physical wave vedt8f’s
situation [12,48. Maybe the most crucial question is the {hrough the relatiorkP™s=k/a(7). As a consequence of
problem of SUSY breaking. SUSY must certainly be brokengjnstein equations, perturbations in the metric are coupled to
but the models evoked previously do not take into accounpertyrpations in the different matter components. We choose

this basic fact. This could have dramatic consequences ang \yrite the perturbed stress-energy tensor accordigap
modify the shape of the potential which is so important in

(L+h(7)X);

dsz:az(n)[ —d7y’+

dx! dxi] . (18)

order to solve the three previous problems. € £ ) &
T=- =X Th=5X;, To=—5X'\ (19
I1l. COSMOLOGICAL PERTURBATIONS a a a
We now turn to the study of the cosmological perturba- : -
y gea b =2y, (20

tions. A detailed study has already been performed by Ratra
and Peebles in Ref2] but only for the tracking regime.
Cosmological perturbations in a fluid with a constant negawhere we have assumed that the longitudinal presgyre
tive equation of state parameter have been investigated wanishes for each component. As for the background, one
Ref. [49]. In this article, we study the cosmological pertur- considers that the Universe is filled with two fluids: the back-
bations (in the long wavelength approximatipin all the  ground fluid, a hydrodynamical perfect fluid which is either
regimes previously described and point out some additionaiadiation or dust(again, the corresponding quantities will
properties. The evolution of the cosmological perturbationsarry the index B), and a scalar fie@@describing the quin-
mainly depends on the equation of state parameter and thiessence fieldin this case the corresponding quantities will

a
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TABLE llIl. Time dependence of the background fluid density residual gauge mode; i.e., there exists a synchronous system
contrast during the radiation- and matter-dominated eras. of coordinates such that this mode can be removed and there-
fore must not be considered as a physical mode.

wp X_ X+ (ng—l)/Z
1/3 -2 2 1 C. Quintessential perturbations
0 —-3/2 1 —-1/2

We now describe how the long-wavelength quintessential
perturbations evolve with time. A similar study has already

carry the indexQ). The perturbed Einstein equations which P€en performed by Ratra and Peebles but only on the track-

govern the evolution of the quantitiésandh, are given by ng solution. We give here a complete description of the
evolution of the quintessence density contrast in the four

3Hh' +k2h—Hh| = ke g+ KELQ, (21) regimes defined in the previous section. In addition, we
prove that there exists an attractor for the perturbations as is
h'=kép+ kép, (22)  the case for the background solution. As a consequence, the

final value of the density contrast is always the same what-

—h"—2Hh'=kpyp+ kP1g, (23)  ever the initial conditions are.
The Klein-Gordon equation satisfied by the perturbed
h'+2Hh| —k?h=0. (24)  quintessence fieldQ has been established in the Appendix
[see Eq(A12)] and reads

Finally, it turns out to be more convenient to work with the

density contras$ and the velocity divergence defined by , P2 %(e)) Q" ., .,
the equations 0Q"+2HQ '+ |k +a a2 6Q+ 7(3h —h{)=0.
3 (29
€1 a €p
s=——, &=-"Z(l+w)l. (25)
a“€gp k This is similar to Eq(7.20 of Ref.[2]. One can check that

Eq. (A8) of the Appendix is automatically verified since it is
equivalent to the unperturbed Klein-Gordon equaiitbmes
an unimportant factgr Using Eq.(Al) of the Appendix to
express the factort8 —h/ and neglecting th&? term, we

In the following, we study analytically the time evolution of
the density contrast for the background fluid and for quintes
sence in the long-wavelength limit.

arrive at
B. Background fluid
The equation satisfied by the background density con- PV(Q) Q’
strast has been established in the Apperidee Eq.(A5)] 8Q"+2HSQ' +a? 5Q=Q’abg+ ——— 5.

1+(l)B

and can be written as dQ?

(30)
3
S+ Hp— 5 H*(1+3wg)(1+ we) S _ _ o _
2 We are now going to analyze this equation in detail. We now
need to utilize the general expression for the second deriva-
tive of the potential, Eq(14). On the tracking solution, we

. . _ A2 _ :
Its general solution can be easily found and reads havewq=c5q andwq=(—2+ awg)/(2+ a) and this equa-
tion reduces to

:_SHO)B(]."‘ wB)aGB. (26)

X_

a\*+
os(7) :Al( a_o) +A;

ap d2V(Q)_9H2a+1 12 -
we(1+ wg)(1+3wg)agle o[ @ | Cs22 a2 T red)
(1_0)3)(1+6(UB) a.o ’
(27) For our purpose, as proved in the previous section, it is suf-
_ ficient to consider a regime whedg, is constant and where
where we have defined the scalar field is a test field. Under these conditions, we
(1-30g) 1 . obtain
Xo=— th\/(l—SwB) +24(1+ wg)(1—3wpg).
(289) d*V(Q)

—§H2 1-c2)(6+3wg+3c2y). (32
T . a2 4 (17Cso)(6+3wpt o).
The results for the radiation dominated and matter dominated
epochs are summarized in Table Ill. These results are con-
sistent with those obtained in Rgb1]. In particular, it can  Let us now concentrate on the homogeneous part of 3.

be shown that the brancBzca*- corresponds in fact to a Using the previous equation, it can be expressed as
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4 1
5Q"+ 5Q’

1+ 3(1)5 ; NO%
PR 1(1 25)(6+3wg+3c25)6Q=0 g
——(1-c 1) c =0. )
(1+3wB)2 772 sQ B sQ %
33 °
(33 2
This linear equation can easily be solved: its solutions are o
just the power law of the conformal time. However, in order =
to show explicitly the complete analogy with the background -3 - - :
attractor, we choose to analyze it in a rather roundabout way. -1.0 -0.5 0.0 0.5 1.0
Let us proceed exactly as for the unperturbed Klein-Gordon wg
equation[see the discussion around Ed0)]. We define the
time 7 by »=e” and introduce the quantityu and Sp de- FIG. 3. Stability region for the quintessential perturbations. The
fined by su=5Q and Sp=d(8Q)/dr. Then, Eq.(33) can light grey and the dark grey regions constitute the stable region. The
reexpressed as light grey region is the region where the square root is an imaginary
number. Two trajectories of the system for the tracking potential
3(wg—1) g(ch_ 1) , (short(_est ling and the SUGRA tracking potentidbngest ling are
d /[ op (2+ wg+cC Q) also displayed for the value=11.
sy =| 1+3wg (1+3wg)? s
1 0 SUGRA tracking potential. The two lines separate when the
exponential factor becomes important in the SUGRA track-
op ing potential.
X sul” (34) The conclusion is that the final value of the quintessence

perturbations is insensitive to the initial conditions, a prop-

The form of this equation clearly shows the complete anal®€y completely similar to what has been shown in REf.
ogy with Eq.(10). The eigenvalues of the system are foundfor the background. Strictly speaking, this property has been
by solving the equation dé{—\1)=0, whereM is the ma- demonstrated for long-wavelength modes only. However, we
trix defined above antl the identity matrix. Straightforward have checked by numerical calculations that this is also true
calculations show that the solutions are given by for shorter-wavelength modes. Having proved that the final
result does not depend on the initial conditions of the quin-

2 tessence perturbations, we can now proceed further and em-
_§ wg—1 o+ CsQ™ 2 bark in a rather detailed study of the CMB anisotropies pre-
2 1+3wg (wg—1)? dictions in the presence of quintessence.

(35
L . . IV. PREDICTIONS FOR THE POWER SPECTRUM
Of course, this is just a simple rephrasing of the fact that the AND THE MULTIPOLE MOMENTS

solution of Eq.(33) is 6QxA, »*++A_7"-. The presence

of an attractor is linked to the negative sign of the real part of The presence of cosmological perturbations induces direc-
\. . Itis easy to see that the real part is always negative ifional variations in the CMB photon redshift. This is the
all four regimes; in particular this is true for any valuef  Sso-called Sachs-Wolfe effef$2]. Since these variations are
This is displayed in Fig. 3 in the planev ,ch). The light the same regard!es; of _the wavelength of the photons, they
grey and dark grey regions are the regions where these rebipnslate into variations in thfe temperature of the blackbody
parts are negative. The light grey region is the region wher@n the celestial sphere. Their amplitude has been measured
the argument of the square root is negative, i.e., where thY the Cosmic Background Explor€COBE) satellite and is
square root is an imaginary number. The exact “trajectof the order of magnitud@T/T,=10"° [53]. The detailed
ries” of the system for the usual tracking potentishort angular structure of th_e CMB anisotropies is usu_ally charac-
line) and for the SUGRA tracking potentiglong line) are  tefized by the two-point correlation function which can be
also shown for the case=11. They have been obtained by €xpanded according to

full numerical integration. The remarkable property is that ST ST 1

these trajectories are always in the stable region. This means ot ob _

that, in each region, the system tends to an attractor which is < T (&) T (e2)> 47 Z (21+1)CPy(cosy), (36)
given by the inhomogeneous part of the perturbed Klein-

Gordon equation. The system startsag{=1/3 and goes wherey is the angle between the directiogsande, andP,
from cZo=1 to cZo=—7/3. Then, the system approachesis a Legendre polynomial. The coefficier@s are the multi-

the transition to the matter-dominated era and leaves the vepole moments. In what follows, we will be mainly interested
tical line. Finally, it stops when the redshift vanisheswgt  in the so-called band powesT, defined by the following
=—0.29 for the tracking potential and at=—0.82 for the  expression:

103505-8



EXHAUSTIVE STUDY OF COSMIC MICROWAME . .. PHYSICAL REVIEW D 62 103505

5T|ETO\/I(I+1)%, 37)

whereTy=2.7 K. The band power has now been measured
on a wide range of angular scales from' @ 90° corre-
sponding roughly td e[ 2,700. Almost 80 data points have
been measured. Recently new data obtained by the balloor
borne experiments BOOMERan[20,21] and MAXIMA-1
[22,23 have been published. They clearly show a detection
of the first Doppler peak at the expected angular sealé
corresponding to the size of the Hubble radius at recombina: 5
tion.

On the theoretical side, the multipole moments depend or
the initial spectra for scalar and tensor modes and on how the o - pros prows
perturbations evolve from the initial tim@fter inflation un- !
til now. This evolution is determined by the values of the

cosmological parameters, i.e., by the value of the .Hubblet-wo values ofe, a=6 (solid curve ande=11 (long dashed curye
constant [), of the total amount of matter present in our 54 yith cosmological parameters equahte 0.5, 0,=0.05,Q,

Universe (1), of the cosmological constant)(), of the  _q7, Qeom=1-0Q,—Qq, Ng=0.99, A;=0. The curves are
baryon density parametefl), and of the cold dark matter compared with those obtained in the SCDM motiHort dashed

density parameter ({cpy). Constraints already exist on curve and in theACDM model (dotted curvi
some of these parameters. In particular, as already mentioned

agove,QAzOJ according to the SNla measurements andjance model £CDM). We also display the corresponding
h“Q,=0.019*+0.002 according to BBNI54,55. We also as- baryonic matter power spectra, given by

sume()y=1 in agreement with the inflation paradigm which

172 (1K)
3

(1+1) G/ 21)

40 |

FIG. 4. Multipole moments for the Ratra-Peebles potential for

has been confirmed by the recent CMB anisotropy measure- Spp?
ments. For the initial spectra, it is traditional to assume that |5(k)|25‘_b , (40)
they are of the power-law form Pb

KPo(K) =A™ k3P (k)=A7k"T, (38)  which is the square of the Fourier transform of the baryonic

density contrast. Then, we compare the predictions of the
where the scalar and tensor spectral indingsand ny are QCDM model for the Ratra-Peebles and SUGRA tracking
related byns—1=ny. This last equation is also valid for potentials with the COBE[53], BOOMERanG [20,21],
zeroth-order slow-roll inflation. It should be noticed that, MAXIMA-1 [22,23, and Saskatoofi56] data. We do not
priori, this choice is not the most relevant one since slow-rollattempt to perform a detailed statistical analysis but we
inflation is certainly more physically motivated. For spectralrather indicate roughly how the different models can fit the
indices close tong=1, we expect a small difference. This is observational data.
no longer true for larger tilts. Inflation predicts the presence We now turn to simple considerations about the shape of
of gravitational perturbations and the tensor to scalar amplithe CMB spectrum. The corresponding band power for the

tude ratio is given by Ratra-Peebles and SUGRA potentials is displayed in Figs. 4
and 5 fOI‘ h:05, Qb=005, QQ:07, QCDle_Qb
Ajz _ @n (39) —{q, andng=0.99 and the tensor contribution neglected.
Ag 9 T The former set of cosmological parameters has been chosen

) o ) ) _ ) just for the sake of illustration and discussion. For simplicity,
This equation is valid for power-law inflation witiir N0t 100 \ye start with a comparison of the quintessence multipole
large" or for zeroth-order slow-roll inflation. A last remark is moments with those obtained in theCDM model with
in order at this point. All the plots displayed in this article are gimjlar cosmological parameters. First, sin€e,=Qcom
COBE normalized in the following way: the position of the +Q, is the same in the two models, the redshift of equiva-
Sachs-Wolfe plateau is tuned such that it best fits the COBlnce petween matter and radiati =0,./Q,, where

data points. In practice, this almost amounts to normalizinghrEQ +Q s also the same in both cases. Therefore. the
y v . ,
the spectrum t€y,. _ first peak is boosted in the same way by the early integrated
In this section, we first study the general properties of thesachs-\wolfe effec(due to the time variation of the two

multipoles moments i|_"| the quintessenc_e cold dark mattegardeen potentials during recombination; $6&]) and, a
model(QCDM) and point out the main differences with the o one expects the same first peak height. Second, the

standard cold dark matt¢SCDM) and the cosmic concor- g4,k energy componeritosmological constant or quintes-
sencé has a negligible contribution before recombination

and, as a consequence, the evolution of the perturbations

For power-law inflation, the exact expression is given bybefore the last scattering surface is the same in the two mod-
At/Ag=—(200/9N+/(1—n1/2). els (see the previous sectipriThus, one expects again iden-
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1000
I
FIG. 5. Multipole moments for the SUGRA potential for two
values ofa, a=6 (solid curve anda= 11 (long dashed curyeand
with cosmological parameters equal to=0.5, ,=0.05, Qg
=07, Qcpm=1-Qp—Qq, ns=0.99, A;r=0. The curves are
compared with those obtained in the SCDM mo¢&ort dashed
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FIG. 6. Matter power spectrum for the Ratra-Peebles potential
for two values ofa, a=6 (solid curveg and a=11 (long dashed
curve and with cosmological parameters equal he=0.5, O
=0.05, 05=0.7, Qcpn=1-Qp—Qq, Ns=0.99, Ar=0. The
curves are compared with those obtained in the SCDM mi@thelrt

curve) and in theACDM model (dotted curve dashed curveand in theA CDM model (dotted curvi

tical acoustic peak patterns. However, despite the previousqientia|. This means that the multipole moments displayed
considerations, the position of the peaks differs because thg Fig. 5 are a generic predictions of the SUGRA QCDM
angular distance-redshift relation is modified at small red'model.

shift since the equation of state of the cosmological constant For.the sake of completness, let us now describe the cor-

and of quintessence is not the same. The closestIathe  oqh0nding matter power spectra. They are displayed in Figs.
equation of state parameter is, the largest the shift of thg -4 7 The matter power spectrum also depends on the

peaks to small angular scales is..As a consequence, the PeqkSure of the dark energy componéabsmological constant
in the ACDM model are more shifted to the right than in the . o jintessengebut the difference between the cosmological

QCDM model. Another feature is that the height of the first o nstant scenario and a quintessence scenario is less impor-

peak is not the same in the two types of scenarios. Indeed, it The matter power spectrum shows a peak the location
small redshift, the gravitational potential does not behavey \nich is given by the Hubble radius at equivalence. In the

exactly in the same way in the two models especially be-\ cpm and QCDM scenarios, the peak is at the same loca-

cause there are scalar field perturbations in the QCDM SCqon, contrary to the SCDM case for which the peak is located
nario. This results in a different contribution of the late inte- 5+ smaller scales. Also. in models with low matter content

grated Sach-Wolfe effecf57] which affects the overall
normalization of the spectrum. As a consequence, the height
of the first peak is lower in the model which produces a
strong late integrated Sachs-Wolfe effect, i.e., in the QCDM
model.

The exact shape of the quintessence potential also mattel
and different potentials lead to different CMB anisotropies. _
The SUGRA potential and the cosmological constant lead tog
very similar CMB anisotropy spectra, whereas the difference@
is stronger in the case of the Ratra-Peebles potential. This i:#
mainly due to the fact that the equation of state parameter it
generically closer to-1 in the first case than in the second
one. Another difference is that the Ratra-Peebles potentia
produces a larger late integrated Sachs-Wolfe contributior
than the SUGRA potential. This results in a different normal-
ization for both modelgnote that the normalization depends
on «) which has for consequence different height of the first
Doppler peak. Of course, this difference is also visible in the g1 7. Matter power spectrum for the SUGRA potential for two
power spectrum at large scales. Maybe the most interestingaues ofe, a=6 (solid curveé anda= 11 (long dashed curyeand
property is the following one. The cosmic equation of statewith cosmological parameters equal to=0.5, Q,=0.05, Qo
(almos} does not depend o in the case of the SUGRA  =0.7, Qcpy=1-0Q,—Qq, Ns=0.99, A;=0. The curves are
potential. Then, in the same manner, the CMB anisotropiesompared with those obtained in the SCDM mo(&Hort dashed
do not depend ow contrary to the case of the Ratra-Peeblescurve) and in theACDM model (dotted curve

\ \
10" 10°

k (b Mpc™)
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FIG. 8. Contour plots of the first Doppler peak location in the
(Qn,h) plane for the cosmological constant case. The other cos- FIG. 10. Contour plots of the first Doppler peak location in the
mological parameters af@(),=0.019, Q0 ,=0.7, A;=0, andng (Qp,,h) plane for the SUGRA QCDM case. The other cosmologi-
=0.99. cal parameters arIeZQb=0.019,QQ=O.7, Ar=0, andng=0.99.

the ratioQ,,/Qcpy is higher which results in the presence of ticular the fact that, in _genera|’1\>|fUGRA>llRp' If one
smooth oscillations at small scales. As for the CMB anisot-2ssumes thafl,=0.3 (since we have assumed,=0.7)
ropy spectrum, the small scales are similar inA®DM and andh=0.62, this last value being consistent with the Hubble
QCDM scenarios and important differences only occur onoPace A'I'elescopglJGSR'I;) and SNIaRrPneasurements, then we
larger scales which are more affected by the change in th@btainly=225,17"=""=220, and ;" =200. It is interesting
cosmic equation of state. to compare these values with the recent measurements of the
Let us now study in more detail and for more realistic first peak performed by BOOMERanG and MAXIMA-1.
values of the cosmological parameters the position and théhe BOOMERanG data indicate théf=197+6 [20,2]]
height of the first Doppler peak. We start with the location ofWhich is compatible with the Ratra-Peebles potential and a
the first peakdenoted in what follows by;) and we study it spatially flat Universe. On the other hand, the MAXIMA-1
in the plane (,,,h) with the following values of the other data are consistent with a first peak located! gt 220
cosmological parameters2Q,=0.019(the value predicted [22,23 which is, this time, in agreement with a cosmological
by standard BB\ Q, o=0.7, A;=0, andns=0.99. The constant or the SUGRA QCDM model.
case of the cosmological constant is displayed in Fig. 8, the Letus now study the height of the first Doppler peak. We
case of the Ratra-Peebles QCDM model in Fig. 9, and thétudy its variation in the plane(X,,ng) for the following
case of the SUGRA QCDM model in Fig. 10. These plotsvalues of the cosmological parametes: 0.62, 0, =0.7.
confirm the qualitative predictions made above and in parThe case of theACDM model is displayed in Fig. 11
whereas the cases of the Ratra-Peebles QCDM and SUGRA

100
' ' ' ' 11 L L] L] Ll Ll L

.90 r .
Q
s T ]
@ 80 - .
E 09 |
=g 70 -
£ 3
s £
2 - T 08|
o
2 7]
5 50~ 07}
£

40 - 06
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0 0-5 1 1 1 1 1 1
0.035 0.04 0.045 0.05 0.055 0.06
Matter density Qp,
Baryon density Q,,

FIG. 9. Contour plots of the first Doppler peak location in the
(Q,,h) plane for the Ratra-Peebles QCDM case. The other cosmo- FIG. 11. Contour plots of the height of the first peak in the
logical parameters aré?Q,=0.019, 16=0.7, A;=0, and ng (Qy,ng) plane withh=0.62, (), =0.7 for the case of thda CDM
=0.99. model.
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FIG. 12. Contour plots of the height of the first peak in the FIG. 14. Contour plots of the location of the second peak in the

H — — 2 — —
(Qp,ng) plane withh=0.62, Q,=0.7 for the case of the Ratra- (2, h) plane withh=0.62,0,=0.7, h"2,=0.019,n5=0.99 for
Peebles QCDM model. the cosmological constant case.

- ) difficult to deduce something from the BOOMERanG data.
QCDM are presented in Figs. 12 and 13, respectively. Werq orror pars are still large and the data are, for the moment,
would like to emphasize that the importance of gravitational ompatible with a second pedkith a height maybe smaller
waves is crucial in this case. Indeed, as already mentione an predicted by standard inflatiobut also with no peak at
the prezence of gravitational wz?]veshmor(]jifie: trtle norr;alizal?”' even if one can see a small rise of the signal,at550
tion and, as a consequence, the height of the peaks. T ?0,21]. Only 5% of the data of this experiment have been
BOOMERanG data indicate thmZO(?: 698 1 K [20,21] analyzed so far and one should wait for the rest of the data
whereas the MAXIMA-1 ones givedTyo=78£6uK  ,haveis to be completed. On the other hand, the
[22,23, this discrepancy being possibly explained by Prob-pAXIMA-1 data show “a suggestion of a peak ht=525"
lems in the calibration of these _experiments. If we adet th‘fzz], the height of which would béT =48 K. One could
value{d,,=0.0595, compatible with .BBN’ we see that, in the even argue that the beginning of a third peak has been ob-
Ratra-Peebles QCDM model, a height of the first peak comge a4 1 fact, considering all the uncertainties in such mea-
patible with the BOOMERanG and MAXIMA-1 data leads g, .ements, we are of the opinion that a reasonable attitude is
to a value of the scalar spectral index such thgt 1. For — gin\ 1o wait for more data. On the theoretical side, it was
the cases oA CDM and SUGRA QCDM, we learn from the 54,64 by Kamionkowski and Buchaltgt0] that the loca-

previous plots that the spectral index must be very close to %ion of the second peak can probe the dark energy density.
We now turn to the study of the second Doppler peaka;

. ; , he main idea is to study the contour plotsl 9in the plane
First of all, we should say something about the observation y P o P

ituation. With d he d > ¢ q kit Q.,,h). Then, a measurement &, knowing h by other
situation. With regards to the detection of a second peak, it i§,,ans . immediately determines the value(hf. It was

" — . . ' . . claimed in Ref.[40] that this strategy does not depend on

whether the dark energy is a cosmological constant or a
quintessence field. We show that this claim is not correct and
that the nature of the dark energy matters. The contour plots
of |, in the case of a cosmological constant are displayed in

5 p [E— 1 Fig. 14 for the cosmological parameters given oy 0.62,

E 0s | 1 0,=0.7, h?Q,=0.019,ng=0.99. These plots are in agree-

jg ’ ment with the results found in Reff40]. The corresponding

a ol 1 contour plots for the Ratra-Peebles and SUGRA CDM mod-
‘ els are presented in Figs. 15 and 16. In addition, in order to
o5 b | show that there is indeed an important difference, we also

display the contour plots for a cosmological constant which,
for a given value ofl,, is always above the QCDM curve.
0.035 0.04 0.045 0.0 0.055 0.06 The fact that there is a difference does not totally invalidate
the idea of Ref[40]. But it means that, in order to use it, we
should first identify the physical nature of the dark energy,
for example with a measurement of its equation of state pa-
FIG. 13. Contour plots of the height of the first peak in the f@ameter. As for the first peak, we havg>1 YR~ 7.
(Qp,ng) plane withh=0.62, Qo="0.7 for the case of the SUGRA Roughly speaking, forh=0.62, ( ,=0.3, we havel)
QCDM model. =550, |1,Y°RA=525 andl P=500. Interestingly enough,

Baryon density ,
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FIG. 17. Band powe#T, for the ACDM model withh=0.62,
FIG. 15. Contour plots of the location of the second peak in the) , =0.7, Q,=0.595, andng=0.99. The data points are those of

(Qm.h) plane withh=0.62, 0, =0.7, h?Q,=0.019,ns=0.99  the COBE, BOOMERanG, MAXIMA-1, and Saskatoon experi-
for the Ratra-Peebles QCDM model. The corresponding contouments.

plots for the cosmological constaftipper curver are also dis-
played for comparison. which is certainly one of the next important experimental
challenges. In Fig. 20, we present the three curves together in
the SUGRA QCDM model seems to predict the correct lo-order to make the comparison easier. It should be empha-
cation of the “suggested second peallR?2], just in between sized again that the multipole moments predicted by the
the location predicted by th&a CDM model and the Ratra- SUGRA QCDM model are unique in the sense that they do
Peebles QCDM model. Of course, it is premature to connot depend on the free parameter in the potential. From these
clude and only more data could allow to know whether thisplots, we see that the SUGRA QCDM model is, among the
is indeed the case or whether this is just a coincidence. three models studied here, the best fit of the MAXIMA-1
Finally, we display the multipole moments for tAéCDM data. It is the only model for which the theoretical cud/e
model, the Ratra-Peebles QCDM model and the SUGRAversus| goes through all the & error bars of this experi-
QCDM model in Figs. 17, 18, and 19, respectively, for thement. However, we should be careful not to overestimate the
following cosmological parametetdeduced from the previ- relevance of this result since uncertainties are still large, for
ous considerations h=0.62, Q,=0.7, Q,=0.0595, and instance, because the comparison of the calibrations of dif-
ns=0.99. The data points of COBE, BOOMERanG, ferent experiments is always a difficult task. We should also
MAXIMA-1, and Saskatoon have been added to the plots fokeep in mind that & deviations are always possible. Thus,
comparison. These curves represent the predictions of eagte are waiting eagerly for the new data to see whether quin-
model and special attention must be paid to the third peakessence, and especially SUGRA quintessence, can confirm
the hints of this article and fits the data better than the other

100 T . . . QCDM models.
90 F . ) 100
Q
s
@ 80 |
s
Sol
c ——
8 g
[7]
§ 60 ge’ 60| I
g 11
2 L S 1
g% = s
J:: £ w0} b
a0 - _]_ 1{7*4
Lo
% of | T
Matter density Qp, 0 .
10 100 1000

FIG. 16. Contour plots of the location of the second peak in the
(2p,h) plane withh=0.62, O, o=0.7, h2Q,=0.019, ng=0.99 FIG. 18. Band powe®T, for the Ratra-Peebles QCDM model
for the SUGRA QCDM model. The corresponding contour plots forwith h=0.62, Q5=0.7, 0,=0.0595, andng=0.99. The data
the cosmological constarupper curver are also displayed for points are those of the COBE, BOOMERanG, MAXIMA-1, and
comparison. Saskatoon experiments.
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100

In this paper we have confronted analytical methods with
numerical results. Using the former we establish that the
ol ] quintessence perturbations are independent of the initial con-
ditions. This is confirmed by a full numerical computation.
This allows us to study the CMB anisotropies. In particular
s 1 we have paid particular attention to the comparison between
three possible models: the cosmological constant model, the
wl ] Ratra-Peebles model, and the SUGRA quintessence model.

_]— We have also compared these three models with the existing
* ++T data from the BOOMERanG and MAXIMA-1 experiments.
] As a rule the location of the first peak is shifted to the right
» for models having an equation of statecloser to— 1. This
. , , entails that the location of the first peak for the first peak of
0 | 100 1000 the MAXIMA-1 data is fitted by the SUGRA model. Simi-
larly the location of the second peak aroune-525 as sug-

FIG. 19. Band powepT, for the SUGRA QCDM model with  gested by MAXIMA-1 seems to indicate that the SUGRA
h=0.62,04=0.7, 0,=0.0595, anchs=0.99. The data points are model comes closer to be the best of these three models. One
those of the COBE, BOOMERanG, MAXIMA-1, and Saskatoon of the foreseeable challenges will be to carry out a thorough
experiments. analysis of the forthcoming data in order to distinguish these
three models even more clearly.

From the particle physics point of view most of the quin-

The quintessence scenario provides a general framewotgssence models discussed so far have neglected the crucial
within which the issue of the energy density of the Universeffects of SUSY breaking. It may well be that the effects of
can be tackled. In particular long-standing issues such as theJSY breaking, on top of necessitating a severe fine-tuning
coincidence problenfand maybe the fine-tuning problem Qf thg cosmologlpal constant, will |nQuce drastic modl_flca-
receive reasonable answers for a class of models possessiffg’S in the functional form of the quintessence potential. It
the property of tracking fields; i.e., the evolution of the quin-S Cértainly a tantalizing challenge to include the effects of
tessence field is driven at small redshift towards an attractopYSY_Preaking within the supergravity models of quintes-
independently of the initial conditions. In the same spirit it SENCE58]. On the other hand, there exists the possibility that
seems very enticing to draw the consequences of the quitl€ cosmological constant problem will be resolved using
tessence hypothesis on other cosmological observables, tHi£as stemming from extra-dimension scenarios involving an
most prominent ones being the cosmological anisotropieitective supersymmetry in four dimensiofd. The inves-
Recent measurements of the CMB anisotropies by th&9ation of such models might well shed new light on the
BOOMERanG and MAXIMA-1 experiments give a first in- ©Orgin of the quintessence field. _
dication of the location of the peaks in the CMB multipoles.  AS must be clear by now the issues raised by the cosmo-
It seems therefore topical to understand the consequences ggical constant problem, the quintessence scenario, and its

the quintessence hypothesis on the CMB anisotropies. proper understanding within particle physics are manyfold.
The experimental results which will be available in the near

100 . . future might help in disentangling some of these very con-
spicuous matters.

To (1) G/ 21" (uK)
-

V. CONCLUSION

s
_ APPENDIX: PERTURBATION EQUATIONS

Ef eo | . \ ] 1. Background fluid

& AT € . . g .

s +  f ] The equations satisfied by the background density con-
: wf AV ANt trast and divergence can be obtained either from combina-
'_0 P e AR

i R tions of the Einstein equation®1)—(24) or, more directly,
K from the conservation of the perturbed background fluid

z stress-energy tens@ince the background fluid and quintes-
- sence only interact gravitationallyThey read
0 0 100 1000 1+ wg
! Sgta(l+wg) b+ 5 (3h'=h/)=0, (A1)

FIG. 20. Band powepT, for the ACDM model, Ratra-Peebles
QCDM model, and the SUGRA QCDM model with=0.62,
Q,,0=0.7,0,=0.0595, anchs=0.99. The data points are those of 2,2
the COBE, BOOMERanG, MAXIMA-1, and Saskatoon experi- oL+ (2—3 G — sB Sa=0 A2
ments. BT ( wg) 10 (1+wg)a & - (A2)
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These two equations are equivalent to E@sl5 and(7.16 We can now establish the equations satisfied by the quin-
of Ref.[2]. From them, we can derive the relation tessence density contrast and divergence. The conservation
- of the perturbed stress-energy tensor leads to
” ” B i ’ CSB ’
3h"—hy= 1+—0)B(5“B+2(1—3w5)a 08 T3 g 95 8o+ 3H(CZo— wq) St a(1+wg) b

(A3) 1
] + 5 (1+wg)(3h'—hy)
where we have assumed thag is a constant. On the other 2
hand, from the Einstein equations we get 7t
2 " ’
=——(cso—1)(h/+Hh/), A7
_(3hn_h|/l)_H(3h/_h|/) ‘QQ ( sQ )( | I) ( )

=3H2[(1+3cfp) Qpde+ (1+3cfy) Qodg], k?cZo

05+ (2—3 HO— —— 6,
(A4) ot wo)Hbq (1+wg)a @
wherec{,=p;q/ €10 Which need not coincide with the defi- g - (1-cig)k? (h'+Hh!)
nition of 2, . In order to derive the formula satisfied by the  Itowg 2 3aMA(1+ ©0) Qo ! e

density contrast of the background fluid in the long-
wavelength limit, we neglect the term proportionalkoin (A8)

Eq. (A3) and we use the fact th&o<(g. Then, straight- |n these two equations, no approximations have been made:
forward manipulations lead to they are valid for any wave number, any equation of state
parameter, and any sound velocity. In practice, it turns out to
be more convenient to use the perturbed Klein-Gordon equa-
tion to analyze the problem. This can be obtained directly
from the first of the two previous equations if one notices
=~ 3Hwg(l+ wp)abs, (AS)  thatthe guantities describing the perturbed scalar field stress-
energy tensor can be expressed in terms of the perturbed
scalar field5Q(#,x) according to

3
Sp+HE— §H2(1+3w3)(1+w3)53

where we used the fact thafBz wg for an hydrodynamical
fluid. This equation shows that the evolution of the back-
ground density contrast is essentially unaffected by the pres- dv(Q)

ence of quintessence. This is of course an expected result €10=Q'5Q" +a%5Q aQ (A9)
since we have assumély<() g.

£6=-Q'8Q, (A10)
2. Quintessential perturbations
In order to obtain the fundamental equation satisfied by P1o=Q'6Q’' —a?sQ dV(Q). (A11)
the perturbed quintessence field, we can proceed as for the dQ

packground fluid. However, it is important to notice that thelnserting the corresponding expression for the density con-
link between the perturbed energy density and the perturbegly<t and the divergence in EGA7), we get
pression, which is just a constant for the background fluid, is '

more complicated in the case of quintessence. In general, we . d?V(Q) Q’ ,
can writep;o=C3qe10+a%78S where the second term rep- Q" +2H6Q"+ k“+a a7 6Q+ —-(3h"—h/)=0.
resents entropy perturbations. In the synchronous gauge, we Q (A12)

obtain
This equation is solved in Sec. Il C, where it is demon-
strated that its solutions possess an attractor as in the unper-

1
2 _ A2 N\ " 4
P1o=Csq€10+ (1~ Cso) (i +Hh/). (A8)  {urbed case.
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