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Covariant vortex in superconducting-superfluid-normal fluid mixtures with a stiff equation of state
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Using a covariant description, we obtain the integrals of motion for a cylindrically symmetric, stationary
vortex configuration in a mixture of interacting superconductors, superfluids and normal fluids. We then
integrate the stress-energy density and find a very simple, closed expression for the energy per unit length and
the relevant stress coefficients of the vortex with respect to a vortex-free reference state. This result is found
assuming a ‘‘stiff’’ equation of state for the fluid mixture, which is the least compressible but still causal
equation of state~contrary to theincompressible case!. As an illustration for these general results, we discuss
some applications to ‘‘real’’ superfluid-superconducting systems that are contained as special cases. These
include the two-fluid model for He-II, uncharged binary superfluid mixtures, conventional superconductors and
the superfluid neutron-proton-electron plasma in the outer core of neutron stars.

PACS number~s!: 97.60.Jd, 47.37.1q, 47.75.1f, 74.60.2w
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I. INTRODUCTION

The subject of investigation in the present work is t
structure and energy of a stationary and cylindrically sy
metric quantized vortex in an interacting multi-fluid mixtur
which may consist of charged and uncharged superfluids
of normal fluids. This analysis has initially been motivat
by the superfluid mixture commonly found in neutron s
models, namely in the outer core region, where superfl
neutrons, superconducting protons and normal electrons
generally thought to coexist. However, because of the g
erality of the present approach, it is equally well applica
to superfluid and superconducting systems found in m
common laboratory contexts, some of which will be d
cussed briefly in the concluding Sec. VIII.

The study of superfluid mixtures has a long history, b
ginning with the pioneering work of Khalatnikov@1#, later
followed by the analysis of Andreev and Bashkin@2#, who
incorporated allowance for a~nondissipative! interaction be-
tween the superfluids. This effect is called ‘‘entrainmen
~sometimes also ‘‘drag’’! and plays a central role in the stud
of such fluid mixtures. The model has been further exten
by Vardanian and Sedrakian@3# to include charged fluids
and later a Hamiltonian formulation in the Newtonian fram
work was developed by Mendell and Lindblom@4#. The
problem of vortices in such mixtures has been conside
especially in the context of neutron stars, namely by
drakian and Shahabasian@5#, Alpar, Langer, Sauls@6#, Men-
dell @7# and others.

The covariant vortex solution in a single uncharged sup
fluid has been analyzed by Carter and Langlois@8#, who have
also considered the modifications due to the compressib
of the superfluid. The present work is on the one han
generalization of this analysis to arbitrary fluid mixtures,
cluding charged ones and their coupling to electromagn
fields, but on the other hand is restricted~for technical rea-
sons! to the case of a ‘‘stiff’’ equation of state. This ‘‘stiff’’
case is characterized by the speed~s! of sound being equal to
the speed of light, and is, within the limits of causality, t
closest analogue to the common Newtonian incompress
models. Compressibility effects will be subject of futu
0556-2821/2000/62~10!/103005~14!/$15.00 62 1030
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work. Finally, we mention the previously found result@9# for
a Newtonian vortex in a rotating superconductor, that
~hydrodynamic! vortex energy is strictly independent of th
rotating ‘‘normal fluid’’ of positively charged ions, a resu
that will be found here to hold under much more gene
conditions.

In the present work we will consider only stationary sit
ations, which has two major advantages. First, it restricts
normal fluids to be in a state ofrigid motion and, moreover
in the samestate of rigid motion, because normal fluids a
ways possess some nonvanishing amount of viscosity
mutual friction. This even allows one to describe a so
component in the present framework as a ‘‘normal fluid
because in the rigid state of motion the anisotropic effects
viscosity and elasticity become irrelevant. So we can for
ample conveniently describe a conventional laboratory
perconductor as a superconducting-normal-fluid mixtu
consisting of superconducting electrons and a ‘‘normal’’ l
tice of ions, as will briefly be discussed in the concludi
section. The second and even more powerful consequenc
stationarity is that we can use aconservativemodel based on
a Lagrangian formalism that has been developed in rec
years@10,11# in a generally covariant language. The use o
generally covariant instead of simply Newtonian descript
has also been motivated initially by the perspective of ap
cation to neutron stars, where relativistic effects inevita
come into play, but this approach turns out to be gener
more flexible and convenient for the hydrodynamic descr
tion of such systems, even if relativistic effects are not i
portant.

The plan of this work is as follows. In Sec. II we intro
duce the relevant notions and equations of the covar
multi-fluid formalism on which the present analysis is bas
In Sec. III we discuss the description of superfluids in th
framework and the topology of the vortex-type configur
tions. Section IV introduces what we called the ‘‘mongre
representation of superfluid-normal mixtures, which cons
of choosing thesuperfluid momentaand thenormal currents
as the basic variables of the description, and which will
particularly convenient for the present problem. In Sec. V
©2000 The American Physical Society05-1
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specify the class of cylindrically symmetric and stationa
vortex configurations and obtain the first integrals of mot
for these solutions. Section VI is devoted to the specificat
and the properties of the reference state, needed to sep
the quantities attributed to the vortex from the fluid bac
ground. Finally, the relevant vortex stress-energy coefficie
are integrated in Sec. VII, using the most general hydro
namic modelization for the vortex core, and we find that
‘‘rotation energy cancellation lemma’’ of@9# still holds un-
der the more general conditions of the present work. In
concluding Sec. VIII, we briefly illustrate the application
the foregoing results to some of the well known examples
superfluid and superconducting systems.

II. COVARIANT DESCRIPTION
OF PERFECT FLUID MIXTURES

The general class of~non-dissipative! mixtures of charged
or neutral perfect fluids has been shown by Carter@10# to be
describable by an elegant covariant action principle. In t
section we will briefly introduce the part of the formalis
and notations that will be relevant to the present work.

In the absence of electromagnetic effects, a mixture
perfect fluids can be described by a Lagrangian densityL
that depends only on the particle number currentsnX

a , where
late Latin indices,X, Y, etc., enumerate the different flui
constituents. Variation ofL with respect to the currents,

dL5ma
X dnX

a , i.e. ma
X[

]L

]nX
a

, ~1!

defines thedynamicalmomenta per particlema
X as the con-

jugate variables of the currentsnX
a with respect toL. Here

and in the following we use implicit summation~except oth-
erwise stated! over identical spacetime as well as constitue
indices. Legendre transformation with respect to the curre
i.e.

P[L2nX
a ma

X , ~2!

defines the ‘‘Hamiltonian density’’P as a function of the
dynamic momentama

X . This function only exists for nonde
generate systems, that is, if the functionsma

X(nY
b) defined in

Eq. ~1! are invertible. The conjugate relations can then
written as

nX
a52

]P
]ma

X
. ~3!

Furthermore, the form of these relations is constrained by
requirement of covariance, namely,P ~as well asL) has to
be ascalardensity, and can therefore only depend on scal
i.e. onma

XmYa. This restricts relation~3! to be of the form

nX
a5KXY mYa, ~4!

where the~necessarily symmetric! matrix KXY is defined as
10300
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KXY[22
]P

]~ma
XmYa!

. ~5!

The condition of a non-degenerate system is equivalen
detKÞ0, and so we can write the inverse relation

ma
X5KXY nYa , with KXY KYZ[d Z

X . ~6!

In the case of noninteracting fluids, the HamiltonianP would
not depend on crossed scalarsma

XmYa with XÞY, but only
on diagonal terms (ma

XmXa). In this case the matrixKXY

would be diagonal, and each current would be aligned w
the respective momentum, similar to the case of a sin
perfect fluid, but any interaction terms between differe
fluid constituents in the Hamiltonian will lead to nondiagon
components ofKXY , and therefore the currents will becom
linear combinations~in each point! of the respective mo-
menta. This~nondissipative! effect is called ‘‘entrainment’’
and was first considered for superfluid mixtures of3He and
4He by Andreev and Bashkin@2#.

Before we come to the equations of motion, we need
extend our description to include the electromagnetic fi
and its coupling to charged fluids. This is done via the st
dard ‘‘minimal coupling’’ prescription that consists of defin
ing the total Lagrangian densityL as

L[L1 j aAa1
1

16p
FabFba, ~7!

where we are using units withc51. The electric currentj a

is defined as

j a[eXnX
a , ~8!

with eX being the charge per particle of the constituentX.
The electromagnetic 2-formFab is defined as the exterio
derivative of the gauge 1-formAa , i.e.

Fab[2¹ [aAb] , ~9!

where square brackets indicate~averaged! index antisymme-
trization. The symbol¹a denotes the usual covariant deriv
tive, but we note that because of the antisymmetrizati
exterior derivatives areindependentof the affine connection,
so we could as well replace¹a by the partial derivative]a .

The conjugate variables of the currentsnX
a with respect to

the total LagrangianL are thecanonicalmomentapa
X , de-

fined as

pa
X[

]L
]nX

a
, ~10!

which can be seen from Eqs.~1! and~7! to be directly related
to the dynamical momentama

X , namely

pa
X5ma

X1eXAa . ~11!

The equations of motion are to be derived from the to
LagrangianL via an appropriate variational principle. Im
5-2
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COVARIANT VORTEX IN SUPERCONDUCTING- . . . PHYSICAL REVIEW D 62 103005
posing invariance of the action under free~infinitesimal!
variations of the gauge fieldAa leads to the Maxwell source
equation

¹bFab54p j a. ~12!

However, the equations of motion for the fluids cannot
derived via free variations of the currentsnX

a , as this would
simply lead to the trivial equationspa

X50. This is because
free variations of the currents contain too many degree
freedom, which results in overdetermined equations of m
tion; therefore the variations have to beconstrained. It has
been shown in@10# that variationsdnX

a with the correct num-
ber of degrees of freedom are generated by infinitesimal
placements of the world lines of fluid particles. These wo
line variations satisfy the physical constraint of conserv
the number of particles, and they result in the correct eq
tions of motion for the fluids. Without entering into the tec
nical details of this procedure~see @10,11#!, the resulting
equation of motion for each fluidX is found as~no sum over
X)

2 nX
a¹ [apb]

X 1pb
X ¹anX

a50, ~13!

and by contracting this equation withnX
b , we see that it im-

plies that the currents are conserved, i.e.¹anX
a50, so the

equations of motion reduce to the simple form of a vortic
conserving flow, namely~no sum overX)

nX
a wab

X 50, ~14!

where the~canonical! vorticity 2-form wab
X is defined as the

exterior derivative of the canonical momentumpa
X , i.e.

wab
X [2¹ [apb]

X . ~15!

The very compact form~14! of the equation of motion can b
seen to ‘‘reduce’’ in the nonrelativistic limit to the~much
less compact! Euler equation of a charged fluid in electr
magnetic fields and possibly subject to further poten
forces. This is an example that shows the advantage
convenience of the covariant formalism, especially for m
complex applications like interacting mixtures of possib
charged fluids in electromagnetic fields, as considered in
present analysis.

And finally, the stress-energy tensorTab is found@11# in
the form

Ta
b5nX

amb
X1Pga

b1
1

4p S FalFbl2
1

4
FrlFrl ga

bD ,

~16!

which ~in the absence of external forces! satisfies the equa
tion of ~pseudo! conservation,¹aTab50. From the form of
the stress-energy tensor~16! we see thatP plays the role of
a generalized pressure, which reduces to the ordinary p
sure in the case of a single fluid.
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III. PROPERTIES OF SUPERFLUIDS AND TOPOLOGY
OF VORTEX SOLUTIONS

We want to allow for some of the fluids to be superflu
or superconducting, and we will denote these constituents
capital Greek indicesY, C, etc. For ‘‘normal’’ fluids ~i.e.
not superfluid or superconducting!, we will use early Latin
capital indicesA, B, etc., so a sum over all fluids~indexed by
X, Y, etc.! can be written as(X5(A1(Y . Apart from the
electric charge there seems to be no fundamental differe
between superfluids and superconductors, and therefore
will in the following refer to them as ‘‘uncharged’’ and
‘‘charged superfluids’’ respectively. We note that the pres
treatment considers superfluids as a subclass of perfect
ids, and will therefore represent some restrictions as to
application to strongly anisotropic superfluid phases like th
are found in3He @12#, which is governed by additional ‘‘in-
ternal’’ degrees of freedom like the spin and angular mom
tum of the Cooper pairs. But at least for situations whe
these additional degrees of freedom of the order param
can be considered as ‘‘frozen’’ and the dynamics mai
governed by the superfluid ‘‘phase’’ to be discussed in
following, the present approach should still represent an
ceptable approximation.

We distinguish the~connected! spacetime domainD Y oc-
cupied by the superfluid constituentY from the subset of its
respective ‘‘superfluid domain’’S Y#D Y, which corre-
sponds to what is sometimes called the ‘‘bulk.’’ In the s
perfluid domainS Y the canonical momentumpa

Y always
obeys the constraint

pa
Y5\¹awY, ~17!

where the ‘‘phase’’wY is a continuously differentiable scala
on S Y that can be multi-valued, but the differences betwe
values in the same point are restricted to be integer multip
of 2p. This reminds of an angle variable and reflects the r
of wY as a quantum phaseeiw. In addition to the property of
~quantized! potential flow~17!, the superfluidY in its super-
fluid domainS Y is perfectly inviscid. In that sense a super
fluid is probably the best representation of a perfect fluid
nature. On the other hand, outside its superfluid domain,
in DY\S Y, the superfluid is not constrained to potential flo
~17! and can also possess some viscosity like a ‘‘norm
fluid. The property~17! implies that the canonical vorticity
wab

Y vanishes on the whole superfluid domainS Y, i.e.

wab
Y 52¹ [apb]

Y 50, ~18!

which states that the superfluid is irrotational, and impl
that the equation of motion~14! is automatically satisfied on
S Y.

Irrotational flow is of course not restricted to superfluid
and the vortex-type configurations to be discussed later w
known long before the discovery of superfluids; familiar e
amples are tornados or water flowing out the drain of
bathtub. But the multi-valuedness of the ‘‘phase’’ of a pe
fect fluid in a state of potential flow isnot subject to a
‘‘quantization’’ condition of integer multiples of 2p, and a
perfect fluid only exists as an idealization of a ‘‘real’’ flui
5-3
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REINHARD PRIX PHYSICAL REVIEW D 62 103005
with some nonvanishing amount of viscosity, contrary to
completely inviscid superfluids in the superfluid doma
Furthermore, there is an important energy gain associ
with the superfluid domainS Y, the so-called ‘‘condensation
energy.’’ Superfluids consequently try to maximize their s
perfluid domainS Y @and thereby to satisfy Eq.~17!# as far as
possible in the limits of the fluid domainD Y.

One of the most important consequences of Eq.~17! is
that it allows for the topologically stable flow configuration
known as vortices, which are characterized by the prop
that different values of the~multi-valued! phasewY in the
same point can be connected by closed pathsG that lie en-
tirely in the superfluid domainS Y. As stated above, the dif
ference can only be of the form 2pNY, where the integerNY

is called the ‘‘winding number.’’ The winding numberNY of
a closed pathG,S Y can be written as

NY5
1

2p\ R
G
pa

Ydsa, G,S Y. ~19!

It is evident thatNY does not change for continuously d
formed pathsG→G8,S Y, andNY is therefore a topologica
constant for each equivalence class of closed paths inS Y. A
nonvanishingNY implies that the pathG,S Y cannot be
continuously contracted to a point, because it would nec
sarily have to cross at least one pointP¹S Y where the
phasewY is not defined, and thereforeS Y is necessarily
multiply connected if there are nonvanishing winding nu
bersNY.

IV. ‘‘MONGREL’’ REPRESENTATION
OF SUPERFLUID-NORMAL MIXTURES

In the previous section we have seen that a superfluid
its superfluid domain is generally characterized by a c
straint ~17! on the ~canonical! superfluid momentum, while
‘‘normal’’ fluids are generally more easily described in term
of their particle number currents. For this reason it will tu
out to be extremely convenient to pass from the ‘‘pure’’ ty
of representation used in Eq.~4!, which expresses all the
currents in terms of all the momenta~or vice versa! to a
‘‘mongrel’’ representation where thesuperfluid currentsand
normal momentaare expressed in terms of thesuperfluid
momentaand normal currents. This type of representation
has for example been used tacitly as the base of Land
two-fluid model for superfluid4He @13#, which was formu-
lated in terms of a ‘‘superfluid velocity,’’ representing in fa
the irrotational superfluid momentum of Eq.~17! ~divided by
a fixed mass! and of a ‘‘normal fluid’’ velocity, which rep-
resents the real mean velocity of the viscous gas of exc
tions. This will be seen in some more detail in the discuss
of the two-fluid model in the concluding Sec. VIII.

In order to pass to this mongrel representation, we dec
pose the entrainment matrixKXY into a purely superfluid
symmetric matrixSYC , a symmetric matrixVAB of purely
normal~‘‘viscous’’ ! fluids and a ‘‘mixed’’ superfluid-norma
matrix MYA , so Eq.~4! can be written in this decompositio
as
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nY5SYC mC1MYB mB, ~20!

nA5MAC mC1VAB mB, ~21!

whereMYB5MBY . For clarity we use in this section bold
face type for denoting spacetime vectors and covectors
the spacetime indices are not important here and can be
in any consistent way. Applying the inverse matrixV21 to
Eq. ~21!, we can easily rewrite these relations in the ‘‘mo
grel’’ form

nY5SYC mC1MY
BnB , ~22!

mA52MC
A mC1VABnB , ~23!

where we defined the new matrices

VAB[~V21!AB, MC
A [VABMBC ,

~24!

SYC[SYC2MYAVABMBC .

In this representation it is easy to see that terms of the fo
nX mX, e.g. in the stress-energy tensor~16!, can be written in
the ‘‘quasi separated’’ form

nXmX5mY SYC mC1nA VAB nB , ~25!

where the effect of ‘‘mixed’’ entrainment between superfl
ids and normal fluids is hidden in the use of the matrixS. As
we consistently wrote lower constituent indices for curre
and upper constituent indices for momenta, we can now
this convention to introduce a very convenient and sugg
tive notation, namely to useSYC to lower superfluid indices
Y, C, etc., andVAB to raise normal fluid indicesA, B, etc.
This can formally be understood as choosingS andV as the
metric tensorsin the respective constituent vector spaces
the superfluids and the normal fluids, but can also just
seen as a shorthand notation for

mY[SYC mC and nA[VAB nB . ~26!

In this notation, stress-energy contributionsnX mX take the
simple and concise form

nXmX5nA nA1mY mY , ~27!

where all the information about entrainment has been
coded in the respective metrics of the superfluid and nor
constituent spaces.

We note that the superfluid constraint~17! generally ap-
plies to thecanonicalmomentapY, which only in the case
of uncharged superfluids coincide with the dynamical m
mentamY5pY2eYA. This implies a qualitative difference
between charged and uncharged superfluids, and it wil
useful to separate the superfluid constituent space into
two orthogonal subspaces that are naturally defined by
superfluid ‘‘charge vector’’ with componentseY. The re-
spective subspaces are defined by parallel and orthog
projection via the projection tensors
5-4
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hC
Y [

eYeC

~eLeL!
, gC

Y [dC
Y 2hC

Y , ~28!

where again we have used the notationeY[SYCeC. Now we
can decompose constituent vectors, e.g. the superfluid
menta asmY5mi

Y1m'
Y , where

mi
Y[hC

Y mC and m'
Y[gC

Y mC. ~29!

The subtlety of this notation is that even though a ‘‘paralle
constituent vectormi

Y only has nonvanishing components f
charged superfluid constituents, and respectivelym'

Y only for
uncharged superfluids, thevaluesof the respective compo
nents may depend on all the other superfluidsand normal
fluids, as the projection tensors contain the entrainment
trix S.

V. STATIONARY CYLINDRICAL VORTEX
CONFIGURATION

In this work we will consider the simplest, because ma
mally symmetric type of vortex configuration, which is cha
acterized by both stationarity and cylindrical symmetry. T
means that there are three independent, commuting~in the
sense of Lie brackets! symmetry generatorska, l a and ma,
which can be taken to correspond to time translations, lon
tudinal space translations~along the vortex axis! and axial
rotations, respectively. The geometric picture of the symm
try surfaces generated byka, l a and ma is of cylindrical
hypersurfaces that build a well-behaved foliation of spa
time, and can therefore be parametrized by a ‘‘radial’’ co
dinater. Let us introduce the corresponding cylindrical c
ordinates $x0,x1,x2,x3%5$t,z,w,r %, adapted to these
symmetries, i.e.

ka5$1,0,0,0%, l a5$0,1,0,0%, ma5$0,0,1,0%. ~30!

The symmetry requirements and the property of conser
currents, Eq.~14!, i.e.¹anX

a50, restrict the flow to be purely
helical, i.e. to have no radial components. Therefore the
rents are confined to timelike hypersurfaces generated by
symmetry vectors and can be written as

nX
a5$ nX

t ~r !, nX
z ~r !, nX

w~r !, 0 %. ~31!

A further consequence of the symmetry is that any physic
well-defined quantityQ of the flow must be invariant unde
symmetry translations, which means that the correspond
Lie derivatives must vanish, i.e.LjQ50, for ja being any
linear combination~with constant coefficients! of the sym-
metry vectorska, ma and l a. This also holds for gauge de
pendent quantities like the canonical momentumpa

X , pro-
vided we fix the gauge in a way that respects the sa
symmetries, i.e. when (LjA)a50. Such a gauge choice i
given by

Aa5$ At~r !, Az~r !, Aw~r !, 0 %. ~32!

The componentsAt and Az are still subject to the residua
gauge freedom of an additive constant, i.e.
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At→At1Gt , Az→Az1Gz , ~33!

but becausew is an angle variable, corresponding to a co
pact dimension, the gauge of the axial componentAw is com-
pletely fixed by Eq.~32!. This is most easily seen by apply
ing Stoke’s theorem to a$r , w%-surface integral overFab ,
i.e. *dSabFab5rdlaAa , which in this trivial symmetric
case just reduces to*0

r `dr (dAw /dr)5Aw(r `), and so the
gauge is fixed as

Aw~0!50. ~34!

With the gauge choice~32!, the symmetry condition forpa
X

reads

~L jp
X!a50, ~35!

whereja can be any linear combination of the three symm
try generators. The well-known Cartan formula for the L
derivative of ap-form wabg . . . , namely

~Lj w!abg . . . 5~p11! jl¹ [lwabg . . . ]1p ¹ [a~jlwlbg . . . ]!,
~36!

can be applied to the 1-formpa
X in Eq. ~35!, and so we obtain

the explicit symmetry condition

2jb ¹ [bpa]
X 1¹a~jbpb

X!50. ~37!

For superfluids~in the superfluid domain!, the first term van-
ishes because of the irrotationality property~18!, and so the
second term provides us with three independent integral
motion, corresponding to the three symmetry generat
namely

2EY[kapa
Y , LY[ l apa

Y , MY[mapa
Y , ~38!

interpretable respectively as theenergy, ~canonical! longitu-
dinal momentum, and ~canonical! angular momentumper
particle. WhileEY and LY are generally subject to the re
sidual gauge freedom~33! of an additive constant~except in
the uncharged caseseY50), the axial constantMY is not,
because there is no gauge freedom forAw . In order to cal-
culate the winding numbersNY of the vortex by Eq.~19!, we
have to choose a pathG enclosing the vortex axis. Such
path can always be continuously deformed into a path g
erated byma alone, and so by Eq.~38! the integration simply
yields

NY5
MY

\
. ~39!

Therefore the constant~canonical! angular momentum pe
particle, MY, is an integer multiple of\, the fundamental
quantum of angular momentum, and the corresponding
gular momentum ‘‘quantum number’’ is just the windin
number NY. The superfluid canonical momentapY5mY

1eYA are thereby completely determined~in the superfluid
domain! by the integrals of motion~38! @modulo the gauge
freedom~33!#, namely
5-5
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REINHARD PRIX PHYSICAL REVIEW D 62 103005
pa
Y5$2EY,LY,\NY,0%, with NYPZ, ~40!

where the vanishing of the radial componentp r
Y follows

from the helical direction~31! of the currentsnX
a , and the

entrainment relation~4! together with Eq.~11! and the gauge
choice~32!.

In a more realistic treatment, the normal fluids are e
pected to have some amount of viscosity, in which case
condition of stationarity, which excludes all dissipative m
tion, restricts all the normal currents to be comoving with t
same uniform rotationV, i.e.

nA
a5nA

t va, with va[ka1Vma5$1,0,V,0%. ~41!

We could also have allowed for a constant longitudinal
locity along l a, but this is trivially annihilated by a Lorentz
boost, and so we have chosen our reference frame at
with respect to the longitudinal motion of the normal fluid
The symmetry condition~35! along the flow lines of the
normal fluids, i.e. withja5va, together with the equation o
motion ~14! yields one integral of motion for each norm
fluid, namely

2ĒA5vapa
A . ~42!

With the given restrictions on the currents~31! and~41!, the
integrals of motionEY, LY, NY, ĒA andV are sufficient for
the equations of motion~14! to be satisfied. But in order to
actually integrate these differential equations, one is still
with the generally nontrivial problem of solving equatio
for the spacetime metricgab , together with Maxwell’s equa-
tion ~12! for the gauge fieldAa . However, for most vortex
applications of practical interest~including those in neutron
stars!, the gravitational self-interaction of the vortex can
completely neglected, so the background metric can in
case be considered as given in advance. Furthermore, a
radial dimensions of vortices are generally much sma
than the lengthscale of gravitational curvature, the lo
spacetime metric of the vortex can safely be considered
flat, and so in cylindrical coordinates we can write it as

ds2[gab dxa dxb52dt21dz21r 2 dw21dr2. ~43!

The remaining differential equation to be solved is Eq.~12!
for the electromagnetic gauge fieldAa . The necessary coef
ficients of the metric connection can easily be calculated
the flat metric~43!, and we find the explicit Maxwell equa
tions for the gauge fieldAa in the form

~rAt8!854pr j t, 2~rAz8!854pr j z, ~44!

2S Aw8

r D 8
54pr j w, ~45!

where the prime denotes differentiation with respect tor.
Equations~44! describe a radial electric fieldAt8 created by
the charge distributionj t, and an axial magnetic fieldAz8
around a longitudinal currentj z. These equations will resul
in exponentially ‘‘screened’’ solutions, typical of charge
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superfluids. As we saw in Sec. III, the vortex is characteriz
by nonvanishing winding numbersNY, which by Eqs.~11!
and ~4! are seen to be directly related to the axial comp
nents j w and will result in a screened longitudinal magne
field Bz , which is conventionally defined as

Bz[
Aw8

r
. ~46!

VI. REFERENCE STATE AND VORTEX PROPERTIES

A. Reference state

In the previous section we have completely specified
fluid configuration containing a vortex, but in order to sep
rate the quantities attributed to the vortex from the flu
‘‘background,’’ we first have to specify this referenc
‘‘background’’ state, which will be denoted by the subscri
*. For any quantityQ, the partd*Q attributed to the vortex
is defined as the difference with respect to the correspond
reference valueQ* , i.e.

d*Q[Q2Q* . ~47!

The reference state should respect at least the same sym
tries as the vortex state, and can therefore, by the reaso
in Sec. V, be characterized completely by constantsE*

Y ,

L*
Y , N*

Y , Ē*
A andV* . Furthermore, we naturally want th

the reference background to be ‘‘vortex free,’’ which mea
that the topological constants characterizing a vortex hav
vanish, i.e.N*

Y 50. Another natural prescription is that th
uniform rotation of the normal fluids should be the same
the reference state as in the vortex state, i.e.V*5V. How-
ever, there is no such ‘‘natural’’ choice for the remainin
constantsE*

Y , L*
Y andĒ*

A , if one allows for compressibility
of the fluids. The compressibility is described by the fact th
the entrainment matrix~5! is in general a function of the
momentum scalars, i.e.KXY5KXY(ma

VmWa), and therefore,
if ( ma

VmWa)*Þma
VmWa, this generally entails thatKXY

ÞKXY
* . Now, if we consider for example thet component of

the relation~4! between currents and momenta, and if f
illustration we suppose for a moment that there are no n
mal fluids, thennY

t 5KYCmCt, andnY*
t 5KYC

* m*
Ct . Choos-

ing for example the straightforward reference constantsE*
Y

5EY and L*
Y 5LY leads to changed particle densitiesnY*

t

ÞnY
t and, especially, changedmeanparticle number densi-

ties ~in the region of integration with the upper cutoff radiu
r `), i.e. nY*

t ÞnY
t . We see that with this choice of referenc

constants, we compare a vortex state with a reference s
that does not have the same number of particles in the re
of integration. Another physically interesting choice of re
erence state would therefore rather consist in readjusting
reference constantsE*

Y in such a way as to obtain the sam
meanparticle number densities~and therefore total numbe
of particles in the region of integration! in the reference state
These different choices have been analyzed and properly
5-6
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counted for in@14# for the case of a vortex in an uncharge
superfluid, and are found to be inequivalent to each ot
even in the limitr `→`.

Because of the additional complications of multiple e
trainment and charged fluids in the present analysis, we
postpone this problem of compressibility effects to futu
work, and restrict our attention here to the simpler case
‘‘stiff’’ equation of state that is characterized by a consta
entrainment matrix, i.e.

]KXY

]~ma
VmWa!

50 ⇒ KXY
* 5KXY . ~48!

In this ‘‘stiff’’ case, the most natural reference state is u
ambiguously characterized just by choosing the longitud
superfluid momentum componentsE*

Y , L*
Y to be the same a

in the vortex state, i.e.

pa
Y*[$2EY,LY,0,0%, ~49!

while the constantsĒA can be fixed by taking the norma
particle densities to be unchanged with respect to the vo
state, i.e.

nA*
a [nA

t va, where va5$1,0,V,0%. ~50!

Because of the assumption of a stiff equation of state~48!, all
longitudinal current componentsnX

t and nX
z remain un-

changed in the reference state. Furthermore, we will ass
the electric current to vanish in the reference state, i.e.

j *
a 50, ~51!

which implies that the longitudinal electric current also va
ishes in the vortex state,

j t5 j *
t 50 and j z5 j *

z 50, ~52!

and so we also have, from Eqs.~44! ~in an appropriate
gauge!,

At5At
*50 and Az5Az

*50. ~53!

The reference state is now completely fixed by the proper
~49!, ~50! and ~51!. The vortex modifies only thew compo-
nents of currents and momenta, so it will be convenien
introduce for covectorsQa the short notationQ̃[d*Qw for
the part of theQw that is due to the vortex, andQ*[Qw

*

for the part that is still present in the reference state, e.g

mw
Y5m̃Y1m*

Y and Aw5Ã1A* . ~54!

From Eqs.~40! and ~49! it is easy to see that

m̃Y5\NY2eYÃ and m*
Y 52eYA* . ~55!

B. London field

Contrary to the longitudinal componentsAt
* andAz

* , the
axial gauge fieldA* in the reference state will not be trivia
10300
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due to the uniform rotation of the charged normal fluids. T
Maxwell equation~45! for thew component in the referenc
state, i.e. (A*8 /r )850, allows for a uniform magnetic field
B* in the z direction @defined as in Eq.~46!#, namely by
integration, and using Eq.~34! one gets

B*[
A*8

r
5

2

r 2 A*5const, ~56!

whereB* is in fact the well-known uniform London field o
rotating superconductors. An explicit expression for the Lo
don gauge fieldA* can be obtained simply from the refe
ence propertyj *

w 5eXnX*
w 50, together with the ‘‘mongrel’’

entrainment expression~22! and relation~55!, which yields

A*5r 2 ~eCeC!21~eA1eYMY
A !nA

w , ~57!

and after using Eq.~41! to write nA
w5V nA

t , we get the Lon-
don fieldB* as

B*52V ~eCeC!21~eA1eYMY
A !nA

t . ~58!

The London fieldB* is seen to be proportional to the un
form rotation V of the normal fluids. If we now use the
additional property of the vanishing charge density~51! in
the reference state, i.e.j *

t 50, then we can finally obtain the
very simple expression for the London field,

B*522V
eYSYCEC

eLSLQeQ
522V

eYEY

eCeC
, ~59!

where we have used the notation of lowering and rais
constituent indices via the matrixS introduced in Sec. IV. If
we consider in particular the case of a single charged su
fluid with mass per particlem and charge per particlee, this
expression in the Newtonian limit, whereEY→m, reduces to
the well known expressionB*522Vm/e. The question of
whetherm in this formula should represent the bare mass
some ‘‘effective’’ mass per particle will be discussed brie
in the concluding Sec. VIII.

C. Magnetic field of the vortex

The reference state properties~49! and~50! further allow
us to rewrite the axial currentj w in the form j w5eY(nY

w

2nY*
w ), and with Eq.~22! we obtain the compact form

j w5
1

r 2 eY SYC m̃C5
1

r 2 eY m̃Y. ~60!

Inserting this into the corresponding Maxwell equation~45!
gives

eY SYC m̃C52
r

4p
B̃8, ~61!

which can be written more explicitly as a differential equ
tion for Ã, containing the winding numbersNY as param-
eters, namely
5-7
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~eCeC!Ã5\ ~eCNC!1
r

4p
B̃8, ~62!

where the longitudinal magnetic field of the vortex,B̃

5d*Bz , is defined following Eq.~46! as B̃(r )[Ã8(r )/r .
This second order differential equation forÃ ~or B̃) is of the
modified Bessel type, and the asymptotic behavior of
solutions in the limitr→` can be derived directly from this
equation, namely~where ‘‘; ’’ means asymptotically propor
tional!

B̃;B̃8;e2r / l ,

lim
r→`

Ã5\
eCNC

eYeY

, ~63!

where l is the so-called London penetration depth, which
given by the expression

l 22[4p eCeC . ~64!

In the Newtonian limit of a single superfluid with charge p
particlee, mass per particlem and a particle number densit
n, the matrixS reduces ton/m, and Eq.~64! reduces to the
standard expressionl 2254pe2n/m.

The total electromagnetic flux of the vortex,F
[rÃadxa, for a circuit at sufficiently large radial distanc
is easily seen from Eqs.~63! to be given as

F52p\
eCNC

eYeY

, ~65!

which again reduces to the standard expressionF
5N(2p\/e) in the Newtonian limit of a single charged su
perfluid with charge per particlee. The explicit solution of
Eq. ~62! is expressible in terms of the~modified! Bessel
functionsK0 andK1; namely,

B̃~r !5C0 K0~r / l !,

Ã~r !5
F

2p
2C0 rl K 1~r / l !. ~66!

This solution is only valid in the ‘‘common superfluid do
main,’’ i.e. in ùYS Y, where all the constant winding num
bersNY are defined. From the divergence ofB̃(r ) on the axis
it is evident that the common superfluid domain must hav
finite separation,j say, from the axis, which can be used
define what is usually called the ‘‘vortex core,’’ withj being
the ‘‘core radius.’’ The constant of integrationC0 is to be
determined from the matching of Eq.~66! with the ‘‘inner’’
vortex solution, i.e. forr<j. By integrating Eq.~66! for r
>j, we get the vortex flux outside the core, i.e.F2Fcore,
and soC0 can be expressed in terms of the quantitiesj and
the core magnetic fluxFcore, namely
10300
e

s

a

C05
F2Fcore

2p l 2x0K1~x0!
, ~67!

wherex0 is the rescaled core radius,x0[j/ l , which corre-
sponds to the inverse of the Ginzburg-Landau parametek
[ l /j of the Ginzburg-Landau model. The limit of an ex
treme type-II superconductor is characterized byk→`, i.e.
x0→0, x0K1(x0)→1, so the core structure becomes neg
gible, Fcore!F, and we get

C0.
F

2p l 2 54p\ eCNC, for l @j. ~68!

VII. VORTEX ENERGY

In this section we will consider the ‘‘macroscopic’’ prop
erties of the vortex, namely its total energy per unit leng
and the tension of the vortex line. These quantities are
tained by integrating the local stress-energy tensor of
vortex,d*Ta

b , over the spatial section$r ,w% orthogonal to
the ~‘‘longitudinal’’ ! vortex symmetry axes, whose coord
nates are the subset$xi%5$t,z%, for $ i %5$0,1%. The local
stress-energy coefficients of the vortex are seen from
~16! to have the form

d*Ta
b5d*~nX

amb
X!1

1

4p
d*~FalFbl!

1Fd*P2
1

16p
d*~FrlFrl!Gga

b . ~69!

The ‘‘sectional’’ $r ,w% integral is only meaningful for quan
tities that are scalars with respect to the sectional coordin
r and w, and so we have to consider only the ‘‘longitud
nally’’ projected tensord*Ti

j . Another ‘‘sectional’’ scalar
of the stress-energy tensor is the trace of the orthogon
projected components, which defines the local lateral p
sureP of the vortex,

2P[d*~Ta
a2Ti

i !. ~70!

In the case of a ‘‘stiff’’ equation of state~48!, the Taylor
expansion ofP(ma

XmYa) around the reference state valu
P*[P„(ma

XmYa)*… has only two terms@using Eq. ~5!#:
namely,

P~ma
XmYa!5P*2

1

2
KXYd*~ma

XmYa!. ~71!

The mongrel representation~Sec. IV! is particularly conve-
nient to evaluate contributions of this type, because by
reference property~50! we haved*(nAVABnB)50, and so
we find, using Eqs.~4! and ~25!,

KXYd*~mXmY!5d*~nXmX!5SYCd*~mYmC!. ~72!

The relevant contributions~69! of d*Ta
b are now straight-

forward to evaluate, and are found to be given by
5-8
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d*~nX
i m j

X!50, d*~FilF j l!50, ~73!

d*~FabFab!52B̃214B̃B* , ~74!

d*Ta
a52d*~nX

ama
X!52d*P, ~75!

d*P52
1

2r 2SYC ~m̃Y m̃C12m̃Y m*
C!. ~76!

Putting these results into the expression for the vortex str
energy tensor, Eq.~69!, we find that the longitudinally pro-
jected tensord*Ti

j is proportional to the unit tensor, i.e.

d*Ti
j52T̃gi

j , ~77!

with

T̃5
1

16p
d*~FabFab!2d*P, ~78!

and so the vortex energy density,d*T00, is equal to the
~local! longitudinal tension of the vortex,2d*Tzz, a prop-
erty that is characteristic of the stiff equation of state~48!.
The vortex energy per unit lengthU is defined as the sec
tional integral

U[22pE
0

r `
dr r d*T0

052pE
0

r `
dr r T̃. ~79!

The energy densityT̃ can be decomposed into two parts,

T̃5T̃vort1T̃rot , ~80!

whereT̃vort is the part that is independent of the rotationV of
the normal fluids,

T̃vort5
1

2r 2m̃Cm̃C1
1

8p
B̃2, ~81!

while T̃rot is proportional toV @via B* ; see Eq.~59!#,

T̃rot5B*S 1

4p
B̃2

1

2
eCm̃CD , ~82!

and the lateral pressureP, defined in Eq.~70!, is found to be
given by

P5
1

8p
@B̃212B̃B*#. ~83!

Expression~81! for T̃vort can be transformed using Max
well’s equation~61! into the ‘‘nearly integrated’’ form

T̃vort5
\2

2r 2FNCNC2
~eYNY!2

eCeC
G2

eYNY

eCeC

\

8pr
B̃8

1
1

8pr
~ÃB̃!8. ~84!
10300
s-

The easiest way to see this is to first expand only onem̃Y in
Eq. ~81! using Eq.~55! and apply Eq.~61!, then expand the
remainingm̃C and use the second form of Maxwell’s equ
tion ~62! for Ã. In order to regroup the derivatives, one al
has to expand oneB̃ as Ã8/r in the last term of Eq.~81!. In
a similar way,T̃rot can be reduced to

T̃rot5
B*

8pr
~r 2B̃!8. ~85!

As anticipated from the divergence of the magnetic field~66!
on the vortex axis, we encounter the same problem in
energy density~84!. This well-known fact is due to the con
stant superfluid~canonical! angular momentum per particle
pw

Y5\NY, in the superfluid domainS Y. Therefore each su
perfluid with a nonvanishing winding numberNYÞ0, must
have some finite ‘‘core’’ region separating the respective
perfluid domainS Y from the vortex axis. The actual size o
the respective core region is determined by a trade-off
tween the loss of condensation energy associated with
core region and the diverging energy density~84! in the su-
perfluid domain. The detailed description of this superflu
normal transition would ask for either a microscopic theo
or, at least, some phenomenological, e.g. Ginzburg-Land
type, description of the involved superfluids. However, su
detailed descriptions turn out to be unnecessary for
present purpose, as we can proceed on the basis of a
general hydrodynamic description of the vortex core, ba
only on the necessary ‘‘minimal assumptions’’ needed
avoid the energy divergence. Namely, as the superfluid c
straint ~17! no longer applies in the respective ‘‘core’’ re
gions, the~canonical! angular momentumpw

Y there is not
quantized, and is allowed to depend on the radial variablr.
The winding numberNY is strictly speaking not defined in
the core region, but we can keep the same symbol as a s
hand notation forpw

Y/\, so we cast our general description
the core region in the simple form

NY~r !5H NYPZ for r .j,

N Y~r ! for r<j,
~86!

where N Y(r ) is a continuous, monotonic function, whic
has to ensure the vortex energy densityT̃ to remain finite on
the vortex axis, i.e. in the limitr→0. Note that the ‘‘core
radius’’ j is defined, as in Sec. V, as the radial distance
the ‘‘common superfluid domain’’ùYS Y for the vortex
axis, and is therefore the maximum core radius of the in
vidual superfluids. This obviously does not restrict the ge
erality of the core description~86!, as theN Y(r ) are allowed
to remain constant until some smaller radiusjY,j. In order
to have a regular behavior of the energy densityT̃ near the
axis, it is sufficient to demand thatN(r ) andÃ(r ) vanish on
the vortex axisat leastas

N~r !;r and Ã;r 2 for r→0, ~87!
5-9
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where by ‘‘; ’’ we mean ‘‘asymptotically proportional’’
~and not necessarily equal!. This phenomenological descrip
tion is based on only two parameters, the ‘‘core radius’j
and the core condensation energy per unit lengthUcon.
These two phenomenological parameters would have to
determined either from experiment or from a microsco
theory, but the model is now sufficiently determined to allo
the integration of the vortex energy, without the need
further assumptions concerning the underlying physical p
cesses of superfluidity.

The total vortex energy per unit length is

U5Ucon1Uvort1U rot , ~88!

where according to Eqs.~79! and ~80! we have defined

Uvort[2pE
0

r `
dr r T̃vort ,

U rot[2pE
0

r `
dr r T̃ rot . ~89!

The energy contributionU rot , which is proportional to the
rotationV of the normal fluids, is found from Eq.~85! to be

U rot5
B*

4
~r 2B̃!u0

r `50, ~90!

where the vanishing of the integral follows from th
asymptotic properties~63! and ~87! of the magnetic fieldB̃.
In the Newtonian description of a rotating superconduc
the vortex energy was already found@9# to be unchanged by
the rotating charged background, and this lemma is seen
to still hold under quite general conditions:

Rotation energy cancellation lemma:The ‘‘~electro!-
hydrodynamic’’ energy per unit length~i.e. excluding the
core condensation energyUcon) of a cylindrically symmetric
and stationary vortex in a ‘‘stiff’’ mixture of interacting su
perfluids, superconductors and normal fluids~48! is indepen-
dent of the uniform rotation rateV of the normal fluids,
despite the fact that the radial distribution of the hydrod
namic energy density is modified byV, as seen in Eq.~85!.

The vortex energy contributionUvort in Eqs.~89! is found
by integrating Eq.~84!, which yields

Uvort5p\2FNCNC2
~eYNY!2

eCeC G ln
r `

z
1

FB̃~h!

8p
,

with 0,z, h<j, ~91!

where we used the asymptotic properties~63!, ~87!, and the
~first! mean value theorem of integration with the interme
ate valuesz and h, after a partial integration in the cor
region. We recognize two qualitatively different energy co
tributions: the first one from a ‘‘global’’ vortex, diverging
logarithmically with the upper cutoff radiusr ` , which is
characteristic for vortices in uncharged superfluids, and
second one from a ‘‘local’’ vortex, whose energy contrib
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tion has the standard ‘‘axis field’’ formFB(0)/8p, which is
typical for vortices in charged superfluids.

Using the decomposition into charged and uncharged
perfluid subspaces via the charge projection tensors defi
in Eqs.~28!, we can rewrite the first term in brackets in th
form

FNCNC2
~eYNY!2

~eCeC!
G5N'

YNY
' . ~92!

Concerning the second term in Eq.~91!, if the magnetic field
B̃(r ) is slowly varying inside the vortex core, then we ca
approximately replaceB̃(h)'B̃(j), and use the explicit ex-
pression~66! with Eqs.~67! and ~65! to write

B̃~j!54p\ ~eCNi
C!S 12

Fcore

F D K0~x0!

x0K1~x0!
, ~93!

wherex0[j/ l . In the extreme type-II limit, where the cor
structure becomes negligible, i.e. in the limitk51/x0@1,
where Fcore!F, K0(j/ l )' ln( l /j), and x0K1(x0)'1, Eq.
~91! with Eq. ~93! finally gives the simple expression for th
vortex energy:

Uvort5p\2 SYC F ~N'
YN'

C! ln
r `

j
1~Ni

YNi
C! ln

l

jG . ~94!

This ‘‘quasi-separated’’ form clearly shows the respect
contributions from a global vortex and a local vortex, but
mentioned above, even for vortices which have nonvanish
winding numbers only in either charged or uncharged c
stituents, there will generally be contributions fromboth
terms, due to the entrainment matrixS involved in the pro-
jections.

VIII. DISCUSSION OF SOME APPLICATIONS

In order to illustrate the foregoing general results, we w
in this section discuss some applications to well-known st
dard examples of ‘‘realistic’’ superfluid systems, ordered
increasing complexity.

A. Single uncharged superfluid

Probably the simplest case are single, uncharged~isotro-
pic! superfluids like4He. We note that vortices in3He show
a much richer structure than in4He ~e.g. see@12#!, due to the
anisotropic type of the microscopic Cooper pairing resp
sible for the superfluidity of3He. But the present approac
should still be a good approximation at least for the3He-B
superfluid@15#, because sufficiently far from the vortex co
the additional~anisotropic! degrees of freedom of the orde
parameter are ‘‘frozen’’ and the dynamics is again main
governed by the phasewY.

~a! At T50. In the case of a single superfluid at ze
temperature, the ‘‘entrainment matrix’’KXY of Eq. ~4! re-
duces toK5n0/m0, wherena is the particle current andma
the momentum per particle of the superfluid. There are
normal fluids, soS of Eq. ~24! is given trivially byS5K. The
5-10
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charge vector vanishes,eY50, and the charge projectio
tensors are trivial, soN'

Y5N andNi
Y50. The vortex energy

~91! then simply reduces to

Uvort5N2p\2
n0

m0 ln
r `

z
, ~95!

which is the same expression as found in@8# for the single
superfluid. In the nonrelativistic limit, wherem0→m and
n0→n ~wherem is the rest mass of the superfluid particle
andn their number density!, we recover the usual expressio
for the ~hydrodynamic! superfluid vortex energy in the zer
temperature limit~e.g. see@16#!.

~b! At TÞ0. In the case of a finite temperature, the s
tem can be described as an effective superfluid–normal-fl
mixture, where the normal fluid consists of the viscous ga
excitations in the superfluid. The superfluid and normal p
ticle currents arenS and nN , and their respective moment
per particlemS andmN, say. There are no charged fluids,
Ni

S50 andN'
S5N. The entrainment matrix~5! reads

KYC5S KSS KSN

KNS KNN
D , ~96!

and is decomposed in the mongrel representation of Sec
asV51/KNN , andS5KSS2KSN

2 /KNN , so the vortex energy
would simply be given by inserting this expression forS into
Eq. ~91!. However, in order to compare this result to t
usual expression for the vortex energy in superfluids aT
Þ0, we have to link the present entrainment formalism
the more common language of Landau’s two-fluid mo
@13# that is expressed in terms of a ‘‘superfluid density’’rS
and a ‘‘normal density’’rN . This ‘‘translation’’ has been
achieved in a rigorous and extensive manner by Carter
Khalatnikov @17#, but for the present purpose of an illustr
tive example, the following very simple argument shou
show in a sufficiently convincing way how to translate b
tween the respective quantities. Namely, consider the t
~spatial! momentum densityT0i ~with i 51,2,3) of the fluid
mixture, for which from Eq.~16! we havepi[T0i5nS

0mSi

1nN
0mNi . Using the mongrel relations~23! and~22!, this can

be rewritten aspi5(mS0S) mSi1(nN
0V) nN

i . Now we intro-
duce the normal velocityvN

i [nN
i /nN

0 , which is the real mean
velocity of the excitations, and the superfluid ‘‘pseud
velocity’’ ṽS

i [mSi /mS0, which is not a ‘‘real’’ velocity in the
sense of a particle transport. In the nonrelativistic lim
wheremS0 tends to the constant rest mass of the superfl
particles,mS0→mS, the irrotationality property of superflu

ids ~18! implies ¹ [ i ṽs
j ]'0, in other words ‘‘rotṽW s50.’’ In

these variables the total momentum density now reads

pi5@~m0
S!2 S#ṽS

i 1@~nN
0 !2 V#vN

i . ~97!

Comparing this to the orthodox expression

pi5rSṽS
i 1rNvN

i , ~98!

we can identify
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rS5~m0
S!2 S and rN5~nN

0 !2 V. ~99!

This is consistent with the additivity postulater5rS1rN ;
namely, using Eq.~25! we obtain the expressionr5nS

0mS0

1nN
0mN0, which effectively reduces to the total mass dens

in the Newtonian limit. In the present case we havemS0

→mS for the superfluid, whilemN0→0, as the normal fluid is
identified with the gas of excitations, so the total mass d
sity reduces tor→nSmS.

In the nonrelativistic limit, expression~99! yields S
5rS/mS

2 , and so Eq.~91! for the vortex energy can explic
itly be written as

Uvort5p\2N2
rS

mS
2

ln
r `

z
, ~100!

in agreement with the well-known result in Landau’s tw
fluid model ~e.g. see@16#!.

B. Two uncharged superfluids

In the next step, let us consider a vortex in a mixture
two uncharged superfluids, as first considered by Andr
and Bashkin@2# for a mixture of 3He and 4He. Again, atT
50 there are no normal fluids, so we have

SYC5KYC5S K33 K34

K43 K44
D . ~101!

The charge vector vanishes,eC50, and soNi
Y50 andN'

Y

5$ N3, N4 %. The expression~91! for the vortex energy in
this case explicitly reads

Uvort5p\2@~N3!2K331~N4!2K4412N3N4K34# ln
r `

z
.

~102!

We see that there is a purely hydrodynamic interaction
ergy due to entrainment~i.e. not related to the condensatio
energy in the core! from the last term in brackets, which i
either attractive or repulsive depending on the sign of
entrainment coefficientK34.

C. Conventional superconductors

When we consider cases with charged superfluids,
simplest example is already a two constituent system,
cause a second charged component is necessary to allo
global charge neutrality. This picture applies for example
conventional laboratory superconductors, where the char
superfluid~chargee2 and particle densityn2) consists of
Cooper paired conduction electrons, while the second c
ponent is the ‘‘normal’’ background of positively charge
ions ~chargee1 and particle densityn1). In the maximally
symmetric and stationary situations considered in the pre
work, ‘‘normal’’ components are naturally restricted to un
form rotation ~41!, and therefore it makes no differenc
whether the normal component is actually a real ‘‘fluid’’ or
solid lattice like in the present example.
5-11
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Because of the Cooper pairing mechanism, the fundam
tal superfluid charge carriers have to be considered as e
tron pairs, and therefore the charge per superfluid part
e2, should be twice the electron charge, i.e.e2522e, and
consequently the rest mass ism252me, whereme is the
electron rest mass. The entrainment matrixKXY , defined in
Eq. ~5! can be written as

KXY5S K22 K21

K12 K11
D , ~103!

and the transformation into the mongrel representation
Sec. IV yieldsS5K222(K21)2/K11 andV51/K11 . The
charge vector is justeY5e2, and soN'

Y50 andNi
Y5N.

The London field.In the simple case of a vortex-free stat
i.e. with N50, there is nevertheless a nonvanishing unifo
London fieldB* if the superconductor is rotating~rotation
rate V). Equation ~59! for the London field immediately
yields for this simple caseB*522V(E/e2), whereE is the
energy per superfluid particle, i.e.E52m0

2 . If we choose a
reference frame withL[mz

250, i.e. comoving with the su-
perconductor in thez direction, thenE can be identified with
the ~relativistic! chemical potentialm2[(2ma

2m2
a )1/2. In

the Newtonian limit, wherem2'm2, the conventional New-
tonian chemical potentialmchem

2 is related to the relativistic
chemical potentialm2 as

m25m2S 11
mchem

2

m2
1O~e2!D , ~104!

wheree[mchem
2 /m2!1. The London field for a rotating su

perconductor can therefore be written in the form

B*522V
m2

e2 S 11
mchem

2

m2
1O~e2!D . ~105!

It is well known that that the ‘‘entrainment’’ formalism fo
interacting constituents can equivalently be expressed in
more conventional~albeit sometimes less convenient! lan-
guage of ‘‘effective masses’’@2#. We see that in the case o
two-constituent superconductors, the effect of entrainm
~i.e. effective masses! cancels out in the expression~105! for
the London field, which therefore depends quite naturally
the ‘‘bare’’ electron rest mass to charge ratiom2/e2, includ-
ing a ‘‘relativistic’’ correction due to the finite chemical po
tential mchem

2 of the electrons. We note that this cancellati
only occurs for systems with a single superfluid constitue
whereS is consequently a scalar and cancels out in Eq.~59!.
As soon as there is a second~interacting! superfluid constitu-
ent involved, as in the following example of neutron s
matter, the London fielddoesdepend on the effective mass
of the constituents. We further note that the present covar
treatment is intrinsically frame independent, and contrary
the analysis of@18#, we find thatB* doesnot depend on the
chemical potentialm1 of the ‘‘normal’’ component of posi-
tively charged ions.

A very crude estimate of the relativistic correction ter
mchem

2 /m2 for a Nb superconductor atT50, taking mchem
2
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simply to be the Fermi energy of a free electron gas, yield
~positive! correction of the order 1024. This is in qualitative
and nearly quantitative agreement with precision meas
ments performed on a rotating Nb superconductor@19#. But
in order to effectively compare expression~105! with experi-
mental results, a more careful estimation ofmchem

2 would be
necessary.

Vortices.Now let us consider a vortex configuration, i.
with NÞ0. We see that a similar cancellation of the entra
ment effect as for the London field~105! arises for the total
flux of the vortex, which is seen by Eq.~65! to give the usual

F5NF0 , with F0[
2p\

e2 , ~106!

while the London penetration depth~64! is modified by en-
trainment, namelyl 2254p(e2)2S. To write this more ex-
plicitly, we note thatS can be written in the absence o
entrainment asS(0)5n2 /m2 and furtherS(0)5(n2 /m2)(1
2d rel), whered rel[mchem

2 /m2 is the same relativistic correc
tion factor encountered in the expression for the London fi
Eq. ~105!. A nonvanishing entrainment interaction betwe
the constituents will add an additional correction termdentr
proportional to the matrix elementK12 , so thatS can be
written asS5(n2 /m2)(11dentr2d rel), and so the London
penetration depth reads

l 2254p~e2!2
n2

m2~11dentr2d rel!. ~107!

The vortex energy is given by the ‘‘magnetic’’ term in Eq
~91! alone, due toNi5N andN'50, so we recover the usua
‘‘axis-field’’ expression

Uvort'
FB̃~0!

8p
, ~108!

which is seen in the more explicit form~94! ~for the type-II
limit, for simplicity! to depend on the effect of entrainmen
namely

Uvort5N2p\2
n2

m2 ~11dentr2d rel!ln
l

j
, ~109!

but as the total vortex energyU5Uvort1Ucon also depends
on the largely unknown condensation energy of the core,
relativistic and entrainment corrections in this express
seem unlikely to be of observable interest.

D. Neutron star matter „outer core…

In this last example we consider the case of a~cold! de-
generate plasma consisting of neutrons, protons and e
trons inb equilibrium, as relevant for the outer core of ne
tron stars~i.e. at densities* nuclear density!. In this case
one usually assumes that there is an important entrainm
between neutrons and protons due to their strong inte
tions, while the entrainment with electrons is generally su
posed to be negligible. We will follow this assumption an
denote the entrainment matrix as
5-12
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KXY5S Knn Knp 0

Kpn Kpp 0

0 0 Kee

D . ~110!

The calculations of the superfluid gaps for this neutron s
matter generally suggest~see for example@20#! that the pro-
tons will be superconducting and the neutrons superfl
while the electrons remain ‘‘normal,’’ so this system wou
represent a superconducting-superfluid-normal mixture.
matrices of the mongrel representation of Sec. IV for t
system readM50, V51/Kee and

SYC5S Knn Knp

Kpn Kpp
D , ~111!

and we define an ‘‘entrainment coefficient’’a[Knp/Kpp.
For this system the charge vectors and projections are
trivial, namely

eC5S 0

qD , eC5qKpp~a, 1!, ~112!

hC
Y 5S 0 0

a 1D , gC
Y 5S 1 0

2a 0D ,

~113!

whereq is the charge of a proton Cooper pair, i.e.q52ueu,
and we further have

Ni
Y5~Np1aNn!S 0

1D , ~114!

N'
Y5NnS 1

2a D . ~115!

The London penetration depth~64! is

l 2254pq2Kpp, ~116!

and the vortex flux~65! is found as
10300
r

d,

e
s

n-

F5~Np1aNn!F0 , with F05
2p\

q
, ~117!

in agreement with earlier results in the literature@5,3,6#. The
vortex energy in the type-II limit~94! reads

Uvort5p\2~Nn!2F ~Knn2a2Kpp!ln
r `

j
1a2Kppln

l

jG
1p\2~Np!2Kppln

l

j
12p\2NnNpKnpln

l

j
. ~118!

Similar to the case of a mixture of two uncharged super
ids, we see that the total vortex energy consists of a p
n-vortex term and a pure p-vortex term~each of which is
modified by the entrainment!, while the last term represent
an attractive or repulsive~depending on the sign ofKnp)
interaction term with respect to infinite separation. It h
been suggested@21# that the effect of entrainment betwee
neutrons and protons could energetically favor a ‘‘vort
cluster’’ structure~i.e. a neutron vortex surrounded by
dense lattice of proton vortices! with respect to a single neu
tron vortex. This question can strictly speaking not be a
dressed in the present framework of perfectly axially sy
metric configurations, and will be subject of futur
investigation, but the energy of a single n vortex (Np50,
NnÞ0) is seen from expression~118! to be of the same orde
of magnitude if not smaller than in the absence of entra
ment (a→0), i.e. Uvort

(0) 5p\2(Nn)2Knn
(0)ln(r` /j). Any con-

figuration containing more vortices is therefore rather e
pected to have a higher energy, but the possibly attrac
interaction term in Eq.~118! could lead to an effective
‘‘clustering’’ of already present vortices, namely an n vort
that ‘‘accretes’’ p vortices until saturation.
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