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Covariant vortex in superconducting-superfluid-normal fluid mixtures with a stiff equation of state
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Using a covariant description, we obtain the integrals of motion for a cylindrically symmetric, stationary
vortex configuration in a mixture of interacting superconductors, superfluids and normal fluids. We then
integrate the stress-energy density and find a very simple, closed expression for the energy per unit length and
the relevant stress coefficients of the vortex with respect to a vortex-free reference state. This result is found
assuming a “stiff” equation of state for the fluid mixture, which is the least compressible but still causal
equation of statécontrary to theincompressible cageAs an illustration for these general results, we discuss
some applications to “real” superfluid-superconducting systems that are contained as special cases. These
include the two-fluid model for He-Il, uncharged binary superfluid mixtures, conventional superconductors and
the superfluid neutron-proton-electron plasma in the outer core of neutron stars.

PACS numbeis): 97.60.Jd, 47.3%q, 47.75+f, 74.60~w

[. INTRODUCTION work. Finally, we mention the previously found resi# for

The subject of investigation in the present work is thea Newtonian vortex in a rotating superconductor, that the
structure and energy of a stationary and cylindrically sym-(hydrodynamig¢ vortex energy is strictly independent of the
metric quantized vortex in an interacting multi-fluid mixture, rotating “normal fluid” of positively charged ions, a result
which may consist of charged and uncharged superfluids antthat will be found here to hold under much more general
of normal fluids. This analysis has initially been motivated conditions.
by the superfluid mixture commonly found in neutron star In the present work we will consider only stationary situ-
models, namely in the outer core region, where superfluidtions, which has two major advantages. First, it restricts the
neutrons, superconducting protons and normal electrons ar®rmal fluids to be in a state oigid motion and, moreover,
generally thought to coexist. However, because of the gernin the samestate of rigid motion, because normal fluids al-
erality of the present approach, it is equally well applicableways possess some nonvanishing amount of viscosity and
to superfluid and superconducting systems found in morenutual friction. This even allows one to describe a solid
common laboratory contexts, some of which will be dis-component in the present framework as a “normal fluid,”
cussed briefly in the concluding Sec. VIII. because in the rigid state of motion the anisotropic effects of

The study of superfluid mixtures has a long history, be-viscosity and elasticity become irrelevant. So we can for ex-
ginning with the pioneering work of Khalatnikd\i], later ~ ample conveniently describe a conventional laboratory su-
followed by the analysis of Andreev and BashkRl, who  perconductor as a superconducting-normal-fluid mixture,
incorporated allowance for @ondissipativginteraction be-  consisting of superconducting electrons and a “normal” lat-
tween the superfluids. This effect is called “entrainment” tice of ions, as will briefly be discussed in the concluding
(sometimes also “drag)’and plays a central role in the study section. The second and even more powerful consequence of
of such fluid mixtures. The model has been further extendedtationarity is that we can usecanservativanodel based on
by Vardanian and Sedrakidi3] to include charged fluids, a Lagrangian formalism that has been developed in recent
and later a Hamiltonian formulation in the Newtonian frame-years[10,11] in a generally covariant language. The use of a
work was developed by Mendell and Lindblopd]. The generally covariant instead of simply Newtonian description
problem of vortices in such mixtures has been consideretias also been motivated initially by the perspective of appli-
especially in the context of neutron stars, namely by Seeation to neutron stars, where relativistic effects inevitably
drakian and Shahabasi@h), Alpar, Langer, Saulg6], Men-  come into play, but this approach turns out to be generally
dell [7] and others. more flexible and convenient for the hydrodynamic descrip-

The covariant vortex solution in a single uncharged supertion of such systems, even if relativistic effects are not im-
fluid has been analyzed by Carter and Lang[8iswho have portant.
also considered the modifications due to the compressibility The plan of this work is as follows. In Sec. Il we intro-
of the superfluid. The present work is on the one hand auce the relevant notions and equations of the covariant
generalization of this analysis to arbitrary fluid mixtures, in- multi-fluid formalism on which the present analysis is based.
cluding charged ones and their coupling to electromagnetitn Sec. Il we discuss the description of superfluids in this
fields, but on the other hand is restrictédr technical rea- framework and the topology of the vortex-type configura-
song to the case of a “stiff” equation of state. This “stiff” tions. Section IV introduces what we called the “mongrel”
case is characterized by the sp@edf sound being equal to representation of superfluid-normal mixtures, which consists
the speed of light, and is, within the limits of causality, the of choosing thesuperfluid momentand thenormal currents
closest analogue to the common Newtonian incompressiblas the basic variables of the description, and which will be
models. Compressibility effects will be subject of future particularly convenient for the present problem. In Sec. V we
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specify the class of cylindrically symmetric and stationary P
vortex configurations and obtain the first integrals of motion Kxy=—2———. 5)
for these solutions. Section VI is devoted to the specification I pogm™ )

and the properties of the reference state, needed to separate . ) ,

the quantities attributed to the vortex from the fluid back-1h€ condition of a non-degenerate system is equivalent to
ground. Finally, the relevant vortex stress-energy coefficientd€tK# 0, and so we can write the inverse relation

are integrated in Sec. VII, using the most general hydrody- X_ 1 XY : XY X

namic modelization for the vortex core, and we find that the o= K Nyq, with KTTKyz=07. ®)
“rotation energy cancellation lemma” d®] still holds un-
der the more general conditions of the present work. In th
concluding Sec. VIII, we briefly illustrate the application of
the foregoing results to some of the well known examples o
superfluid and superconducting systems.

In the case of noninteracting fluids, the Hamiltonfamould

ot depend on crossed scalar§u " with X#Y, but only

pn diagonal terms ;(ﬁ,uxa). In this case the matriXyy
would be diagonal, and each current would be aligned with
the respective momentum, similar to the case of a single
perfect fluid, but any interaction terms between different
Il. COVARIANT DESCRIPTION fluid constituents in the Hamiltonian will lead to nondiagonal
OF PERFECT FLUID MIXTURES components oKy, and therefore the currents will become

The general class dhon-dissipativemixtures of charged linéar combinationsin each poink of the respective mo-
or neutral perfect fluids has been shown by Cditéi to be ~ Menta. This(nondissipative effect is called entrainment
describable by an elegant covariant action principle. In this"j}nd was first considered for superfluid mixtures’éfe and
section we will briefly introduce the part of the formalism He by Andreev and Bashkii2]. ,
and notations that will be relevant to the present work. Before we come to the equations of motion, we need to

In the absence of electromagnetic effects, a mixture ofXt€nd our description to include the electromagnetic field
perfect fluids can be described by a Lagrangian density 2"d its coupling to c_haf’ged fluids. This is done via the stan-
that depends only on the particle number currerftswhere fjard minimal COUp|I.ng presprlptlon that consists of defin-
late Latin indices X, Y, etc., enumerate the different fluid "9 thetotal Lagrangian density as
constituents. Variation oA with respect to the currents, 1
L=A+]"A,+ = F zFP%, (7

16
SA=plong, ie e I (1)
Fa Ofxs L8 Ha= g’ where we are using units with=1. The electric current®

is defined as

defines thedynamicalmomenta per particlgu;( as the con-
jugate variables of the currents; with respect toA. Here
and in the following we use implicit summatigaxcept oth-  \yith eX being the charge per particle of the constitudnt
erwise statedover identical spacetime as well as constituentype electromagnetic 2-forrfi,; is defined as the exterior
?ndices. Legendre transformation with respect to the currentgyarivative of the gauge 1-for,,, i.e.

ie.

j*=e*ng, (8)

. W X FQBEZV[QAB] , (9)
P=A—ny gy, )
where square brackets indicdsveragegindex antisymme-
defines the “Hamiltonian density”P as a function of the trization. The symboV , denotes the usual covariant deriva-
dynamic momenta.X . This function only exists for nonde- {Ve, but we note that because of the antisymmetrization,
generate systems, that is, if the functiqmé(ne) defined in  EXterior derivatives arsdependenbf the a}fﬁne qonnectlon,
Eqg. (1) are invertible. The conjugate relations can then be’0 W€ could as well replacé, by the partial derivative, .

written as The conjugate_ variables of the cgrrengswith res)p(;ect to
the total Lagrangian are thecanonicalmomentas,, de-
X oP . fined as
nX: - T v
aux 5 9L
= T (10)

Furthermore, the form of these relations is constrained by the
requirement of covariance, namely,(as well asA) has to
be ascalardensity, and can therefore only depend on scalar
i.e. on,uﬁ,uY“. This restricts relatiort3) to be of the form

which can be seen from Eq4) and(7) to be directly related
%o the dynamical momentaX, namely

X_ X X
T, =u,t+ e A,. (11
nS(: KXY ,LLYa; (4)
The equations of motion are to be derived from the total
where the(necessarily symmetnianatrix Kyy is defined as  Lagrangian£ via an appropriate variational principle. Im-
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posing invariance of the action under frémfinitesima) lll. PROPERTIES OF SUPERFLUIDS AND TOPOLOGY
variations of the gauge field, leads to the Maxwell source OF VORTEX SOLUTIONS
equation

We want to allow for some of the fluids to be superfluid
or superconducting, and we will denote these constituents by
capital Greek indiced’, ¥, etc. For “normal” fluids (i.e.

, . i not superfluid or superconductingve will use early Latin
However, the equations of motion for the fluids cannot becapital indicesA, B, etc., so a sum over all fluidindexed by

derived via free variations of the currem§, as this would X, Y, etc) can be written a&x=3+ Sy . Apart from the
simply lead to the trivial equations’s=0. This is because electric charge there seems to be no fundamental difference
free variations of the currents contain too many degrees dfetween superfluids and superconductors, and therefore we
freedom, which results in overdetermined equations of mowill in the following refer to them as “uncharged” and
tion; therefore the variations have to benstrained It has  “charged superfluids” respectively. We note that the present
been shown if10] that variationssny with the correct num-  treatment considers superfluids as a subclass of perfect flu-
ber of degrees of freedom are generated by infinitesimal disiels, and will therefore represent some restrictions as to the
placements of the world lines of fluid particles. These worldapplication to strongly anisotropic superfluid phases like they
line variations satisfy the physical constraint of conservingare found in®He [12], which is governed by additional “in-

the number of particles, and they result in the correct equaternal” degrees of freedom like the spin and angular momen-
tions of motion for the fluids. Without entering into the tech- tum of the Cooper pairs. But at least for situations where
nical details of this procedurésee[10,11]), the resulting these additional degrees of freedom of the order parameter
equation of motion for each fluidl is found asgno sum over can be considered as “frozen” and the dynamics mainly

VF*B=4mj®, (12

X) governed by the superfluid “phase” to be discussed in the
following, the present approach should still represent an ac-
2ngV g+ 5V n%=0, (13)  ceptable approximation.

We distinguish théconnectefispacetime domai® ¥ oc-
and by contracting this equation witif , we see that it im- cupied by the superfluid constitue¥itfrom the subset of its
! H “ H n" Y Y 1
plies that the currents are conserved, Veng=0, so the espective “superfluid domain"S'CD ", which corre-

equations of motion reduce to the simple form of a vorticity SPONds to what 's sometimes called the “bulk.;’ In the su-
conserving flow, namelyno sum overX) perfluid domainS' the canonical momenturmr, always

obeys the constraint

a X _
nXWaﬁ_Ov (14) ,ﬂ.Z:hva(PY, (17)
where the(canonical vorticity 2-form wﬁﬁ is defined as the where the “phase’e" is a continuously differentiable scalar
exterior derivative of the canonical momenturg, i.e. onSY that can be multi-valued, but the differences between
values in the same point are restricted to be integer multiples
Wéﬁzzv[aﬂé] ) (15) of 27r. This reminds of an angle variable and reflects the role

of ¢Y as a quantum phas#®. In addition to the property of

The very compact forml4) of the equation of motion can be (qL'Jantized'pot?n.tiaI flow(17), the superfluidy’ in its super-
seen to “reduce” in the nonrelativistic limit to thenuch  fluid domainS™ is perfectly inviscid In that sense a super-
less compagtEuler equation of a charged fluid in electro- fluid is probably the best representation of a p_erfect fIl_Jld in
magnetic fields and possibly subject to further potential?ature- 9” the other hand, outside its superfluid domain, i.e.
forces. This is an example that shows the advantage arlfj D" \S ' the superfluid is not constrained to potential flow
convenience of the covariant formalism, especially for mord17) @nd can also possess some viscosity like a “normal
complex applications like interacting mixtures of possibly fluid- The property(17) implies that the canonical vorticity
charged fluids in electromagnetic fields, as considered in th®as Vanishes on the whole superfluid domain, i.e.
present analysis. Y Y

And finally, the stress-energy tensbf” is found[11] in Wap=2V[aTg =0, (18

the form which states that the superfluid is irrotational, and implies

thet the equation of motio(il4) is automatically satisfied on
S'.
Irrotational flow is of course not restricted to superfluids,

(16) and the vortex-type configurations to be discussed later were

known long before the discovery of superfluids; familiar ex-
which (in the absence of external forgesatisfies the equa- amples are tornados or water flowing out the drain of the
tion of (pseudo conservationV ,T**=0. From the form of  bathtub. But the multi-valuedness of the “phase” of a per-
the stress-energy tens(6) we see thaf plays the role of fect fluid in a state of potential flow imot subject to a
a generalized pressure, which reduces to the ordinary preSguantization” condition of integer multiples of 2, and a
sure in the case of a single fluid. perfect fluid only exists as an idealization of a “real” fluid

a _na X a 1 aN 1 pA a
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with some nonvanishing amount of viscosity, contrary to the Ny=Syy s’ +Myg u&, (20)
completely inviscid superfluids in the superfluid domain.
Furthermore, there is an important energy gain associated Na=M gy p¥ +Vag u8, (21)

with the superfluid domais ¥, the so-called “condensation

energy.” Superfluids consequently try to maximize their su-whereMyg=Mgy . For clarity we use in this section bold-

perfluid domainSY [and thereby to satisfy E417)] as far as  face type for denoting spacetime vectors and covectors, as

possible in the limits of the fluid domaiR Y. the spacetime indices are not important here and can be put
One of the most important consequences of @) is  in any consistent way. Applying the inverse matkix * to

that it allows for the topologically stable flow configurations Eq. (21), we can easily rewrite these relations in the “mon-

known as vortices, which are characterized by the propertgrel” form

that different values of thémulti-valued phasee” in the

same point can be connected by closed p#thbat lie en- Ny=Syy m’+Ming, (22
tirely in the superfluid domais Y. As stated above, the dif-

ference can only be of the formmNY, where the integeN Y ph=—MG u¥+VABng, (23
is called the “winding number.” The winding numbér of

a closed patﬂ‘cSY can be written as where we defined the new matrices

1 VABE(V_]')AB, MQE‘VABMBW,
NY=>— Fw},{dsa, rcs. (19 (24)

27h
Syw=Syy—MyaV*PMpgy .
It is evident thatNY does not change for continuously de-
formed pathd —I''CSY, andNY is therefore a topological N th|s representation it is easy to see that terms of the form
constant for each equivalence class of closed patsginA ~ Nx &%, €.g. in the stress-energy tengd6), can be written in
nonvanishingNY implies that the pati’CSY cannot be the “quasi separated” form
continuously contracted to a point, because it would neces- X Ya " AB
sarily have to cross at least one polt SY where the Mxp”=p Syy po+0a Vg, (29
phase¢’ is not defined, and therefor§Y is necessarily

multiply connected if there are nonvanishing winding num-Where the effect of "mixed” entrainment between superflu-

ids and normal fluids is hidden in the use of the maftiXAs

bersNY. . . g
we consistently wrote lower constituent indices for currents
and upper constituent indices for momenta, we can now use
IV. “MONGREL" REPRESENTATION this convention to introduce a very convenient and sugges-
OF SUPERFLUID-NORMAL MIXTURES tive notation, namely to us®yy to lower superfluid indices

Y, V¥, etc., andVA® to raise normal fluid indicesA, B, etc.
Ii‘h|s can formally be understood as choosthgndV as the
metric tensordn the respective constituent vector spaces of
the superfluids and the normal fluids, but can also just be
seen as a shorthand notation for

In the previous section we have seen that a superfluid o
its superfluid domain is generally characterized by a con-
straint (17) on the(canonical superfluid momentum, while
“normal” fluids are generally more easily described in terms
of their particle number currents. For this reason it will turn
out to be extremely convenient to pass from the “pure” type
of representation used in E¢), which expresses all the
currents in terms of all the momentar vice versato a |n this notation, stress-energy contributiomgu* take the
“mongrel” representation where theuperfluid current&ind  simple and concise form
normal momentaare expressed in terms of thsperfluid
momentaand normal currents This type of representation Ny =n"na+u’ pmy, (27
has for example been used tacitly as the base of Landau’s
two-fluid model for superfluid®He [13], which was formu- where all the information about entrainment has been en-
lated in terms of a “superfluid velocity,” representing in fact coded in the respective metrics of the superfluid and normal
the irrotational superfluid momentum of E4.7) (divided by  constituent spaces.

a fixed masgand of a “normal fluid” velocity, which rep- We note that the superfluid constraiidf7) generally ap-
resents the real mean velocity of the viscous gas of excitgplies to thecanonicalmomentasY, which only in the case
tions. This will be seen in some more detail in the discussiorof uncharged superfluids coincide with the dynamical mo-
of the two-fluid model in the concluding Sec. VIII. mentau’ =’ —eYA. This implies a qualitative difference

In order to pass to this mongrel representation, we decombetween charged and uncharged superfluids, and it will be
pose the entrainment matrikyy into a purely superfluid useful to separate the superfluid constituent space into the
symmetric matrixSyy, a symmetric matriX/,g of purely  two orthogonal subspaces that are naturally defined by the
normal(“viscous”) fluids and a “mixed” superfluid-normal superfluid “charge vector” with components’. The re-
matrix My A, so Eq.(4) can be written in this decomposition spective subspaces are defined by parallel and orthogonal
as projection via the projection tensors

MYESY\I’ MW and nAE‘VAB Ng. (26)
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e'e A=At G, A—A+G,, (33
= Ye=8y— 1y, (28)
(e“ey) but because is an angle variable, corresponding to a com-
pact dimension, the gauge of the axial comporgnts com-
letely fixed by Eq(32). This is most easily seen by apply-
ng Stoke’s theorem to &, ¢}-surface integral oveF 4,
ie. dea'BFaB:gidI“Aa, which in this trivial symmetric
(29) case just reduces tﬁ{fdr (dA,/dr)=A,(r.), and so the
gauge is fixed as
The subtlety of this notation is that even though a “parallel”
constituent vectog) only has nonvanishing components for A,(0)=0. (34)
charged superfluid constituents, and respecti)@)only for
uncharged superfluids, thealuesof the respective compo-
nents may depend on all the other superflugaisl normal
fluids, as the projection tensors contain the entrainment ma-

where again we have used the notatigr=Syye’. Now we
can decompose constituent vectors, e.g. the superfluid m
menta asu’ = p) +p) , where

m=nyp’ and p'=yypt.

With the gauge choicé32), the symmetry condition forr’
reads

Xy —
trix S. (Lem™) =0, (35)
where&® can be any linear combination of the three symme-
V. STATIONARY CYLINDRICAL VORTEX try generators. The well-known Cartan formula for the Lie
CONFIGURATION derivative of ap-form w,z, ., namely

In this work we will consider the simplest, because maxi-
mally symmetric type of vortex configuration, which is char-
acterized by both stationarity and cylindrical symmetry. This
means that there are three independent, commutnghe  can be applied to the 1-form* in Eq. (35), and so we obtain
sense of Lie bracketsymmetry generatork®, I“ andm®,  the explicit symmetry condition
which can be taken to correspond to time translations, longi-
tudinal space translation@long the vortex axisand axial 288 v ﬁ”é]"'va( gﬁwé)zo_ (37)
rotations, respectively. The geometric picture of the symme-
try surfaces generated W, 1 and m® is of cylindrical  For superfluidgin the superfluid domainthe first term van-
hypersurfaces that build a well-behaved foliation of spaceishes because of the irrotationality propeft), and so the
time, and can therefore be parametrized by a “radial” coor-second term provides us with three independent integrals of
dinater. Let us introduce the corresponding cylindrical co- motion, corresponding to the three symmetry generators,
ordinates {x°x!x?x%={t,z,¢,r}, adapted to these namely
symmetries, i.e.

k*={1,0,0,¢, 1={0,1,0,¢, m*={0,0,1,G. (30)

(LeW) gy, =(P+1) EVRW,apy  1HP Via(E'Wy g, .(.]),)
36

—EY=keqzY LY=|ogzY

a ! a !

MY=mem), (39

i interpretable respectively as tle@ergy (canonical longitu-
The symmetry requirements and the property of conservegina| momentum and (canonical angular momentunper

cur_rents_, Eq(14), i.e.Vang'é_=O, restrict the flow to be purely particle. WhileEY and LY are generally subject to the re-
helical, i.e. to have no radial components. Therefore the curgiq g gauge freedort83) of an additive constar{except in
rents are confined to timelike hypersurfaces generated by thge uncharged cases =0), the axial constanM is not,
symmetry vectors and can be written as because there is no gauge freedomAqr. In order to cal-
@ culate the winding numbeisY of the vortex by Eq(19), we
ng={ nk(r), n&(r), ng(r), 0}. (31 0 y Eq(19)

have to choose a path enclosing the vortex axis. Such a
A further consequence of the symmetry is that any physicallfP@th can always be continuously deformed into a path gen-

well-defined quantityQ of the flow must be invariant under €rated bym®alone, and so by E¢38) the integration simply

symmetry translations, which means that the correspondiny€'ds
Lie derivatives must vanish, i.&C,Q=0, for £* being any

linear combination(with constant coefficienjsof the sym- NY=— (39)
metry vectorsk®, m® andl . This also holds for gauge de- h

endent quantities like the canonical momentuat, pro- .
P q mﬁ] P gherefore the constar(tanonical angular momentum per

particle, MY, is an integer multiple ofi, the fundamental
quantum of angular momentum, and the corresponding an-
gular momentum “quantum number” is just the winding
Al={ A1), Alr), A1), 0}. (32  numberNY. The superfluid canonical momenta’ = u"
+eYA are thereby completely determinéd the superfluid
The component#\, and A, are still subject to the residual domain by the integrals of motiori38) [modulo the gauge
gauge freedom of an additive constant, i.e. freedom(33)], namely

symmetries, i.e. whenq;A),=0. Such a gauge choice is
given by
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WI:{_ EY,LY,ANY,0}, with NYeZ, (40) superfluids. As we saw in Sec. Ill, the vortex is characterized
by nonvanishing winding numbeisY, which by Eqgs.(11)
where the vanishing of the radial component follows and(4) are seen to be directly related to the axial compo-
from the helical direction31) of the currentsn{, and the nentsj ¢ and will result in a screened longitudinal magnetic
entrainment relatiof4) together with Eq(11) and the gauge field B;, which is conventionally defined as

choice(32).

In a more realistic treatment, the normal fluids are ex- ,
pected to have some amount of viscosity, in which case the B,= ﬁ_ (46)
condition of stationarity, which excludes all dissipative mo- r

tion, restricts all the normal currents to be comoving with the
same uniform rotatiof, i.e.
VI. REFERENCE STATE AND VORTEX PROPERTIES

na=nyv® with v¥=k*+Qm*={1,0Q,0}. (41 A Reference state
We could also have allowed for a constant longitudinal ve- |n the previous section we have completely specified the
locity along !¢, but this is trivially annihilated by a Lorentz fluid configuration containing a vortex, but in order to sepa-
boost, and so we have chosen our reference frame at regite the quantities attributed to the vortex from the fluid
with respect to the longitudinal motion of the normal fluids. “background,” we first have to specify this reference
The symmetry conditior(35) along the flow lines of the “background” state, which will be denoted by the subscript
normal fluids, i.e. withé*=v*, together with the equation of &. For any quantityQ, the partsQ attributed to the vortex
motion (14) yields one integral of motion for each normal is defined as the difference with respect to the corresponding
fluid, namely reference valu®g, i.e.

—Er=verh. (42) 06Q=Q-Qs. (47)

With the given restrictions on the currer{&l) and(41), the

integrals of motiorEY, LY, N, EA andQ are sufficient for The reference state should respect at least the same symme-

the equations of motionl4) to be satisfied. But in order to f[ries as the vortex state,.and can therefore, by the reasoning
actually integrate these differential equations, one is still lefin S€c: V. be characterized completely by constels,

with the generally nontrivial problem of solving equations L&, N, E& andQg . Furthermore, we naturally want the
for the spacetime metrig, ;, together with Maxwell’'s equa- the reference background to be “vortex free,” which means
tion (12 for the gauge field\,. However, for most vortex that the topological constants characterizing a vortex have to
applications of practical interegincluding those in neutron vanish, i.e.NL=0. Another natural prescription is that the
starg, the gravitational self-interaction of the vortex can beuniform rotation of the normal fluids should be the same in
completely neglected, so the background metric can in anthe reference state as in the vortex state {g=(. How-
case be considered as given in advance. Furthermore, as teeer, there is no such “natural” choice for the remaining
radial dimensions of vortices are generally much smalle@onstantfé, Lé andE2 , if one allows for compressibility
than the lengthscale of gravitational curvature, the locabf the fluids. The compressibility is described by the fact that
spacetime metric of the vortex can safely be considered age entrainment matrix5) is in general a function of the
flat, and so in cylindrical coordinates we can write itas  momentum scalars, i.&yy=Kyy(x x"*), and therefore,

it (ulpuV)o#ulu'V®, this generally entails thaKyy
#K3y. Now, if we consider for example thecomponent of

The remaining differential equation to be solved is Eip) ~ the relation(4) between currents and momenta, and if for
for the electromagnetic gauge fiefd,. The necessary coef- illustration we suppose for a moment that thespre are no nor-
ficients of the metric connection can easily be calculated fofnal fluids, themy =Ky u"", andnio=KYyus'. Choos-

the flat metric(43), and we find the explicit Maxwell equa- ing for example the straightforward reference constdits

ds’=g,;dx*dxf=—dt?+dZ2+r2de?+dr2. (43

tions for the gauge field\, in the form =EY and Lé= LY leads to changed particle densitie$;
) N ) . #n) and, especially, changadeanparticle number densi-
(rA{) =4mrj’, —(rA})' =4mrj? (44 ties(in the region of integration with the upper cutoff radius

r.), i.e.njo#ni. We see that with this choice of reference
constants, we compare a vortex state with a reference state
that does not have the same number of particles in the region
of integration. Another physically interesting choice of ref-
where the prime denotes differentiation with respectr.to erence state would therefore rather consist in readjusting the
Equations(44) describe a radial electric field; created by reference constanf), in such a way as to obtain the same
the charge distributiorj!, and an axial magnetic field, meanparticle number densitie@nd therefore total number
around a longitudinal current. These equations will result of particles in the region of integratipim the reference state.

in exponentially “screened” solutions, typical of charged These different choices have been analyzed and properly ac-

AI !
—(%’) =4mrj?, (45)
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counted for in[14] for the case of a vortex in an uncharged due to the uniform rotation of the charged normal fluids. The

superfluid, and are found to be inequivalent to each othemviaxwell equation(45) for the ¢ component in the reference

even in the limitr ,—oo. state, i.e. A5/r)’ =0, allows for a uniform magnetic field
Because of the additional complications of multiple en-B,, in the z direction [defined as in Eq(46)], namely by

trainment and charged fluids in the present analysis, we wilintegration, and using E434) one gets

postpone this problem of compressibility effects to future

work, and restrict our attention here to the simpler case of a _AS

“stiff” equation of state that is characterized by a constant Bo= e

entrainment matrix, i.e.

2
= r_ZAe =const, (56)

whereBg is in fact the well-known uniform London field of
rotating superconductors. An explicit expression for the Lon-
don gauge fieldAg can be obtained simply from the refer-
ence property & =e*n§,=0, together with the “mongrel”

In this “stiff” case, the most natural reference state is un-entrainment expressiof22) and relation(55), which yields
ambiguously characterized just by choosing the longitudinal

superfluid momentum componerg,, LY to be the same as Ac=r?(evey) (et +e M)ng, (57

in the vortex state, i.e.

————=0 = K3y=Kxy. (48
I o)

and after using Eq41) to write n{= nj , we get the Lon-
T O={—EY,LY,0,0}, (49)  don fieldBg as

= — Vo V1AL oY VA AL

while the constant&” can be fixed by taking the normal Be=20 (e"ey) “(e7+e My)n,. (58)

article densities to be unchanged with respect to the vorte . . . .
gtate ie 9 P )fhe London fieldBg is seen to be proportional to the uni-

form rotation Q) of the normal fluids. If we now use the
n%s=n4v?®, where v®={1,00,0}. (50)  additional property of the vanishing charge den$li)’t). in
the reference state, i.§,=0, then we can finally obtain the
Because of the assumption of a stiff equation of st48, all very simple expression for the London field,
longitudinal current components}, and n% remain un-
changed in the reference state. Furthermore, we will assume
the electric current to vanish in the reference state, i.e.

< N2 Y
Bo-—20S 0 0% (59
e*Sppe eye
i&=0, (52) where we have used the notation of lowering and raising

constituent indices via the matrikintroduced in Sec. IV. If
we consider in particular the case of a single charged super-
fluid with mass per particlen and charge per particke this
jt:jtezo and jz:jzezo, (52) expression in the Newtonian limit, wheEe —m, reduces to
the well known expressioBg=—2(Qm/e. The question of
and so we also have, from Eq&4) (in an appropriate Wwhethermin this formula should represent the bare mass or
gauge, some “effective” mass per particle will be discussed briefly
in the concluding Sec. VIILI.

which implies that the longitudinal electric current also van-
ishes in the vortex state,

A=A"=0 and A,=AY=0. (53

. . . C. Magnetic field of the vortex
The reference state is now completely fixed by the properties

(49), (50) and (51). The vortex modifies only the compo- The reference state propertie9) and (S0) further $||0W
nents of currents and momenta, so it will be convenient tgis to rewrite the axial current? in the form j“=e (n§
introduce for covectorg, the short notatio=55Q, for ~ ~NYe), and with Eq.(22) we obtain the compact form
the part of theQ,, that is due to the vortex, ar@efo 1 1
for the part that is still present in the reference state, e.g. j‘Pzr—zeY sm,p*l’zr—zeY:[LY, (60)
MYZZLY+#% and A =A+A@. (54) . o . .
¢ ¢ Inserting this into the corresponding Maxwell equatidb)

From Egs.(40) and(49) it is easy to see that gives

~Y_zNY_ aYR Y_ .Y ~ r.

o =aAN'—e'A and MHo=—€ A@. (55) eYSY\PMq,:__B’r (61)

A

B. London field which can be written more explicitly as a differential equa-

Contrary to the longitudinal componem§’ andAY , the  tion for A, containing the winding numbendY as param-
axial gauge field\g in the reference state will not be trivial, eters, namely
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®— q)core

~ r -
(eVey)A=4 (e\I,N‘I’)+4—B’, (62 - e
ﬂ- 27T| 2X0K1(X0)

(67)

Co

where the longitudinal magnetic field of the vorteB, wherex, is the rescaled core radiugy=¢/I, which corre-
= 65B,, is defined following Eq.(46) as E(r)E'A'(r)/r_ sponds to the .inverse of the Ginzburg-Land-au. parameter
This second order differential equation far(or B) is of the ~ =!/& of the Ginzburg-Landau model. The limit of an ex-

modified Bessel type, and the asymptotic behavior of thd'€Me type-Il superconductor is characterizeduby =, i.e.
solutions in the limitr — o can be derived directly from this Xo—0, XoK1(X0)—1, so the core structure becomes negli-

equation, namelywhere “~ means asymptotically propor- 9ible, ®coe<®, and we get
tional) ®
~ — = v
BB o/ Co 52 Amh egN™, for I>¢. (68)
~ eq,N‘I' VII. VORTEX ENERGY
imA=f——, (63 . . . . . .
Foo e'ey In this section we will consider the “macroscopic” prop-

erties of the vortex, namely its total energy per unit length
wherel is the so-called London penetration depth, which isand the tension of the vortex line. These quantities are ob-

given by the expression tained by integrating the local stress-energy tensor of the
vortex, 5o T%5, over the spatial sectiofr, ¢} orthogonal to
| 2=47e%, . (64)  the (“longitudinal”) vortex symmetry axes, whose coordi-

nates are the subséx'}={t,z}, for {i}={0,1}. The local
In the Newtonian limit of a single superfluid with charge per Stress-energy coefficients of the vortex are seen from Eg.
particlee, mass per particlen and a particle number density (16) to have the form
n, the matrixS reduces ta/m, and Eq.(64) reduces to the

standard expressidn 2= 4me?n/m. ST = 5m(n%u +i5 FaAE
The total electromagnetic flux of the vortexp oT"p= de(nxup) 4 el )

=¢A,dx®, for a circuit at sufficiently large radial distance,

1
is easily seen from Eq$63) to be given as + 597)_@ 5@(F"‘pr) g9%- (69)
P
d=27h eyN (65) The “sectional”{r, ¢} integral is only meaningful for quan-
evey tities that are scalars with respect to the sectional coordinates

r and ¢, and so we have to consider only the “longitudi-
which again reduces to the standard expressibn nally” projected tensordoT';. Another “sectional” scalar
=N(2=#h/e) in the Newtonian limit of a single charged su- of the stress-energy tensor is the trace of the orthogonally
perfluid with charge per particle. The explicit solution of projected components, which defines the local lateral pres-
Eq. (62) is expressible in terms of thémodified Bessel surell of the vortex,
functionsKy andK; namely, _

2[1=65(T,—TY). (70)
B(r)=CoKo(r/l), In the case of a “stiff” equation of staté48), the Taylor
o expansion ofP(,uﬁ,uY“) around the reference state value
A(r)==——Corl K(r/l). 66) Po=P((uyn")e) has only two termsfusing Eq. (5)]:
2m namely,

This solution is only valid in the “common superfluid do- 1

main,” i.e. in NySY, where all the constant winding num- P(MZEMY“)=7’e—§va5@(M§MY“)- (77)
bersNY are defined. From the divergenceRffr) on the axis

it is evident that the common superfluid domain must have ahe mongrel representatid$ec. 1V) is particularly conve-
finite separation¢ say, from the axis, which can be used to nient to evaluate contributions of this type, because by the
define what is usually called the “vortex core,” withbeing  reference property50) we have 5e(nA\"ABnB) =0, and so
the “core radius.” The constant of integratidd, is to be  we find, using Eqs(4) and(25),

determined from the matching of E(6) with the “inner”

vortex solution, i.e. for <¢. By integrating Eq.(66) for r KxyOo(m*mY) = 8o (nyp®) =Sy S (e’ ). (72
= ¢, we get the vortex flux outside the core, i~ ® e,

and soC, can be expressed in terms of the quantiiesnd ~ The relevant contribution&9) of 65T, are now straight-
the core magnetic flud .y, Namely forward to evaluate, and are found to be given by
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So(nku)=0, 8o(F*F;,)=0, (73)
So(FPF ,5)=2B%+4BBg, (74)
8oT*,= = Sa(Nuy) =285 P, (75)
SoP=— %Swr (wYuY+2p" ud). (76

Putting these results into the expression for the vortex stress-

energy tensor, Eq69), we find that the longitudinally pro-
jected tensoBs T'; is proportional to the unit tensor, i.e.

5@Tij:—’:|'-gij s (77)

with

~ 1
T= 15 a(F™PF )~ 5P,

(78)
and so the vortex energy densit§T, is equal to the
(local) longitudinal tension of the vortex; 55 T4 a prop-
erty that is characteristic of the stiff equation of st8).

The vortex energy per unit lengttl is defined as the sec-

tional integral

Mo [ ~
E—zwf drr59T°O=27rJ drrT. (79
0 0

The energy density can be decomposed into two parts,

T::‘rvort"':l:rotv (80)

whereT,, is the part that is independent of the rotatiorof
the normal fluids,

~ 1. ~y 1 =5

Tvornt= ?/—L\Ifﬂ + gB ) (81)
while T, is proportional toQ) [via Bg ; see Eq(59)],

~ 1.1 -,

Trot: B@ EB— Eeq,,u , (82)

and the lateral pressuié, defined in Eq(70), is found to be
given by

1 -
_ 2
= o [B*+2BBc]. (83

Expression(81) for T, can be transformed using Max-

well’s equation(61) into the “nearly integrated” form
2 (eYNY)Z

e\lf ey

eyN¥ 7 .

e\Peq' 8mr

v _
v

Tyort= ?

1 .
+-——(AB)".

8r (84)
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The easiest way to see this is to first expand only @hén
Eq. (81) using Eq.(55) and apply Eq(61), then expand the
remainingu” and use the second form of Maxwell's equa-
tion (62) for A. In order to regroup the derivatives, one also
has to expand onB asA’/r in the last term of Eq(81). In

a similar way, T,.; can be reduced to

~ Bs ~
Trot:%(rzB),- (85

As anticipated from the divergence of the magnetic f(€l6)

on the vortex axis, we encounter the same problem in the
energy density84). This well-known fact is due to the con-
stant superfluidcanonical angular momentum per patrticle,
m,=hNY, in the superfluid domaig". Therefore each su-
perfluid with a nonvanishing winding numbs' 0, must
have some finite “core” region separating the respective su-
perfluid domainSY from the vortex axis. The actual size of
the respective core region is determined by a trade-off be-
tween the loss of condensation energy associated with the
core region and the diverging energy densgy) in the su-
perfluid domain. The detailed description of this superfluid-
normal transition would ask for either a microscopic theory
or, at least, some phenomenological, e.g. Ginzburg-Landau-
type, description of the involved superfluids. However, such
detailed descriptions turn out to be unnecessary for our
present purpose, as we can proceed on the basis of a very
general hydrodynamic description of the vortex core, based
only on the necessary “minimal assumptions” needed to
avoid the energy divergence. Namely, as the superfluid con-
straint (17) no longer applies in the respective “core” re-
gions, the(canonical angular momentum-rz,f there is not
quantized, and is allowed to depend on the radial variable
The winding numbeNY is strictly speaking not defined in
the core region, but we can keep the same symbol as a short-
hand notation fomlf/ﬁ, SO we cast our general description of
the core region in the simple form

NYeZ for r>¢,

Y _
N ()= NY(r) for r<g,

(86)

where N/ Y(r) is a continuous, monotonic function, which

has to ensure the vortex energy den3itio remain finite on
the vortex axis, i.e. in the limit—0. Note that the “core
radius” ¢ is defined, as in Sec. V, as the radial distance of
the “common superfluid domain"nNySY for the vortex
axis, and is therefore the maximum core radius of the indi-
vidual superfluids. This obviously does not restrict the gen-
erality of the core descriptio(86), as the\N™Y (r) are allowed
to remain constant until some smaller radills< £. In order

to have a regular behavior of the energy den3itpear the

axis, it is sufficient to demand thaf(r) andA(r) vanish on
the vortex axisat leastas

N(r)~r and A~r2 for r—0, (87)
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where by “~” we mean “asymptotically proportional” tion has the standard “axis field” forr®B(0)/87, which is
(and not necessarily equallhis phenomenological descrip- typical for vortices in charged superfluids.

tion is based on only two parameters, the “core radiys” Using the decomposition into charged and uncharged su-
and the core condensation energy per unit lengf,. perfluid subspaces via the charge projection tensors defined

These two phenomenological parameters would have to bi@ Egs.(28), we can rewrite the first term in brackets in the
determined either from experiment or from a microscopicform
theory, but the model is now sufficiently determined to allow

the integration of the vortex energy, without the need of v (eyNY)? Yol
further assumptions concerning the underlying physical pro- N"Ny — (e¥eu) =N/ Ny. (92
cesses of superfluidity. v
The total vortex energy per unit length is Concerning the second term in E§1), if the magnetic field
U=U o+ Uyort Urors (88) B(r) |s. slowly varying |nS|de~the vortex core, then. Yve can
approximately replac8(7)~B(¢), and use the explicit ex-
where according to Eq$79) and (80) we have defined pression(66) with Eqgs.(67) and(65) to write
Foo = = Deore| Kol(Xo)
UvortEZWfo drrTyorn, B(§)=4wh (e\pNﬁP) 1- D )m, (93

fe wherexy=¢/1. In the extreme type-Il limit, where the core
UrotEZﬂJ drrT . (890  structure becomes negligible, i.e. in the limit=1/x>1,

0 where @ <D, Ko(&/1)=In(l/¢), and xoK1(xo)~1, Eq.
(92) with Eq. (93 finally gives the simple expression for the

The energy contributiot), which is proportional to the | . energy:

rotation() of the normal fluids, is found from E{85) to be
(g I
3 3
o , This “quasi-separated” form clearly shows the respective
where the vanishing of the integral follows from the contributions from a global vortex and a local vortex, but as
asymptotic propertieg53) and (87) of the magnetic field.  mentioned above, even for vortices which have nonvanishing
In the Newtonian description of a rotating superconductorwinding numbers only in either charged or uncharged con-

the vortex energy was already fouf@] to be unchanged by stituents, there will generally be contributions froooth
the rotating charged background, and this lemma is seen heterms, due to the entrainment matfixnvolved in the pro-

Uvor= 42 Sy | (NINY) In—+(N'N}") In (94)

Bo .~
Uror=—~(r"B)["=0, (90

to still hold under quite general conditions: jections.
Rotation energy cancellation lemmarhe “(electrg-
hydrodynamic” energy per unit Iengtﬁ.e. excluding the VIIl. DISCUSSION OF SOME APPLICATIONS
core condensation enerdy;,, of a cylindrically symmetric
and stationary vortex in a “stiff” mixture of interacting su-  In order to illustrate the foregoing general results, we will

perfluids, superconductors and normal fluid8) is indepen-  in this section discuss some applications to well-known stan-
dent of the uniform rotation rat€ of the normal fluids, dard examples of “realistic” superfluid systems, ordered by
despite the fact that the radial distribution of the hydrody-increasing complexity.
namic energy density is modified iy, as seen in Eq85).

The vortex energy contributiod,,.,; in Egs.(89) is found A. Single uncharged superfluid

by integrating Eq(84), which yields Probably the simplest case are single, unchafggatro-

pic) superfluids like*He. We note that vortices ifHe show

(eyNY)2| r., ®B(7) :
Uoo= k2 NYNg— —— | In—= + a much richer structure than ftHe (e.g. sed12]), due to the
vort v % 8 ' . . . K .. )
eye { ™ anisotropic type of the microscopic Cooper pairing respon
sible for the superfluidity offHe. But the present approach
with 0</, #<¢, (91 should still be a good approximation at least for ttée-B

superfluid[15], because sufficiently far from the vortex core
where we used the asymptotic properti68), (87), and the the additional(anisotropi¢ degrees of freedom of the order
(first) mean value theorem of integration with the intermedi-parameter are “frozen” and the dynamics is again mainly
ate values{ and 7, after a partial integration in the core governed by the phase’.
region. We recognize two qualitatively different energy con- (a) At T=0. In the case of a single superfluid at zero
tributions: the first one from a “global” vortex, diverging temperature, the “entrainment matrixKyy of Eq. (4) re-
logarithmically with the upper cutoff radius,,, which is  duces toK =n% u°, wheren® is the particle current ang,,
characteristic for vortices in uncharged superfluids, and théhe momentum per particle of the superfluid. There are no
second one from a “local” vortex, whose energy contribu- normal fluids, s of Eq.(24) is given trivially byS=K. The
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charge vector vanisheg' =0, and the charge projection Ps=(M§)25 and pN=(nﬁ)2 v, (99
tensors are trivial, sb]f= N and Nﬁ:o. The vortex energy
(91) then simply reduces to This is consistent with the additivity postulape= ps+py;
o nangely, using Eq(25) we obtain the expressiop=n2u°
Uveri= N2 2 —5In— 95 * npu?, which effectively reduces to the total mass density
' in the Newtonian limit. In the present case we havé’
o ) ) —mg for the superfluid, whilgxN°— 0, as the normal fluid is
which is the same expression as found 8} for the single  jgentified with the gas of excitations, so the total mass den-
superfluid. In the nonrelativistic limit, whera®—m and sity reduces tg— ngms.
n°—n (wherem s the rest mass of the superfluid particles, In the nonrelativistic limit, expressior99) yields S

andn their number densidy we recover the usual expression _ /m2. and so Eq(91) for the vortex enerav can explic-
for the (hydrodynamig¢ superfluid vortex energy in the zero itl;)?)e v?/;itten as aoy oy P

temperature limite.g. sed16]).

(b) At T#0. In the case of a finite temperature, the sys-
tem can be described as an effective superfluid—normal-fluid Uyorr= thsz_z
mixture, where the normal fluid consists of the viscous gas of mg
excitations in the superfluid. The superfluid and normal par-
ticle currents areng andny, and their respective momenta in agreement with the well-known result in Landau’s two-
per particleuS and uM, say. There are no charged fluids, so fluid model(e.g. sed16]).

NP=0 andNP=N. The entrainment matrif5) reads

%
In?, (100)

B. Two uncharged superfluids

Kyy=

Kss KSN) (96) In the next step, let us consider a vortex in a mixture of
Kns Kan/ ' two uncharged superfluids, as first considered by Andreev

_ _ _ and Bashkir{2] for a mixture of *He and“He. Again, atT
and is decomposed in the mongrel representation of Sec. I\L g there are no normal fluids, so we have

asV=1/Kyy, andS=Kggs— KéN/KNN, so the vortex energy

would simply be given by inserting this expression $anto

Eqg. (91). However, in order to compare this result to the Syw=Kyw=
usual expression for the vortex energy in superfluidd at

#0, we have to link the present entrainment formalism toThe charge vector vanishes? =0, and soNﬁ(=0 andNY

the more common language of Landau’s two-fluid modelz{ N3, N4}. The expressiorf91) for the vortex energy in
[13] that is expressed in terms of a “superfluid densitys  this case explicitly reads

and a “normal density”py. This “translation” has been

achieved in a rigorous and extensive manner by Carter and I
Khalatnikov[17], but for the present purpose of an illustra-  Uyor= 7 (N?)?Kgg+ (N*)?K 44+ 2N3N4K34]In?.

tive example, the following very simple argument should (102
show in a sufficiently convincing way how to translate be-

tween the respective quantities. Namely, consider the totalve see that there is a purely hydrodynamic interaction en-
(spatia) momentum density® (with i=1,2,3) of the fluid  ergy due to entrainmert.e. not related to the condensation
mixture, for which from Eq.(16) we havep'=T%=nguS  energy in the corefrom the last term in brackets, which is
+nﬁ,uN'. Using the mongrel relation®23) and(22), this can  either attractive or repulsive depending on the sign of the
be rewritten asp'=(15%) xS+ (n{V) ny. Now we intro-  entrainment coefficient s, .

duce the normal velocity\,=n}/n$,, which is the real mean

velocity of the excitations, and the superfluid “pseudo- C. Conventional superconductors

velocity” vs=p°/p, which is not a “real” velocity in the When we consider cases with charged superfluids, the
sense osfoa particle transport. In the nonrelativistic Iimit., simplest example is already a two constituent system, be-
where =" tends to the constant rest mass of the superflui¢ayse a second charged component is necessary to allow for
particles,u*°—ms, the irrotationality propertycof superflu-  glopal charge neutrality. This picture applies for example to
ids (18) implies VIvd1~0, in other words “rov=0." In  conventional laboratory superconductors, where the charged
these variables the total momentum density now reads  superfluid(chargee™ and particle density1_) consists of
Cooper paired conduction electrons, while the second com-
p'=[(ud)?STos+[(n%)2 V]vy. (97)  ponent is the “normal” background of positively charged
ions (chargee* and particle densityr..). In the maximally
Comparing this to the orthodox expression symmetric and stationary situations considered in the present
_ _ work, “normal” components are naturally restricted to uni-
p'=pvst paUN . (98)  form rotation (41), and therefore it makes no difference
whether the normal component is actually a real “fluid” or a
we can identify solid lattice like in the present example.

(101)

Kss K34)
Kas Kaa)
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Because of the Cooper pairing mechanism, the fundamersimply to be the Fermi energy of a free electron gas, yields a
tal superfluid charge carriers have to be considered as ele(positive) correction of the order 10, This is in qualitative
tron pairs, and therefore the charge per superfluid particleand nearly quantitative agreement with precision measure-
e, should be twice the electron charge, ee.=—2e, and  ments performed on a rotating Nb supercondugi®. But
consequently the rest massns =2m,, wherem, is the in order to effectively compare expressi@®05 with experi-
electron rest mass. The entrainment makiyx,, defined in  mental results, a more careful estimationu.qj,., would be
Eq. (5) can be written as necessary.

Vortices.Now let us consider a vortex configuration, i.e.
Ko Koy with N#0. We see that a similar cancellation of the entrain-
’ ment effect as for the London field 05 arises for the total

Kxy= ( K K
+ - + + . . .
flux of the vortex, which is seen by E(65) to give the usual
and the transformation into the mongrel representation of

Sec. IV yieldsS=K__—(K_,)%K,, andV=1/K, , . The . _ 27t
charge vector is just’=e~, and soN) =0 andN)'=N. P=Nd,, with ©o=-=, (108
The London fieldln the simple case of a vortex-free state,
i.e. with N=0, there is nevertheless a nonvanishing uniformwhile the London penetration depf4) is modified by en-
London fieldBs if the superconductor is rotatingotation ~ trainment, namelyt ~?=4m(e”)%s. To write this more ex-
rate ). Equation (59) for the London field immediately Plicitly, we note thatS can be written in the absence of
yields for this simple casBs = —2Q(E/e”), whereE is the  entrainment a$®=n_/u"~ and furthers®=(n_/m~)(1
energy per superfluid particle, i.E=— g . If we choose @  — Jrel), Wheredye=ucnen{M" is the same relativistic correc-
reference frame with.=x, =0, i.e. comoving with the su- tion factor encountered in the expression for the London field
perconductor in the direction, therE can be identified with ~ Ed- (109. A nonvanishing entrainment interaction between
the (relativistio chemical potentialy ™ =(—u x®)Y2 In the con_stltuents will add_ an additional correcthn tedmn,
the Newtonian limit, wherg.~ ~m™, the conventional New- Proportional to the matrix elemert, _, so thatS can be

tonian chemical potentigl ., is related to the relativistic written as5=(n_/m-)(1+ deny— Jre), and so the London
chemical potentiak.~ as penetration depth reads

(103

_ n_
Mchem |72:477(67)ZF(1+ Sentr— Orel)- (107

po=m | 1+ =" 0(e?) |, (104

m

- _ _ The vortex energy is given by the “magnetic” term in Eq.
wheree= ugeM™ <1. The London field for a rotating su- (91) alone, due toN;=N andN, =0, so we recover the usual

perconductor can therefore be written in the form “axis-field” expression
m- " ®B(0
Bo=—20 | 14 Hehemy o 62)> . (105 Uyor~ (0) , (108
e m~ 8

It is well known that that the “entrainment” formalism for Which is seen in the more explicit for(94) (for the type-II
interacting constituents can equivalently be expressed in thiémit, for simplicity) to depend on the effect of entrainment,
more conventionalalbeit sometimes less convenipan- ~ nhamely

guage of “effective masses[2]. We see that in the case of n |
two-constituent superconductors, the effect of entrainment Uyor= N27:2 — (14 S~ 8,0 1N,
(i.e. effective masse¢gancels out in the expressi¢h05) for m 3

the London field, which therefore depends quite naturally Orl)ut as the total vortex enerdy— U, + U, also depends
Vvort con

the “bare” electron rest mass to charge ratio /e, includ- /
J on the largely unknown condensation energy of the core, the

ing a “relativistic” correction due to the finite chemical po- o . : i . .
. ~ : .__relativistic and entrainment corrections in this expression
tential ey Of the electrons. We note that this cancellation ; ;
seem unlikely to be of observable interest.

only occurs for systems with a single superfluid constituent,
whereS is consequently a scalar and cancels out in(B).
As soon as there is a secofidteracting superfluid constitu-
ent involved, as in the following example of neutron star In this last example we consider the case dtald) de-
matter, the London fieldoesdepend on the effective masses generate plasma consisting of neutrons, protons and elec-
of the constituents. We further note that the present covariantons in 8 equilibrium, as relevant for the outer core of neu-
treatment is intrinsically frame independent, and contrary taron stars(i.e. at densities= nuclear density In this case
the analysis 0f18], we find thatBs doesnot depend on the one usually assumes that there is an important entrainment
chemical potential.* of the “normal” component of posi- between neutrons and protons due to their strong interac-
tively charged ions. tions, while the entrainment with electrons is generally sup-
A very crude estimate of the relativistic correction term posed to be negligible. We will follow this assumption and
Mepen{M™ for a Nb superconductor af=0, taking uqem  denote the entrainment matrix as

(109

D. Neutron star matter (outer core)
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COVARIANT VORTEX IN SUPERCONDUCTING. ..

Knn Knp 0
Kxyy=| Kpn Kpp 0 (110
0 0 K

PHYSICAL REVIEW D 62 103005
) 27h
(I):(Np+CYNn)(I)O, with q)OZT, (117)

in agreement with earlier results in the literat{ise3,6]. The

The calculations of the superfluid gaps for this neutron stavortex energy in the type-Il limit94) reads

matter generally sugge&tee for exampl§20]) that the pro-

tons will be superconducting and the neutrons superfluid,

while the electrons remain “normal,” so this system would

represent a superconducting-superfluid-normal mixture. The
matrices of the mongrel representation of Sec. IV for this

system read=0, V=1/K., and

Knn
K

K

< (111

Syp=

np)
ool
and we define an “entrainment coefficientd=K /K.

For this system the charge vectors and projections are no
trivial, namely

pn

0
0 O 1 0
Y _ Y _
ﬂw—(a 1) Yv -« 0)’
(113

whereq is the charge of a proton Cooper pair, icg=2|€|,
and we further have

0
N) = (NP+aN") 1) (114
1
N}zN“( ) (115
-
The London penetration deptb4) is
| 2= 470%K (116

and the vortex flux65) is found as

I

3

5 [
+a Kppln—

Uyor= Wﬁz(Nn)z (Knn— azKpp)ln ¢

| |
+ wi'LZ’(Np)ZKpplnEJr 2mh®N"NPK Jn—. (118

3

Similar to the case of a mixture of two uncharged superflu-
ids, we see that the total vortex energy consists of a pure
n-vortex term and a pure p-vortex terf@ach of which is

fnodified by the entrainmeptwhile the last term represents

an attractive or repulsivédepending on the sign df,)
interaction term with respect to infinite separation. It has
been suggestef®1] that the effect of entrainment between
neutrons and protons could energetically favor a “vortex
cluster” structure(i.e. a neutron vortex surrounded by a
dense lattice of proton vorticewith respect to a single neu-
tron vortex. This question can strictly speaking not be ad-
dressed in the present framework of perfectly axially sym-
metric configurations, and will be subject of future
investigation, but the energy of a single n vortex’&0,
N"+0) is seen from expressidqh18) to be of the same order
of magnitude if not smaller than in the absence of entrain-
ment (@—0), i.e. U =7#2(N"2KPIn(r./¢). Any con-
figuration containing more vortices is therefore rather ex-
pected to have a higher energy, but the possibly attractive
interaction term in Eq.(118 could lead to an effective
“clustering” of already present vortices, hamely an n vortex
that “accretes” p vortices until saturation.
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