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Best unbiased estimators for the three-point correlators
of the cosmic microwave background radiation
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Measuring the three-point correlators of the cosmic microwave background~CMB! anisotropies could help
to get a handle on the level of non-Gaussianity present in the observational data sets and therefore would
strongly constrain models of the early Universe. However, typically, the expected non-Gaussian signal is very
small. Therefore, one has to face the problem of extracting it from the noise, in particular from the ‘‘cosmic
variance’’ noise. For this purpose, one has to construct the best unbiased estimators for the three-point corr-
elators that are needed for concrete detection of non-Gaussian features. In this article, we study this problem
for both the CMB third moment and the CMB angular bispectrum. We emphasize that knowledge of the best
estimator for the former does not permit one to infer the best estimator for the latter and vice versa. We present
the corresponding best unbiased estimators in both cases and compute their corresponding cosmic variances.
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I. INTRODUCTION

The cosmic microwave background~CMB! has been rec-
ognized as one of the best tools for studying the early U
verse~e.g.,@1#!. In particular, the statistical properties of th
CMB anisotropies are a powerful means to discrimin
among the possible scenarios. This is because, in gen
different models predict different statistical properties. F
example, the simplest models of inflation predict that
temperature anisotropies should obey a Gaussian stat
and therefore any nonvanishing measurement of a th
point correlator~in a sense to be made precise below! would
automatically rule out such models, a very interesting re
indeed.

From a practical point of view, measuring any no
Gaussianity in the data is a very difficult task since the sig
is typically very small. Of course, this signal should be co
pared to the noise and what really matters is the signa
noise ratio. The noise can have many different origins
cluding instrumental errors, foregrounds contamination,
incomplete sky coverage. Another source of error is the
called ‘‘cosmic variance.’’ Roughly speaking, it comes fro
the fact that we only have access to one realization of
temperature anisotropies whereas theoretical predictions
expressed through ensemble averages. In a Gaussian m
for example, the mean value of any three-point correlator
to vanish but this does not guarantee that a concrete de
tion of a nonzero signal on the sky would be in contradict
with the model@2,3#. The important point is that the cosm
variance can dominate the other sources of error, as this
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fact the case for the two-point correlators on large angu
scales. Therefore, if one wants to unveil non-Gaussianity
is necessary to address the cosmic variance problem fo
three-point correlators. The usual way to deal with this pro
lem is to construct estimators by performing spatial avera
on the celestial sphere and to find the one which has
smallest possible variance. The aim of this paper is then
find the best unbiased estimators both for the third mom

^al 1

m1al 2

m2al 3

m3& and for the angular bispectrumCl 1l 2l 3
and to

display the corresponding cosmic variances.
Recently, there has been a lot of activity in the subj

triggered by the finding that non-Gaussianities are presen
the 4-yr Cosmic Background Explorer~COBE! Differential
Microwave Radiometer~DMR! data@4,5#. Further analyses
have confirmed this result~e.g.,@6#!. However, soon after, it
was demonstrated by@7# that the non-Gaussian signal
driven by the 53 GHz data. This systematic artifact in t
CMB maps rejects a possible cosmological origin. More g
erally, it is clear that the presence of foregrounds@8,9# ren-
ders difficult the detection of a genuine non-Gaussian sig
Nevertheless, one should expect non-Gaussian features
present in the CMB anisotropy data sets. These could
produced in the early Universe during inflation either b
cause the initial conditions are non-Gaussian themse
~i.e., the quantum initial state is not the vacuum@10,11#! or
owing to the existence of couplings between different pert
bation modes at the nonlinear level@12,13,14#. In the context
of slow-roll inflation, the CMB bispectrum has recently be
studied in@15,16#. Even if non-Gaussianities are not primo
dial in origin, they will nevertheless arise during later stag
of evolution. In this context, the Rees-Sciama effect w
build up a small but nonvanishing signal@17,18,19#. Also,
cosmic topological defects of the vacuum, such as stri
and textures, are among the best motivated sources for
©2000 The American Physical Society04-1



s,
e
ec
e
ol
m
r
o

si
ap

n
se
he
le
i-

co
io
m
e
fo
lie
-
a
. I
e

fe
rs
n
as

le
a-
ho
r

he

ad
tr
na
u
ith
.
st
,
a
e-
l
th

te

s-
ore
s
is

dif-

ties
ction
oid
os-
ate
first
ed
be

ibed
na-
al-
he
he

tum

the
in-
are
ces
uld
le
-

the
the
ial
as a
d as

In

e-
on-
x-

t-
n
one

can
m-
tat-
ta-

ALEJANDRO GANGUI AND JÉRÔME MARTIN PHYSICAL REVIEW D 62 103004
Gaussian features@20–24#. Regarding secondary source
Goldberg and Spergel@25,26# have recently calculated th
angular bispectrum due to second order gravitational eff
such as the correlation of lensing of CMB photons and s
ondary anisotropies coming from the integrated Sachs-W
effect and thermal Sunyaev-Zel’dovich effect. In the sa
line, Cooray and Hu@27# have taken into account furthe
additional contributions to the bispectrum in the presence
re-ionization. Other approaches to the study of non-Gaus
features include preferred-direction statistics for sky m
@28#, the three-point correlation function@29,30,12,31#, lens-
ing statistics@32–34#, the genus and Euler-Poincare´ statistics
@35–37#, peak statistics@38–40#, correlation function of
peaks@41#, Minkowski functionals@42#, and wavelet analy-
ses@43,44#.

This article is organized as follows. In the next sectio
the general strategy for finding best estimators is expo
As a warm-up, in Sec. III, we implement this strategy for t
two-point correlators. Section IV is the core of the artic
There we explicitly derive, for the first time, the best unb
ased estimator for the angular bispectrum and show its
responding variance. Except for an overall normalizat
factor, this estimator turns out to be the one already e
ployed by @4# and other authors recently. Our result plac
their choice on a firm basis. Next, we find the expression
the best unbiased estimator for the third moment. An ear
study was performed in@45#; however, our findings go be
yond the results obtained in that article and, moreover,
explicit. Moreover, we present its corresponding variance
addition, we also emphasize that the knowledge of the b
estimator for the third moment does not allow one to in
the best estimator for the angular bispectrum and vice ve
In the last section, we briefly present our main conclusio
We finish up with a short Appendix which includes formul
related to the inverse two-point correlation function.

II. GENERAL STRATEGY FOR FINDING THE BEST
ESTIMATOR

In this section, we expose the cosmic variance prob
from the viewpoint of the theory of cosmological perturb
tions of quantum-mechanical origin and describe the met
of the best unbiased estimators. This theory rests on the p
ciples of general relativity and quantum field theory. At t
beginning of the inflationary phase@46–49# the Friedmann-
Lemaı̂tre-Robertson-Walker background spacetime alre
behaves classically whereas the excitations of the me
around this background are still quantum mechanical in
ture. Technically, this means that the perturbed metric m
be considered as a quantum operator. This operator e
represents density perturbations or gravitational waves
each case, the quantization can be carried out in a consi
way @50–57#. Then, the~zero-point! quantum fluctuations
which are the seeds of the cosmological perturbations,
amplified during inflation owing to the particle-creation ph
nomenon or squeezing effect@58#. Next, these primordia
fluctuations give rise to the large scale structures and to
CMB anisotropies observed today in our Universe.

One should also discuss the choice of the quantum sta
10300
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which the metric operator is placed. Obviously, it is not po
sible to prepare the initial state of the Universe and theref
the choice of the quantum state of the perturbations ia
priori free unless some theory of the initial conditions
provided~for example, quantum cosmology@59#!. Usually, it
is assumed that the initial state is the vacuum although
ferent hypotheses are possible@60,10,11#. If the initial state
is the vacuum, then the corresponding statistical proper
are Gaussian. This is because the ground-state wave fun
of a harmonic oscillator is a Gaussian. It is possible to av
this general conclusion either by considering nonlinear c
mological perturbations or by assuming that the initial st
is a nonvacuum state. We have recently investigated the
possibility in @15#. The second possibility has been studi
by @10#. In the latter case, non-Gaussianity is likely to
significant only for relatively small angular scales.

It should be emphasized that the mechanism descr
previously is deeply rooted in the quantum-mechanical
ture of the gravitational field. The observable quantities c
culated in this framework are always proportional to t
Planck length. In other words, if observations confirm t
full set of inflationary predictions then the fact thatdT/T
Þ0 would be a direct observational consequence of quan
gravity.

The quantum-mechanical origin of the anisotropies in
framework of inflation raises also profound problems of
terpretation. One should not think that these problems
purely theoretical. On the contrary, they have consequen
with regards to the experimental strategy that one sho
follow in order to extract as much information as possib
from the data. The fluctuations in the CMB effective tem
perature are linked to the perturbed metric as shown for
first time by Sachs and Wolfe. Therefore, the fact that
perturbed metric is an operator implies that the primord
fluctuations in the temperature must also be considered
quantum operator. The observables are often expresse
n-point correlation functions of the operatorD̂(e)
[dT̂/T(e) in the arbitrary stateuC&:

jn~e1 ,...,en![^CuD̂~e1!¯D̂~en!uC&, ~1!

whereei ’s are arbitrary directions on the celestial sphere.
the following, we will also use the notationj(e1•e2)
[j2(e1 ,e2). According to the postulates of quantum m
chanics, the previous theoretical predictions should be c
fronted to experiment in the following way. The same e
periment should be performedN times, giving each time
different outcomesqi . If the quantity (1/N)( i 51

N qi goes to
the corresponding quantum expectation value whenN goes
to infinity, the theoretical prediction is said to be ‘‘compa
ible with experiment.’’ This is the core of the problem i
cosmology: we only have access to one realization, i.e.,
map of the CMB sky, and that means thatN is fixed and
equal to 1. Therefore, the question arises as to how we
verify the theoretical predictions of the theory of quantu
mechanical cosmological perturbations. This is a way of s
ing the cosmic variance problem. It is a fundamental limi
4-2
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BEST UNBIASED ESTIMATORS FOR THE THREE- . . . PHYSICAL REVIEW D 62 103004
tion in the sense that it remains even when other limitati
like instrumental errors or low angular resolution have be
fully mastered.

The usual method to deal with this problem is to repla
quantum averages with spatial averages over the cele
sphere. Suppose we wish to measurejn(e1 ,...,en). ~Of
course, the discussion could also be applied to quant
other than correlation functions.! The first step is to intro-
duce a new operator, the estimatorÊ(jn) of jn , defined as

Ê~jn![E ¯E dV1¯dVnE~jn!~e1 ,...,en!D̂~e1!¯D̂~en!,

~2!

where E(jn)(e1 ,...,en) is a weight function to be deter
mined. Clearly,Ê(jn) is defined through a spatial averag
The second step is to require that the estimator is unbia
i.e.,

^CuÊ~jn!uC&5jn . ~3!

In general, this restricts the class of functionsE(jn) allowed.
The fact that the mean value of the estimator be equal to
quantity we are seeking does not guarantee that each
come will be for surejn . The third and final step is then t
find the functionE(jn) such that the variance~squared! of
Ê(jn), i.e.,

s Ê~jn!

2
5^Ê~jn!Ê~jn!&2^Ê~jn!&2, ~4!

be as small as possible, taking into account the constr
given by Eq.~3!. The corresponding estimator is then call
the best unbiased estimator. Mathematically, this require
ment is expressed through the following variation equatio

d„s Ê~jn!

2
2l@^CuÊ~jn!uC&2jn#…50, ~5!

where one has introduced a Lagrange multiplierl which can
then be determined from the previous equation and the c
straint itself. Once we havel, we plug it into Eq.~5! and this
completely fixesE(jn) and hence the corresponding be
estimator. In turn, its variance can now be calculated. If t
one vanishes, then we are sure that each outcome isjn and
from one realization we can determine then-point correla-
tion function. In this case,D̂(e) is said to be ergodic; i.e.
ensemble or quantum averages coincide with spatial a
ages. Unfortunately, one can show that this cannot be
case on the two-dimensional sphere@61#. Otherwise, we have
found the weight functionE(jn) which leads to the smalles
nonvanishing variance. If the variance is small enough, e
outcome will be concentrated around the mean value
with just one realization we have good chances to get a
sonable estimate of the correlation function. The typical er
made in considering that one given outcome is equal to
mean value is characterized by the variance of the estima
see Fig. 1.

All of the above analysis performed for the best~quan-
tum! estimators can equally well be reproduced in the c
where the anisotropies are due to an underlying stocha
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process although the former is generally physically best m
tivated. In that case, quantum averages^Cu¯uC& are just
replaced with stochastic averages^¯&. In the following, we
will drop out the caret symbol and consider that the differe
quantities are either operators or stochastic processes. I
same manner, we will denote an ensemble average by
symbol ^¯&, having in mind that this means either quantu
or classical averages.

Let us now describe the relevant quantities to estimate
is convenient to expand the temperature fluctuations over
basis of spherical harmonics according to

D~e!5(
lm

al
mYl

m~e!. ~6!

This equation assumes a complete sky coverage. Implem
tation of the method for the incomplete~galaxy-cut! sky can
be performed by using the basis introduced in@62#. Once a
specific model is given, the statistical properties of theal

m’s
are determined. SinceD(e) is real, theal

m’s must satisfy
al

m* 5(21)mal
2m . Without restricting the generality of the

underlying physics, the first three moments can be written

^al
m&50, ^al 1

m1al 2

m2* &5Cl 1
d l 1l 2

dm1m2
,

^al 1

m1al 2

m2al 3

m3&5S l 1 l 2 l 3

m1 m2 m3
DCl 1l 2l 3

, ~7!

where (m1

l 1
m2

l 2
m3

l 3 ) is a Wigner 3j symbol. The second equa

tion ensures the isotropy of the CMB. The quant
^al 1

m1al 2

m2* & is the second moment of theal
m’s andCl is usu-

ally called the angular spectrum. In the third equation,
quantity ^al

m1al
m2al

m3& is the third moment whileCl 1l 2l 3
is

FIG. 1. Sketch comparing the variances of an arbitrary estim
of jn with the best estimator of the same quantity. The wid
distribution does not permit an accurate determination ofjn due to
its large variance while the narrow distribution corresponds to
best~unbiased! estimator and possesses the smallest possible v
ance. As a consequence, one given realization~i.e., our CMB sky!
will most probably be closest to the mean value in the second c
rather than in the first one.
1 2 3

4-3
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ALEJANDRO GANGUI AND JÉRÔME MARTIN PHYSICAL REVIEW D 62 103004
called the angular bispectrum. Forl 15 l 25 l 35 l , this quan-
tity is generally written asBl[Cl l l . The presence of the
Wigner 3j symbol guarantees that the third moment vanis
unlessm11m21m350 and u l i2 l j u< l k< l i1 l j . Moreover,
invariance under spatial inversions ofj3 implies an addi-
tional ‘‘selection rule’’ @63,15# l 11 l 21 l 35even in order for
the third moment not to vanish. Finally, from this last re
tion and using standard properties of the 3j symbols, it fol-
lows that the angular bispectrum is left unchanged under
arbitrary permutation of the indicesl i .

We will need the higher moments as well. Since dep
tures from Gaussianity are expected to be small~especially
on large angular scales!, higher moments will be calculate
re
fo

e

-
ze
g
u
n
-

h
s

10300
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in the mildly non-Gaussian approximation. Within this a
proximation we can writeal

m5al
m(0)1eal

m(1)1O(e2) where
al

m(0) is a Gaussian random variable and the expans
parametere is small. In the following, each moment wil
be calculated to the first nonvanishing order ine. For
example, the fourth moment yieldŝ al 1

m1al 2

m2al 3

m3al 4

m4&

5^al 1

m1(0)al 2

m2(0)al 3

m3(0)al 4

m4(0)
&1O(e). As a consequence, th

connected fourth moment can be neglected because it
higher order than the Gaussian part. The ‘‘~0!’’ label will be
dropped out hereafter. Therefore, in the mildly non-Gauss
approximation we can write
sixth

f the
^al 1

m1al 2

m2al 3

m3* al 4

m4* &'^al 1

m1al 2

m2&^al 3

m3* al 4

m4* &1^al 1

m1al 3

m3* &^al 2

m2al 4

m4* &1^al 1

m1al 4

m4* &^al 2

m2al 3

m3* &

5~21!m21m4Cl 1
Cl 3

d l 1l 2
dm1 ,2m2

d l 3l 4
dm3 ,2m4

1Cl 1
Cl 2

d l 1l 3
dm1m3

d l 2l 4
dm2m4

1Cl 1
Cl 2

d l 1l 4
dm1m4

d l 2l 3
dm2m3

.

~8!

The fifth moment could be determined in a similar way but we will not need this quantity in the following. Finally, the
moment can be expressed as

^al 1

m1al 2

m2al 3

m3al 4

m4* al 5

m5* al 6

m6* &'^al 1

m1al 2

m2&^al 3

m3al 4

m4* &^al 5

m5* al 6

m6* &114 additional permutations. ~9!

Although the explicit expression is not particularly illuminating, the last equation will be useful for the calculation o
variance when dealing with the three-point correlators below. In particular, one can write

^al 1

m1al 2

m2al 3

m3al 1

m1* al 2

m2* al 3

m3* &5Cl 1
Cl 2

Cl 3
12Cl 1

3 d l 1l 2l 3
~dm1m3

1dm12m3
!~dm1m2

1dm12m2
!1Cl 1

Cl 2
2 d l 2l 3

~dm2m3
1dm22m3

!

1Cl 2
Cl 3

2 d l 3l 1
~dm1m3

1dm12m3
!1Cl 3

Cl 1
2 d l 1l 2

~dm1m2
1dm12m2

!, ~10!
c-

eal.
et-
r.

ctly
al

this
fol-
nd
where the symbold l 1l 2l 3
vanishes unlessl 15 l 25 l 3 in which

case it is one. This equation coincides with Eq.~24! of @63#
provided the undefined symboldm1m2m3,0 written in that

work has the meaningdm1m2m3,0[(dm1m3
1dm12m3

)(dm1m2

1dm12m2
).

As we mentioned in the Introduction, in this article we a
mainly interested in finding the best unbiased estimators
the two following quantities: the third moment^al 1

m1al 2

m2al 3

m3&

and the angular bispectrumCl 1l 2l 3
. These are related to th

three-point correlation functionj3 . It is clear that, as men
tioned above, the very same method could also be utili
for the computation ofjn with n arbitrary. Before addressin
this question, however, we will first treat the analogo
quantities related to the two-point correlation functio
namely^al 1

m1al 2

m2* & andCl , the main purpose being to illus

trate concretely the tactics presented above in a case w
everything can be calculated easily. This will be used a
guideline for the case of the three-point correlators.
r

d

s
,

ere
a

III. TWO-POINT CORRELATORS

A. Best estimator for the angular spectrumCl

The definition of the estimatorE(Cl) is given by our gen-
eral prescription@see Eq.~2!#

E~Cl ![E E dV1dV2El~e1 ,e2!D~e1!D~e2!, ~11!

where El(e1 ,e2) is the weight function. The angular spe
trum Cl is a real quantity and its estimatorE(Cl) must also be
real. Therefore, the weight function can be taken as r
From the previous definition, it is clear that the antisymm
ric part of El(e1 ,e2) does not contribute to the estimato
Then, we can replaceEl(e1 ,e2) in E(Cl) by its symmetrized
expressionES

l (e1 ,e2)5(1/2)@El(e1 ,e2)1El(e2 ,e1)#. At this
stage, two methods can be applied. Either we work dire
with the weight function or we expand it over the spheric
harmonics basis and try to determine the coefficients of
expansion. Clearly, both paths are equivalent and can be
lowed for any estimator. Here we employ the seco
4-4
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method, leaving the first one for the determination of t
second-moment estimator considered in the next subsec
Therefore, we write the weight function as

ES
l ~e1 ,e2!5 (

l 1m1
(
l 2m2

d H l 1
m1

l 2
m2

J
l

Yl 1

m1~e1!Yl 2

m2~e2!. ~12!

The reality and symmetry properties of the weight functi
ES

l imply that the complex coefficient of the expansion mu
satisfy, respectively,

dH l 1
m1

l 2
m2

J
l* 5~21!m11m2dH l 1

2m1

l 2
2m2

J
l

,

~13!

dH l 1
m1

l 2
m2

J
l

5dH l 2
m2

l 1
m1

J
l

.

Inserting the expression of the weight function~12! into the
general definition of the estimator~11! and using standard
properties of the spherical harmonics, one gets

E~Cl !5 (
l 1m1

(
l 2m2

dH l 1
m1

l 2
m2

J
l* al 1

m1al 2

m2. ~14!

Our first move is now to require that^E(Cl)&5Cl . Using the
second equation of Eq.~7!, we find that the coefficientsd
must satisfy the following constraints:

(
m1

~21!m1dH l 1
2m1

l 1
m1

J
l

5d l 1
l . ~15!

All the estimators satisfying this condition are unbiase
However, it is clear that this does not completely determ
the estimator but just a class of estimators. Our second m
is to calculate the variance. Using Eq.~8!, a straightforward
computation gives

sE~Cl !
2 52(

l 1m1
(
l 2m2

dH l 1
m1

l 2
m2

J
l* dH l 1

m1

l 2
m2

J
l Cl 1

Cl 2
. ~16!

This quantity is obviously positive. From this expressio
one sees that the imaginary part of the coefficientsd only
increases the variance. Since a vanishingI(d) satisfies the
constraint equation, we can consider that thed’s are real.

Our third move is to minimize the variance taking in
account the constraint. For this purpose we introduce a se
Lagrange multipliersl l 1

l ~i.e., one Lagrange multiplier pe

constraint sincel must be seen as a fixed index! and require
that

dFsE~Cl !
2 1(

l 1
l l 1

l S (
m1

~21!m1dH l 1
2m1

l 1
m1

J
l

2d l 1
l D G50.

~17!

The definition of the variationd must respect the symmetr
properties of the coefficientsd; we take
10300
e
n.

t

.
e
ve

,

of

ddH l 1
m1

l 2
m2

J
l

ddH l 18

m18

l 28

m28
J

l [
1

2 H 1

2
d l 1l

18
d l 2l

28
@dm1m

18
dm2m

28

1~21!m11m2dm12m
18
dm22m

28
#

1
1

2
d l 1l

28
d l 2l

18
@dm1m

28
dm2m

18

1~21!m11m2dm12m
28
dm22m

18
#J . ~18!

Although it is not compulsory to use this equation, since
naive definition of the variation would lead to the same fin
result @61#, it is nevertheless interesting to utilize it as
warm up for what will be done for the angular bispectru
The variation leads to the following relation between t
coefficientsd and the Lagrange multipliers:

4dH l 1
m1

l 2
m2

J
l Cl 1

Cl 2
1~21!m1l l 1

l d l 1l 2
dm12m2

50. ~19!

We see that the choice of thel l ’s is not free; it is fixed by
the variation itself. Using the constraint in this equation,
find l l 1

l 524@Cl 1
2 /(2l 111)#d l 1

l . Having determined wha

the Lagrange multipliers are, the problem is complet
solved. It is now sufficient to reintroduce this value forl l 1

l in

Eq. ~19!, get the coefficientsd and, from this, also the bes
unbiased estimator: the weight function is then given
ES,best

l (e1 ,e2)5(1/4p)Pl(e1•e2) and the estimator itself by
~see also@61#!

Ebest~Cl !5
1

2l 11 (
m52 l

l

al
mal

m* . ~20!

The variance of this estimator is the well-known ‘‘cosm
variance’’

sEbest~Cl !

2 5
2Cl

2

2l 11
. ~21!

One remark is in order here. The cosmic variance is usu
obtained in the following way: the previous estimator a
pears naturally from Eqs.~7! and it is usually assumed tha
the al

m’s are Gaussian random variables. In this case,
estimator~20! has ax2 probability density function and from
this the cosmic variance can be easily recovered. The p
presented above is by no means equivalent to this naive d
vation. There are many unbiased estimators and,a priori,
nothing guarantees that the simplest one is the best one:
the naive derivation isnot sufficient to prove that the estima
tor ~20! is the best one. This can be proved only along
lines described above. Moreover, we do not need to ass
that the al

m’s obey a Gaussian statistics. Only the mild
non-Gaussian assumption is necessary for the calculatio
the four-point correlators.
4-5
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B. Best estimator for the second momentCa

In this section, we discuss the best estimator forCa

[^al 1

m1al 2

m2* &. Greek letters will always be employed fo

collective-index notation, like

a[ H l 1 l 2

m1 m2
J

or

a8[H l 18 l 28

m18 m28
J .

Unlike in the foregoing subsection, we find the weight fun
tion directly without expanding it over the spherical harmo
ics basis. This method is closer to the one used by@45#. We
also show that the best estimator ofCa cannot be deduced
from the best estimator of the angular spectrumCl obtained
in the previous subsection as one could naively think.

Let us start with a couple of definitions: first, the qua
tity

Ra~e1 ,e2![Yl 1

m1~e1!Yl 2

m2* ~e2!, ~22!

which is complex and nonsymmetric with regard to the p
sition of the complex conjugate symbol ‘‘* .’’ This last prop-
erty comes from the definition of̂al 1

m1al 2

m2* & itself and it

would be the case for any even-point correlator. Then,
garding complex conjugation, there is a slight difference
tween the even- and odd-point correlators. The real par
Ra(e1 ,e2) will be denoted as

RR
a~e1 ,e2![

1

2
@Yl 1

m1~e1!Yl 2

m2* ~e2!1Yl 1

m1* ~e1!Yl 2

m2~e2!#.

~23!

RR
a(e1 ,e2) is not symmetric under a permutation of the tw

directions. It satisfiesRR
a(e2 ,e1)5RR

ā(e1 ,e2), where the in-
dex ā is defined by

ā[ H l 2 l 1

m2 m1
J

The symmetries in the indices and in the directions will p
an important role in what follows. Using the previous de
nitions, we can introduce a quantity which is symmetricboth
under a permutation of the two directionsand under a per-
mutation of the columns of internal indices ina:

RS
a~e1 ,e2![

1

4
@Yl 1

m1~e1!Yl 2

m2* ~e2!1Yl 1

m1~e2!Yl 2

m2* ~e1!

1Yl 1

m1* ~e1!Yl 2

m2~e2!1Yl 1

m1* ~e2!Yl 2

m2~e1!#;

~24!

i.e., we have RS
a(e1,e2)5RS

a(e2 ,e1)5RS
ā(e1 ,e2)

5RS
ā(e2 ,e1). Finally, we will also employ a symmetrize

Krönecker symbol defined according to
10300
-
-

-

-

-
-

of

dS
aa8[

1

2
~d l 1l

18
d l 2l

28
dm1m

18
dm2m

28
1d l 1l

28
d l 2l

18
dm1m

28
dm2m

18
!,

~25!

which is left unchanged under a permutation of the indicea
anda8 and also under permutations of the columns of ea
collective index separately.

Let us now turn to the computation of the best unbias
estimator; the general definition of an estimator can be
pressed as

E~Ca![E E dV1dV2Ea~e1 ,e2!D~e1!D~e2!. ~26!

The quantityCa is unchanged if we permute the columns
indices ina, Ca5Cā with ā given above. Being an estimato
for Ca it is then natural to assume thatE(Ca) possesses the
same property,E(Ca)5E(Cā). Looking at the definition of
Ea(e1 ,e2), Eq. ~26!, we easily see that the weight functio
will also satisfyEa(e1 ,e2)5Eā(e1 ,e2). Moreover, we take
Ea(e1 ,e2) symmetric under a permutation in the directio
e1 ande2 , i.e., ES

a(e1 ,e2)5ES
a(e2 ,e1).

Now, we require that the estimatorE(Ca) be unbiased,
which implies that the following relation must be satisfied

E E dV1dV2ES
a~e1 ,e2!Ra8~e1 ,e2!5dS

aa8 . ~27!

We have required the presence ofdS
aa8 on the right hand side

of the previous equation to respect the symmetries ina of the
weight function. In the previous equation theES

a andRa8 are
a priori complex. However, one can show that it is possib
to work only with a real weight functionES

a* (e1 ,e2)
5ES

a(e1 ,e2) and with the RR
a(e1 ,e2) defined above: the

imaginary contributions would just increase the varian
~One could have also chosen to work with a pure imagin
weight function and the imaginary part ofRa.! Therefore,
the constraint can be written as

E E dV1dV2ES
a~e1 ,e2!RR

a8~e1 ,e2!5dS
aa8 , ~28!

whereES
a has been taken real. Let us now calculate the v

ance of the estimatorE(Ca). Using Eqs.~8!, we easily find
that

sE~Ca!
2 52E E E E dV1dV2dV3dV4ES

a~e1 ,e2!

3ES
a~e3 ,e4!j~e1•e3!j~e2•e4!. ~29!

Our next step is to minimize this variance under the co
straint given in Eq.~28!. For this purpose, we introduce a s
of Lagrange multipliersla and require that

dFsE~Ca!
2 1(

a8
la8

a S E E dV1dV2ES
a~e1 ,e2!

3RR
a8~e1 ,e2!2dS

aa8D G50. ~30!
4-6
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At this point the precise meaning of the variation symbod
matters. Before performing the variation, let us recall that
symmetries of the weight function must be respected; he
we will have

dES
a~ei ,ej !

dES
b~ek ,el !

5
1

2 Fd~ei•ek21!

2p

d~ej•el21!

2p

1
d~ei•el21!

2p

d~ej•ek21!

2p GdS
ab . ~31!

The 2p’s in the denominators come from the fact that, wh
the directionei is expressed in terms of the correspondi
spherical angles like ei[(u i ,w i) and then dV i
5d cosui dwi , there is an extra 2p factor in d(ei•ek21)
52pd(cosui2cosuk)d(wi2wk). As a result of the variation
we obtain the following equation:

E E dV1dV2ES
a~e1 ,e2!j~e1•e3!j~e2•e4!

5
1

4 (
a8

la8
a RS

a8~e3 ,e4!. ~32!

The quantityRS
a8(e3 ,e4) appears naturally as a result of E

~31!. The previous equation should be compared with
~19! of the previous subsection. The result of the variation
a relation between the weight function and the Lagran
multiplier. Our aim now is to get an explicit expression f
the weight function. This can be done by using the inve
two-point correlation functionj21 which satisfies~see also
the Appendix!

E dV jj~ei•ej !j
21~ej•ek![d~ei•ek21!. ~33!

In the case of the three-point correlator, this definition lea
to subtleties which will be examined in detail in the ne
section. Multiplying Eq.~32! by j21(e18•e3)j21(e28•e4),
integrating over directionse3 ande4 , and relabeling indices
we arrive at

ES
a~e1 ,e2!5

1

4

1

~2p!2 (
a8

E E dV3dV4la8
a j21~e1•e3!

3j21~e2•e4!RS
a8~e3 ,e4!. ~34!

This equation for the second moment is analogous to
~21! of @45# obtained for the third moment. It is clear from
the previous section that, at this stage, our final goal has
yet been reached. The weight function is still expressed
terms of the Lagrange multipliers. The correct way to p
ceed is to remove the latter using the constraint given by
~28! as was done in the previous subsection. Then, we

multiply Eq. ~34! by the quantityRS
a9(e1 ,e2) and, after hav-

ing integrated over solid anglesV1 andV2 , this leads to the
equation that the Lagrange multipliers must satisfy:
10300
e
ce

.
s
e

e

s

q.

ot
in
-
q.
st

16Cl
19
Cl

29
dS

aa95F ~21!m191m29l H l 19

2m19

l 29

2m28
J

a

1~21!m191m29l H l 29

2m29

l 19

2m19
J

a

1l H l 19

m19

l 29

m29
J

a

1l H l 29

m29

l 19

m19
J

a G . ~35!

This equation is the analogous of the equationl l 1
l

524@Cl 1
2 /(2l 111)#d l 1

l of the previous subsection. Here, th

difference is that acombinationof Lagrange multipliers with
different indices appears rather than the Lagrange multip
itself. However, we can reconstruct exactly this combinat
on the right hand side of Eq.~34!. Indeed, we just have to

multiply each side of Eq.~35! by RS
a9(e1 ,e2) and perform the

sum overa9. Using the symmetry properties ofRS
a9(e1 ,e2)

we obtain

4Cl 1
Cl 2

RS
a~e1 ,e2!5(

a9
la9

a RS
a9~e1 ,e2!. ~36!

We now insert this equation on the right hand side of E
~34! to remove the Lagrange multipliers and find

ES,best
a ~e1 ,e2!5

1

4p2 Cl 1
Cl 2E E dV3dV4j21~e1•e3!

3j21~e2•e4!RS
a~e3 ,e4!. ~37!

To go further, we expressj21 in Eq. ~37! explicitly in
terms of spherical harmonics~see the Appendix! which
yields ES,best

a (e1 ,e2)5RS
a(e1 ,e2). Now, we just plug this re-

sult into Eq.~26! to get the final explicit expression of th
best unbiased estimatorEbest(Ca):

Ebest~Ca!5
1

2
~al 1

m1* al 2

m21al 1

m1al 2

m2* !. ~38!

Some remarks are in order here. First, despite appearan
one cannotdeduceEbest(Ca) from Ebest(Cl 1

). It is clear that
the following equation holds:

^E~Ca!&5^E~Cl 1
!&d l 1l 2

dm1m2
. ~39!

However, from this equation we arenot allowed to conclude
that Ebest(Ca)5Ebest(Cl 1

)d l 1l 2
dm1m2

. Therefore, knowing one
of the best unbiased estimators does not allow us to infer
other best one. To be specific, if one assumed the prev
wrong relation, from Eq.~20! one would get

Ebest~Ca!5
1

2l 111 S (
m52 l 1

l 1

al 1
m* al 1

mD d l 1l 2
dm1m2

~ false!,

~40!

and although this estimator is unbiased, it isnot the best one.
The second remark is that although the estimator given
4-7
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Eq. ~38! could be naively regarded as a trivial one, this is n
the case. Indeed, the estimator of Eq.~40! is as trivial as the
actual best one. The moral is then that there exist sim
choices which lead to the wrong answer. The only relia
method in the problem of minimizing the variance is the
fore the one exposed above.

IV. THREE-POINT CORRELATORS

A. Best estimator for the angular bispectrumCl 1l 2l 3

In this section, our aim is to determine the best unbia
estimator for the angular bispectrumCl 1l 2l 3

defined in the
third equation of Eqs.~7!. According to our general prescrip
tion, the most general definition reads
ta
he
r-

v
s

th
th

st

10300
t

le
e
-

d

E~Cl 1l 2l 3
![E E E dV1dV2dV3ES

l 1l 2l 3~e1 ,e2 ,e3!

3D~e1!D~e2!D~e3!. ~41!

As in the case of the two-point correlators, the weight fun
tion also possesses the properties of being real and sym
ric under arbitrary permutations of directionsei . In addition,
like Cl 1l 2l 3

, the weight function satisfiesES
l 1l 2l 35ES

l 2l 1l 3, as

well as for any other arbitrary permutation of the indicesl i .
We follow similar steps as for the angular spectrum a
therefore we choose to expand the weight function on
basis of the spherical harmonics. Then, as in Eq.~12!, we
write
ES
l 1l 2l 3~e1 ,e2 ,e3!5 (

l 18m18
(
l 28m28

(
l 38m38

dH l 18

m18

l 28

m28

l 38

m38
J

l 1 l 2 l 3
Y

l
18

m18~e1!Y
l
28

m28~e2!Y
l
38

m38~e3!. ~42!

The properties of the weight function imply that the coefficientsd must satisfy equations similar to those given in Eqs.~13!:

dH l 18

m18

l 28

m28

l 38

m38
J

l 1 l 2 l 3*
5~21!m181m281m38dH l 18

2m18

l 28

2m28

l 38

2m38
J

l 1 l 2 l 3
, dH l 18

m18

l 28

m28

l 38

m38
J

l 1 l 2 l 3
5dH l 28

m28

l 18

m18

l 38

m38
J

l 1 l 2 l 3
, ~43!
the

l-
d

s

w
nse-
ote

l-

the
e

s
ps,
where the last relation is in fact valid for arbitrary permu
tions of any two columns of the collective subindex. Like t
weight function,d is also left invariant under arbitrary pe
mutations of indicesl i ~not primed!. The estimator can be
expressed in terms of the coefficientsd and theal

m’s only:
inserting the expansion of the weight function in the abo
expression for the estimator and using standard propertie
the spherical harmonics one obtains

E~Cl 1l 2l 3
!5 (

l 18m18
(
l 28m28

(
l 38m38

dH l 18

m18

l 28

m28

l 38

m38
J

l 1 l 2 l 3*
a

l
18

m18a
l
28

m28a
l
38

m38.

~44!

In practice, CMB observational settings are devised such
both the monopole and the dipole are subtracted from
anisotropy maps. This means that the coefficientsd in the
last equation are only nonvanishing for indicesl i8>2 in the
collective subindex. Moreover, the coefficientsd satisfy l 1
1 l 21 l 35even. We must now require that our general e
mator given by Eq.~44! be unbiased, i.e.,̂ E(Cl 1l 2l 3

)&
5Cl 1l 2l 3

. This forces the coefficientsd to satisfy the con-
straint

(
m18m28m38

dH l 18

m18

l 28

m28

l 38

m38
J

l 1 l 2 l 3* S l 18 l 28 l 38

m18 m28 m38
D 5d

S

l i l j8, ~45!

where we have defined a new symmetrized Kro¨necker sym-
bol, this time for thel multipole indices only, as follows:
-

e
of

at
e

i-

d
S

l i l j8[ 1
6 ~d l 1l

18
d l 2l

28
d l 3l

38
15 additional permutations!.

~46!

It is easy to check that the constraint equation satisfies
conditions imposed by Eqs.~43! on the coefficientsd. In

particular, let us justify the presence of the symbold
S

l i l j8.
Using the previous properties ford, relabeling the indices
m18↔m28 in Eq. ~45!, and finally noting thatl 181 l 281 l 385 l 1

1 l 21 l 35even, which allows us to permute any two co
umns of the Wigner 3j symbol, one verifies that the left han
side of the constraint is invariant underl 18↔ l 28 . The same
applies for any pair ofl multipole indices and this explain

the presence of the symmetrizedd
S

l i l j8 in Eq. ~45!. We see

from this that all coefficientsd that do not satisfyl 181 l 28
1 l 385even do not enter the constraint. We will show belo
that these terms only increase the variance and as a co
quence one can take them equal to zero. In particular, n
that this is the case for a coefficientd with l 185 l 28 and l 38
5odd. This property will turn out to be useful in what fo
lows.

We are now in a position to calculate the variance of
estimator. Looking at Eq.~44! we see that this requires th
computation of the sixth moment of theal

m’s; see Eq.~9!.
After having made use of the properties of the coefficientd
and rearranging the resulting 15 terms into two grou
straightforward algebra yields
4-8
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^@E~Cl 1l 2l 3
!#2&5 (

l 18m18
(
l 28m28

(
l 38m38

Cl
18
Cl

28
Cl

38F6dH l 18

m18

l 28

m28

l 38

m38
J

l 1 l 2 l 3*
dH l 18

m18

l 28

m28

l 38

m38
J

l 1 l 2 l 3
19~21!m181m28dH l 18

m18

l 18

2m18

l 38

m38
J

l 1 l 2 l 3*
dH l 28

m28

l 28

2m28

l 38

m38
J

l 1 l 2 l 3 G .

~47!

The square of the variance ofE(Cl 1l 2l 3
) is given by

sE~Cl 1l 2l 3
!

2 5^@E~Cl 1l 2l 3
!#2&2^E~Cl 1l 2l 3

!&2. ~48!

Following the discussion in Sec. II, the term̂@E(Cl 1l 2l 3
)#2& is of order e0 whereas the lowest nonvanishing order

^E(Cl 1l 2l 3
)&2 is e2. Therefore, the latter one will not enter the minimization procedure and the variance squared will be

assE(Cl 1l 2l 3
)

2 '^@E(Cl 1l 2l 3
)#2&. However, let us notice that this does not occur in the case of the two-point correlator. Inde

we have seen, in that case both terms contributing to the square of the variance are of the same order ine. Then, it follows that
Eq. ~47! corresponds to Eq.~16! in the last section.

Let us now examine the structure of the variance in more detail. The term 6d* d}R2(d)1T2(d) in Eq. ~47! is analogous
to the one in Eq.~16!. However, here there is another contribution, the 9d* d term, which will play a crucial role in what
follows. The imaginary part of this term of course vanishes, as the variance must be real. However, the real part of it
a contribution like

9(
l 38

Cl
38(

m38
F(l 18 Cl

18(
m18

~21!m18JS dH l 18

m18

l 18

2m18

l 38

m38
J

l 1 l 2 l 3 D GF(l 28 Cl
28(

m28
~21!m28JS dH l 28

m28

l 28

2m28

l 38

m38
J

l 1 l 2 l 3 D G59(
l 38

Cl
38(

m38
@¯#2, ~49!

where the quantity@¯#2 depends on the indicesl 1 , l 2 , l 3 and l 38 , m38 and is strictly positive or zero. Of course, there is
similar term coming from the real part ofd. Thus, we see that the various contributions of the imaginary part of the coeffic
d to the two terms, 6d* d and 9d* d, only increase the variance. Since we know that a vanishing imaginary part does s
the constraint Eq.~45!, it can be disregarded in the sequel. Therefore, Eq.~47! can then be written solely in terms ofreal
coefficientsd as follows:

sE~Cl 1l 2l 3
!

2 5 (
l 18m18

(
l 28m28

(
l 38m38

Cl
18
Cl

28
Cl

38F6S dH l 18

m18

l 28

m28

l 38

m38
J

l 1 l 2 l 3 D 219~21!m181m28dH l 18

m18

l 18

2m18

l 38

m38
J

l 1 l 2 l 3
dH l 28

m28

l 28

2m28

l 38

m38
J

l 1 l 2 l 3 G . ~50!

Our next move now is to minimize this variance with respect to the coefficientsd, taking into account the constraint of Eq
~45!:

dH sE~Cl 1l 2l 3
!

2 1 (
l 18 l 28 l 38

l
l
18 l

28 l
38

l 1l 2l 3F (
m18m28m38

dH l 18

m18

l 28

m28

l 38

m38
J

l 1 l 2 l 3 S l 18 l 28 l 38

m18 m28 m38
D 2d

S

l i l j8G J 50. ~51!

This equation is analogous to Eq.~17!. As before, one needs to give a concrete meaning to the symbold of the variation. Its
definition must respect the symmetries of the coefficientsd and hence we take

ddH l 18

m18

l 28

m28

l 38

m38
J

l 1 l 2 l 3

ddH l 19

m19

l 29

m29

l 39

m39
J

l 1 l 2 l 3
5

1

6 H 1

2
d l

18 l
19
d l

28 l
29
d l

38 l
39
@dm

18m
19
dm

28m
29
dm

38m
39
1~21!m181m281m38dm

182m
19
dm

282m
29
dm

382m
39
#15 termsJ . ~52!

Then, Eq.~51! leads to

12Cl
18
Cl

28
Cl

38
dH l 18

m18

l 28

m28

l 38

m38
J

l 1l 2l 3
1l

l
18 l

28 l
38

l 1l 2l 3S l 18 l 28 l 38

m18 m28 m38
D 16~21!m28Cl

28
Cl

38
d l

18 l
28
dm

182m
28(lm Cl~21!mdH l

m

l

2m

l 38

m38
J

l 1l 2l 3

16~21!m38Cl
38
Cl

18
d l

28 l
38
dm

282m
38(lm Cl~21!mdH l

m

l

2m

l 18

m18
J

l 1l 2l 3
16~21!m18Cl

18
Cl

28
dd

38 l
18
dm

382m
18(lm Cl~21!mdH l

m

l

2m

l 28

m28
J

l 1l 2l 3
50.

~53!
103004-9
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This formula and Eq.~45! form a set of equations which
completely determines the best unbiased estimator. We
the complicated structure of these equations. The last t
terms come from the 9dd term in the variance and are no
present in the case of the angular spectrum.

From this last equation and using the constraint, Eq.~45!,
we can get the general expression for the Lagrange mult
ers. Thus, we multiply Eq.~53! by the appropriate 3j symbol
and we sum over the three indicesmi8 . The first term is

exactly the constraint and produces ad
S

l i l j8. Using the fact
that a triple sum over themi ’s of the squared of a 3j symbol
gives unity, the second term yields the Lagrange multipli
themselves. Finally, the last three terms vanish: indeed, a
straightforward manipulations one generates a term like

dH l
m

l
2m

l 38
0
J

l 1 l 2 l 3
(
m18

~21!m18S l 18 l 18 l 38

m18 2m18 0
D ~54!
in

fo
o

-

de
u

10300
ee
ee

li-

s
er

for the third term of Eq.~53! and analogously for the last tw
ones. As we mentioned previously, the coefficientd in Eq.
~54! vanishes unlessl 38 is even. In this case, recalling th
identity @18#,

(
m18

~21!m18S l 18 l 18 l 38

m18 2m18 0
D 5~21! l 18A2l 1811d l

380 ,

l 385even, ~55!

we see that there will only be a nonvanishing term ifl 3850.
But, the correspondingd is zero becausel 38,2 and therefore
terms of this kind do not contribute to the Lagrange mu
pliers. Then, these are given by

l
l
18 l

28 l
38

l 1l 2l 35212Cl
18
Cl

28
Cl

38
d

S

l i l j8. ~56!

Plugging this into Eq.~53!, one has
12Cl
18
Cl

28
Cl

38F dH l 18

m18

l 28

m28

l 38

m38
J

l 1l 2l 3
2d

S

l i l j8S l 18 l 28 l 38

m18 m28 m38
D G16~21!m28Cl

28
Cl

38
d l

18 l
28
dm

182m
28(lm Cl~21!mdH l

m

l

2m

l 38

m38
J

l 1l 2l 3

16~21!m38Cl
38
Cl

18
d l

28 l
38
dm

282m
38(lm Cl~21!mdH l

m

l

2m

l 18

m18
J

l 1l 2l 3
16~21!m18Cl

18
Cl

28
d l

38 l
18
dm

382m
18(lm Cl~21!mdH l

m

l

2m

l 28

m28
J

l 1l 2l 3
50.

~57!
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This is the final equation to be solved in order to determ
the best unbiased estimator. A solution is

dH l 18

m18

l 28

m28

l 38

m38
J

l 1 l 2 l 3
5S l 18 l 28 l 38

m18 m28 m38
D d

S

l i l j8. ~58!

This leads to

Ebest~Cl 1l 2l 3
!5 (

m18m28m38
S l 1 l 2 l 3

m18 m28 m38
D a

l 1

m18a
l 2

m28a
l 3

m38.

~59!

This is the main result of this subsection.
Given that we now know the best unbiased estimator

Cl 1l 2l 3
, one can compute its variance, the smallest one am

all possible estimator variances. In@15# we have already cal
culated it, and it reads

sEbest~Cl 1l 2l 3
!

2 5Cl 1
Cl 2

Cl 3
~11d l 1l 2

1d l 2l 3
1d l 3l 1

12d l 1l 2
d l 2l 3

!.

~60!

In the same reference a plot of this variance for low or
multipoles can also be found. This is what one could d
e

r
ng

r
b

~the square of! the ‘‘bispectrum cosmic variance’’ in perfec
analogy withsEbest(Cl )

2 52Cl
2/(2l 11), which is ~the square

of! the variance of the best unbiased estimator for the ang
spectrum, commonly known as the ‘‘cosmic variance.’’

Let us conclude this subsection by comparing our res
with those that recently appeared in the literature. An e
mator restricted to the diagonal casel 15 l 25 l 3 has been pro-
posed in@4# ~see also@64# for an extension of their analysis!
for Bl[Cl l l and reads

E~Bl !5
1

2l 11 S l l l

0 0 0D
23/2

3 (
m1m2m3

S l l l

m1 m2 m3
D al

m1al
m2al

m3. ~61!

In that work, the aim of the authors was not to seek the b
estimator, but to use Eq.~61! to analyze the non-Gaussia
features of the 4-yr COBE-DMR data. It is easy to see t
their estimator doesnot satisfy the constraint~45!; i.e., the
estimator is biased. This is due to the presence of the ove
prefactor in front of the triple sum in Eq.~61!. However, as
4-10
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we have proved above, getting rid of it produces the b
unbiased estimatorEbest(Cl 1l 2l 3

), Eq. ~59!.

B. Best estimator for the third moment Ba

We now seek an estimator forBa[^al 1

m1al 2

m2al 3

m3& where,

as in the last section, it is convenient to define a collect
index

a[H l 1 l 2 l 3

m1 m2 m3
J .

This question has already been addressed in@45#. As we did
with the second moment, our starting expression for an
biased cubic estimatorE(Ba) of Ba will be in the form

E~Ba!5E E E dV1dV2dV3Ea~e1 ,e2 ,e3!

3D~e1!D~e2!D~e3!. ~62!

The goal is to find the weight functionEa(e1 ,e2 ,e3) that
minimizes the variance of the estimator. As above, the qu
tity Ba is unchanged if we permute arbitrary columns
indices ina:Ba5Bā, where, for instance,

ā[H l 2 l 1 l 3

m2 m1 m3
J .

E(Ba) has the same properties asBa and then it follows
that E(Ba)5E(Bā) for any column-permutatedā. This
implies that the Ea(e1 ,e2 ,e3) satisfies Ea(e1 ,e2 ,e3)
5Eā(e1 ,e2 ,e3).

Now, is Ea(e1 ,e2 ,e3) also symmetric under permutation
in the directionse1 ,e2 ,e3? From its definition we canno
know, for these directions are integrated over in the ab
defining equation. Unlike the case for the second mom
discussed before, hereEa cannot be decomposed into sym
metric and antisymmetric parts. However, we can alw
write Ea5ES

a1something, and show that this last contrib
tion to Eq.~62! vanishes. Therefore, there is no loss of ge
erality in working with ES

a(e1 ,e2 ,e3)[ 1
6 @Ea(e1 ,e2 ,e3)

15terms# which is symmetric under arbitrary permutatio
of directionsei .

Demanding the estimatorE(Ba) to be unbiased,̂E(Ba)&
5Ba, yields the first constraint equation that the weig
function ES

a(e1 ,e2 ,e3) must satisfy:

E E E dV1dV2dV3ES
a~e1 ,e2 ,e3!RR

a8~e1 ,e2 ,e3!5dS
aa8 ,

~63!
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where Ra8(e1 ,e2 ,e3)[Y
l
18

m18(e1)Y
l
28

m28(e2)Y
l
38

m38(e3) and

RR
a8(e1 ,e2 ,e3) is its real part. The form ofRa comes from

the expression of j3 , viz., ^D(e1)D(e2)D(e3)&
5SaBaRa(e1 ,e2 ,e3). The symmetrized Kro¨necker symbol

can be written asdS
aa8[ 1

6 (d l 1l
18
dm1m

18
d l 2l

28
dm2m

28
d l 3l

38
dm3m

38

15terms) as required to comply with the symmetry und
permutations in the columns ofa in ES

a(e1 ,e2 ,e3). In the

above equation,RR
a8(e1 ,e2 ,e3) is clearly nonsymmetric un-

der a permutation of directionse1 ,e2 ,e3 . However, as
above, we can define a symmetrized combinat
RS

a(e1 ,e2 ,e3)[ 1
6 @RR

a(e1 ,e2 ,e3)15terms# ~12 terms!. Sym-
metrizing either in directions or in the columns ofa in
RR

a(e1 ,e2 ,e3) yields exactly the sameRS
a(e1 ,e2 ,e3). In the

last equation and in what follows the weight functionES
a is

real for reasons similar to the ones exposed around Eq.~28!
in the last section.

Proceeding as in Sec. III and using Eq.~9!, one gets

sE~Ba!

2
5E dV1¯E dV6ES

a~e1 ,e2 ,e3!ES
a~e4 ,e5 ,e6!

3j~e1•e4!@6j~e2•e5!j~e3•e6!

19j~e2•e3!j~e5•e6!#, ~64!

where, utilizing the symmetry of the coefficien
ES

a(ei ,ej ,ek) undere-direction permutations, only two type
of j products remain: first type, six terms where all the thr
j’s mix directions of the first and secondES

a’s and, second
type, nine terms where only onej @in the above equation
j(e1•e4)# does it.

To minimize the remaining variance under the constra
~63! we introduce a set of Lagrange multipliersla and write

dFsE~Ba!

2
2(

a8
la8

a S E E E dV1dV2dV3ES
a~e1 ,e2 ,e3!

3RR
a8~e1 ,e2 ,e3!2dS

aa8D G50. ~65!

As already noted for the second moment, the symmet
of the weight function must be respected in the variatio
hence we have
dES
a~e1 ,e2 ,e3!

dES
b~ei ,ej ,ek!

5
1

6 Fd~e1•ei21!

2p

d~e2•ej21!

2p

d~e3•ek21!

2p
15 termsGdS

ab . ~66!

Now, we vary Eq.~65! and, after some algebra, we come up with
4-11
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2E E E dV4dV5dV6

1

6
$j~e1•e4!@6j~ej•e5!j~ek•e6!19j~ej•ek!j~e5•e6!#15 terms%ES

a~e4 ,e5 ,e6!

5(
a8

la8
a RS

a8~ei ,ej ,ek!, ~67!

an expression which is symmetric in the arbitrary directionsei ,ej ,ek as it should be~note the presence ofRS
a8!.

We aim at getting an explicit expression forES
a(e4 ,e5 ,e6). A glance at the previous equation shows that we need

multiply both sides of it by the inverse of the correlation functionj21 defined in the Appendix. Concretely, we multiply E
~67! by j21(ei•ei 8)j

21(ej•ej 8)j
21(ek•ek8) and integrate over directionsei ,ej ,ek ; we get

6ES
a~ei 8 ,ej 8 ,ek8!19

~2p!2

3 E E dV5dV6j~e5•e6!@j21~ei 8•ej 8!ES
a~ek8 ,e5 ,e6!

1j21~ej 8 ,ek8!ES
a~ei 8 ,e5 ,e6!1j21~ek8 ,ei 8!ES

a~ej 8 ,e5 ,e6!#

5
1

2 E E E dV idV jdVkj
21~ei•ei 8!j

21~ej•ej 8!j
21~ek•ek8!(

a8
la8

a RS
a8~ei ,ej ,ek!. ~68!
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As before, the 2p factors on the left hand side come fro
operations like 2p f (ei)5*dVkd(ei•ek21) f (ek), for an ar-
bitrary function f (ek). However, we do not have an explic
expression forES

a yet. We see that expressions of the ty
j(e5•e6)j21( I • I )ES

a( I ,e5 ,e6) are the ones that preven
us from isolating the weight function. To deal with thi
it is convenient to construct the combinatio
**dV5dV6ES

a(I,e5 ,e6)j(e5•e6). To reach this goal, we
multiply both sides of Eq.~68! by j(ej 8•ek8) and integrate
over directionsej 8 andek8 . This operation produces a dive
gence on the left hand side of this equation in a form o
Dirac function ‘‘d~0!.’’ In the continuous case, all method
lead to this unavoidable problem and although it has alre
appeared in the literature@45#, it has never been treated s
far. That this divergence is a mathematical artifact we c
see from the fact that, in practice, we never deal with an id
experiment: the problem is solved when we take into acco
the fact that each different experimental setting is limited
a finite angular resolution. This is usually quantified in ter
of an l-dependent window functionWl ~the circularly sym-
metric pattern of the observation beam inl space!, although
more involved scanning techniques are also emplo
@65,66#. Then, only a finite number of multipoles will effec
tively contribute to the correlation function and, as a res
the above-mentioned divergence is regularized; indeed,
have

j~ei•ej !5(
l

2l 11

4p
ClW l

2Pl~ei•ej !, ~69!

which, upon using the expression forj21 given in the Ap-
pendix, leads to the quantity
10300
a

y

n
al
nt
y
s

d

t,
e

Aik[E dV jj~ei•ej !j
21~ej•ek!

52p(
lm

W l
2Yl

m~ei !Yl
m* ~ek!. ~70!

In particular, the previous divergence ‘‘d~0!’’ now becomes

A[Ai i 5(
l

2l 11

2
W l

2. ~71!

This is a more realistic and finite object to work with in th
case where two directions on the microwave sky coincide
a given experience. Notice that for an ideal experimen
setting in which the window functionWl→1 or, equiva-
lently, the beams→0 in the case of a Gaussian profile,A
blows up. Since the terms of the type 9jj in Eq. ~64! are not
present in the case of the two-point correlators, this prob
did not appear there. From now on, strictly speaking,
expressions should incorporate the window function. Ho
ever, in what follows and for computational convenience,
will keep Aik'd(ei•ek21) for eiÞek , a good approxima-
tion as we can see from Fig. 2.

Endowed now with the above regularization method,
present the term**dV5dV6ES

a( I ,e5 ,e6)j(e5•e6) in the fol-
lowing form:

E E dV5dV6ES
a~e4 ,e5 ,e6!j~e5•e6!

5
D

24p2 (
a8

la8
a E E E dV i 8dV j 8dVk8

3j21~e4•ei 8!j
21~ej 8•ek8!RS

a8~ei 8 ,ej 8 ,ek8!,

~72!
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with D[24p3$619@(2p)2/3#(232p14pA)%21 where,
as expected, the factorA appears explicitly. Now, we jus
replace the six terms with prefactor 9jj on the left hand side
of Eq. ~67! with Eq. ~72!, resulting in

E E E dV4dV5dV6j~ei•e4!j~ej•e5!j~ek•e6!

3ES
a~e4 ,e5 ,e6!

5
1

12(
a8

la8
a H RS

a8~ei ,ej ,ek!

2
D

2p E E dV j 8dVk8j
21~ej 8•ek8!

3@RS
a8~ei ,ej 8 ,ek8!j~ej•ek!1RS

a8~ej ,ej 8 ,ek8!j~ek•ei !

1RS
a8~ek ,ej 8 ,ek8!j~ei•ej !#J . ~73!

This contains just one appearance ofEa; to get the weight
function explicitly, we only need to multiply the equation b
j21(ei•e1)j21(ej•e2)j21(ek•e3) and integrate over direc
tionsei ,ej ,ek . Finally, we get the expression forES

a in terms
of the Lagrange multipliersla:

FIG. 2. Values ofAik ~as defined in the text! with fixed direc-
tion ei at the center of the plot and directionek scanning a square o
side 90°. We show the result for the COBE-DMR window functio
The full width at half maximum of the plot is roughly 10°, of th
same order as the resolution of the COBE-DMR detector. We
then expect the plotted ‘‘spike’’ to select just one experimen
pixel on the sky map, making the relationAik'd(ei•ek21) a good
approximation. Note that higher resolution experiments will yield
more peaked curve, although one would expect the goodness o
approximation to remain roughly the same.
10300
ES
a~e1 ,e2 ,e3!5

1

123~2p!3

3(
a8

la8
a H E E E dV idV jdVkj

21~ei•e1!

3j21~ej•e2!j21~ek•e3!RS
a8~ei ,ej ,ek!

2DE E E dV idV jdVkRS
a8~ei ,ej ,ek!

3j21~ej•ek!@j21~ei•e1!j21~e2•e3!

1j21~ei•e2!j21~e3•e1!

1j21~ei•e3!j21~e1•e2!#J . ~74!

Having reached this point, we have an explicit expression
ES

a , but still dependent on the Lagrange multipliers. Th
equation is well defined as it contains the renormalized qu
tity A. Within a particular experiment with a given resolu
tion, the valueA takes depends on what one means by t
coincident directions. For example, for the COBE-DM
window-function specification~a Gaussian beam with dis
persions53.2°! this yields roughlyA'158.5, including the
quadrupole. It is not difficult to extend this to other scanni
techniques. The previous equation is the analogue of our
~34! corresponding to the second moment and also to
~21! of @45#. In that article, a similar analysis is done but f
the discretized CMB sky. We remark that no divergence
pears in his case. Indeed, all relevant quantities are fi
when evaluated for two directions pointing towards the sa
pixel. Our prefactorD corresponds to 3/(213N) in that pa-
per, whereN represents the number of pixels in the ma
Clearly, N→` when the pixel size goes to zero, as well
A→` when the window functionWl→1. At this intermedi-
ate step our corresponding expressions need not coincide
cause both depend on the particular regularization sch
used ~be it discretization or usage of a window function!.
Despite appearances, we will show below that the final
pression for the best unbiased estimator does not depen
these schemes. This cannot be inferred from Eq.~74! be-
cause we still need to remove the Lagrange multiplier. U
like what was done in@45#, we now proceed further and
express the weight function explicitly. Hence, we multip

both sides of Eq.~74! by RR
a9(e1 ,e2 ,e3), where

a9[H l 19 l 29 l 39

m19 m29 m39
J

and then integrate over directionse1 , e2 , ande3 , and, upon
using the constraint equation~63!, we get

.

n
l

the
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12dS
aa95

1

6

1

Cl
19
Cl

29
Cl

39 H F ~21!m191m291m39l H l 19

2m19

l 29

2m29

l 39

2m39
J

a

1l H l 19

m19

l 29

m29

l 39

m39
J

a G15 additional permutations in indexa9J
2

D
3 H F d l

19 l
29
dm

192m
29
~21!m29

Cl
29
Cl

39
(
lm

~21!m

Cl S ~21!m39l H l

m

l

2m

l 39

2m39
J

a

1l H l

2m

l

m

l 39

m39
J

a

1~21!m39l H l 39

2m39

l

m

l

2mJ
a

1l H l 39

m39

l

2m

l

mJ
a

1~21!m39l H l

m

l 39

2m39

l

2mJ
a

1l H l

2m

l 39

m39

l

mJ
a D G1F 1→2

2→3
3→1

G1F 1→3
2→1
3→2

G J . ~75!

Equation~75! is the final algebraic equation that the multipliers must satisfy. For fixed,a, a natural way to proceed would b
to get an explicit expression forla8

a . Another way to solve the problem goes on a line analogous to the case of the two
correlators: we just need to identify the complicated combination of Lagrange multipliers on the right hand side of E~75!
with the one on the right hand side of Eq.~73! @or, equivalently, Eq.~74!#. In order to do that, we now multiply both sides o

Eq. ~75! by RR
a9(ei ,ej ,ek), perform the six sums over the indices ina9, and we end up with

RS
a~ei ,ej ,ek!Cl 1

Cl 2
Cl 3

5(
a9

RR
a9~ei ,ej ,ek!Cl

19
Cl

29
Cl

39
dS

aa9

5
1

12(
a8

la8
a RS

a8~ei ,ej ,ek!2
D
36(

LM
(
lm

~21!M

CL
@Yl

m~ei !j~ej•ek!1Yl
m~ej !j~ek•ei !1Yl

m~ek!j~ei•ej !#

3 Fl H l
m

L
M

L
2M J

a
1~21!ml H l

2m
L

2M
L
M J

a
1l H L

2M
l
m

L
M J

a
1~21!ml H L

M
l

2m
L

2M J
a

1l H L
M

L
2M

l
mJ

a
1~21!ml H L

2M
L
M

l
2mJ

a G. ~76!

This is the equivalent of Eq.~35!. The aim now is to show that the combination of Lagrange multipliers on the right hand
of the previous equation is precisely the one which appears on the right hand side of Eq.~73!. In the latter, let us express bot

RS
a8 andj21 in the second term on the right hand side in terms of spherical harmonics. After some algebra we get

E E E dV4dV5dV6j~ei•e4!j~ej•e5!j~ek•e6!ES
a~e4 ,e5 ,e6!

5
1

12(
a8

la8
a RS

a8~ei ,ej ,ek!2
D
36(

LM
(
lm

~21!M

CL
@Yl

m~ei !j~ej•ek!1Yl
m~ej !j~ek•ei !1Yl

m~ek!j~ei•ej !#

3 Fl H l
m

L
M

L
2M J

a
1~21!ml H l

2m
L

2M
L
M J

a
1l H L

2M
l
m

L
M J

a
1~21!ml H L

M
l

2m
L

2M J
a

1l H L
M

L
2M

l
mJ

a
1~21!ml H L

2M
L
M

l
2mJ

a G.
~77!

which, as advertised, yields the same combination of Lagrange multipliers of Eq.~76!. Then, putting the last two equation
together, multiplying byj21, and integrating 3 times, we finally get the weight function associated with the best unb
estimator:

ES,best
a ~ei ,ej ,ek!5RS

a~ei ,ej ,ek!, ~78!

which implies that the best unbiased estimator itself is given by

Ebest~Ba!5 1
2 ~al 1

m1al 2

m2al 3

m31al 1

m1* al 2

m2* al 3

m3* !. ~79!

This is the final answer and it is a new result. Let us make a few remarks. First, this does not depend onA which shows that
Eq. ~79! is independent of the regularization scheme used. Second,@63# used the following complex unbiased estimat
E(Ba)5al 1

m1al 2

m2al 3

m3, although he did not claim it to be the best one. Third, as for the two-point correlators, one cannot u

~79! in order to inferEBest(Cl 1l 2l 2
). Indeed, promoting the equation
103004-14
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^al 1

m1al 2

m2al 3

m3&5S l 1 l 2 l 3

m1 m2 m3
D Cl 1l 2l 3

, ~80!

valid for the mean values of the estimators, to the equation

Ebest~Ba!5
1

2
~al 1

m1al 2

m2al 3

m31al 1

m1* al 2

m2* al 3

m3* !5Ebest~Cl 1l 2l 3
!S l 1 l 2 l 3

m1 m2 m3
D ~ false!, ~81!

valid for the estimators themselves, is an unjustified step. If, nevertheless, we used this false relation, we would get

Ebest~Ba!5S l 1 l 2 l 3

m1 m2 m3
D (

m18m28m38
S l 1 l 2 l 3

m18 m28 m38
D a

l 1

m18a
l 2

m28a
l 3

m38 ~ false!, ~82!

which cannot be cast into12 (al 1

m1al 2

m2al 3

m31al 1

m1* al 2

m2* al 3

m3* ). So, like for the two-point correlators, we see that one cannot in

the Ebest(Ba) from Ebest(Cl 1l 2l 3
) and vice versa.

Endowed now with the best unbiased estimator, one can compute its variance squared, the ‘‘third-moment cosm
ance,’’ which reads

sEbest~Ba!

2
5

1

2
$Cl 1

Cl 2
Cl 3

@11dm10dm20dm30#1Cl 1
3 d l 1l 2l 3

@8dm10dm20dm3012~dm1m3
1dm12m3

!~dm1m2
1dm12m2

!#

1Cl 1
Cl 2

2 d l 2l 3
@2dm10dm22m3

1dm2m3
1dm22m3

#1Cl 2
Cl 3

2 d l 3l 1
@2dm20dm32m1

1dm3m1
1dm32m1

#

1Cl 3
Cl 1

2 d l 1l 2
@2dm30dm12m2

1dm1m2
1dm12m2

#%. ~83!
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For example, from this we can now compute the cosm
variance for the third-moment estimatorEbest(Bb) with

b[H l l l

m m 22mJ ,

wherel 5even andmÞ0. This particular case is often treate
in the literature: see, e.g.,@63,45#. We find sEbest(Bb)

2
5Cl

3

whereas the variance of the estimator used in@63# yields
sE(Bb)

2
52Cl

3. Another example comes from taking

g[H l l l

m1 m2 m3
J ,

where umi uÞumj u for any i, j . With this choice we get
sEbest(Bg)

2
5Cl

3/2 whereas@63# obtainssE(Bg)
2

5Cl
3. Note that in

both examples the results differ by a factor of 1/2. This c
be traced back to the form of the best estimator in Eq.~79!.
The variance computed in@63# is consistent with his choice
of the estimator. However, unlike what is stated in that
per, this variance does not deserve the name ‘‘cosmic’’
cause, as we saw above, this estimator is not the best on
expected, the variance of the best estimator is smaller
the variance computed in his article. Since we have now
correct expression for the cosmic variance, its numer
value should be reestimated. To be specific, let us take

b[H 2 2 2

1 1 22J .
10300
c

n

-
-
As

an
e

al

The cosmic variance is then sEbest(Bb)5C2
3/2

5(4p/5)3/2Qrms-PS
3 /T0

3'1.3310215 where we used T0

52.7 K andQrms-PS518.7mK @67#. Although this figure is
close to Luo’s result (1.4310215) cited after Eq.~32! in
@45#, this does not imply that the two variances are not d
ferent by a factor of 1/2, as we have just seen. This mi
probably be due to a difference in the quadrupole normal
tions.

V. CONCLUSIONS

Optimized analyses of CMB data sets involve the use
appropriate methods in order to reduce the various uncert
ties. In particular, the theoretical error bars due to the cos
variance can be minimized by working with the method
the best unbiased estimators. In this article, we have app
this technique for the study of CMB non-Gaussian featur
These are often characterized by means of the third mom
for the al

m’s or by the angular bispectrumCl 1l 2l 3
. We have

found the best unbiased estimators in both cases. Thes
the quantities that should be used in future data analyses
would be important for upcoming megapixel experimen
@68,69# such as the microwave anisotropy probe~MAP!1 and
Planck Surveyor.2 In addition to this, we have displayed bot
the angular bispectrum and the third moment cosmic v

1http://map.gsfc.nasa.gov/
2http://astro.estec.esa.nl/Planck/
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ances, the smallest possible uncertainties attached to
bispectrum and the third moment, which would be presen
any ideal experiment when all other sources of noise h
been removed.
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APPENDIX: THE INVERSE TWO-POINT
CORRELATION FUNCTION

In this appendix, we derive the exact expression of
inverse of the two-point correlation functionj21, defined
according to

E dV jj~ei•ej !j
21~ej•ek![d~ei•ek21!. ~A1!

As usual, one expands the two-point correlation function
the basis of the Legendre polynomials

j~ei•ej !5(
l

2l 11

4p
Cl Pl~ei•ej !. ~A2!

In general,j21 can be expanded on the spherical harmon
basis as follows:
.

ro

ro

. J

10300
the
in
e

e

n

s

j21~ei•ej !5(
lm

(
l 8m8

bll 8mm8Yl
m~ei !Yl 8

m8* ~ej !. ~A3!

Our aim now is to determine the coefficientsbll 8mm8 . Using
Eqs. ~A2! and ~A3!, the completeness relation for the Le
endre polynomials together with the addition theorem
spherical harmonics in Eq.~A1!, one gets

(
lm

(
l 8m8

Clbll 8mm8Yl
m~ei !Yl 8

m8* ~ek!5(
l 9

S l 91
1

2D Pl 9~ei•ek!.

~A4!

The coefficientsbll 8mm8 are easy to read off and one obtai

bll 8mm85
2p

Cl
d l l 8dmm8 , ~A5!

from which one deduces

j21~ei•ej !5(
l

l 11/2

Cl
Pl~ei•ej !. ~A6!

This is the expression used in the main text.
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