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Measuring the three-point correlators of the cosmic microwave backgr@ii@) anisotropies could help
to get a handle on the level of non-Gaussianity present in the observational data sets and therefore would
strongly constrain models of the early Universe. However, typically, the expected non-Gaussian signal is very
small. Therefore, one has to face the problem of extracting it from the noise, in particular from the “cosmic
variance” noise. For this purpose, one has to construct the best unbiased estimators for the three-point corr-
elators that are needed for concrete detection of non-Gaussian features. In this article, we study this problem
for both the CMB third moment and the CMB angular bispectrum. We emphasize that knowledge of the best
estimator for the former does not permit one to infer the best estimator for the latter and vice versa. We present
the corresponding best unbiased estimators in both cases and compute their corresponding cosmic variances.

PACS numbd(s): 98.70.Vc

[. INTRODUCTION fact the case for the two-point correlators on large angular

scales. Therefore, if one wants to unveil non-Gaussianity, it
The cosmic microwave backgroui@MB) has been rec- is necessary to address the cosmic variance problem for the

ognized as one of the best tools for studying the early Unithree-point correlators. The usual way to deal with this prob-
verse(e.g.,[1]). In particular, the statistical properties of the lem is to construct estimators by performing spatial averages
CMB anisotropies are a powerful means to discriminateon the celestial sphere and to find the one which has the
among the possible scenarios. This is because, in generainallest possible variance. The aim of this paper is then to
different models predict different statistical properties. Forfind the best unbiased estimators both for the third moment

example, the simplest models of inflation predict that the(amlal”‘Zal";3> and for the angular bispectrumllzl3 and to

. . . S NG
temperature anisotropies should obey a Gaussian statlstﬁslp lay the corresponding cosmic variances

anq therefore any nonvanishing measurement of a three- Recently, there has been a lot of activity in the subject
point correlator(ln a sense to be made precise be)'“"."”“'d riggered by the finding that non-Gaussianities are present in
automatically rule out such models, a very interesting resul he 4-yr Cosmic Background ExploréEOBE Differential

indeed. . . . . Microwave Radiomete(DMR) data[4,5]. Further analyses
From a practical point of view, measuring any non;\u

ianity in the data difficul K si he si ave confirmed this resufe.g.,[6]). However, soon after, it
Gaussianity in the data is a very difficult task since the signal, o5 qemonstrated bjj7] that the non-Gaussian signal is

is typically very small. Of course, this signal should be com-gjyen by the 53 GHz data. This systematic artifact in the
pared to the noise and what really matters is the signal t@\mB maps rejects a possible cosmological origin. More gen-
noise ratio. The noise can have many different origins INerally, it is clear that the presence of foregrouf@®] ren-
cluding instrumental errors, foregrounds contamination, ogers difficult the detection of a genuine non-Gaussian signal.
incomplete sky coverage. Another source of error is the soNevertheless, one should expect non-Gaussian features to be
called “cosmic variance.” Roughly speaking, it comes from present in the CMB anisotropy data sets. These could be
the fact that we only have access to one realization of th@roduced in the early Universe during inflation either be-
temperature anisotropies whereas theoretical predictions acause the initial conditions are non-Gaussian themselves
expressed through ensemble averages. In a Gaussian modék., the quantum initial state is not the vacu{ib®,11]) or
for example, the mean value of any three-point correlator haswing to the existence of couplings between different pertur-
to vanish but this does not guarantee that a concrete detepation modes at the nonlinear leyéR,13,14. In the context
tion of a nonzero signal on the sky would be in contradictionof slow-roll inflation, the CMB bispectrum has recently been
with the model[2,3]. The important point is that the cosmic studied in[15,16. Even if non-Gaussianities are not primor-
variance can dominate the other sources of error, as this is iial in origin, they will nevertheless arise during later stages
of evolution. In this context, the Rees-Sciama effect will
build up a small but nonvanishing signl7,18,19. Also,
*Email address: gangui@irumdspm.fr cosmic topological defects of the vacuum, such as strings
"Email address: martin@edelweiss.obspm.fr and textures, are among the best motivated sources for non-
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Gaussian featuref20—24. Regarding secondary sources, which the metric operator is placed. Obviously, it is not pos-
Goldberg and SperggR5,26 have recently calculated the sible to prepare the initial state of the Universe and therefore
angular bispectrum due to second order gravitational effectthe choice of the quantum state of the perturbationsa is
such as the correlation of lensing of CMB photons and secpriori free unless some theory of the initial conditions is
ondary anisotropies coming from the integrated Sachs-Wolfgrovided(for example, quantum cosmolo@§9]). Usually, it
effect and thermal Sunyaev-Zel'dovich effect. In the samds assumed that the initial state is the vacuum although dif-
line, Cooray and HY27] have taken into account further ferent hypotheses are possih&0,10,1]. If the initial state
additional contributions to the bispectrum in the presence ois the vacuum, then the corresponding statistical properties
re-ionization. Other approaches to the study of non-Gaussiaare Gaussian. This is because the ground-state wave function
features include preferred-direction statistics for sky map®f a harmonic oscillator is a Gaussian. It is possible to avoid
[28], the three-point correlation functid29,30,12,3], lens-  this general conclusion either by considering nonlinear cos-
ing statistic§ 32—34, the genus and Euler-Poincastatistics mological perturbations or by assuming that the initial state
[35-37, peak statisticg38—4(, correlation function of is a nonvacuum state. We have recently investigated the first
peaks[41], Minkowski functionals[42], and wavelet analy- possibility in[15]. The second possibility has been studied
ses[43,44]. by [10]. In the latter case, non-Gaussianity is likely to be
This article is organized as follows. In the next section,significant only for relatively small angular scales.
the general strategy for finding best estimators is exposed. It should be emphasized that the mechanism described
As a warm-up, in Sec. lll, we implement this strategy for thepreviously is deeply rooted in the quantum-mechanical na-
two-point correlators. Section IV is the core of the article.ture of the gravitational field. The observable quantities cal-
There we explicitly derive, for the first time, the best unbi- culated in this framework are always proportional to the
ased estimator for the angular bispectrum and show its coPlanck length. In other words, if observations confirm the
responding variance. Except for an overall normalizationfull set of inflationary predictions then the fact that/T
factor, this estimator turns out to be the one already ems 0 would be a direct observational consequence of quantum
ployed by[4] and other authors recently. Our result placesgravity.
their choice on a firm basis. Next, we find the expression for The quantum-mechanical origin of the anisotropies in the
the best unbiased estimator for the third moment. An earlieframework of inflation raises also profound problems of in-
study was performed if45]; however, our findings go be- terpretation. One should not think that these problems are
yond the results obtained in that article and, moreover, arpurely theoretical. On the contrary, they have consequences
explicit. Moreover, we present its corresponding variance. Irwith regards to the experimental strategy that one should
addition, we also emphasize that the knowledge of the besbllow in order to extract as much information as possible
estimator for the third moment does not allow one to inferfrom the data. The fluctuations in the CMB effective tem-
the best estimator for the angular bispectrum and vice versgerature are linked to the perturbed metric as shown for the
In the last section, we briefly present our main conclusionsfirst time by Sachs and Wolfe. Therefore, the fact that the
We finish up with a short Appendix which includes formulas perturbed metric is an operator implies that the primordial
related to the inverse two-point correlation function. fluctuations in the temperature must also be considered as a
quantum operator. The observables are often expressed as

Il. GENERAL STRATEGY FOR FINDING THE BEST n-pqlnt cgrrela‘uon. functions of the operator\(e)
ESTIMATOR =5T/T(€) in the arbitrary statéW¥):

In this section, we expose the cosmic variance problem
from the viewpoint of the theory of cosmological perturba- Ener,...e)=(V|A(e) -A(e,)|¥), (1)
tions of quantum-mechanical origin and describe the method
of the best unbiased estimators. This theory rests on the prin-
ciples of general relativity and quantum field theory. At thewhereg’s are arbitrary directions on the celestial sphere. In
beginning of the inflationary phagd6—49 the Friedmann- the following, we will also use the notatiog(e;-e,)
Lematre-Robertson-Walker background spacetime already= £2(€;,€,). According to the postulates of quantum me-
behaves classically whereas the excitations of the metrighanics, the previous theoretical predictions should be con-
around this background are still quantum mechanical in nafronted to experiment in the following way. The same ex-
ture. Technically, this means that the perturbed metric mugeeriment should be performeN times, giving each time
be considered as a quantum operator. This operator eithéifferent outcomesy; . If the quantity (1N)=N ;q; goes to
represents density perturbations or gravitational waves. Ithe corresponding quantum expectation value wNegoes
each case, the quantization can be carried out in a consistetat infinity, the theoretical prediction is said to be “compat-
way [50-57. Then, the(zero-poinf quantum fluctuations, ible with experiment.” This is the core of the problem in
which are the seeds of the cosmological perturbations, areosmology: we only have access to one realization, i.e., one
amplified during inflation owing to the particle-creation phe- map of the CMB sky, and that means thdtis fixed and
nomenon or squeezing effef58]. Next, these primordial equal to 1. Therefore, the question arises as to how we can
fluctuations give rise to the large scale structures and to theerify the theoretical predictions of the theory of quantum-
CMB anisotropies observed today in our Universe. mechanical cosmological perturbations. This is a way of stat-
One should also discuss the choice of the quantum state ing the cosmic variance problem. It is a fundamental limita-
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tion in the sense that it remains even when other limitations [ ' ' ' ' '
like instrumental errors or low angular resolution have been -
fully mastered. R
The usual method to deal with this problem is to replace I
guantum averages with spatial averages over the celestial |
sphere. Suppose we wish to measuige,,...,e,). (Of B
course, the discussion could also be applied to quantities |
other than correlation functions. The first step is to intro-

duce a new operator, the estima&ﬁfn) of &,, defined as

?9<§n>EJ f dQy---dQE(&)(ey,... e A8y --A(ey),
2

where E(&,)(eq,...,&,) is a weight function to be deter-

mined. Clearly,&(&y) is defined through a spatial average. F|G. 1. Sketch comparing the variances of an arbitrary estimator
The second step is to require that the estimator is unbiasegsf ¢, with the best estimator of the same quantity. The widest
ie., distribution does not permit an accurate determinatiog,adue to
N its large variance while the narrow distribution corresponds to the
<\If|8( §n)|\lf)= & 3 best(unbiased estimator and possesses the smallest possible vari-
ance. As a consequence, one given realizatien, our CMB sky
In general, this restricts the class of functidf(g,) allowed.  will most probably be closest to the mean value in the second case
The fact that the mean value of the estimator be equal to thgther than in the first one.
guantity we are seeking does not guarantee that each out-
come will be for suref,,. The third and final step is then to process although the former is generally physically best mo-
find the functionE(&,) such that the variancesquared of  tivated. In that case, quantum averaddq:--|¥) are just
&£, ie., replaced with stochastic averages). In the following, we
) . . . will drop out the caret symbol and consider that the different
Ué(gn)=<5( ENEEN)—(E(ED)?, (4)  quantities are either operators or stochastic processes. In the
same manner, we will denote an ensemble average by the
be as small as possible, taking into account the constrairgiymbol(:--), having in mind that this means either quantum
given by Eq.(3). The corresponding estimator is then calledor classical averages.
the best unbiased estimatoMathematically, this require- Let us now describe the relevant quantities to estimate. It

ment is expressed through the following variation equation:is convenient to expand the temperature fluctuations over the
basis of spherical harmonics according to

8% .~ N(WIEE) W)~ D) =0, (5
— my,/m

where one has introduced a Lagrange multipliavhich can A(e)—% i) ©)
then be determined from the previous equation and the con-
straint itself. Once we have, we plug it into Eq.(5) and this  This equation assumes a complete sky coverage. Implemen-
completely fixesE(&,) and hence the corresponding besttation of the method for the incompletgalaxy-cuj sky can
estimator. In turn, its variance can now be calculated. If thisse performed by using the basis introduced68&]. Once a
one vanishes, then we are sure that each outcodgand  specific model is given, the statistical properties of affes
from one realization we can determine thgpoint correla-  zre determined. SincA(e) is real, thea™s must satisfy
tion function. In this caseA(e) is said to be ergodic; i.e., a™ =(—1)"a, ™. Without restricting the generality of the
ensemble or quantum averages coincide with spatial aveunderlying physics, the first three moments can be written as
ages. Unfortunately, one can show that this cannot be the
case on the two-dimensional sphgsé]. Otherwise, we have (aM™=0, <almlamz*> .5
found the weight functiofe(&,) which leads to the smallest
nonvanishing variance. If the variance is small enough, each
outcome will be concentrated around the mean value and < > ( ERLPIE ) 7)
with just one realization we have good chances to get a rea- m; m, mg/ 1l
sonable estimate of the correlation function. The typical error
made in considering that one given outcome is equal to thevhere (n '2 '3 ) is a Wigner 3 symbol. The second equa-
?ee(aagl\éalre is characterized by the variance of the est|mat0{Ion ensures the isotropy of the CMB. The quantity

All of the above analysis performed for the bégtian- (a] 1a| #') is the second moment of tr&f"s and, is usu-
tum) estimators can equally well be reproduced in the cas@”y called the angular spectrum. In the third equatlon the
where the anisotropies are due to an underlying stochasttquanuty(aI 1aI 2aI 3) is the third moment while,

25”‘1”‘2’

ols 1S
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called the angular bispectrum. Fgr=1,=15=1, this quan- in the mildly non-Gaussian approximation. Within this ap-
tity is generally written as3=Cy, . The presence of the proximation we can writa"=a"®+ ea™¥ + O(€?) where
Wigner 3j symbol guarantees that the third moment vanisheg™©® is a Gaussian random variable and the expansion
unlessm;+m,+mg=0 and|li—lj|slksli+lj. Moreover,
invariance under spatial inversions éf implies an addi-
tional “selection rule”[63,15 |,+1,+13=even in order for
the third moment not to vanish. Finally, from this last rela-
tion and using standard properties of thesymbols, it fol- =(alrzl(o)arz""(o)arf(o)alrj“(o))+O(e). As a consequence, the
lows that the angular bispectrum is left unchanged under anY,nnected fourth moment can be neglected because it is of

arbitrary permutation of the indicés. ; ; o ;
We will need the higher moments as well. Since depar_hlgher order than the Gaussian part. TH®)" label will be

tures from Gaussianity are expected to be srtespecially :roegiﬁnzl:itoze\:feag:; \':'V}’rliferefore, in the mildly non-Gaussian
on large angular scalgshigher moments will be calculated PP

parametere is small. In the following, each moment will
be calculated to the first nonvanishing order én For

example, the fourth moment yieldiarzlagza[z3a[24)

my My _Mgx _My* ~ mp; My Mg* _ My* mp Mgz« My _ Mgx my My* my _ Mgx
(alla|2 a,a, ) (a,lalz)(a|3 a, )+<a,la|3 ><a|2 a, )Jr<a|1aI4 ><a|2 a, )

=(=1)™"™C, C,8,1,0m, - myO1,1,0my,—m, T C1,C1, 81 1, Omm, 81,1, Sinym, T C1,C1, 611, Oinym,y Ot Oy,

8

The fifth moment could be determined in a similar way but we will not need this quantity in the following. Finally, the sixth
moment can be expressed as

m“*alr‘;5*ar;6*)m(alr'llalr?}(ar;ac“*)(al'zs*alr';ﬁ*>+14 additional permutations. (9)

(' a e

1 2 3 4
Although the explicit expression is not particularly illuminating, the last equation will be useful for the calculation of the
variance when dealing with the three-point correlators below. In particular, one can write

<a|r:1a|r22a|r:’3arl]l* a|n2]2* a|r23*> = C,I CI CI + 2C|31‘<5I I, (5m1m3+ 5m1— m3)( 5mlm2+ 5m1— mz) + CI lclz2 5I2I3( 5m2m3+ 5m2—m3)

1 '2'3 1'2'3
2 2
+G 2C|35|3|1( Omymy 5”‘1*”‘3) +G BCI15I1|2( Smym, T 6m1*m2)’ (10
|
where the symb05,1,2|3 vanishes unlesls =1,=15 in which . TWO-POINT CORRELATORS
case it is one. This equation coincides with E2d) of [63] A. Best estimator for the angular spectrumc,

provided the undefined symbcﬂmlmzm@o written in that
work has the meanin@mlm2m3,05(5mlm3+ 5m1—m3)(5m1m2
+ 5m17m2)-

As we mentione_d in the Introduction, ir_1 this artigle we are S(C')Ef f d0,dO,E(e;,e)A(e)A(e,), (11)
mainly interested in finding the best unbiased estimators for
the two following quantities: the third mome(‘m[:lalrzzal?) where E'(e,,&,) is the weight function. The angular spec-
and the angular bispectrud | ;. These are related to the rum¢ is areal quantity and its estimatg(c;) must also be

three-point correlation functiodis. It is clear that, as men- real. Therefore, the weight function can be taken as real.

. ..__From the previous definition, it is clear that the antisymmet-
tioned above, the very same method could also be utlllzeﬁC part of E'(e;,e,) does not contribute to the estimator.

for the computation of,, with n arbitrary. Before addressing Then, we can replacg! (e, ,e,) in £(C;) by its symmetrized

this question, however, we will first treat the analogous A _ | | ;
quantities related to the two-point correlation function,exmes’S'orES(el’ez)_(1/2)[E (€1,6,) TE (€,€)]. At this

My mox . . . stage, two methods can be applied. Either we work directly
namely(a, *a *) andC;, the main purpose being to illus- ity the weight function or we expand it over the spherical
trate concretely the tactics presented above in a case wheharmonics basis and try to determine the coefficients of this
everything can be calculated easily. This will be used as &xpansion. Clearly, both paths are equivalent and can be fol-
guideline for the case of the three-point correlators. lowed for any estimator. Here we employ the second

The definition of the estimataf(C,) is given by our gen-
eral prescriptiorjsee Eq.(2)]
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method, leaving the first one for the determination of the

second-moment estimator considered in the next subsection.
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d(1y 12
my mp

Therefore, we write the weight function as 4

1
-7 = z [ 2 5I ’5I2Ié[ 5m1m15m2m’

Eg(er,e)=2> > d ‘ll | Y(e)Y(ey). (12
fimy Iom  mg my| 1 2 +(—1)m1+m25m17m’5m27m’]
1 2

The reality and symmetry properties of the weight function

1
E'S_imply that th_e complex coefficient of the expansion must +3 2 N 5|2| [5ml m,m!
satisfy, respectively,

1

mq+m:
dl*ll 15 :(—]_)mﬁmzdI i s, (=™ zﬁmrmé&mzfmi] . (19
‘ml mz] ( }
(13)  Although it is not compulsory to use this equation, since a
d L1, —d oo naive definition of the variation would lead to the same final
{ml mz} k } result [61], it is nevertheless interesting to utilize it as a
warm up for what will be done for the angular bispectrum.
|n5erting the expression of the Weight functici®?) into the The variation leads to the following relation between the
general definition of the estimat@ll) and using standard coefficientsd and the Lagrange multipliers:
properties of the spherical harmonics, one gets

my my

4d{|1 |2}C| C| +( l)ml)\ 5| | 5 220. (19)
my mp
&c)= 2 E d[ll |2)al a)”. (14

famg Iomy  fmy my We see that the choice of thé’s is not free; it is fixed by

the variation itself. Using the constraint in this equation, we
find Nj =—4[C7/(21;+1)]8 . Having determined what
the Lagrange multipliers are, the problem is completely
solved. It is now sufficient to reintroduce this value id[ in

Eqg. (19), get the coefficientsl and, from this, also the best
unbiased estimator: the weight function is then given by
E'vaes(el,ez)=(1/477)P|(e1~ez) and the estimator itself by

. L . " . see alsd61

All the estimators satisfying this condition are unblased.( 461)

However, it is clear that this does not completely determine [

fche estimator but just a class of_estlmators. Our second move Eoesl C) = 2 a"a™ . (20)
is to calculate the variance. Using E®), a straightforward
computation gives

Our first move is now to require thd£(C;))=C,. Using the
second equation of Ed7), we find that the coefficientd
must satisfy the following constraints:

S (—1)™d) 1,

my ( mp mg

’ 5|1 (15

2141

The variance of this estimator is the well-known ‘“cosmic
variance”

|
2 d o I, 1,1G .G .. 16
0'5((:,) %1 2§m:2 [mll m22+ [mll mzz] L, (16)

2 2ct
Tévestc) 21+ 1°

(21)
This quantity is obviously positive. From this expression,
one sees that the imaginary part of the coefficiehtenly
increases the variance. Since a vanisHid) satisfies the
constraint equation, we can consider that dieeare real.

Our third move is to minimize the variance taking into
account the constraint. For this purpose we introduce a set
Lagrange multipliers)\ll (i.e., one Lagrange multiplier per
constraint sincé must be seen as a fixed indeand require
that

One remark is in order here. The cosmic variance is usually
obtained in the following way: the previous estimator ap-
pears naturally from Egg7) and it is usually assumed that
6§1e a's are Gaussian random variables. In this case, the
est|mator(20) has ay? probability density function and from
this the cosmic variance can be easily recovered. The proof
presented above is by no means equivalent to this naive deri-
vation. There are many unbiased estimators angyiori,
nothing guarantees that the simplest one is the best one: i.e.,
the naive derivation isot sufficient to prove that the estima-
tor (20) is the best one. This can be proved only along the

(17)  lines described above. Moreover, we do not need to assume

that thea™s obey a Gaussian statistics. Only the mildly

The definition of the variatio must respect the symmetry non-Gaussian assumption is necessary for the calculation of
properties of the coefficient$ we take the four-point correlators.

5{ag<cl)+2 Al (E( 1) mld[ Iy |1} 5}1”=o.

my mp mg
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B. Best estimator for the second moment,,

;1
A = _ ’ ’ ! ’ ’ ’ ! !
In this section, we discuss the best estimator €qr 95" = 5 (111191515 Omym; Omymy T 01,1.01,1; Omymg Oy )

E<a[jla|'22*>. Greek letters will always be employed for (25
collective-index notation, like which is left unchanged under a permutation of the indiges
- and o’ and also under permutations of the columns of each
aE[ 172 ] collective index separately.
m; my Let us now turn to the computation of the best unbiased
or estimator; the general definition of an estimator can be ex-
pressed as
]l
CTmp myl E(CQ)EJfdQlszE“(el,ez)A(el)A(ez)- (26)

Unlike in the foregoing subsection, we find the weight func-The quantityC, is unchanged if we permute the columns of
tion directly without expanding it over the spherical harmon-indices in«, C,= C5 with @ given above. Being an estimator
ics basis. This method is closer to the one use@43). We  for ¢, it is then natural to assume th&¢C,) possesses the
also show that the best estimator @f cannot be deduced same property£(C,)=E(C). Looking at the definition of
from the best estimator of the angular specti@inobtained  E<%(e,,e,), Eq. (26), we easily see that the weight function

in the previous subsection as one could naively think. will also satisfyE%(e;,e,)=E“(e;,e,). Moreover, we take
_ Letus start with a couple of definitions: first, the quan-g«(e  e,) symmetric under a permutation in the directions
tity e, ande,, i.e., E4(e,6) =E&(e;,€).

Now, we require that the estimatdiC,) be unbiased,

a =y Mo
Ri(e1,€) =Y "(e)Y)," (&), (22) which implies that the following relation must be satisfied:

2
which is complex and nonsymmetric with regard to the po- N o e
sition of the complex conjugate symbot " This last prop- f f dQ,dOzES(e;,6)RY (e,6) =035 . (27)
erty comes from the definition o¢a[:1a[22*) itself and it

would be the case for any even-point correlator. Then, re?Ve have required the presenceddf® on the right hand side
garding complex conjugation, there is a slight difference be®f the previous equation to respect the symmetnesur/hthe
tween the even- and odd-point correlators. The real part oveight function. In the previous equation t&g andR* are
R%(e,,e,) will be denoted as a priori complex. However, one can show that it is possible
L to work only with a real weight functionEZ*(e;,e,)
a _trym Mo myx my =Ed(e;,&) and with the Ri(e;,e) defined above: the
Rr(€1,€2)= Z[Yll (el)Y|2 (e2)+Y'1 (el)Y'z (&)]. imaainary contributions would just increase the variance.
(23 (One could have also chosen to work with a pure imaginary

N . ) . weight function and the imaginary part 8f*.) Therefore,
Rr(e1,&) is not symmetric under a permutation of the two {ha constraint can be written as

directions. It satisfieRg(e,,e;) =Rg(€e1,e), where the in-
al f a 0(/ 0(0(/

dexais defined by | [ a0.00.850 eoRs e e0-08" @8
PR

aE[mz ml] whereEg has been taken real. Let us now calculate the vari-

ance of the estimataf(C,). Using Egs.(8), we easily find

The symmetries in the indices and in the directions will playthat

an important role in what follows. Using the previous defi-

nitions, we can mt_roduce a quantity wh|ch is symmelrith U?(C ):Zj f f j dQ,dQ,dQ,dO,ES(e; &)

under a permutation of the two directioasd under a per- “

mutation of the columns of internal indices én X ES(63,8,) £(81- 83) E(8y-€4). (29)

1 . ; i ; ;
a — T rym Mx oy 4 y™ My« Our next step is to minimize this variance under the con-
s(€L&)= 7 Y1 (@)Y, 7 (&) +Y | H(&)Y,," (&) straint given in Eq(28). For this purpose, we introduce a set

. . of Lagrange multipliers\® and require that
+YI () Y)Y (€)Y ()

(24 g (’§<C[,)+2’ )‘Z'(j j dQ,dQ,Eg(e;,€,)

e, we have Rg(e,e)=Rs(e,e)=R3(e;,) , )
=RZ(e,,€,). Finally, we will also employ a symmetrized XRg (€1,8)— 55" ”=0- (30)
Kronecker symbol defined according to
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At this point the precise meaning of the variation symbol wd N
matters. Before performing the variation, let us recall that the 160|/1/C|/2/55 =[(=1)™ 2)\[ '1” '2/]
symmetries of the weight function must be respected; hence —mp —mp
we will have o
+(—1)m1+m2>\{ 1 q]
oEs(q.q) 1[d(e-a—1) 5(g-q—1) S
SEE(e.8) 2 27 27 o «
+)\[|’1’ |'2’]+)\[|g |{] . (35
GG AG 6T by (g, mp ) g g

2 2
This equation is the analogous of the equatiau‘p1

The 27's in the denominators come from the fact that, while = —4[C|2 /(21 + 1)]5: of the previous subsection. Here, the
the directione is expressed in terms of the corresponding ! !
spherical angles like g=(6,,¢;) and then d{;
=dcosé dg;, there is an extra 2 factor in 8(e-g.—1)
=2m8(cos6,—cosb) ¢ —¢y). As a result of the variation,
we obtain the following equation:

difference is that @ombinationof Lagrange multipliers with
different indices appears rather than the Lagrange multiplier
itself. However, we can reconstruct exactly this combination
on the right hand side of Eq34). Indeed, we just have to

multiply each side of Eq(35) by R‘S’"(el ,6) and perform the

sum overa”. Using the symmetry properties Edg"(el,ez)
f f dQ,dQzES(er,6) (8- €3) (8,7 €4) we obtain

1 ! o 3 a”
ZZE N RS (e3,64). (32 4C|lC|2Rs(el,ez)=E" A RS (€1,6). (36)

o We now insert this equation on the right hand side of Eqg.
The quantityRs (e3,e;) appears naturally as a result of Eq. (34) to remove the Lagrange multipliers and find
(31). The previous equation should be compared with Eq.

(19) of the previous subsection. The result of the variation is N 1 .
a relation between the weight function and the Lagrange Es,bes(el!ez):‘l_ﬂ_zcllclzf f dQ3dQ,E (e €3)
multiplier. Our aim now is to get an explicit expression for

the weight function. This can be done by using the inverse X & Heye)RE(63,6). (37
two-point correlation functiort ™! which satisfiegsee also
the Appendix To go further, we expres§ * in Eq. (37) explicitly in

terms of spherical harmonicésee the Appendix which
B yields ES €1 .6) =Rs(e,&,). Now, we just plug this re-
j dQ;é(e-€)é Hga)=d(a-a~1). (33  sultinto Eq.(26) to get the final explicit expression of the
best unbiased estimatép(C,):

In the case of the three-point correlator, this definition leads 1

to subtleties which will be examined in detail in the next Evest Ca) = _(a:“l*almz+ a,mlalmz*). (39
section. Multiplying Eq.(32) by £ (e, -e)é (e &), 2

integrating over directions; ande,, and relabeling indices,

we arrive at Some remarks are in order here. First, despite appearances,

one cannotdeducegs(C,) from Sbes(ql). It is clear that
the following equation holds:

1 1
Elere) =4 oS | [ 4054000 e e
4 (2m)° 7 (E(Ca))=(E(C1)))Bi,1,0m,m, (39
X & Y&y e)RS (63,€4). (34 However, from this equation we anet allowed to conclude
_ _ _ that gbes(ca):gbes(cll) 01,1,0m,m,- Therefore, knowing one
This equation for the second moment is analogous to Ecyf the best unbiased estimators does not allow us to infer the

(21) of [45] obtained for the third moment. It is clear from iher pest one. To be specific, if one assumed the previous
the previous section that, at this stage, our final goal has ”%rong relation, from Eq(20) one would get
yet been reached. The weight function is still expressed in

terms of the Lagrange multipliers. The correct way to pro-
ceed is to remove the latter using the constraint given by Eq. &pestCo) = T
(28) as was done in the previous subsection. Then, we first 1

multiply Eq. (34) by the quantitng"(el,ez) and, after hav-
ing integrated over solid anglé¥, and(},, this leads to the and although this estimator is unbiased, ih@ the best one.
equation that the Lagrange multipliers must satisfy: The second remark is that although the estimator given by

81,1, 0m,m, (false),
(40

I
*
> alaf
m=-1, + 1
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Eq. (38) could be naively regarded as a trivial one, this is not ol

the case. Indeed, the estimator of E4() is as trivial as the 5(C|1|2|3)EJ J f dQ,dQ,dQ3ES ?3(ey, 8, 83)

actual best one. The moral is then that there exist simple

choices which lead to the wrong answer. The only reliable XA(e)A(e)A(ey). (41

method in the problem of minimizing the variance is there-

fore the one exposed above. As in the case of the two-point correlators, the weight func-

tion also possesses the properties of being real and symmet-

IV. THREE-POINT CORRELATORS ric under arbitrary permutations of directiogs In addition,

like C 1,1, the weight function satisfieE'S1'2'3:E'SZ'1'3, as
well as for any other arbitrary permutation of the indites

In this section, our aim is to determine the best UnbiaseWe follow similar steps as for the angu|ar spectrum and
estimator for the angular bispectrud . defined in the therefore we choose to expand the weight function on the
third equation of Eqs(7). According to our general prescrip- basis of the spherical harmonics. Then, as in 8¢), we

tion, the most general definition reads write

A. Best estimator for the angular bispectrumC,l,z,3

Iy 15 13 m’ m’ m’
[q 1 |g]Yl,l(el)Yl,z(ez)Y,F(es). (42)
1 2 3

’ ’ ’
ml m2 m3

E|51|2I3(e11e2!e3)22 2 E d

’ ! ! ’ ’ !
famy Tom; 13mg

The properties of the weight function imply that the coefficiattsaust satisfy equations similar to those given in H4S):

Iy 1 Ig PP PP PPN

! ’ ’
’ ’ 1y =(— m1+m2+m3 ’ ’ ’ ’ ’ 1 = ’ ’ ’
d[|1 1} |3] (-1 d[ T ] d[|1 1 |3] d{ TN ] (43)
! r r r ! ’ ’ ’ ’ ! ! ’
m; my my -myp —my —my m; My Mg my my My

where the last relation is in fact valid for arbitrary permuta-
tions of any two columns of the collective subindex. Like the
weight function,d is also left invariant under arbitrary per- (46)
mutations of indiced; (not primed. The estimator can be

expressed in terms of the coefficiemtsand thea™s only: _ _ ) o
inserting the expansion of the weight function in the abovdt is easy to check that the constraint equation satisfies the
expression for the estimator and using standard properties §onditions imposed by Eq¢43) on the coefficientsd. In

the spherical harmonics one obtains particular, let us justify the presence of the symlﬁ'g'“.
Using the previous properties fat, relabeling the indices
m;«<—m, in Eq. (45), and finally noting that;+1,+15=1,
+1,+13=even, which allows us to permute any two col-

(44)  umns of the Wigner Bsymbol, one verifies that the left hand

. . . . side of the constraint is invariant undgr—1,. The same
In practice, CMB observational settings are devised such thapjies for any pair of multipole indices and this explains
both the monopole and the dipole are subtracted from the

anisotropy maps. This means that the coefficiehia the  the presence of the symmetriz@';'i in Eq. (45). We see

last equation are only nonvanishing for indidés=2 in the  from this that all coefficientsl that do not satisfyl; +1,
collective subindex. Moreover, the coefficiertssatisfy |, +15=even do not enter the constraint. We will show below
+1,+13=even. We must now require that our general estithat these terms only increase the variance and as a conse-
mator given by Eq.(44) be unbiased, i.e.{&(Ci,1.))  quence one can take them equal to zero. In particular, note
=Cy1,1,- This forces the coefficientd to satisfy the con- that this is the case for a coefficiedtwith 1;=13 and 3

5'Si'i =1 (81,1181,1,014,+5 additional permutations

PR

EC =2 2 2 d{.; o

! r ’

m m. m.

1 2 3

a,'a ‘a °.

SN AN AN AN AN Il |2 |

3
limg 1omy I3m3

’ ’ ’
my my my

straint =odd. This property will turn out to be useful in what fol-
lows.
PRPRES [ P A L We are now in a position to calculate the variance of the
> dig g oom o dg', (45  estimator. Looking at Eq44) we see that this requires the
mymymy [mi mymy[ L 28 computation of the sixth moment of th"s; see Eq.(9).

After having made use of the properties of the coefficiehts
where we have defined a new symmetrizednécker sym- and rearranging the resulting 15 terms into two groups,
bol, this time for thel multipole indices only, as follows: straightforward algebra yields
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([EC1) 7= 2 2 GGy

’ ! ! ’
1imy 1my 13my

Iy 1y lgx PP N P P P PP
)’ ’ ’ ’ ’ — m;+m, ’ ’ ’ ’ ’ ’
6d(1; 1y ) diag 1y 15 +9(—1) dig i agdfy 1o
! ! ’ ’ ’ ’ _ ’ ! ’ _ ! r
my my my my my my mp —m; Mg my —my My

(47)

The square of the variance 6(C|l|2|3) is given by
O-E(C|1|2|3):<[8(Clll2l3)]2>_<5(C|1|2|3)>2. (48)

Following the discussion in Sec. I, the ter(ﬁé’(c|l|2|3)]2> is of order €® whereas the lowest nonvanishing order of

<£(C|1,2|3))2 is €2. Therefore, the latter one will not enter the minimization procedure and the variance squared will be written

as(rﬁ(cl " )w<[5(c|l|2.3)]2>. However, let us notice that this does not occur in the case of the two-point correlator. Indeed, as
1'2'3

we have seen, in that case both terms contributing to the square of the variance are of the same.ortenirit follows that
Eq. (47) corresponds to Eq16) in the last section.

Let us now examine the structure of the variance in more detail. The tedfrd69%2(d) + T?(d) in Eq. (47) is analogous
to the one in Eq(16). However, here there is another contribution, tiig @ term, which will play a crucial role in what
follows. The imaginary part of this term of course vanishes, as the variance must be real. However, the real part of it contains
a contribution like

9> ¢
s

!
m3 I3 my

EQE( 1)”‘14([ Iq ])]

m; —my mg

11213
EC.E< 1)%( [lg Iy |g])]=92, €2 [+T% (49)

’ ’ ’
m2 7m2 m3

where the quantity---]1? depends on the indicds, |,, |5 andl, m; and is strictly positive or zero. Of course, there is a
similar term coming from the real part df Thus, we see that the various contributions of the imaginary part of the coefficients
d to the two terms, 8*d and 9*d, only increase the variance. Since we know that a vanishing imaginary part does satisfy
the constraint Eq(45), it can be disregarded in the sequel. Therefore, (B@. can then be written solely in terms ofal
coefficientsd as follows:

ERPRE]
d I Ié I
m1 m, m3
Our next move now is to minimize this variance with respect to the coefficegrtking into account the constraint of Eq.
(45):

g(c,,,) 2 G CI CI’

1'2'3 / [N AN N
f1my 15my 13mg

L P l1 1213
2+9(—1)m1*mzd[.i 1 |é]d[|é 1 |é”- (50

’ ! ’ ’ ’ ’
my —m; myg My —Mmy Mg

PP (A I ,
2 I4l5l3 1 2 3 1 2 3 L
E E ’ ’ i =
RN Ny d 2 B lm m, m s 0 (52)
1'2'3 Illrlr 1'2'3 m / / ) 1 > 3
1'2'3 3 m1 m2 m3

This equation is analogous to E@.7). As before, one needs to give a concrete meaning to the syénifolhe variation. Its
definition must respect the symmetries of the coefficieh#smd hence we take

I1 12 13

5d['i I3 'é}
mi mé mé = E l 6! 775 ’ 7757 rr[5 ’ H(S ’ l!5 ’ H+(—1)mi+mé+mé6 ’ 7!5 ’ /75 ’ H]+5 term (52)
11213 6 | 2 Y111 91515515 “mymy Cmym; “mamy My —my ¥m,=m,; ¥ my—my )

5d{ ” |g |g}

my mj my

Then, Eqg.(51) leads to

I1l,l5 il [ PR 4 " - l1lol5
12C|iC|éC|éd |i |é +)\|1|2|é ml mé mé +6(_l) ZC|éC|éa|i|é5m/ 2 C|( 1) d | Ié
my mj m3 m —m mj}
, l1lal3 , l1lal3
+6(_1)m3CIéCI£5|éI:;5mé—mé% (=™ 1oy +6(_1)mlcliclé5§éliﬁmé—m1% G(=1)™[1 1 1) =0,
m —m my m —m m,
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This formula and Eq(45) form a set of equations which for the third term of Eq(53) and analogously for the last two
completely determines the best unbiased estimator. We semes. As we mentioned previously, the coefficidnn Eq.
the complicated structure of these equations. The last thre@4) vanishes unless; is even. In this case, recalling the
terms come from the @ term in the variance and are not identity [18],

present in the case of the angular spectrum.
From this last equation and using the constraint, (€§),

we can get the general expression for the Lagrange multipli-

ers. Thus, we multiply Eq53) by the appropriate 3symbol
and we sum over the three indiceg . The first term is

exactly the constraint and produces&'éi. Using the fact
that a triple sum over the;’s of the squared of aj3symbol

gives unity, the second term yields the Lagrange multiplier
themselves. Finally, the last three terms vanish: indeed, aft

straightforward manipulations one generates a term like

R Y ,
2(_1)m1( L 3)2(—1)'1\/2|1+15I§o,

m, m -m; O
[;=even, (55)

we see that there will only be a nonvanishing termji 0.
But, the correspondind is zero becausk <2 and therefore

z?rms of this kind do not contribute to the Lagrange multi-

pliers. Then, these are given by

141l il
1415 1 , |’ |’ |’ )\,,,:_126|/C|/C|'5S|]. (56)
d[l| 2|3 |§]2 (_1)m1< ml, _rln, 03) (54) 111513 123
m-mojm 1 ! Plugging this into Eq(53), one has
l1lol3 L [ P A o 2 - l1lolg
rCrrCyr 4 ! r) = " — Cyr e ’ ’ — !
1ZC|IC|2C|3 d[ |1, |2, |3,] 55 mi mé é +6(—1) ZC|ZC|35I1|25m1_m2|m G(—-1) d[l | |3,]
my My Mg m —m mg
, l1lol3 , l1lol5
+6(_1)m3clécli5lélé5mé—mé% (=DM +6(_1)mlcliclé5lé|15méfmi%: Q=17 1 1) =0.
m —m mj m —m m,
(57)

This is the final equation to be solved in order to determingthe square 9fthe “bispectrum cosmic variance” in perfect

the best unbiased estimator. A solution is

l1 1z 13 ”. Ié Ié 1.1/
divowy ) ={ ., ., | (59
P m m; m
m, m, m
1 2 3
This leads to
o C)= S [ 221 amiamiars
best C1,1,15) = , ' TR T
iémé ml mz m3 1 2 3
(59

This is the main result of this subsection.

Given that we now know the best unbiased estimator for
one can compute its variance, the smallest one among

CIII

1'2'3’
all possible estimator variances.[lt5] we have already cal-

culated it, and it reads

2 _
O-Sbesﬂclllzl3)_C|1C|2C'3(1+ 5'1'2+ 5'2'3+ 6'3'1+ 25'1'25|2|3)'
(60)

analogy withaﬁbeS{CIFZC,z/(ZI+1), which is (the square

of) the variance of the best unbiased estimator for the angular
spectrum, commonly known as the “cosmic variance.”

Let us conclude this subsection by comparing our results
with those that recently appeared in the literature. An esti-
mator restricted to the diagonal cdse=1,=15 has been pro-
posed in4] (see alsq64] for an extension of their analygis
for B,=(,, and reads

21+1

I | | -3/2
00 o)
X >

( I I
mmomg \ My My Mg

&)=

a ta%a%. (61

In that work, the aim of the authors was not to seek the best
estimator, but to use Eq61) to analyze the non-Gaussian
features of the 4-yr COBE-DMR data. It is easy to see that
their estimator doesot satisfy the constraint45); i.e., the

In the same reference a plot of this variance for low orderestimator is biased. This is due to the presence of the overall
multipoles can also be found. This is what one could dulprefactor in front of the triple sum in E¢61). However, as
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we have proved above, getting rid of it produces the bes\'gv
unbiased estimatdf,.(C,.1.1.), EQ. (59).

here  R*(ey,e,€)=Y Xe)Y, (€)Y, (&)  and

1'2'3 1 2 3
RR (e1.&;,€3) is its real part. The form oR* comes from
B. Best estimator for the third moment B¢ the expression of &3, viz.,, (A(e)A(&)A(e;))

=3 B*R%(e,,6,,6;3). The symmetrized Knoecker symbol

We now seek an estimator f(ﬂ“z<arl‘1a{22a{23) where, o
i xa — = ! ’ ! ' ! !
as in the last section, it is convenient to define a collective 2" be written asis™ =3 (5'1'1‘Smlml5'2'25”‘2““25'3'35’“3'“3
index +5terms) as required to comply with the symmetry under
| I | permutations in the columns af in E3(e;,e,,65). In the
az[ otz s J above equationRg (e;,€,,e3) is clearly nonsymmetric un-
mg mp; mg der a permutation of directiong;,e,,e5. However, as

. : : above, we can define a symmetrized combination
This question has already been addressdd®h As we did ’
1S guest y ddsi e d 2(e1,8,85)=¢% [RA(e1,6,,65) +5termg (12 terms. Sym-

with the second moment, our starting expression for an un-'s

biased cubic estimataf(3%) of B will be in the form metrizing either in directions or in the columns af in
Rg(e1.e,63) yields exactly the samRg(e;,e,,€3). In the

last equation and in what follows the weight functiBf is
real for reasons similar to the ones exposed around ZBj.
in the last section.

Proceeding as in Sec. Illl and using Ef), one gets

E(B“)=f f J dQ,dQ,dQEY (e, 6;,63)

XA(e)A(e)A(e;). (62

The goal is to find the weight functioB“(e,,e,,e;) that
minimizes the variance of the estimator. As above, the quan-

tity B“ is unchanged if we permute arbitrary columns of 2 :J' f a a
indices ina: =B, where, for instance, Towy™ | Ahr | dQeEs(er e 8)Es(er.65.65)
_ [IZ Iy |3] X E(8-ey)[66(€; &) (85 )
a= .
m; m; mg +9&(ey- e3)é(es-8) ], (64)

&(B*) has the same properties & and then it follows

that &(B)=&(B%) foar any column-pe_rmutaiedi This  \where, utilizing the symmetry of the coefficients

|mp[;|es that the E%(e;,e,,6;) satisfies E%(e;,6,,6)  Eg(q 6,8, undere-direction permutations, only two types

=E (91’92'%»)- . ~ of & products remain: first type, six terms where all the three
Now, isE“(€,,€;,e;) also symmetric under permutations #s mix directions of the first and secor’s and, second

in the directionse_l,ez,le3? From its definition we cannot ne nine terms where only or[in the above equation,
know, for these directions are integrated over in the abov (e,-&,)] does it.

defining equation. Unlike the case for the second moment” 14 minimize the remaining variance under the constraint

discussed before, hefe” cannot be decomposed into sym- (g3) we introduce a set of Lagrange multipliec& and write
metric and antisymmetric parts. However, we can always

write E“= Eg+ something, and show that this last contribu-
tion to Eq.(62) vanishes. Therefore, there is no loss of gen-
erality in working with EZ(e,,e,,65)=¢[E%(e;,&,,63) 5[ UE(Ba)—E )\Z(f f f dQ,dQ,dQ3ES(e;,&;,63)
+5termg which is symmetric under arbitrary permutations o
of directionse; .
Demanding the estimatdi(3%) to be unbiased,£(B)) X Rg'(el,ez,e3)— 5%“’)
=3¢, vyields the first constraint equation that the weight
function Eg(e;,e,,e3) must satisfy:

=0. (65)

o o  cad! As already noted for the second moment, the symmetries
j f f d€2,dQ,d05Es(€;,€,85)RR (€1,€,85) = 5" of the weight function must be respected in the variation;
(63 hence we have

SEs(€1,8,,€5) 1]5(e-e—1) 5(e-g—1) d(ez-a—1)
5EZ(e g .,8) 6 2 2 2

+5 term% 5%k . (66)

Now, we vary Eq.65) and, after some algebra, we come up with
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1
ZJJfdﬂ4dﬂsdﬂeg{é(e1~e4)[6§(q-e5)§(eK-ee)+9§(e,-'eK)g(es-es)HS termgEs(ey,€s,8)
=2 AuR$(8.8 .80, 67)

an expression which is symmetric in the arbitrary directien; g, as it should benote the presence (Rg').

We aim at getting an explicit expression fB(es,e5,65). A glance at the previous equation shows that we need to
multiply both sides of it by the inverse of the correlation functin' defined in the Appendix. Concretely, we multiply Eq.
(67) by ¢ Ye-e)é (e )& (e a) and integrate over directiores e ,e; we get

(2m)? i
6Es(er .8 ,80)+9— jfdﬂsdﬂeg(%'%)[f (&-¢/)ES(& ,65,65)

+& e a0)E(8 65,60+ Haw,6)ES(e 65,6)]

1 ’
5| [ ] a0d000. e e e e Haran S ALRE (6 6 00, 68

As before, the Z factors on the left hand side come from

operations like Zf(e)=/dO.5(e-e—1)f(g), for an ar- AikEJ dQ;é(e-g)¢ (g8

bitrary functionf(g). However, we do not have an explicit

expression folES yet. We see that expressions of the type :2772 leern(a)ern*(eK). (70)
é(es-€5)é (- _)ES(_,e5,6) are the ones that prevent im

us from isolating the weight function. To deal with this,
it is convenient to construct the combination
[[dQsdOES(_,e5,65)&(es-€5). To reach this goal, we

multiply both sides of Eq(68) by &(ej:-€.) and integrate AEA”=2 2|+1W|2. (71)
over directionse;, andey . This operation produces a diver- [ 2

gence on the left hand side of this equation in a form of a_ = | o o ] o
Dirac function “&0).” In the continuous case, all methods This is a more realistic and finite object to work with in the

lead to this unavoidable problem and although it has alread§2S€ where two directions on the microwave sky coincide for

appeared in the literaturi@s], it has never been treated so given experience. Notice that for an ideal experimental

far. That this divergence is a mathematical artifact we ca etting in which the \(vmdow functionV —1 or, equiva-
Fntly, the beano— 0 in the case of a Gaussian profild,

see from the fact that, in practice, we never deal with an 'de}Iows up. Since the terms of the typégdn Eq. (64) are not

In particular, the previous divergencef0)” now becomes

experiment. the problem is solved when we take into accoun resent in the case of the two-point correlators, this problem

the fact that each different experimental setting is limited b did not appear there. From now on, strictly speaking, all

a finite angular resol-utlon. This Is usually qgantnﬁed in termsexpressions should incorporate the window function. How-
of an|-dependent window functiol, (the circularly sym-

. : : ever, in what follows and for computational convenience, we
metric pattern of the observation beamlispacg, although . keep Ay ~d(e-6—1) for e#e,, a good approxima-

more involved scanning techniques are also employegon as we can see from Fig. 2.
[65,66]. Then, only a finite number of multipoles will effec-  Engowed now with the above regularization method, we

tively contribute to the correlation function and, as a resultpresent the ternfi [ dQsdQgEL(_,e5,65) £(es- €5) in the fol-
the above-mentioned divergence is regularized; indeed, Wewing form: )

have

| [ a0c0Ese e oo e

fere)=S 2 lewip e e) (69) D
€ 6)=2 ———WiFl(&-§), «
] T A ] :mg )\D"JA f f inrderko!
-1 -1 a’

which, upon using the expression fér given in the Ap- X& (€r8)& (8- a0)Rs (&/,61,60),
pendix, leads to the quantity (72
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1
Eg(el,ez,e3)=m

xz xg,“ JJindekogfl(a.el)
XE g 6)E Hac &)RE (66,6

_DJJJindekoRg’(q,e,—,eK)

XE e a)[é e e)E Here)
+&Hg-e)E Hey )

FIG. 2. Values of4;, (as defined in the texwith fixed direc- +& e e & Hey- ez)]]. (74)

tion e; at the center of the plot and directiep scanning a square of

side 90°. We show the result for the COBE-DMR window function.

The full width at half maximum of the plot is roughly 10°, of the . . . . .

same order as the resolution of the COBE-DMR detector. We cafiaving reached this point, we have an explicit expression for

then expect the plotted “spike” to select just one experimentalEs, but still dependent on the Lagrange multipliers. This

pixel on the sky map, making the relatioh,~ (e -g—1) agood equation is well defined as it contains the renormalized quan-

approximation. Note that higher resolution experiments will yield atity 4. Within a particular experiment with a given resolu-

more peaked curve, although one would expect the goodness of th@yn, the valueA takes depends on what one means by two

approximation to remain roughly the same. coincident directions. For example, for the COBE-DMR
window-function specificatiorfa Gaussian beam with dis-
persiono =3.2°) this yields roughly4~158.5, including the
quadrupole. It is not difficult to extend this to other scanning

with D=2473{6+9[(2m)%/3](2x27+4mA)} "1 where, techniques. The previous equation is the analogue of our Eq.

as expected, the factod appears explicitly. Now, we just (34) corresponding to the second moment and also to Eq.

replace the six terms with prefactoé®on the left hand side (21) of [45]. In that article, a similar analysis is done but for

of Eq. (67) with Eq. (72), resulting in the discretized CMB sky. We remark that no divergence ap-
pears in his case. Indeed, all relevant quantities are finite
when evaluated for two directions pointing towards the same
pixel. Our prefactorD corresponds to 3/(2 3N) in that pa-

f f f dQ,dQsdQeé(E - e4) E(E - €5) E(E- €5) per, whereN represents the number of pixels in the map.
Clearly, N—2 when the pixel size goes to zero, as well as
Ea A— o0 when the window functionV,— 1. At this intermedi-
XEg(€y,65,85)

ate step our corresponding expressions need not coincide be-
1 ) cause both depend on the particular regularization scheme
= 1—22 AZ,[ Rs (€ ,€,8) used(be it discretization or usage of a window function

a’ Despite appearances, we will show below that the final ex-

D pression for the best unbiased estimator does not depend on
__f f de,ko,g—l(ej,.q(,) these schemes. This cannot be inferred from &¢) be-

2m cause we still need to remove the Lagrange multiplier. Un-

) ) like what was done if45], we now proceed further and

X[Rs (& .6/ ,60)é(g-6)+RS (6,6 ,6:)é(6-6)  express the weight function explicitly. Hence, we multiply

both sides of Eq(74) by Rg"(el,ez.eg), where

+RE (8.8 ,80)E(8-€)]|. (73)

”

This contains just one appearanceESf; to get the weight @
function explicitly, we only need to multiply the equation by

£ e e)é e e)& (&) and integrate over direc-

tionse; g ,6 . Finally, we get the expression f&ig in terms  and then integrate over directiors, e,, andez, and, upon
of the Lagrange multipliera «: using the constraint equatid63), we get

" n n
{ 1715 13 }
" " "
m; m; mMs
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s 1 1 o n @
1265 =5 oomm | | (ZD)™ TN 0y g ) FN[1) 1 i3] |5 additional permutations in index”
12 R B L
D || Smmr—my(= 1™ (—q)m y « ) o
- =DM (1 YN ) (=DM 2
3 CynCyr % G (( 1) 7\{ |3”] )\[ I%’] (-1 )\[ |3” ]
23 m-m —my -mm mg —mMy; m -m
N N W 1-2 1-3
N[0y 1 +(—1)m§)\ oy PN g +|2—=3|+|2—=1]|}. (75)
mz —m m m —mj —m —m mj m 3—1 3-2

Equation(75) is the final algebraic equation that the multipliers must satisfy. For fixed, natural way to proceed would be
to get an explicit expression for’, . Another way to solve the problem goes on a line analogous to the case of the two-point
correlators: we just need to identify the complicated combination of Lagrange multipliers on the right hand sidé7&) Eq.
with the one on the right hand side of E@3) [or, equivalently, Eq(74)]. In order to do that, we now multiply both sides of

Eq. (75) by Rg"(eI 6,8, perform the six sums over the indicesdri, and we end up with

Rs(e & ,60C G0 ,= 2” RY (6. ,Q)chlgclﬁga”

! . / D (_l)M m m m

:E§ NarRs (6.6 ’ek)_%% % C—L[Y' (&)é(e-8)+Y(g)é(ec-e)+ Y (a)é(e-g)]
XN L D™ LT L CDM
H\ﬁbl = r'n)ﬂ_l)m)\[a}m i Jm]}' (76)

This is the equivalent of Eq35). The aim now is to show that the combination of Lagrange multipliers on the right hand side
of the previous equation is precisely the one which appears on the right hand side(@8)Etn the latter, let us express both

Rg' and&~ 1 in the second term on the right hand side in terms of spherical harmonics. After some algebra we get

[ [] a0.a0s00.e-eose eee eege e

1 , D —M
“1p2 MoRs(e 88035 X : cL) [YP(e)é(g a0+ V() é(ac )+ Y (B0 é(e - €)]
X[)\a| L L +(—1)m)\a| LoLAN L T O+ (=D™L 1 LFAL Lo (=D™ L L }
m M m —nowi] e m ol W -m =< ml <4 W
(77)

which, as advertised, yields the same combination of Lagrange multipliers d78q.Then, putting the last two equations

together, multiplying by, and integrating 3 times, we finally get the weight function associated with the best unbiased
estimator:

ESbes(€ .6 ,8) =R3(€,6,8), (79)

which implies that the best unbiased estimator itself is given by

1 m m m Mqx _Mox _Ma*
Epest BY) =3 (a|11a|22a|33+ all1 a|22 aI: ). (79

This is the final answer and it is a new result. Let us make a few remarks. First, this does not depemdhich shows that
Eq. (79 is independent of the regularization scheme used. Sed6@{,used the following complex unbiased estimator

&(BY) =arlla|”;2a|r23, although he did not claim it to be the best one. Third, as for the two-point correlators, one cannot use Eq.
(79 in order to infergBes(C,l|2|2). Indeed, promoting the equation
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(alnzlarz‘zalf‘;s = ( rlnll r|r122 r|T133)C' olg: (80)
valid for the mean values of the estimators, to the equation
1 my_ My _m My* _Mo* _Max |1 I2 |3
5bes([jw) = E (a| 11a|22a|33+ a| 11 a|22 a|33 ): 5bes(clllzl3)< m; m, m3) (false), (81)

valid for the estimators themselves, is an unjustified step. If, nevertheless, we used this false relation, we would get

. (|l 1, |3> . (Il L, s
bes = ’ ’ ’
m; my mg m]’_m’mé m; m, mg

a"a?a s (false), (82
1 2 3

which cannot be cast intg)(almlagzar;% a al"z‘z* a|”;3*). So, like for the two-point correlators, we see that one cannot infer
1 1

the Epes( BY) from EpeeC 1'2'3) and vice versa.

Endowed now with the best unbiased estimator, one can compute its variance squared, the “third-moment cosmic vari-
ance,” which reads

P 1
O-gbesza)z E{q C| C|

s 3[ 1+ 5m10 5m205m30] + C|315I Il [85m105m205m30+ 2( §mlm3+ 5m1— m3) ( 5mlm2+ 5m1— mz)]

1'2'3
+ CI lC|22 5I ol 3[ 2 5m10 5m27 ma + 5m2m3 + 5m27 m3] + CI 2C|23 5I 3l 1[ 2 5m20 5m37 my + 5m3m1 + 5m37 ml]

+ CI 3C|21 5I L 2[ 2 5m30 5m1— m, + 5m1m2 + 5ml— mz]} . (83)

For example, from this we can now compute the cosmicThe cosmic variance is then agbes{Bgﬁcg’z

variance for the third-moment estimatéy,( %) with :(477/5)3/2Qr3ms—P gT8~1.3>< 107 where we usedT,
I | =2.7K andQ,s.ps= 18.7uK [67]. Although this figure is
BE{ ] close to Luo’s result (1410 % cited after Eq.(32) in
m m —2m [45], this does not imply that the two variances are not dif-

_ ) ) _ ferent by a factor of 1/2, as we have just seen. This might
wherel =even andn#0. This particular case is often treated . 5aply be due to a difference in the quadrupole normaliza-

in the literature: see, e.g[63,45. We find O';bes(Bﬁ):C| tions.

whereas the variance of the estimator used68] yields

05(85)226,3. Another example comes from taking
V. CONCLUSIONS

yz[ I ! I } Optimized analyses of CMB data sets involve the use of

m; m, ms, appropriate methods in order to reduce the various uncertain-
ties. In particular, the theoretical error bars due to the cosmic

where |m;|#|m;| for any i, j. With this choice we get variance can be minimized by working with the method of
Ty (By)=c,3/2 wherea$63] obtainS(r?(By):Cf. Note thatin  the best unbiased estimators. In this article, we have applied
v (fhis technique for the study of CMB non-Gaussian features.

both examples the results differ by a factor of 1/2. This ca T ft h ed b f the third
be traced back to the form of the best estimator in &§). ese are often characterized by means of the third moment

The variance computed {i63] is consistent with his choice fOF the &s or by the angular bispectrud .. We have
of the estimator. However, unlike what is stated in that pafound the best unbiased estimators in both cases. These are

per, this variance does not deserve the name “cosmic” bethe quantities that should be used in future data analyses and
cause, as we saw above, this estimator is not the best one. A®uld be important for upcoming megapixel experiments
expected, the variance of the best estimator is smaller tha$8,69 such as the microwave anisotropy prdbAP)" and

the variance computed in his article. Since we have now th@lanck Surveyof.In addition to this, we have displayed both
correct expression for the cosmic variance, its numericathe angular bispectrum and the third moment cosmic vari-
value should be reestimated. To be specific, let us take

B= 2.2 2 Thttp://map.gsfc.nasa.gov/
1 1 -2/ %http://astro.estec.esa.nl/Planck/
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ances, the smallest possible uncertainties attached to the . " o
bispectrum and the third moment, which would be present in & (Q'ej)zlg E bimm Y (€)Y, "(g). (A3)
any ideal experiment when all other sources of noise have m1'm

been removed. ) ) . o .
Our aim now is to determine the coefficiettttg: v . USing

Egs. (A2) and (A3), the completeness relation for the Leg-

ACKNOWLEDGMENTS endre polynomials together with the addition theorem of
A.G. is a member of CONICET, Argentina. spherical harmonics in EGA1), one gets
APPENDIX: THE INVERSE TWO-POINT / 1
CORRELATION FUNCTION % ,,E, Cbymm YT(€) Y]] *(GK)=% 1"+ 5) Pin(e-e).
m
In this appendix, we derive the exact expression of the (A4)
inverse of the two-point correlation functiofi !, defined
according to The coefficientd) .y are easy to read off and one obtains
-1 _
f dﬂjf(elej)f (6‘1@)=5(QQ<_1) (Al) bll’mm’zzc_Téll’émm’i (AS)
As usual, one expands the two-point correlation function on
the basis of the Legendre polynomials from which one deduces
21+1
e)=> —— . |+1/2
In general,¢ ! can be expanded on the spherical harmonics
basis as follows: This is the expression used in the main text.
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