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Unitarity triangles and geometrical description of CP violation with Majorana neutrinos
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We generalize the geometrical description ofCP violation in the standard model in terms of a unitarity
triangle. For three left-handed Majorana neutrinosCP violation in the lepton sector is determined by three
unitarity triangles. With three additional right-handed neutrinos 15 quadrangles are required to characterizeCP
violation. We show the relation of the unitarity polygons with physical observables.

PACS number~s!: 11.30.Er, 12.60.2i, 14.60.Pq, 14.60.St
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I. INTRODUCTION

The recent SuperKamiokande data@1# on atmospheric
neutrinos provide evidence for neutrino oscillations, th
suggesting that neutrinos have non-vanishing masses.
simplest way of understanding the smallness of these ma
is through the seesaw mechanism@2# which naturally leads
to Majorana neutrinos.

In this article we provide a geometrical interpretation
CP violation with Majorana neutrinos. In the quark sector
the three-generation standard model~SM! it is well known
that CP violation can be described by six unitarity triangl
@3#. They are obtained from orthogonality of the rows a
columns of the Cabibbo-Kobayashi-Maskawa~CKM! matrix
V @4#, and are all equivalent. Under a rephasing transform
tion of the quark fields, these unitarity triangles rotate a
therefore their orientation has no physical meaning. Ho
ever, their area does have physical meaning and in fact al
triangles have the same area which is proportional to
rephasing invariantCP violating quantityuIm Vi j Vk j* VklVil* u
@5#. It is natural to ask how this geometrical analysis can
extended to the leptonic sector, when Majorana neutri
are present. In this article we will address this questi
considering first the cases of three and four left-han
Majorana neutrinos and then the case of three left-han
and an arbitrary number of right-handed neutrinos. W
will interpretate the well-known features ofCP violation for
Majorana neutrinos in terms of geometrical properties
polygons.

II. GEOMETRICAL INTERPRETATION FOR THREE
LEFT-HANDED NEUTRINOS

In the SM extension with Majorana neutrino masses,
mass terms of the leptonic Lagrangian, in the weak eig
state basis, can be written as

2Lmass5 l̄ L
0Mll R

01
1

2
n̄L

0ML~nL
0!c1H.c., ~1!

wherel L
0 , l R

0 andnL
0 are three-dimensional vectors in flav

space,Ml and ML are 333 complex matrices and (nL
0)c

5C( n̄L
0)T. HereML can be taken as symmetric without lo
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of generality. The mass term for the neutrinos can be ge
ated extending the scalar sector with a Higgs triplet or can
the result of a seesaw mechanism@2#. The charged curren
term in this basis is

2LCC5
g

A2
n̄L

0gml L
0Wm

† 1H.c. ~2!

The leptonic mass matricesMl , ML are diagonalized
through the transformationsl L

05UL
l l L , nL

05UL
nnL , l R

0

5UR
l l R , with UL

l ,n , UR
l 333 unitary matrices, so tha

UL
l†MlUR

l 5Dl , UL
n†MLUL

n* 5DL whereDl , DL are the di-
agonal mass matrices. One can then write, in the mass ei
state basis,

2Lmass5 l̄ LDl l R1
1

2
n̄LDL~nL!c1H.c.,

2LCC5
g

A2
n̄LgmUl LWm

† 1H.c. ~3!

The mixing matrixU5UL
n†UL

l is the analogue of the CKM
matrix in the quark sector, and can be parametrized wit
mixing angles and 6 phases. The phase of the charged le
mass eigenstates is arbitrary, and we can use this freedo
eliminate three of these phases. However, the phase o
neutrino mass eigenstates cannot be changed, since
transformation does not leave invariant the neutrino m
matrix in Eq.~3!. Hence the mixing matrixU has in general
three independent,CP violating physical phases instead o
one. Two of these phases are ‘‘Majorana phases’’ that co
be removed if rephasing of the neutrino fields was allow
The other phase is the analogous to the CKM phase wh
cannot be removed even for Dirac neutrinos, a ‘‘Dir
phase.’’

The mixing matrix can be parametrized in general a
diagonal matrix of phases multiplied by a 333 unitary ma-
trix in the standard parametrization@6#
©2000 The American Physical Society09-1
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U5S 1 0 0

0 eia2 0

0 0 eia3

D S c12c13 s12c13 s13e
2 id

2s12c232c12s23s13e
id c12c232s12s23s13e

id s23c13

s12s232c12c23s13e
id 2c12s232s12c23s13e

id c23c13

D . ~4!
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In this parametrization,d is the Dirac phase anda2 , a3 are
the Majorana phases.CP is conserved ifd50 mod p and
a250, a350 mod p/2 ~from now on we will write for
simplicity d50, a250, a350). Note that Majorana phase
of 6p/2 do not imply CP violation but indicate different
CP parities of the neutrino mass eigenstates@7#.

The only rephasing transformations allowed arel L j ,R j
→eil j l L j ,R j . Under these transformations, the matrix e
ments ofU transform asUi j →eil jUi j . Hence the minimal
rephasing invariant terms are the productsUi j Uk j* , and the
minimal CP violating quantities their imaginary part
Im Ui j Uk j* .1

One can define triangles analogous to those depicte
the quark sector by multiplying two columns ofU, e.g.,
U11U13* 1U21U23* 1U31U33* 50. Under rephasing transforma
tions, these triangles rotate in the complex plane,Ui j Uik*
→ei (l j 2lk) Ui j Uik* , so their orientation has no physic
meaning. They share a common areaA51/2
uIm Ui j Uk j* UklUil* u. We will call these triangles ‘‘Dirac tri-
angles.’’ The vanishing of their area impliesJU

[uIm Ui j Uk j* UklUil* u50, but does not imply that the mini
mal CP violating quantities ImUi j Uk j* are zero, andCP can
still be violated. In terms of phases,JU50 implies that the
Dirac phase vanishes@d50 in the parametrization in Eq.~4!#
but the Majorana phases can still violateCP. Thus these
triangles provide a necessary but not sufficient condition
CP conservation and are not enough to completely desc
CP violation.

One can also define three ‘‘Majorana triangles’’ multipl
ing two rows ofU ~see Fig. 1!:

T12[U11U21* 1U12U22* 1U13U23* 50,

T13[U11U31* 1U12U32* 1U13U33* 50,

T23[U21U31* 1U22U32* 1U23U33* 50. ~5!

Under a change of phase these triangles do not rotat
the complex plane, since all their terms are rephasing inv
ant. Thus their orientation is physically meaningful. The
Majorana triangles provide the necessary and sufficient c
ditions for CP conservation:

~1! Vanishing of their common areaA5JU/2.
~2! Orientation of all Majorana triangles along the dire

tion of the real or imaginary axes.
The first condition implies that the three triangles collap

into lines in the complex plane and the Dirac phase vanis

1Strictly speaking, ImUi j Uk j* are notCP violating if ReUi j Uk j*
50 ~see Sec. IV!.
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Condition~2! implies that the Majorana phases do not viola
CP. If the three collapsed triangles are on thex axis, one has
Im Ui j Uk j* 50 ; i , j ,k andCP is obviously conserved. If one
of these triangles,Tik , is parallel to they axis, that means
that the mass eigenstatesn i and nk have oppositeCP pari-
ties, but there is notCP violation. Multiplying the i or thek
row by 6 i we can rotate the triangle to thex axis, making
the mass of the corresponding eigenstate negative. Henc
three Majorana triangles provide a complete description
CP violation. Each one of their sides, if not parallel to one
the axes, is itself a signal ofCP violation, contrarily to the
Dirac case where only a nonzero area signalsCP violation.

One may wonder whether the three conditions~2! are in-
dependent, i.e., whether the orientations of the three trian
are related. If at least one column ofU, e.g., the first column,
has nonzero elements, one has

argU11U31* 5argU11U21* 1argU21U31* mod 2p. ~6!

This is true independently of the areaA, but in the case of
vanishing areas, Eq.~6! implies that the angles between th
triangles and the real axis are related, and only two triang
are needed, for instanceT12 and T13. Requiring that these
two triangles are on thex or y axis eliminates the two Ma-
jorana phases.

To describeCP violation in the most general cases, th
three triangles are needed. In order to see that this is the c
let us consider the mixing matrix

U5S 1 0 0

0 1/A2 1/A2

0 eia/A2 2eia/A2
D . ~7!

For this particular matrix,T12 andT13 are trivial, andCP is
violated unlessa50 modp/2; i.e.,T23 is parallel to one of
the axes. Analogous mixing matrices can be written to sh
that T12 andT13 are necessary in general.

To conclude this section, let us discuss two interest
special cases. If one neutrino is massless, e.g.,mn1

50, the

phase ofn1 can be changed, leavingLmass invariant. The

FIG. 1. Majorana unitarity triangleT12. Its orientation is fixed
by the Majorana phases and it cannot be rotated in the com
plane.
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orientation of the trianglesT12 and T13 has no physical
meaning, and allCP violation can be summarized inT23. In
this case we have only the Dirac phase (d) and one Majorana
phase (a3). Requiring that the area ofT23 be zero eliminates
d, and requiring thatT23 be parallel to thex or y axis elimi-
natesa3. The casesmn2

50 andmn3
50 are similar.

In the case that there is one and only one zero inU, e.g.,
U31, the three triangles have null area and the Dirac phas
zero. The orientations of the three triangles are related
only two of them are necessary to describeCP violation. If
there are two zeros in the mixing matrix,U is analogous to
the matrix in Eq.~7! with at most one Majorana phase, an
only one triangle is nontrivial.

III. GENERALIZATIONS

A. Four left-handed neutrinos

Before considering the inclusion of right-handed neu
nos it is convenient to analyze the simpler case of four l
handed neutrinos. The CKM matrix in this case is a 434
matrix, with three Dirac phases and three Majorana pha
The unitarity relations between its rows can be represente
the complex plane as six Majorana quadrangles. For
ample, the orthogonality condition between the first and s
ond rows can be represented as the quadrangle

Q12[U11U21* 1U12U22* 1U13U23* 1U14U24* 50. ~8!

Its area is2

A125
1

4
$uIm U11U21* U22U12* u1uIm U12U22* U23U13* u

1uIm U13U23* U24U14* u1uIm U14U24* U21U11* u%. ~9!

If A1250, the four imaginary products are zero. The con
tion for the vanishing of the three Dirac phases is that
areas of three independent convex quadrangles~for instance,
Q12, Q23, Q34 or Q12, Q13, Q23) be zero@8#. When this
condition is satisfied, the areas of all the quadrangles
zero. To describeCP violation with all generality the six
quadranglesQ12, Q13, Q14, Q23, Q24, Q34 are necessary
since there are special cases when all quadrangles but on
trivial. CP is conserved if, and only if, these six conve
quadrangles have null area and are orientated in the direc
of one of the axes. However, if at least one column ofU has
all elements non-vanishing, e.g., the first column,

argU11U31* 5argU11U21* 1argU21U31* mod 2p,

argU21U41* 5argU21U31* 1argU31U41* mod 2p,

2For simplicity we assume thatQ12 when drawn in the order o
Eq. ~8! is convex. In other case, its sides must be reordered, ob
ing an expression similar to Eq.~9!. The results are unchanged.
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argU11U41* 5argU11U21* 1argU21U31*

1argU31U41* mod 2p, ~10!

and the three quadranglesQ12, Q23, and Q34 completely
characterizeCP violation.

B. Three left-handed andnR right-handed neutrinos

The case of 3 left-handed andnR right-handed neutrinos
is similar to the extension of the SM withnR up-type quark
singlets, with some differences due to the Majorana chara
of the neutrinos. The CKM mixing matrixU is a (31nR)
33 submatrix of a (31nR)3(31nR) unitary matrix, with
2nR11 Dirac phases andnR12 Majorana phases. In add
tion, the neutral current Lagrangian contains nondiago
terms,

2LNC5
g

2cW
n̄LgmXnLZm1H.c., ~11!

whereX is a (31nR)3(31nR) Hermitian matrix with com-
plex nondiagonal elements. Note thatnL is a linear combi-
nation of weak eigenstatesnL

0 , (nR
0)c with different isospin.

However, the flavor-changing neutral~FCN! couplings do
not contain additionalCP violating phases. For any numbe
of right-handed neutrinos,nR , the unitarity relations between
rows of U can be represented as convex Majorana qu
rangles in the complex plane@9#. For example, the orthogo
nality condition between the first and second rows reads

Q12[U11U21* 1U12U22* 1U13U23* 5X12, ~12!

with X12 the FCN coupling between the neutrino mass eig
statesn1 andn2 ~see Fig. 2!.

The geometrical interpretation is then very similar to t
previous case. The condition for the vanishing of the 2nR
11 Dirac phases is that the area of (nR12)(nR11)/2 inde-
pendent convex quadrangles is zero, for instanceQ12, Q23...
QnR12,nR13. In this case, the areas of the remaining qua
rangles are also zero. The condition for the vanishing of
nR12 Majorana phases is that all the (nR13)(nR12)/2
quadrangles are parallel to thex or y axis. Hence, the com
plete description ofCP violation with three left-handed and
nR right-handed neutrinos is achieved with (nR13)(nR
12)/2 quadrangles. Note that in the limit where the hea
neutrinos decouple,Xi j 5d i j for i , j 51,2,3, and the three

n-

FIG. 2. Majorana unitarity quadrangleQ12 for an arbitrary num-
ber of right-handed neutrinosnR . Its orientation is fixed by the
Majorana phases and it cannot be rotated in the complex plane
9-3
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J. A. AGUILAR-SAAVEDRA AND G. C. BRANCO PHYSICAL REVIEW D62 096009
quadrangles involving only the light neutrinos reduce to
three triangles described in the previous section. The o
quadrangles are trivial.

IV. UNITARITY POLYGONS AND PHYSICAL
OBSERVABLES

Relevant information on the unitarity polygons~and the
CP violating phases! can be extracted fromCP violating
and CP conserving processes. TheCP violating processes
may be sensitive to the Majorana phases or may not. We
show examples of each case.

CP violation in neutrino oscillations is not sensitive
Majorana phases. The Dirac or Majorana character of
neutrinos is not revealed in this kind of experiments, a
thusCP violation observables are proportional to imagina
quartets ImUi j Uk j* UklUil* . Neutrino oscillations can only
provide information on the areas of the unitarity polygo
and the Dirac phases.

One important process to test the Majorana characte
the neutrinos is neutrinoless double-beta decay. This pro
is mediated by the diagram in Fig. 3, where we can obse
that the Majorana character of the neutrinos is essential.

The cross section of this process is

s5C (
i , j

mn i
mn j

~Ui1U j 1* !2, ~13!

where the rephasing invariance is explicit.C is a factor in-
dependent of the mixing angles. There are terms proportio
to uUi1u4 and also terms proportional to the first sides of t
triangles~or quadrangles!, the sides involving the coupling
of the neutrinos to the electron. The measurement of
neutrinoless double beta decay rate then serves to cons
the CP violating parameters.

The decay of heavy Majorana neutrinos has been p
posed as a source ofCP violation for baryogenesis@10#.
Here for definiteness we will consider theCP asymmetry in
the decay of a heavy neutrino,n4→W1e. The tree-level and
one-loop diagrams relevant for theCP asymmetry in this
decay are shown in Fig. 4. Note that the Majorana chara
of the neutrinos plays an essential role in the second
gram. There are four more one-loop diagrams not taken
account. Two of them involveZ and photon exchange be
tween the electron and theW. They have the same wea
phase as the tree-level diagram and do not contribute to
CP asymmetry at lowest order. The other two involveZ
exchange between the neutrino and the electron andW, re-

FIG. 3. Feynman diagram for neutrinoless double beta de
mediated by Majorana neutrinos.
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spectively. If FCN couplings are neglected, they also ha
the same weak phase as the tree-level diagram.

The differenceG(n4→W1e)2Ḡ(n4→W2e1) is a CP
violating observable. Extracting the dependence on the m
ing angles it can be written as

G2Ḡ5(
k,l

f kl Im ~U41Uk1* ! ~U4lUkl* !, ~14!

with f kl form factors independent of mixing angles. To u
derstand this formula we observe in Fig. 4 that the mixi
angle factors of the tree-level and one-loop contributio
U41 andUklU4l* Uk1 respectively, transform in the same wa
under rephasing of the charged lepton fields~as they must!,
but not under rephasing of the neutrino mass eigenstate~as
they should in the case of Dirac neutrinos!. If the two mixing
angle factors transformed in the same way under repha
of the neutrino mass eigenstates, we would have a de
denceG2Ḡ}Im U41Uk1* UklU4l* or similar, and the asymme
try would not be sensitive to the Majorana phases. The d
grams involvingZ exchange between the neutrino ande, W
give an additional contribution of this type.

TheCP asymmetry in Eq.~14! is written as a linear com-
bination of imaginary parts of products of the sides 1,l of the
quadrangleQ4k , summing overk and l. The terms withl
51 contain Im (U41Uk1* )252 Re (U41Uk1) Im (U41Uk1).
We see that a side ofQ4k does not contribute to theCP
asymmetry if it is parallel to one of the axes, although it m
contribute in the terms of mixing with other sides if the Dira
phases are nonzero, i.e., if other sides of the same quadra
areCP violating.

Finally we will show the relation between the unitari
triangles and the weak-basis invariants. The lowest or
weak-basis invariant for three left-handed Majorana neu
nos is@11#

I 5Im tr MlMl
†MLMl* Ml

TML* MLML*

5 (
i , j ,k,l

mj
2ml

2mn i

3 mnk
Im ~Ui j Uk j* ! ~Uil Ukl* !, ~15!

with mi the mass of the charged leptoni. In Eq. ~15! rephas-
ing invariance is explicit. The invariant is written as a su
of imaginary parts of products of two sidesj ,l of the
same triangleTik weighted by mass factors. The term
with j 5 l are proportional to Im (Ui j Uk j* )2

52 Re (Ui j Uk j* ) Im (Ui j Uk j* ). We see that a side ofTik par-
allel to the real or imaginary axis does not contribute toI. If

y

FIG. 4. Tree-level and one-loop contributions to theCP asym-
metry in the decay of a heavy Majorana neutrino,n4→W1e.
9-4
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the Dirac phase is also zero, the whole contribution ofTik is
zero. Thus, although the minimalCP violating quantities are
Im Ui j Uk j* , they need to interfere with their real part or wi
other sides of unitarity triangles.
.
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