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Unitarity triangles and geometrical description of CP violation with Majorana neutrinos
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We generalize the geometrical description@P violation in the standard model in terms of a unitarity
triangle. For three left-handed Majorana neutril®B violation in the lepton sector is determined by three
unitarity triangles. With three additional right-handed neutrinos 15 quadrangles are required to chai@éterize
violation. We show the relation of the unitarity polygons with physical observables.

PACS numbse(s): 11.30.Er, 12.66-i, 14.60.Pq, 14.60.St

[. INTRODUCTION of generality. The mass term for the neutrinos can be gener-
ated extending the scalar sector with a Higgs triplet or can be
The recent SuperKamiokande ddth) on atmospheric the result of a seesaw mechani§#j. The charged current
neutrinos provide evidence for neutrino oscillations, thusterm in this basis is
suggesting that neutrinos have non-vanishing masses. The
simplest way of understanding the smallness of these masses
is thrqugh the seesaw mechani§&) which naturally leads —ﬁcc::i;h"'EWTJFH-C- %)
to Majorana neutrinos. J2 m
In this article we provide a geometrical interpretation of
CP violation with Majorana neutrinos. In the quark sector of
the three-generation standard mo@®M) it is well known ~ The leptonic mass matriced,, M_ are diagonalized
that CP violation can be described by six unitarity triangles through the  transformationdP=Uj1,, »’=U/v , I}
[3]. They are obtained from orthogonality of the rows and=Uglg, with U”, Uz 3X3 unitary matrices, so that
columns of the Cabibbo-Kobayashi-Maska(@KM) matrix ~ U]"M,Ux=D,, U'"M U/* =D, whereD,, D, are the di-
V [4], and are all equivalent. Under a rephasing transformaagonal mass matrices. One can then write, in the mass eigen-
tion of the quark fields, these unitarity triangles rotate andstate basis,
therefore their orientation has no physical meaning. How-
ever, their area does have physical meaning and in fact all six
triangle_s h_ave '_the same area Which_ is proportional to the —ﬁmass:TLDﬂRJr E;LDL(VL)CJFH_C_,
rephasing invarianC P violating quantity|Im V;; ViV, Vil |
[5]. It is natural to ask how this geometrical analysis can be
extended to the leptonic sector, when Majorana neutrinos
are present. In this article we will address this question, 99— +
considering first the cases of three and four left-handed ~Lec= EVLVMUILWM“LH'C' G
Majorana neutrinos and then the case of three left-handed
and an arbitrary number of right-handed neutrinos. We
will interpretate the well-known features 6fP violation for ~ The mixing matrixU=U!"U| is the analogue of the CKM
Majorana neutrinos in terms of geometrical properties ofmatrix in the quark sector, and can be parametrized with 3

polygons. mixing angles and 6 phases. The phase of the charged lepton
mass eigenstates is arbitrary, and we can use this freedom to

Il. GEOMETRICAL INTERPRETATION FOR THREE eliminate three of these phases. However, the phase of the
LEFT-HANDED NEUTRINOS neutrino mass eigenstates cannot be changed, since this

) ) ) ) transformation does not leave invariant the neutrino mass
In the SM extension with Majorana neutrino masses, thenatrix in Eq.(3). Hence the mixing matri%) has in general

mass terms of the leptonic Lagrangian, in the weak eigengee independent P violating physical phases instead of

state basis, can be written as one. Two of these phases are “Majorana phases” that could
1 be removed if rephasing of the neutrino fields was allowed.
— Lonase | 'M 1%+ E?IEML(VE)C"" H.c., (1)  The other phase is the analogous to the CKM phassa‘ which
cannot be removed even for Dirac neutrinos, a “Dirac
phase.”

wherel?, I and v are three-dimensional vectors in flavor  The mixing matrix can be parametrized in general as a
H Cc . . T .

space,M; and M, are 3x3 complex matrices andvf) diagonal matrix of phases multiplied by &3 unitary ma-

= C(;E)T. HereM, can be taken as symmetric without loss trix in the standard parametrizati}]
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1 0 0 C113 S12C13 S13€
u=[0 e 0 — 812023 C15238138'°  C1o3— S1252818'°  SpeCi3 | (4)
0 0 e S15823~ 1202518 —CiSps— S1:C281€ 0 Cois

In this parametrizationg is the Dirac phase and,, a3 are  Condition(2) implies that the Majorana phases do not violate
the Majorana phase€P is conserved if§=0 mod 7 and  CP. If the three collapsed triangles are on thaxis, one has
a»,=0, a3=0 mod #/2 (from now on we will write for Im uiju;jzo Vi,j,k andCP is obviously conserved. If one
simplicity §=0, a,=0, a3=0). Note that Majorana phases of these trianglesT;, is parallel to they axis, that means
of ==/2 do not imply CP violation but indicate different that the mass eigenstatesand v, have oppositeCP pari-
CP parities of the neutrino mass eigenstdtés ties, but there is noEP violation. Multiplying thei or thek

The only rephasing transformations allowed d[¢g; row by =i we can rotate the triangle to theaxis, making
_>e”‘JILjYRJ-. Under these transformations, the matrix ele-the mass of the corresponding eigenstate negative. Hence the
ments ofU transform asuij—>e'”iuij . Hence the minimal three Majorana triangles provide a complete description of
rephasing invariant terms are the produdigU;;, and the  CP violation. Each one of their sides, if not parallel to one of
minimal CP violating quantities their imaginary parts the axes, is itself a signal & P violation, contrarily to the
Im UijU:j 1 Dirac case where only a nonzero area sigi@#sviolation.

One can define triangles analogous to those depicted in One may wonder whether the three conditi¢é®sare in-
the quark sector by multiplying two columns &f, e.g., dependent, i.e., whether the orientations of the three triangles
U11U%s+ Uy U+ UgU%,=0. Under rephasing transforma- are related. If at least one columndf e.g., the first column,
tions, these triangles rotate in the complex plabogU} has nonzero elements, one has
—e'™~M U Uk, so their orientation has no physical
meaning. They share a common ared=1/2
[Im Uj;UiU Ui | We will call these triangles “Dirac tri-

argu,U%,=argu;,U3 +argu,,U3; mod 2m. (6)

., L i o This is true independently of the aréa but in the case of
angles. Ihe \ianlshlng of their _area |mplles7L_, . vanishing areas, Eq6) implies that the angles between the
=[ImU; JijUUi | =0, but does SOt imply that the mini- ian51es and the real axis are related, and only two triangles
mal CP violating quantities InU;; Uy are zero, an€P can 516 needed, for instanck,, and Ty5. Requiring that these
still be violated. In terms of phasegy, =0 implies that the g triangles are on the or y axis eliminates the two Ma-
Dirac phase vanish¢$=0 in the parametrization in E)]  jorana phases.

but the Majorana phases can still viold®P. Thus these ~ Tq describeCP violation in the most general cases, the

triangles provide a necessary but not sufficient condition foknree triangles are needed. In order to see that this is the case,
CP conservation and are not enough to completely describgt ys consider the mixing matrix

CP violation.
One can also define three “Majorana triangles” multiply- 1 0 0
ing two rows ofU (see Fig. L

u=l0 1N2 12 |, %)
T12§U11U;1+ U12U;2+ U13U§3:0, 0 eia/\/i _eia/\/z
T1a=UpU%+ U U5+ UpU3=0, For this particular matrixT,, and T, are trivial, andCP is
B . . . violated unlessx=0 mod/2; i.e., T,3 is parallel to one of
Tog=UaU3i 1+ UpUz,t UggU3e=0. ) the axes. Analogous mixing matrices can be written to show

. that T, and T,; are necessary in general.
Under a change of phase these triangles do not rotate in To conclude this section, let us discuss two interesting

the complex plane, since all their terms are rephasing invari- | r {ino i | —0 th
ant. Thus their orientation is physically meaningful. These>PEC!1d! Cases. I one neutring 15 m_ass esg, engl » Ine
Majorana triangles provide the necessary and sufficient corRhase ofr; can be changed, leavingnass invariant. The
ditions for CP conservation:

(1) Vanishing of their common are&= 7,/2. U2Us,

(2) Orientation of all Majorana triangles along the direc-
tion of the real or imaginary axes. UisU3;

The first condition implies that the three triangles collapse
into lines in the complex plane and the Dirac phase vanishes.

UnUs
FIG. 1. Majorana unitarity triangl&,. Its orientation is fixed
IStrictly speaking, InUiJ-U[fj are notCP violating if ReU;; L‘j by the Majorana phases and it cannot be rotated in the complex
=0 (see Sec. V. plane.
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orientation of the trianglesT;, and T3 has no physical

meaning, and alC P violation can be summarized ifp3. In

this case we have only the Dirac phag® and one Majorana

phase §&3). Requiring that the area @f,; be zero eliminates

8, and requiring thaT ,; be parallel to the or y axis elimi-

natesas. The casesn,, =0 andm,,3=0 are similar.

sy the three tiangles have null area and the Dirac phase fs FIG- 2 Majorana uniarty quadrang@ or an abiary -

zero. The orientations of the three triangles are related anlféler of right-handed neutrinosg . Its orientation is fixed by the
’ - : ajorana phases and it cannot be rotated in the complex plane.

only two of them are necessary to descridP violation. If

there are two zeros in the mixing matritd, is analogous to

the matrix in Eq.(7) with at most one Majorana phase, and argU U7, =argU U3, +argu, U3,

only one triangle is nontrivial. +argUs;U);, mod 27 (10

—Xi12

UnUy

Ill. GENERALIZATIONS and the three quadranglé®;,, Q,s; and Qz, completely

A. Four left-handed neutrinos characterizeC P violation.

Before considering the inclusion of right-handed neutri-
nos it is convenient to analyze the simpler case of four left-
handed neutrinos. The CKM matrix in this case is &4 The case of 3 left-handed amg; right-handed neutrinos
matrix, with three Dirac phases and three Majorana phasegs similar to the extension of the SM wiil,, up-type quark
The unitarity relations between its rows can be represented isinglets, with some differences due to the Majorana character
the complex plane as six Majorana quadrangles. For exoef the neutrinos. The CKM mixing matrik) is a (3+ng)
ample, the orthogonality condition between the first and secx 3 submatrix of a (3 ng) X (3+ng) unitary matrix, with

B. Three left-handed andng right-handed neutrinos

ond rows can be represented as the quadrangle 2ng+1 Dirac phases andg+2 Majorana phases. In addi-
. . . N tion, the neutral current Lagrangian contains nondiagonal
Quo=UnU5t UgUo+ UgUsa+ Uy U2=0.  (8)  torms
Its area i§ — Lye= iﬁ y*Xv, Z,+H.c., (11)
2Cy #
1 * * * * . .. . .
Arz= 7 {[Im U3;U3,U 22U +[Im U1 U5,U o307 whereX is a (3+ng) X (3+ng) Hermitian matrix with com-

plex nondiagonal elements. Note that is a linear combi-
+]Im U 3U%U,U% [+ ImU,U3,U,UR L. (9)  nation of weak eigenstated , (»2)¢ with different isospin.
However, the flavor-changing neutréfCN) couplings do

If A;,=0, the four imaginary products are zero. The condi-not contain additionaC P violating phases. For any number

tion for the vanishing of the three Dirac phases is that the?! right-handed neutrinosiz, the unitarity relations between

areas of three independent convex quadran@esnstance, 'OWS of U can be represented as convex Majorana quad-
Q12 Qus, Qa4 0OF Qpp, Q3, Qu) be zero[8]. When this rangles in the complex plan®]. For example, the orthogo-

condition is satisfied, the areas of all the quadrangles ar@a“ty condition between the first and second rows reads
zero. To describeCP violation with all generality the six

quadrangle®,, Q13, Q4. Qu3, Q4. Qa4 are necessary, Q1=U1 U5+ U U5+ UysUz= Xy, (12
since there are special cases when all quadrangles but one are

trivial. CP is conserved if, and only if, these six convex with X,,the FCN coupling between the neutrino mass eigen-
quadrangles have null area and are orientated in the directicftatesy; and v, (see Fig. 2

of one of the axes. However, if at least one columtJdias The geometrical interpretation is then very similar to the
all elements non-vanishing, e.g., the first column, previous case. The condition for the vanishing of the; 2
+1 Dirac phases is that the area ok(+2)(ng+1)/2 inde-
argJ,U%=argu,U%,+argu,U% mod 2, pendent convex quadrangles is zero, for instaeg Q,s. ..

Qng+2ng+3- IN this case, the areas of the remaining quad-

rangles are also zero. The condition for the vanishing of the

ng+2 Majorana phases is that all theg+3)(ng+2)/2

quadrangles are parallel to tleor y axis. Hence, the com-

plete description o€ P violation with three left-handed and
2For simplicity we assume thad;, when drawn in the order of Ngr right-handed neutrinos is achieved witmg(t3)(ng

Eq. (8) is convex. In other case, its sides must be reordered, obtain+2)/2 quadrangles. Note that in the limit where the heavy

ing an expression similar to E¢9). The results are unchanged.  neutrinos decoupleX;;= g;; for i,j=1,2,3, and the three

argU,,Uj,=argu,,U3,+argUsU;, mod 2,
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FIG. 3. Feynman diagram for neutrinoless double beta decay w

mediated by Majorana neutrinos. FIG. 4. Tree-level and one-loop contributions to B asym-

. . . . metry in the decay of a heavy Majorana neutring—W™"e.
qguadrangles involving only the light neutrinos reduce to the Y Y Ve .

three triangles described in the previous section. The othespectively. If FCN couplings are neglected, they also have

qguadrangles are trivial. the same weak phase as the tree-level diagram.
The differencel’(v,—~W'e)—I'(v,—~W e") is aCP
IV. UNITARITY POLYGONS AND PHYSICAL violating observable. Extracting the dependence on the mix-
OBSERVABLES ing angles it can be written as
Re-leva.nt information on the unitarity pongm(\gnd .the F—FZZ fi IM (U U (UUR), (14)
CP violating phasescan be extracted fronC P violating i1

and CP conserving processes. TI@&P violating processes
may be sensitive to the Majorana phases or may not. We wi
show examples of each case.

CP violation in neutrino oscillations is not sensitive to
Majorana phases. The Dirac or Majorana character of th
neutrinos is not revealed in this kind of experiments, an
thus CP violation observables are proportional to imaginary

quartets InJ;;Uy:U U} . Neutrino oscillations can only . .
T =X L angle factors transformed in the same way under rephasing
provide information on the areas of the unitarity polygons

and the Dirac phases. of the neutrino mass eigenstates, we would have a depen-

One important process to test the Majorana character dféncel’ —I'<ImU4,Ui, Uy Uj, or similar, and the asymme-
the neutrinos is neutrinoless double-beta decay. This procedy Would not be sensitive to the Majorana phases. The dia-
is mediated by the diagram in Fig. 3, where we can observ8'ams involvingZ exchange between the neutrino agdV

that the Majorana character of the neutrinos is essential. 9ive an additional contribution of this type.
The cross section of this process is The CP asymmetry in Eq(14) is written as a linear com-

bination of imaginary parts of products of the siddsdf,the
quadrangleQg,, summing overk and|. The terms withl
o=C .2,: myimyj(UuUﬁ)z, (13) =1 contain ImU4U%)%=2Re UaUy) Im(UgUg).

’ We see that a side d, does not contribute to thEP
asymmetry if it is parallel to one of the axes, although it may
aﬁontribute in the terms of mixing with other sides if the Dirac
phases are nonzero, i.e., if other sides of the same quadrangle
are CP violating.

Nvith f\, form factors independent of mixing angles. To un-
derstand this formula we observe in Fig. 4 that the mixing
angle factors of the tree-level and one-loop contributions,
éJ41 andU, U} U, respectively, transform in the same way
nder rephasing of the charged lepton fields they must
ut not under rephasing of the neutrino mass eigenstages
they should in the case of Dirac neutrinol$ the two mixing

where the rephasing invariance is expligtis a factor in-
dependent of the mixing angles. There are terms proportion
to |U;4|* and also terms proportional to the first sides of the

triangles(or quadrangles the sides involving the couplings Finally we will show the relation between the unitarity

of the neutrinos to the electron. The measurement of th?(. | d th k-basis i iants. The | t ord
neutrinoless double beta decay rate then serves to constral ppngles an € weak-basis Invariants. e lowest oraer
the CP violating parameters. weak-basis invariant for three left-handed Majorana neutri-

The decay of heavy Majorana neutrinos has been pro?©S iS[11]

posed as a source aP vi'olation. for baryogenesiﬁlo].. |=|mth|M|TMLM|*M|TMfMLM’[

Here for definiteness we will consider tlis? asymmetry in

the decay of a heavy neutrine,—W™e. The tree-level and _ 2 2 3 * *

one-loop diagrams relevant for tHeP asymmetry in this _i,%' mimim, m,, Im (U Ui) (U Ug),  (19)
decay are shown in Fig. 4. Note that the Majorana character

of the neutrinos plays an essential role in the second diawith m; the mass of the charged leptorin Eq. (15) rephas-
gram. There are four more one-loop diagrams not taken intég invariance is explicit. The invariant is written as a sum
account. Two of them involv& and photon exchange be- of imaginary parts of products of two sidgsl of the
tween the electron and th&/. They have the same weak same triangleT;, weighted by mass factors. The terms
phase as the tree-level diagram and do not contribute to theith =l are proportional to Iml(JiJ-U’,zj)2
CP asymmetry at lowest order. The other two involde =2 Re (UiJ-U’,:J-) Im(U”-UQJ-). We see that a side df; par-
exchange between the neutrino and the electronVinde-  allel to the real or imaginary axis does not contributé.tth
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