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Magnetic Z, symmetry in hot QCD and the spatial Wilson loop
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We discuss the relation between the deconfining phase transition in gauge theories and the realization of the
magneticZ, symmetry. At low temperature th&, symmetry is spontaneously broken while above the phase
transition it is restored. This is intimately related to the change of behavior of the spatial 't Hooft loop. We also
point out that the realization of magnetic symmetry has a bearing on the behavior of the spatial Wilson loop.
We give a physical argument to the effect that at zero temperature the spatial Wilson loop must have perimeter
law behavior in the symmetric phase but area law behavior in the spontaneously broken phase. At high
temperature the argument does not hold and the restoration of maggeticonsistent with the area law for
the Wilson loop.

PACS numbgs): 11.10.Wx

[. INTRODUCTION as an auxiliary object when projecting onto the gauge invari-
ant physical subspace of the Hilbert space. The “electric”

This paper is devoted to further study of the theoreticalZy—the operation that transforn by multiplying it by a
aspects of the deconfining temperature phase transition phase—similarly is not a canonical symmetry. There is no
non-Abelian gauge theories. It is an immediate continuatiofiransformation of states in the physical Hilbert space that is
of our earlier wor 1]. In [1] we showed that the deconfining elated to this “symmetry,” although it is indeed a symme-
phase transition in the pure Yang-Mill¥M) theory is char- Y of the Euclidean path integral representing the statistical
acterized by the change of behavior of the 't Hooft loopSUm- _
operatorV(C). In the “cold” phase the 't Hooft loop has a This is not to say of course th# and eIecFrchN are
perimeter law behaviofV(C))=exp{—aP(C)}, while in the useless concepts. Th_e standard effective action, defined by
“hot” phase it has an area law behaviofV(C)) the constrained path integral
cexp{—aSC)}.

In the_ present paper we want to sharpen_ somewha_t this exp— Se”(P):J DAGS(P—P(Ag))exp-S(A), (1)
observation and further discuss related questions. We wish to
point out thatV is in fact an order parameter which probes
the breaking of a physical symmetry of the Yang-Mills is gauge invariant. It is instrumental in computing the vortex
theory. The symmetry in question is the magné&jgcsym-  expectation value. The way the electd¢N) symmetry is
metry discussed by 't Hoof2]. The deconfining phase tran- realized inS;¢; is also related to the behavior of the order
sition is therefore characterized by the change in the mode gfarameter of the magneti€(N). We will discuss this in
realization of a globak, symmetry: the symmetry is broken detail in Sec. HI[1].
spontaneously in the “cold” phase while it is restored in the However, if one wants to describe the deconfinement
“hot" phase. phase transition in terms of a canonical order parameter in

The previous two paragraphs may sound at first ||ke a re&he same Way as the |Sing transition iS deSCI'ibed in terms of
herring. After all an order parameter for the deconfiningMagnetization, one should zero in ¥frather than orP and
phase transition and a relat@j, symmetry have been dis- should study the magneticy symmetry rather than electric
cussed for many years. The order parameter in question #%n- This is what we intend to do in this paper.
the free energy of an external static color source in the The action of the magneticy symmetry is very different
fundamental representation: the Polyakov lin@ in the (2+1)- and (3+1)-dimensional cases. In+2 di-
=Tr P expfig/£dtA)}. The Zy symmetry is the transforma- Mensions it acts very much like usual glot_)al symmetry in a
tion P— exp{i27/N}P. We will refer to this transformation as scalar theory with the order parameter being a scalar vortex
the electricZy, . There is however a great difference betweenfi€ld- In 3+1 dimensions the symmetry acts not like a stan-

the physical nature oP andV and the associatel, sym- dard _global. symmetry—.its “charge” is an integral over a
metries. The operatdf is a canonical operator in the physi- two dimensional spacelike surface rather than over the whole

cal Hilbert space of the Yang-Mills theory. The magneti¢ of the three dimensional spatés a consequence its order
symmetry similarly is a transformation that acts on quantum

states in the physical Hilbert space. On the other Hahas

a very different status. It is not an operator in the Hilbert These type of symmetries nowadays are frequently discussed in
space and as such not a canonical order parameter. It appears context of “M theory”[3].
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parameter is not a local field but rather a magnetic vortexcal argument. The vortex configuration away from the vortex
stretching over macroscopic distances. core has all the fields in the pure gauge configuration
It is therefore convenient to start the discussion with the
three dimensional gauge theories and to present all the argu-
ments in this case. The generalization of appropriate aspects H*(x)=U(x)h%, A“=iug*U’. 2
of this discussion to 31 dimensions will be given in the last
part of every section.

The plan of this paper is the following. In Sec. Il we recap Here the index labels the scalar fields in the theohy are
the definition of the 't Hooft loop and its (21) dimensional  the constant vacuum expectation values of these fields, and
analog—the magnetic vortex operator. We formulate the ary(x) is a unitary matrix. As one goes around the location of
guments for the existence of the magneti¢ symmetry in  the vortex in space, the matrid winds nontrivially in the
theories without fundamental matter fields. We also show b)gauge group. This is possible, since the gauge group in the
explicit construction that the generator of this symmetry intheory without fundamental fields BU(N)/Zy and it has a
the pure gluodynamics is none other than the spatial Wi|50|ﬂonvanishing first homotopy groupl;(SU(N)/Zy)=2Zy.
loop. Practically it means that when going around the vortex loca-
In Sec. Il we discuss the relation between the behavior ofjon full circle, U does not return to the san®UJ(N) group
the 't Hooft loop and the realization of the magnefig in elementU,, but rather ends up at efip/N}U,. Adjoint
the ground state of the theory. We demonstrate that the moggs|ds do not feel this type of discontinuity It and therefore
of the realization of the symmetry changes at the deconfininghe energy of such a configuration is finite. Since such a
phase transition, while spontaneously broken at low temperasonfiguration cannot be smoothly deformed into a trivial one,
ture the symmetry is restored above the phase transition. a single vortex is stable. Processes involving annihilation of
In Sec. IV we present in a toy model a simple physicaly such vortices into a vacuum are allowed si¢@ortex
picture explaining how the behavior of a spatial Wilson loopconfigurations are topologically trivial. One can of course
discriminates at zero temperature between the phases witfhg explicit vortex solutions once the Higgs potential is
broken and unbroken magnet, . In the phase where the gpecified. As with any other semiclassical solution in the
Zy symmetry is brokenW must have an area law while in weak coupling limit the energy of such a vortex is inversely
the case of unbrokegy it must have a perimeter law. We proportional to the gauge coupling constant and therefore
explain why this argument does not generalize to the higlyery large. One is therefore in a situation where the spectrum
temperature phase and thus why the area law behavior of th§f the theory contains a stable particle even though its mass
Wilson loop in the hot phase is consistent with restoration ofs much higher than masses of many other partitigsige
the magnetiy symmetry. and Higgs bosonsand the phase space for its decay into
Finally in Sec. V we conclude with a short discussion. these particles is enormous. The only possible reason for the
existence of such a heavy stable particle is that it must carry
Il. THE MAGNETIC Z,, SYMMETRY a conserved quantum number.. Th'e theory thgrefore must
AND THE T HOOFT LOOP OPERATOR possess a global symmetry which is unbroken in the com-
pletely Higgsed phase. The symmetry group mustZhe
In this section we discuss the notion of the magn&tic  since the number of vortices is only conserved modiilo
symmetry and its order parameter—’'t Hooft loop or mag- Now imagine changing smoothly the parameters in the
netic vortex operator. Most of the material contained here idiggs sector so that the expectation values of the Higgs
not new and, perhaps with the exception of explicit identifi-fields become smaller and smaller, and finally the theory
cation of theZy generator with the spatial Wilson loop, is undergoes a phase transition into the confining phase. One
contained in2,4,5. At the risk of being repetitive we have can further change the parameters so that the adjoint scalars
decided nevertheless to include this extended introductoripecome heavy and eventually decouple completely from the
part, since we feel that the concept of magn&ticsymmetry  glue. This limiting process does not change the topology of
is not widely appreciated in the community. TBg symme-  the gauge group and therefore does not change the symmetry
try structure is the basis for our discussion of the deconfiningontent of the theory. We conclude that the pure Yang-Mills
phase transition in the following sections. theory also possessesZg symmetry. Of course, since the
Let us start by recalling the argument due to 't Hooft thatconfining phase is separated from the completely Higgsed
a non-AbelianSU(N) gauge theory with charged fields in phase by a phase transition, one may expect thatZihe
adjoint representation possesses a glahabymmetry[2]. symmetry in the confining phase is represented differently.
We discuss the (2 1)-dimensional case first. Consider a In fact the original paper of 't Hooft as well as subsequent
theory with several adjoint Higgs fields so that varying pa-work [4] convincingly argued that in the confining phase the
rameters in the Higgs sector tB&J(N) gauge symmetry can Zy symmetry is spontaneously broken and this breaking is
be broken completely. In this phase the perturbative specelated to the confinement phenomenon.
trum will contain the usual massive “gluons” and Higgs The physical considerations given above can be put on
particles. However, in addition to that there will be heavyfirmer formal basis. In particular one can construct explicitly
stable magnetic vortices. Those are the analogues dhe generator of th&y as well as the order parameter asso-
Abrikosov-Nielsen-Olesen vortices in the superconductorgiated with it—the operator that creates the magnetic vortex
and they must be stable by virtue of the following topologi-[5]. We will now describe this construction.

096008-2



MAGNETIC Zy SYMMETRY IN HOT QCD AND THE . .. PHYSICAL REVIEW D 62 096008

A. Abelian case B. Non-Abelian case at weak coupling

Consider first an Abelian gauge theory. In this case the Let us now move onto the analogous construction for
homotopy group isZ and therefore we expect theg(1) non-Abelian theories. Ultimately we are interested in the
rather thanZy magnetic symmetry. It is in fact absolutely pure Yang-Mills theory. It is however illuminating to start
straightforward to identify the relevant charge. It is nonewith the theory with an adjoint Higgs field and take the de-
other than the magnetic flux through the equal time planegoupling limit explicitly later. For simplicity we discuss the
with the associated conserved current being the dual of thBU(2) gauge theory. Consider the Georgi-Glashow model—

electromagnetic field strength SU(2) gauge theory with an adjoint Higgs field:
- 1 1 ~ ~
q)zf d’xB(x), ¢“F,=0. ©) L=— 2R F E(Dinb)%MZHZ—)\(HZ)Z @)

The current conservation is ensured by the Bianchi identitywhere

A group element of théJ(1) magnetic symmetry group is

exp{ia®} for any value ofa. A local order parameter—a D3PHP=g,H3—gfaPeAb He. 8)

local field V(x) which carries the magnetic charge—is also _

readily constructed. It has a form of the singular gauge transAt large and positivew? the model is weakly coupled. The

formation operator with the singularity at the poigt SU(2) gauge symmetry is broken down th(1) and the

Higgs mechanism takes place. Two gauge boswfs, ac-

quire a mass, while the third one, the “photon,” remains

massless to all orders in perturbation theory. The theory in

4) this region of parameter space resembles very much electro-
dynamics with vector charged fields. The Abelian construc-

where O (x—Yy) is the polar angle function and, is the tion can therefore be repeated. T8&J(2) gauge invariant

electric charge density of whatever matter fields are presergthalogue of the conserved dual field strength is

in the theory. The cut discontinuity in the functiéh is not

physical and can be chosen parallel to the horizontal axis. EM:E

Using the Gauss’ law constraint this can be cast in a different 2

form, which we will find more convenient for our discussion, ) ) ] o
wheren?=H?/|H| is the unit vector in the direction of the

27i i Higgs field. Classically this current satisfies the conservation
Voo=exp o dy Ei), (5 equation

€ij XY Ei(y) +O(x—y)Jo(y)
(x—y)?

[
V(x) =exp§J d?y

1
et ML g e (D (D)) (9)

where the integration goes along the cut of the functibn 9*F,=0. (10

which starts at the point and goes to spatial infinity. The e easiest way to see this is to choose a unitary gauge of the
operator does not depend on where precisely one chooses tﬁg y y gaug

cut to lie. To see this, note that changing the position of thdorm H(x)=H(x) . In this gaugeF is equal to the Abe-
cutC-C’ adds to the phase @2g) [ sd?xd;E' whereSis the lian part of the dual field strength in the third direction in
area bounded byC-C’. In the theory we consider only COlor space. Its conservation then follows by the Bianchi

charged particles with charge multiples gfare present. identity. Thus classically the theory has a conserid )
Therefore the charge within any closed area is a multiplenagnetic chargeb = [d?xF, just like QED. However, the
integer of the gauge couplinfisd®xd,E'=gn and the extra unitary gauge cannot be imposed at the points whtvan-

phase factor is always unity. ishes, which necessarily happens in the core of a 't Hooft—
The meaning of the operataf is very simple. From the Polyakov monopole. It is well known of cour$&] that the
commutation relation monopoles are the most important nonperturbative configu-

rations in this model. Their presence leads to a nonvanishing
small mass for the photon as well as to confinement of the
charged gauge bosons with a tiny nonperturbative string ten-
sion. As far as the monopole effects on the magnetic flux are
it is obvious thatV creates a pointlike magnetic vortex of concerned, their presence leads to a quantum anomaly in the
flux 27/g. Despite its nonlocal appearance the operator conservation equatiofi0). As a result only the discretg,

can be proved to be a local Lorentz scalar fieéd. The  subgroup of the transformation group generateddbyre-
locality is the consequence of the fact thtx) commutes mains unbroken in the quantum theory. The detailed discus-
with any local gauge invariant operator in the the@yy) sion of this anomaly, the residudl, symmetry and their
except wherx=y. This is due to the coefficienti2/g in the  relation to monopoles is given {i5].

exponential which ensures that the Aharonov-Bohm phase of The order parameter for the magne#g symmetry is

the vortex created by and any dynamical charged particle constructed analogously to QED as a singular gauge trans-
present in the theory vanishes. Equatid8f (5) formalize  formation generated by the gauge invariant electric charge
the physical arguments of 't Hooft in the Abelian case. operator

2
V(X)B(y)VT(x)=B(y)+ Eéz(x—y) (6)
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L ~a ) Taking the contou€ to run at infinityU becomes the gen-
We now have the explicit realization of the magnefic
Explicitly symmetry in the Georgi-Glashow model.
i X—VY);
V(X):expaf d?y {ei,— (( y;JZ n3(y)Ef(y) C. Pure gauge theory
Xy

Our next step is to move on to the pure Yang-Mills

theory. This is achieved by smoothly varying thé coeffi-
+O(x=y)Jo(y) cient in the Lagrangian so that the coefficient of the mass
term of the Higgs field becomes positive and eventually ar-
2i . bitrarily large. It is well known that in this model the weakly
=exp- Cd)" €;N°Ef(y). (120 coupled Higgs regime and strongly coupled confining regime

are not separated by a phase transifi®h The pure Yang-

One can think of it as a singul&U(2) gauge transformation Mills limit in this model is therefore smooth.
with the field dependent gauge function In the pure Yang-Mills limit expression§), (12), (17)
have to be taken with care. When the mass of the Higgs field
1 is very large, the configurations that dominate the path inte-
A\(y)= —@(x—y)n""(ﬁ). (13) gral are those with very small value of the modulus of the
g Higgs field|H|<1/M. The modulus of the Higgs field in turn

This field dependence of the gauge function ensures th(éontrols the fluctuations of the unit vectof, since the ki-

; ; inn idH |2 2

gauge invariance of the operaddrJust like in QED it can be Aetic term forn in t_he La_gran_g|an I$H|*(D )", ThL.JS as

shown[5,6] that the operatoY is a local scalar field. Again, h€ mass of the Higgs field increases the fluctuations of

like in QED, the vortex operatdr is a local eigenoperator of 9roW in both amplitude and frequency and the magnetic field

the Abelian magnetic fieIcB(x)—T: . operatorB as defined in Eq(9) fluctuates wildly. This situ-
=Fo:

ation is of course not unusual. It happens whenever one
5 wants to consider in the effective low energy theory an op-
_ e 2 erator which explicitly depends on fast, high energy vari-
[VE0.B(y)] g V)& (x—y). (149 ables. The standard way to deal with it is to integrate over
the fast variables. There could be two possible outcomes of
That is to say, when acting on a state it creates a pointlikgnis procedure. Either the operator in question becomes
magnetic vortex which carries a quantized unit of magnetigrivial (if it depends strongly on the fast variablesr its
flux. TheZ, magnetic symmetry transformation is generatedreduced version is well defined and regular on the low en-
by the operator ergy Hilbert space. The “magnetic field” operatBrin Eq.
(9) is obviously of the first type. Since in the pure Yang-
Mills limit all the orientations ofn? are equally probable,
U ZGXP{ i Eq)] (19  integrating over the Higgs field at fixed, will lead to van-
ishing of B. However, what interests us is not so much the
and acts on the vortex fie as a phase rotation by: magnetic field but rather the generator of the magn&tic
transformationU of Eq. (17). In the pure Yang-Mills limit
we are thus lead to consider the operator

' @2Py(x)e 9= —v/(x). (16)

An operator closely related td and which will be of interest Uc= lim f Dn?exp{ —|H|?(Dn,)?}
to us in the following is the generator of the magnelic H=0

transformation only inside some closed cont@ur

xexp||—f d2x<eijF?na
4)c i
U(C)=exp[igf d2xB(x)] (17 1
s —ae” eabcna(Din)b(Djn)C) ] : (19

where the integration is over the ar8&€ounded byC. The
analogue of the commutator, E(.6), for this operator is
The weight for the integration overis the kinetic term for
UCV(X)UI:= ~V(x), xeS, the isovectoma. As was n'oted .before the action does not
depend om?@ in the YM limit. This term however regulates
the integral and we keep it for this reason. This operator may
V(x), X&S. (18 look somewhat unfamiliar at first sight. However, in a re-
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markable papef9] Diakonov and Petrov showed that Eqg. ~ 2 ,
(19) is equal to the trace of the fundamental Wilson loop V(X)=f DO eXDFJ dy;ie; TrQE; Q3. (22
along the contou€:? c

This form makes it explicit tha¥(x) is defined as the gauge
UC=WCETrPex;4 igj dI‘A‘}. (20 singlet part of the following, apparently non-gauge-invariant
c operator:

We conclude that in the pure Yang-Mills theory the gen- 2qi : 3
erator of the magnetiz, symmetry is the fundamental spa- V(x)=exp?f dy'e; Ef(y). (23)
. . . C
tial Wilson loop along the boundary of the spatial plane.
_ There is a slight subtlety here that may be worth mention-The integration ovef) obviously projects out the gauge sin-
ing. The generator of a unitary transformation should be gjet part ofV. In the present case however this projection is
unitary operator. The trace of the fundamental Wilson loopredundant. This is because even thoijitself is not gauge
on the other hand is not unitary. One should therefore strictlynyariant, when acting on a physical state it transforms it into
speaking consider instead a unitarized Wilson l0dp another physical stafeBy physical states we mean the states
=W/JWW'. However, the factor between the two operatorswhich satisfy the Gauss’ constraint in the pure Yang-Mills
JWW is an operator that is only sensitive to behavior of thetheory. This property ol was noticed by 't Hoof{2]. To
fields at infinity. It commutes with all physical local opera- show this let us considér(x) as defined in Eq(23) and its
tors O(x) unlessx—o2. In this it is very different from the gauge transfornv,=Q"VQ whereQ is an arbitrary nons-
Wilson loop itself, which has a nontrivial commutator with ingular gauge transformation operator. The wave functional
vortex operator®(x) at all values of. Since the correlators 0f any physical state depends only on gauge invariant char-
of all gauge invariant local fields in the pure Yang-Mills acteristics of the vector potential, i.e. only on the values of
theory are massive and therefore short range, the operat¥Yilson loops over all possible contours:

JVWW' must be a constant operator on all finite energy WA= V[{W(C)H] (24)
states. The difference betwe@handW is therefore a trivial ' '
constant factor and we will not bother with it in the follow- Acung on this state by the operatdpSandVQ respective|y
ing. Perhaps of more concern is the difference betw&gn e obtain
andW, when the contou€ is not at infinity. However, here

again the factor between the two operatqﬁ?vcw , iIs only

sensitive to physical degrees of freedom on the con@ur

and not inside it. Because of its presence, the vacuum aver-

ages ofW: andW. may differ at most byNa factor which has |1 is however easy to see that the actionvgk) andV,(x)

a perimeter behavioW¢)=exp{mP(C)Wc), whereP(C)  on the Wilson loop is identical—they both multiply it by the
is the perimeter o€. The question we will be interested inis center-group phaséwhich stays unaffected b)) if x is
whether(W¢) has a perimeter or area behavior. As far as thénside C and do nothing otherwise. Therefore we see that
answer to this question is concerné¢ and W, are com-
pletely equivalent, and we will not make distinction between
them. In the rest of this paper we will therefore refeiias
the generator oZ,, keeping this little caveat in mind.

Next we consider the vortex operator, Efj2). Again we QV|\P>=QVQ*|\P):V|\P> (27)
have to integrate it over the orientations of the unit vector
n?. This integration in fact is equivalent to averaging overwhere the first equality follows from the fact that a physical
the gauge group. Followin®] one can writen, in terms of  state is invariant under action of any gauge transformabion
the SU2) gauge transformation matrfd: and the second equality follows from E&6). But this equa-
tion is nothing but the statement that the std@#) is physi-
cal, i.e. invariant under any nonsingular gauge transforma-
tion.

We have therefore proved that when acting on a physical
The vortex operator in the pure gluodynamics limit then be-state the vortex operator creates another physical state. For
comes an operator of this type the gauge invariant projection only

affects its matrix elements between unphysical states. Since
we are only interested in calculating correlator8/dfetween

VW) =P [A]=V[{VW(C)VT}]

Vol W) =PI A]=P[{VoW(C)V]}]. (25)

V[¥)=V,|¥) (26)

for any physical stat&. Thus we have

1

ZTFQTQTT::,. (21

n=

2We note that Diakonov and Petrov had to introduce a regulatorta___
define the path integral ovar. The regulator they required was
precisely of the same form as in EG.9). It is pleasing to see that  °This is not a trivial statement, since a generic non-gauge-
this regulator appears naturally in our approach as the remnant a@fivariant operator has nonvanishing matrix elements between the
the kinetic term of the Higgs field. physical and an unphysical sector.
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physical states, the gauge projection is redundant and we camd the electric field is taken in the matrix notatiéh

freely useV rather tharV to represent the vortex operator. =A?Ef with A\*—the SU(N) generator matrices in the fun-
It is instructive to note that this property is not shared bydamental representation.

the Wilson loop. One can in fact represent the Wilson loop

as a singlet gauge projection of a simple Abelian loop opera- D. Generalization to 3+1 dimensions

tor. The second exponential in EQO) can be written as To conclude this section we discuss how the magnetic

g _ i symmetry structure generalizes to four dimensions. The con-
exp[ i EJ di'Ana— EJ defij Eabcnaﬂinbﬁjnc]- (28)  servedZy generator in the Georgi-Glashow model is defined
c through

Using Eqg.(21) we can rewrite the integral in Eq20)— 9 oailwaa L ik abe ) .
omitting the regulating kinetic piece—as Us=ex 'ELd S| Bin —afj € MN(Din)>(Dyn)° | ;.

(33

Although the definition ofJ contains explicitly the surfac®
(29 through which the Abelian magnetic flux is integrated, the
) ) ) operator in fact does not depend 8rbut is specified com-
The _Wllson loop is therefore the gauge singlet part of thepletely by its boundary. This is because changichanges
Abelian loop: the phase ofJ by the magnetic flux through the closed sur-
face. The only dynamical objects that carry magnetic flux in
UA=expi gf TrAir,dli. (30) f[he theory are 't Ho.oft—Polyakov monopoleg. Since their f[ux
is quantized in units of #4/g, the change in the phase is
always a multiple integer of 2. In the pure Yang-Mills
The matrix elements ofVc and Ug on physical subspace |imit the operatorUs again reduces to the trace of the fun-
therefore are the same. Howevelg as opposed t& does  damental Wilson loop along the boundary $fTaking the
have nonvanishing nondiagonal matrix elements, that is maeontour to infinity defines the generator of magnajg. As
trix elements between the physical and the unphysical seave have already noted, this charge is a little unusual in that it
tors. It thereforecannotbe used instead ofVc in gauge s defined as a surface integral rather than a volume integral.
theory calculations. For example non-gauge-invariant state&s a result the order parameter for this symmetry transfor-
will contribute as intermediate states in the calculation ofmation is not a local but rather a stringy field. This is of
quantities like the correlation functio(wuéluéz), while  course just a restatement of the fact that magnetic vortices in
their contribution vanishes in similar correlators which in- 31 dimensions are stringlike objects. The operator that cre-
volve the Wilson loop. ates a vortex c.an.snll be_deflned in a way S|m!lar t612
The generalization of the preceding discussioStd(N) dlmenspns. Sk|pp|.ng theT mterr_nedlate steps Whlch we went
gauge theories is straightforward. Once again one can stafirough in the previous discussion we give the final result_for
with the Georgi-Glashow-like model, where tigJ(N) is  the pure Yang-MillsSU(N) gauge theory. The magnetic
broken down toU(1)N~1) by the Higgs mechanisthThe  Vortex alpng the curv€ is created b_y the following operator
construction of the vortex operator and the generatdhgn  ©f the “singular gauge transformatiofi”
this case is very similar and the details are given5h .
Taking the mass of the Higgs field to infinity again projects V(C)=exp[l—f d3x Tr(DiwCY)Ei]
the generator onto the trace of the fundamental Wilson loop. gN
The vortex operator can be taken as

wc=f DO exp[igf Trr3(QAiQ*+iQaiQT)d|i}.

4Wif d?S Tr(YE) (34)
=exp — r
4q7i ) gNJs
V(x)=ex g—Nfch'eij TIYE(Y)] (31
with wc(x), the singular gauge function which is equal to
the solid angle subtended I6yas seen from the point The
function w is continuous everywhere, except on a surf&ce
Y=diag1,1, ... —(N—1)) (32 bounded byC, where it jumps by 4. Other than the fact
that Sis bounded byC, its location is arbitrary. The vortex
loop and the spatial Wilson loop satisfy the 't Hooft algebra

where the hypercharge generatois defined as

“In SU(N) theories withN>2 there in principle can be phases VT(C)W(C/)V(C):e(Zﬂ-i/N)n(C,C')W(C/) (35)
separated from each other due to spontaneous breaking of some
global symmetries. For instance t84J(3) gauge theory with ad-
joint matter has a phase with spontaneously broken charge conju-
gation invariancg10]. Still even in this phase the confining prop- °The derivative termy' w in this expression should be understood
erties are the same as in the strongly coupled pure Yang-Milldo contain only the smooth part of the derivative and to exclude the
theory, with the Wilson loop having an area law. contribution due to the discontinuity @ on the surfaces,
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wheren(C,C’) is the linking number of the curveS and In fact in the weakly coupled Higgs phase this can be
C’. One can consider closed conto@r infinite contours  verified by the direct calculation of the expectation value of
that run through the whole system. For an infinite con®@ur V [5]. This calculation maps very simply into the classic
and the Wilson loop along the spatial boundary of the systenmonopole plasma calculation of Polyakov and was discussed
the linking number is always unity. TH&(C) for an infinite  in detail in [5]. One can also explicitly construct the low
loop is therefore an eigenoperator of thg magnetic sym- energy effective Lagrangian in terms of the fieldwhich
metry and is the analogue of the vortex opera¥gx) in realizes the spontaneously brok&R, symmetry and de-
2+1 dimensions. Any closed vortex loop of fixed size com-scribes the low energy spectrum of the Georgi-Glashow
mutes with the Wilson loop if the conto@’ is very large. vacuum:

Such a closed loop is thus an analogue of the vortex- B o . . 2 k2

antivortex correlatol/(x)V'(y), which also commutes with L=, V"V =NVIV=p) = LVE+VTT). (36)

the global symmetry generator, but has a nontrivial commu- i ) . o
tator with U if C encloses only one of the poirksor y. A similar effective Lagrangian with some quantitative differ-
To summarize this section, we have shown that purénces was argued to be valid also for the pure Yang-Mills
Yang-Mills theory in 21 and 3+1 dimensions has a global theory in[11]. , o
Z, magnetic symmetry. The generator of the symmetry The application of the 't Hooft argument at finite tempera-
group in both cases is the trace of the fundamental WilsofUre is somewhat less straightforward. Since at finite tem-
loop along the spatial boundary of the system. The ordeP€rature the Lorentz invariance is broken, the temporal and
parameter for this symmetry in+2l dimensions is a local _spat|al Wilson loops do not necessarily have Fh_e same behav-
scalar fieldV(x), while in 3+1 dimensions a stringlike field 0r and one has to be more careful. The original argument
V(C). In both cases the field is gauge invariant on physi- relates the behavior of the vortex operator and the temporal
cal states and is laona fidecanonical order parameter which Wilson loop. At finite temperature in the Euclidean formal-
distinguish in gauge invariant way the phases of the theorySM the extent of the system in the temporal direction is
In the next section we discuss the realization of the magnetifinite. As aresult itis not possible to distinguish between the

symmetry in the confined and the deconfined phases. area and perimeter law for “asymptotically” large temporal
loops. Instead the role of the temporal Wilson loop is taken

over by the Polyakov line—the loop that winds around the
Iil. HOT AND COLD REALIZATIONS OF THE total volume of the system in the temporal direction. Thus
MAGNETIC Zy one expects that in the deconfining phase where the Polya-

As with any global symmetry, it is important to under- kov line has a nonvanis_hin_g vacuum average, the vortex op-
stand what is the mode of realization of magnéigin the erator should have vanishing expectation value. Indeed this
ground state of the theory. This mode of realization dependSa" Pe easily confirmed by the explicit calculation of the
of course on the parameters of the theory as well as on th@2cUUM expectation valu&/EV) of the vortex operator us-

temperature. The situation at zero temperature is well undefDd the method of1]. In [1] the calculation was performed
stood. in 3+1 dimensions, but adapting it to th@+1)-dimen-

sional case is trivial. We give below a brief outline.
Consider the equal time vortex-antivortex correlation
function. At finite temperature is it given by the following
Again we start with three dimensions. There is a veryexpression:
general argumefitdue to 't Hooft [2] stating that if the
theory does not have zero mass excitations, the area law of
the Wilson loop implies the nonvanishing expectation value
of the vortex operato¥(x). Conversely, if the Wilson loop _
has a perimeter law, the expectation value\k) must Xexp{i%fyeijdliE'S). (37
X

A. 2+1 dimensions

(VX)VT(y))=Tr exp( — §(E2+ B?)

vanish and the correlation functiaf(x)V'(y) must have an

exponential falloff with|x—y|. It follows that in the pure

Yang-Mills theory the vacuum expectation value of the vor-Tne |ine integral can be taken along the straight lineon-

tex operator does not vanish and thereforeZgemagnetic  necting the points andy. For definiteness we takeandy to
symmetry is spontaneously broken. The same is true in thge separated in the direction of the first axis. Introducing the
partially broken Higgs phase of the Georgi-Glashow m0d9|imaginary time axis and the Lagrange multiplier figdg in

As mentioned in the last section the confining and the Higg$he standard way this expression can be transformed to
regimes in this model are analytically connected and there-

fore the realization of all global symmetries in the two re- 1B
gimes is the same. (V(X)VT(y)>=f DADAg ex;ﬂ' - Ef dtf d3x
0
5The original argument as stated if2] is formulated for ><[‘90Aia_(DiAO)a_ 5(")3?]2"'(8&1)2}
(3+1)-dimensional theories; however, its generalization #12
dimensions requires only linguistic changes. (38
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where the “external field”a' is given by the lineL and half a walllq(x,=0)=— /2, q—>X2_,_mO]
o below the lineL separated by a discgntinuit&q=w. J’he
a?(x)=6%8,— 8(x—L). (399  action of such a configuration B.¢f=a|x—y| wherea is
g the “Z, domain wall tension.” The vortex correlator is thus
given by

The delta function in time in front of the external fiedd in

Eq. (38) appears for the following reason. As we saw in Sec.

Inc the. product of t_he' vortex and' an antivorte>§ operator is (V(X)VT(y))=exp{—a|x—y]}. (42)

gauge invariant. This is because it induces a singular gauge

transformation which is continuous up to the center element.

However, if we split it up in imaginary time into infinitesi- As |[x—y| becomes large the correlation function decreases

mal bitsthzexp[idtT(ZTri/g)f{eijdI‘Eja], then any single such exponentially, and thus the expectation value of the vortex

bit separately is not gauge invariant, since the transformatiofperator vanishes. For th8U(N) group this calculation

it induces is genuinely discontinuous across the line connectrivially generalizes and gives the same result. The exponen-

ing the pointsx andy. The operatord/y, therefore do not tial decay is also obtained for the correlator\6F with any

commute with the projection operator on physical states. T¢ower m<N.

obtain the path integral representation for the expectation Recall that the vortex operator is the order parameter for

value, Eq.(37), we should introduce the projection operator the magneticZy symmetry. Moreover, the powers df ex-

only at the last point in imaginary time and not at the inter-haust all possible local order parametéfheir vanishing is

mediate points. In path integral language this corresponds tderefore an unambiguous indication that the magrigics

the gauge fixingA,=0 everywhere except at one time, say restored in the high temperature deconfined phase.

t=0. In this gauge it is straightforward to see that the Gauss- In hindsight this is not very surprising. Indeed, we are

ian integration over the electric field leads to the usual pattflealing with physical discrete symmetry which is spontane-

integral with ;A shifted bya; . This can then be rotated to ously broken at zero temperature. When the system is heated

an arbitrary gauge with the result E@8).’ it is unavoidable that entropy effects take over and at some
To evaluate the path integral, E(38), we follow the  sufficiently high temperature the symmetry must be restored.

standard procedure and integrate out all modes except for tie good qualitative guide here is the effective Lagrangian,

Polyakov loop in a saddle point approximatii8,14. This  EQ. (36). It describes a simpl&, invariant scalar theory.

leads to the effective actiorB.¢¢(q,a;), where 1/2Ti  There is very little doubt that a system described by this
=cosq: Lagrangian indeed undergoes a symmetry restoring phase

transition at somel.. Moreover, the effective Lagrangian

+ approach also suggests that this phase transition has decon-
(Ve)V (y))=f Dgexp—Seri(q.a). (40 fining character. As shown if5,6,11 the charged states in

the effective theory, Eq(36), are represented by solitonic
To one loop order the effective action is given by configurations of the vortex field with unit winding num-

ber. The energy of any such state is linearly divergent in the
infrared. The reason is that due to the finite degeneracy of
vacuum states, the minimum energy configuration looks like
a quasi-one-dimensional strip across which the phasé of
The matricesr® in A, are the generators @U(2) in the  winds. The energy density inside this “electric flux tube” is
fundamental representation and are normalized according faroportional to the vacuum expectation value/ofVhen the
tr 7370=3 %P, VEV vanishes, so does the string tension. Stated in other
The one loop effective potential is related to a Bernoulli  words, wherV vanishes, the phase fluctuations are large and
polynomial and can be read off the expression$li#,13.  the winding number is not a sharp observable. An external
The only property ofJ which is important to us is that it has charge is thus screened easily by regions of space around it
two degenerate minima at=0,7. with vanishingV. The phase withV)=0 is therefore not
To calculate the correlator we have to find the configura<confining. In the theory with several Higgs fields this phase
tion of g which minimizes the action, Eq41). Qualitatively  exists even at zero temperature and corresponds to a com-
the form of the solution is clear. The considerations identicapletely Higgsed phase—where the gauge group is broken
to those i 1] tell us that it must be the “broken” electrié,  completely. In such a Higgs phase indeed the color is
domain wall: half a wal[q—, ...0, g(x,=0)= /2] above screened rather than confined. In the pure Yang-Mills theory
this phase is absent at zero temperature, but is realized as the
deconfined phase at>T.. We thus see that the behavior of

2

+U(q)|. 47

g
(?iq+ Eai

) 2T
Seff: d<x ?

’In this derivation we dropped commutator terms between the
Hamiltonian and the exponent in the vortex-antivortex operator.
These commutator terms only existtatO and therefore drop out  ®The latter statement is correct modulo multiplication\8¥ by
in the continuum limit[i.e. areO(dt)]. In the lattice realization local gauge invariant andy invariant operators. These possible
they are indeed present and complete the expred&i®nto the  factors do not change the fact of the exponential decay of the cor-
twisted plaquette representatipt?]. relators and are therefore unimportant for our discussion.

096008-8



MAGNETIC Zy SYMMETRY IN HOT QCD AND THE . .. PHYSICAL REVIEW D 62 096008

the vortex operator at high temperature does indeed matalherea,” (x—y) is the c-number vector potential of the Abe-

the simple intuition coming from & invariant effective  lian magnetic monopoléntimonopolg of strength 4r/gN.

Lagrangian very well. The monopole field corresponding & contains both the

smoothx; /x> part as well as the Dirac string contribution.

The Dirac string of the monopole-antimonopole pair in Eq.
The 't Hooft argument now states that the vanishing(43) is chosen so that is connects the poirtsA and x

vacuum average of the Polyakov line is incompatible with+ A along the straight line. The dipole operators obviously

the area law behavior of the spatial 't Hooft loop and vicehave the property

versa. This means that in the confining phase the 't Hooft

loop has perimeter law. In the high temperature deconfined DA(X)DaA(X+2A)=D,(X+A). (44

phase the behavior of the spatial 't Hooft loop must become ) ) -
the area since the average of the Polyakov line is finiteThis is because in the product the smooth field contribution

Again this is confirmed by explicit calculation [d]. of the monopole irD,(x) cancels the antimonopole contri-
A more subtle question is how the behavior of the 't bution inD,(x+2A), while the Dirac string now stretches
Hooft loop relates to the realization of the magné&csym-  between the pointsx(-A) and +3A). When multiplied
metry. TheZy symmetry does not have an order parameteiover the closed contour, the smooth fields cancel out com-
which is a local field defined at a point. The only order pletely, while the surviving Dirac string is precisely the mag-
parameters in the strict senén eigenoperator with a non- netic vortex created by a closed 't Hooft loop operator. The 't
vanishing eigenvalyeis a 't Hooft line V(C) which runs  Hooft loop can therefore be written as
through the whole systeifd5].
In a system which is finite in the direction of the loop, but V(C)=II,DA(X). (45)
is infinite in the perpendicular directions, everything is clear '
cut. In this case there are two possibilities: The dipole operatoD(x;) is an eigenoperator of the mag-
(@ (V)#0 and the magnetiZy broken or netic flux defined on a surface that crosses the segfent
(b) (V)=0 and the magnetity restored. —A,x;+A]. Suppose the magnetic symmetry is broken.
In the SyStem infinite in all direction8 is necessar”y an Then we expect the d|po|e Operator to have a nonvanishing
infinite line, and the expectation valy¥/(C)) clearly van-  eypectation value(D)=d(A). If there are no massless ex-
ishes irrespective of whethety is broken or not. The 't (jtations in the theory, the operatdd{x;) andD(x;) should
Hooft loop along a closed contour on the other hand is nevepe gecorrelated if the distanae— x; is greater than the cor-

Zero, sir_1ce itis globglly i”"?‘”am under ty transforma- |44 lengthl. Because of Eq(45), the expectation value
tion. It is therefore impossible to find an operator whose f the 't Hooft loop should therefore roughly behave as
VEV distinguishes between the two possible realizations 019

the magnetic symmetry by vanishing in one phase and not 1\L

vanishing in the other. Nevertheless, the behavior of the (V(C))=d(l L”=eXP[—|n(m)|—] (46)
closed loop does indeed reflect the realization mode of the

symmetry, since it is qualitatively different in the two pos- whereL is the perimeter of the loop. In the system of finite
sible phases. Namely the vacuum expectation value of gngthL,, the vacuum expectation value of the vortex line
large closed 't Hooft loofiby large, as usual we mean that yhich winds around the system in tkelirection is therefore
the linear dimensions of the loop are much larger than th@injte as in Eq.(46) with L—L,.

correlation length in the theonhas an area law decay if the  op the other hand in the unbroken phase the VEV of the
magnetic symmetry is spontaneously broken and perimetgfipole operator depends on the size of the system in the
law decay if the vacuum state is invariant. perpendicular plané, . For largeL, it must vanish expo-

To understand the physics of this behavior it is useful tohentially asd=exp{—aL,}. So the expectation value of
think of the 't Hooft line as built of “local” operators—little  papaves at finité, in thé unbroken phase as

“magnetic dipoles.” Consider Eq(34) with the contourC

running along thex axis and the surfac& chosen as the (V(C)>=eXp{—aLny} (47)
(x,y) plane. Let us mentally divide the line intshor} seg-

ments of length A centered ak; . Each one of these seg- and vanishes as,—o. Thus in a system which is finite &
ments is a little magnetic dipole and the 't Hooft loop is adirection, but infinite iny direction, the 't Hooft line in thex
product of the operators that create these dipoles. The defilirection has a finite VEV in the broken phase and vanishing
nition of these little dipole operators is somewhat ambiguous/EV in the unbroken phase.

but since we only intend to use them here for the purpose of In the limit of the infinite system siz&,—~ the VEV

an intuitive argument any reasonable definition will do. It is obviously vanishes in both phases. This is of course due to
convenient to define a single dipole operator in the following

way:

B. Extension to 3+1 dimensions

%The magnetic dipole operators defined above are strictly speak-
DA(X)ZeXp[ if d3y[ai+(x+A—y) ing not local, since they carry the long range magnetic field of a
dipole. However, the dipole field falls off with distance very fast.
Therefore even though this falloff is not exponential the slight non-
+a; (x—A—y)]TIYE(y)] (43)  locality of D should not affect the following qualitative discussion.
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the fact thatV is a product of infinite number of dipole op- 2

erators, and this product vanishes even if individual dipole U(S):'EXP[ Wf d?x(mp—m* ¢>*)) (52

operators have finite VEV® However, one can avoid any s

reference to a finite size system and infinite vortex lines b 20

considering closed 't Hooft loops. Ues) $()UT(S)=e*"Mp(x) (xe9)
For a closed loop with long sides alorgxis aty=0 and —p(x) (x&9).

y=R the above argument leads to the conclusion that in the

broken phas&/ must have a perimeter law, E@6). In the e will refer to this operator as tHe loop. Throughout this
unbroken phase the correlation between the dipolgs=8  discussion we assume that there are no massless excitations
and dipoles at y=R should decay exponentially in the spectrum of the theory and that the linear dimensions
(D(0)D(R))><exp{—aR/} and thus of the areaS are much larger than the correlation length.
. S The statement we are aiming at is that at zero temperature
_ _ in the phase with brokeZy the U loop has an area law
(V(C))—expl’ —a?—] —exp[ _al_z]' 48 pehavior while in the phase with unbrok&g, this changes
into the perimeter law behavior.
Thus the perimeter behavior ¢¥/(C)) indicates a vacuum
state which breaks spontaneously the magngtievhile the A. U loop in the broken phase

area behavior means that the magnéicis unbroken. The Consider the broken phase first. We are interested in the

results of[ 1] then mean that in-81 dimensions as well as in . L .
2+1 dimensions the magnetic symmetry is restored abovgacutm expectation value &I(S). This is nothing but the

L S overlap of the vacuum stai@®| and the state which is ob-
the deconfining phase transition, in the sense of(Eg). : . .
In the next section we discuss what is the implication oftamed by acting withU(S) on the vacuum statg¢S)

this conclusion on the behavior of the spatial Wilson loop. U|0.>' I t.he. symmetry |s.broke.n, th_e f|9|¢i n the vacuum
state is pointing in some fixed direction in the internal space.

In the statdS) on the other hand its direction in the internal
IV. SPATIAL WILSON LOOP AT LOW AND HIGH space is different—rotated by N—at points inside the
TEMPERATURE areaS. In the local theory with finite correlation length the
overlap between the two states approximately factorizes into
the product of the overlaps taken over the region of space of
linear dimension of order of the correlation length

As we have shown in Sec. Il the spatial Wilson loop is the
generator of the magnetfy, symmetry. We expect therefore
that the mode of realization of the magnefig is strongly

linked to the behavior ofN. The argument is simplest to (0]S)=T1,(0,/S,) (53)
state for a toy model which exemplifies the basic physics in A
a very simple setting. where the labek is the coordinate of the point in the center

~ Rather than talk about non-Abelian gauge theory, conyf 4 given small region of space. Pooutside the ares the
sider a scalar theory of a complex fieil with global Zy w0 state40,) and|S,) are identical and therefore the over-
theory in 2+1 dimensions: lap is unity. However, fox inside S the states are different
B . . 22 N N and the overlap is therefore some numbe? smaller than
L£=0,$0,¢" +NP* = u) "+ L™+ (")) (49 ynity. The number of such regions inside the area is obvi-
ously of orderS/1? and we thus
The generator of th&y symmetry is given by

S
2T, 27, . s <U(S)>ZEXP[_7|_2}- (54)
U=exq’|WJd XJO(X)]zexp‘Wfd X(mp— 7" P )]

(50 In a weakly coupled theory this argument is confirmed by
explicit calculation. The expectation value of thkeloop in
where = dy¢* is the momentum conjugate to the fiefd the theory, Eq(49), is given by the following path integral:
Obviously with the canonical commutation relations between
7 and ¢ one has

wE)-| d¢d¢*exp[—f (0,641 6X,)(9,6*
U (U= 27N g(x). (5

R * 2\2 N *\N
We will be interested in the behavior of the operator which 1P X) MG ST+ LT (7)T)
generates th&y transformation only inside some regi&mof (55)
the two dimensional plane:
with

1%The VEV of the dipoleD must be smaller than one sinEeis 27 o
X)= — 6"~ (X XeS 56
defined as a unitary operator. X"( ) N (X0)  (xeS) (56)
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=0, (x&9S). 5 ) _ _

xes) 57 Sf d*x(jo(0)jo(x))=Slim G(p) (61)
This expression directly follows from E@52) and integra- p—0
tion over the canonical momentum in the phase space pam
integral. At weak coupling this path integral is dominated by
a simple classical configuration. First, it is clear that the so
lution must be such that the phase of the figichas a dis-
continuity of 2#/N when crossing the surfacsince other-
wise the action is UV divergent due to singula.
Asymptotically at large distance from the surface the field
should approach its vacuum expectation value. Since th
source termy vanishes outsid&, everywhere whereb is
continuous it has to solve classical equations of motion
Also, for values ofx; andx, which are well insideS the
profile ¢ should not depend on these coordinates, but shoul
only depend orx. It is easy to see that a solution with these

here G(p) is the Fourier transform of the charge density
correlation function. The correlator of the charge densities
however vanishes at zero momentum. This is because in the
leading perturbative order the symmetry of the theory is ac-
tually U(1) and not justZy as seen in Eq(55). Since the
vacuum state is invariant, it follows that the total chafge
= [d?xjo(X)=]o(p=0) on this state vanishes, and so does
Sny correlation function that involves zero momentum com-
ponent of the charge density. So the area contribution in Eq.
(61) is zero. Strictly speaking in the leading order in pertur-
ation theory, Eq(60) is not the complete result. The exact
Xpression contains in the exponential also higher point cor-
relators of the current density. Again however the possible

properties exists: it is given by the “broken” domain wall 564 |aw contribution contains correlators of the total charge
solution. Recall that the vacuum is degenerate and so the@ with powers ofj, and therefore vanishes

certainly exists a classical solution of the equations of mo-
tion which interpolates between two adjacent vacuum states
P xyebo @Ndp—, . €?"Nepo. Breaking this classical
solution along the plang,=0 and rotating the piece,<0 Let us see now how the argument changes at high tem-
by 27/N produces precisely the configuration with the cor-Perature. The important d|ffe_re.nce is that the vacuum is not a
rect boundary conditions and the discontinuity structure. Thé?Ureé state but rather a statistical ensemble. The average of
path integral in Eq(55) is therefore dominated by this clas- the U loop is therefore not given by a single matrix element
sical configuration. Its actiofup to corrections associated but rather by

with the boundary effects d) is «S where« is the classi-

cal wall tension of the domain wall which separates two <U>=E e_EiT<i|U|i>_ (62)
adjacentZy vacua. Thus we find that the expectation value [

of theU loop is related to the domain wall tension of thg ) ) ) )
domain wall by Let us consider the theory in which thg, symmetry is

broken at zero temperature. For concreteness we will think
(U(S))=exp{— aS}. (58 aboutZ, symmetric theory, although qualitatively the discus-
sion does not change for atN/ The two degenerate vacuum
states are characterized by the value of the condefggte
=*u.

Now consider the unbroken phase. Again théoop av- In order to understand the behavior of thdoop we have
erage has the form of the overlap of two states which factorto figure out what types of states contribute to the thermal
izes as in Eq(53). Now however all observables noninvari- ensemble. At zero temperature the only states that are of
ant underZy vanish in the vacuum. The action of the interest are those with finite energy. There are two towers of
symmetry generator does not affect the s{@e The state such stategn) L and|n)_ x,—constructed above each one of
|S) is therefore locally exactly the same as the st@e  the degenerate vacua. These two towers of states do not talk
except along the boundary of the at®arherefore the only to each other, not only because their overlap is zero, but also
regions of space which contribute to the overlap are thosbecause they cannot be connected to each other by action of
which lay within one correlation length from the boundary. any local(or semilocal operator ,(n|O|n")_,=0. An im-

Thus mediate corollary of this is that a superposition of the type
a,B)=a|n, )+ Bn)_ , violates clustering property of the
(U(S))=exp{— yP(S)} (59 |c:orre>lator|s Mo>f Ioclal> olf)erators. For this reason at zero tem-
perature in a spontaneously broken theory we are never in-

whereP(S) is the perimeter of the boundary & The ab-  tgrested in states which carry sharp quantum numbers of the
sence of the area law is again easily verified by a perturbas,qken symmetry.

tive calculation. In the unbroken phase the fluctuations of the = a; finite temperature however we are also asking after

field ¢ as well as the current density=i(m¢— 7" ¢*) are  giates with finite energy density and, therefore, infinite en-
small. To leading order in the coupling constant ergy. This part of the spectrum looks rather different if the
energy density involved is high enough. The two vacuum
(U(S))zexp[ _%J' d2xd2y(jo(X)jo(y)) . (60) qonfigurat_ions of the potential in_EQ49) are separ.ated by a
XyeS finite barrier. Let us call the height of this barriet. The
states with energy density lower thah still separate into
The possible area law contribution in the exponent is two towers. We will denote these states |by. However,

C. U loop at high temperature

B. U loop in the unbroken phase
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higher energy density states, wid>H, have a different whereu is the fugacity of a single particle, and the summa-
nature. Their wave function is not localized in the field spacetion goes over all coordinates of the particles inside the
to the vicinity of one of the vacua, but rather is spread ovelareaS and over all possible numbers of particlesAssum-
distances larger than the distance between the two vacuuing that particles have a finite size, so that there ar&/A
states, .. These states therefore naturally carry sharp quanpossibilities to place one particle inside the a®an the
tum numbers with respect to the brok&n symmetry. These dilute gas approximation, the sum gives

states we will denote byh). In fact one expects that the

higher the energy density the more these states look like the (U(S))zexp[ B ES] 65)
multiparticle states of a symmetric phase. That is to say as AT

long ase>H it does not matter whether the potential has the

double well structure or a single vacuum. These highly exWe stress that the thermal ensemble of particle iswvari-
cited states should look like states with finite density of par-ant. The density matrix for such an ensemble can be written

ticles which carry theZ, charge. in the particle basis as
At low temperatures, when the entropy effects are not
. I 1
important the contribution to the thermal ensemble comes p:E = u"n)n. (66)
only from the|l) sector since the Bolzman factor for any of ) N!

the |h) states vanishes exponentially in the infinite volume
limit. As we have argued earlier, the averagelbin each ~ The operator of th&, transformation acts on theparticle
one of these states has an area law behavior and so does fiates as
whole temperature average 0f n
When the temperature reachEs the phase transition oc- Ufn)=(=1)"n) (67)
curs. The reason for the onset of the phase transition is th%%d so
when the equilibrium energy density reaches critical thresh-
old value, thelh) sector states start contributing to the ther- UpUt=p. (68)
mal ensemble. The sudden change in the entropy due to these
new channels drives the phase transition. Above the phase The explicit simple formulg65) is derived in the dilute
transition therefore there are two kinds of states that contribgas approximation. We expect that the physics will be simi-
ute to thermal averages. One can then write lar as long as the interaction between the particles is short
range. Whenever the interaction is long range the behavior of
| h (U(S)) can be different. For instance one does not expect
<U>T>TC:E e &/T(n,I|U|n,ly+ > e E/T(n,h|U|n,h) area law behavior if the particles are bound into pairs since
" s 63 in this case onlyZ, invariant states contribute to the thermal
(63 ensemble.
Our conclusion is that at finite temperature the behavior
wheren stands for all other quantum numbers. In fact oncegf the U loop is not strongly related to the mode of the

the entropy effects become important enough to excite thgagjization of theZ,, symmetry. It is rather more likely to
|h) sector, the contribution df) states to any physical ob- have an area behavior.

servable becomes negligible. As discussed earlier each state Tq rejterate, the physics involved is very simple. At zero
in the second term gives a perimeter contributior{ed® to  temperature when acting on a state, théoop performs the
the average of théJ loop, so one could be tempted to con- 7z, transformation inside the loop. The only degrees of free-
clude that the loop must have a perimeter law just like ingom that are changed by this operation inside the loop are
zero temperature vacuum of a symmetric phase. This howne 7, -noninvariant fields. If the vacuum wave function de-
ever is not necessarily the case. The reason is thaends on the configuration of the noninvariant degrees of
(n,h[U[n,h) is not positive definite. In fact the number of freedom(the state in question is n@k, invariand, the action
states in which it is positive is roughly equal to the numberqf the U loop affects the state everywhere inside the loop.
of states on which it is negative. It is therefore very likely The VEV of the U loop then falls off as an area. If the
that the_leadir_mg perimeter behavior will cancel and the ne{5cyum isz,, invariant, the wave function does not depend
result will again be an area law f¢UJ). on the configuration of the noninvariant degrees of freedom.
Indeed, if the ensemb'le can be thought of as an ensembighe action of thaJ loop then perturbs the state only along
of Z, charged free particles, the area law for teloop  the perimeter, hence the perimeter law in the unbroken
follows immediatelyt! The U loop in such an ensemble is phase.
At finite temperature however the thermal ensemble may
1 even in the symmetric phase contain significant contributions
(u()=2, n—,,u"(— 1" (64 from states with nonvanishingy charges. Th& loop there-
X.n fore perturbs the thermal ensemble very significantly every-
where inside the area, and the natural outcome is an area law.
The argument is quite general and does not depend on the
1This argument is borrowed frof6]. We thank Mike Teper and ~exact form of theZ invariant potential and more generally
Biaggio Lucini for discussions of this point. on the field content of the theory—we could have added any
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number of extra fields to the theory, E49), without chang- V. DISCUSSION

ing the conclu3|_ons_. The same relation must exist between In this paper our aim was to point out two facts. First that
the que of reahzgnon of the. magnellg Symmew and the the calculation of the VEV of the 't Hooft loopl] implies
behav_lor of the Wilson loop in the pure Y_ang-l\/hlls theory. \he restoration of the magnetity, symmetry above the de-
The direct analogues of the scalar fighdx) in Eq.(49) and  cgnfinement transition. Second, that the mode of realization
the U loop of the scalar theory are correspondingly the vor-5¢ magnetic symmetry is closely related to the behavior of
tex field V(x) and the spatial Wilson looj/(C). the spatial Wilson loop.

As we have shown in the previous section, the magnetic At zero temperature this relation is very rigid: spontane-
Zy is restored at high temperature. The Wilson loop is nevous breaking ofZy implies the area law behavior fon
ertheless likely to have an area law as is indeed indicated byhile unbrokenzy, leads to perimeter law behavior. At high
all existing lattice data. In this context we note that analytictemperature however even though thg symmetry is re-
strong coupling results also give area behayiof|. stored, the Wilson loop may have an area law. This is the

consequence of the fact that eve#ginvariant thermal en-
semble can contain a significant contribution 2§ non-

D. Wilson loop in 3+1 dimensions singlet states. The area law is particularly simply understood
if the thermal ensemble at high temperature is well appproxi-
sions. At zero temperature in the broken phase when actin ated by an ensemble of weakly interacting_magnetic vorti-
with the Wilson loopW(C) on the vacuum one changes the . es. The vortex gas argumgnt has been PTeV'OL.’S'V brought up
state of those magnetic vortices which loop throughThe n favor. of the area behavior pf the spatial Wllsor_l loop in
number of such vortices which are present in a generic corLlS]' This beha.wor is also confirmed by several lattice gauge
figuration in the broken phase is proportional to the minimaltheory calcula_t|on$19]._ L
area subtendin@. The number of degrees of freedom that is An alternative p03_5|b|l|ty IS _that due to _the as yet un-
changed by the action &/ is thus proportional to the aréa known vortex dynam|cs., Fher(_e IS vortex—antlvqrtex b||jd|ng.
Each of these degrees of freedom contributes a factor smalltz:l—lD explore such a possmmty it would be very Interesting to
than unity to the overlap with the vacuum state and so th easure on the Iattlc_e the free energy of a magnet|c.vortex.
VEV of W scales with the exponential of the area. In the n Ref.[15] the behavior of the free energy of magnetic and

unbroken phase the vacuum does not contain vortices of a?—fCtr'CTﬂuEes k:]last bger_lt _(Jllst;:]usls?tc_i |nf threy temlferatuhre ¢
bitrarily large size. The size of the vortices present in th ase. 1o be able to do 1tin the fatice framework oneé has 1o

vacuum is cut off by the relevant correlation length. This isdhgfine thg theor:y in gfti)nitg volume. Ast(rj]iscustse? t?y t H_oc:jft
the case if the gauge group is completely broken by th IS can be achieved by Imposing on the potentials periodic
Higgs mechanism. Therefore, for contou@sof linear di- oundary conditions modulo a gauge transformation. As dis-

mension much larger than this length, the actiorVC) cussed in Ref[15] this admits the presence of vortices in

only disturbs degrees of freedom close to the con®iiself §+1 an_d of the t\)/ort%x I|nesE|nJ|8_é dlmentsLQns._dt F{.(iOffts th
and the VEV must have the perimeter behavior. IScussion was based on a euclidean rotation identity for the

At high temperature even the symmetric thermal er1_tW|sted 4D path integrals valid for any temperature, and a

semble is populated by vortices. These vortices are not freféactorization property of magnetic and electric fluxes.In the
since apart from them the ensemble also contains “freenOtaLION of Ref[15],
charges. However, unless this background of charges induces . _ .
long range interactions between the vortices, the most prob- F(e,m)=Fq(e)+Fy,(m). (69)
able result for the Wilson loop is the area law. A more de-
tailed knowledge of vortex dynamics is necessary to draw &s validity at low T is very reasonable, but is inconsistent
firm conclusion. with the Euclidean rotation identity at high Based on this
.To close this section we note thgt the present cgnsideﬁt Hooft could prove (N<3) that in the confining phase,
ations do not apply to Abelian theories. The magnetic symynere the free energy of an electric flux is linear with the
metry does exist in this case too, but here it is the continuou%ngth (with the string tensiorp), the free energy of mag-
U(1) group and the spectrum is massless. In this case thefitic flux vanishes exponentially in the infinite volume
is no reason to expect the local factorization of the overlapgimit. For a magnetic flux in, say the direction it is
and generically therefore the arguments of this section do “Q{xp(—pLXLy). Thus the free energy of a magnetic flux is re-
hold. In particular in the presence of long range correlationgated to the behavior of the Wilson loop. The free energy of
it is perfectly possible that the Wilson loop has a perimeteryn glectric flux in the z direction in theot phase vanishes
law even though the state is perturbed everywhere inside th@xponentially like exptal,L,) wherea is the surface ten-
area bounded by the lodp. sion found in Ref[1]. So the next obvious question is how
the magnetic flux free energy behaves in the hot phase. In a
vortex gas picture this free energy should vanish exponen-
2In 2+1 dimensions it is actually only the noncompact Abelian tially in the infinite volume limit. Such a calculation in+2L
theories that are excluded from the consideration. Compact theorigdmensions has been performed amdodulo some uncer-
are massive and therefore should behave in the same way as tkainty related to imperfect measurement of global vortjcity
non-Abelian Yang-Mills theory. results are consistent with this expectatid®]. It will be

The previous considerations generalize t®13dimen-
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instructive to see how in the hot phase the additivity of elecfields, so that the gauge theory at zero temperature is broken
tric and magnetic fluxes is broken. completely. In this situation the magnetig, symmetry is

We note that a recent lattice calculatid0] measures the unbroken in the vacuum and the Wilson loop has a perimeter
monopole-antimonopole correlation. The results [@0]  |Jaw. Magnetic vortices are finite energy excitations with the
point to the screened behavior of this correlation function formass of orderv =M?/g?, whereM, is the vector boson
all temperatures. So in the hot phase it behaves like its ele¢nass. When the system is heated one expects that the ther-
tric partner, the correlator of Polyakov loopsThis, via 't mal ensemble will contain a dilute gas of these vortices at
Hooft's argument, is consistent with the measured area besny temperature. Therefore at any finite temperature the spa-
havior of Wilson loopg19] and would imply that the mag- tia| string tension should be nonzero, although at low tem-
netic flux energy would fall off with an area law fall  peratures it will be exponentially suppressed if the theory is
temperatures. , . weakly coupledio=M? exp{—M%g?T}.

It is interesting to note that the vortex gas picture is
equally applicable in high temperature confining and non-
confining gauge theory. In particular one can consider an
SU(N) gauge theory with sufficient number of adjoint Higgs ~ The work of A.K. is supported by PPARC. The work of

C.P.K.A. and A.K. is supported by a joint CNRS-Royal So-
ciety project. We are indebted to Frithjof Karsch for bringing
13ye note however that this simulatid20] also points to the Ref. [17] to our attention. We thank lan Kogan, Biaggio
Coulomb behavior for the spatial 't Hooft loop in the hot phase, inLucini and Mike Teper for very interesting and useful dis-
contradiction to analytic resulfd,21] and early lattice resulf2]. cussions, which in particular helped to clarify a fundamental
We feel that here more work should be done to clarify the situationflaw in the arguments in the first version of this paper.
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