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Magnetic ZN symmetry in hot QCD and the spatial Wilson loop
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We discuss the relation between the deconfining phase transition in gauge theories and the realization of the
magneticZN symmetry. At low temperature theZN symmetry is spontaneously broken while above the phase
transition it is restored. This is intimately related to the change of behavior of the spatial ’t Hooft loop. We also
point out that the realization of magnetic symmetry has a bearing on the behavior of the spatial Wilson loop.
We give a physical argument to the effect that at zero temperature the spatial Wilson loop must have perimeter
law behavior in the symmetric phase but area law behavior in the spontaneously broken phase. At high
temperature the argument does not hold and the restoration of magneticZN is consistent with the area law for
the Wilson loop.

PACS number~s!: 11.10.Wx
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I. INTRODUCTION

This paper is devoted to further study of the theoreti
aspects of the deconfining temperature phase transitio
non-Abelian gauge theories. It is an immediate continuat
of our earlier work@1#. In @1# we showed that the deconfinin
phase transition in the pure Yang-Mills~YM ! theory is char-
acterized by the change of behavior of the ’t Hooft lo
operatorV(C). In the ‘‘cold’’ phase the ’t Hooft loop has a
perimeter law behavior̂V(C)&}exp$2aP(C)%, while in the
‘‘hot’’ phase it has an area law behavior̂V(C)&
}exp$2aS(C)%.

In the present paper we want to sharpen somewhat
observation and further discuss related questions. We wis
point out thatV is in fact an order parameter which prob
the breaking of a physical symmetry of the Yang-Mi
theory. The symmetry in question is the magneticZN sym-
metry discussed by ’t Hooft@2#. The deconfining phase tran
sition is therefore characterized by the change in the mod
realization of a globalZN symmetry: the symmetry is broke
spontaneously in the ‘‘cold’’ phase while it is restored in t
‘‘hot‘‘ phase.

The previous two paragraphs may sound at first like a
herring. After all an order parameter for the deconfini
phase transition and a relatedZN symmetry have been dis
cussed for many years. The order parameter in questio
the free energy of an external static color source in
fundamental representation: the Polyakov lineP
5Tr P exp$ig*0

bdtA0%. The ZN symmetry is the transforma
tion P→exp$i2p/N%P. We will refer to this transformation a
the electricZN . There is however a great difference betwe
the physical nature ofP and V and the associatedZN sym-
metries. The operatorV is a canonical operator in the phys
cal Hilbert space of the Yang-Mills theory. The magneticZN
symmetry similarly is a transformation that acts on quant
states in the physical Hilbert space. On the other handP has
a very different status. It is not an operator in the Hilb
space and as such not a canonical order parameter. It ap
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l
in
n

is
to

of

d

is
e

n

t
ars

as an auxiliary object when projecting onto the gauge inv
ant physical subspace of the Hilbert space. The ‘‘electr
ZN—the operation that transformsP by multiplying it by a
phase—similarly is not a canonical symmetry. There is
transformation of states in the physical Hilbert space tha
related to this ‘‘symmetry,’’ although it is indeed a symm
try of the Euclidean path integral representing the statist
sum.

This is not to say of course thatP and electricZN are
useless concepts. The standard effective action, define
the constrained path integral

exp2Se f f~P!5E DA0d„P2P~A0!…exp2S~A!, ~1!

is gauge invariant. It is instrumental in computing the vort
expectation value. The way the electricZ(N) symmetry is
realized inSe f f is also related to the behavior of the ord
parameter of the magneticZ(N). We will discuss this in
detail in Sec. III@1#.

However, if one wants to describe the deconfinem
phase transition in terms of a canonical order paramete
the same way as the Ising transition is described in term
magnetization, one should zero in onV rather than onP and
should study the magneticZN symmetry rather than electri
ZN . This is what we intend to do in this paper.

The action of the magneticZN symmetry is very different
in the (211)- and (311)-dimensional cases. In 211 di-
mensions it acts very much like usual global symmetry in
scalar theory with the order parameter being a scalar vo
field. In 311 dimensions the symmetry acts not like a sta
dard global symmetry—its ‘‘charge’’ is an integral over
two dimensional spacelike surface rather than over the wh
of the three dimensional space.1 As a consequence its orde

1These type of symmetries nowadays are frequently discusse
the context of ‘‘M theory’’ @3#.
©2000 The American Physical Society08-1
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parameter is not a local field but rather a magnetic vor
stretching over macroscopic distances.

It is therefore convenient to start the discussion with
three dimensional gauge theories and to present all the a
ments in this case. The generalization of appropriate asp
of this discussion to 311 dimensions will be given in the las
part of every section.

The plan of this paper is the following. In Sec. II we rec
the definition of the ’t Hooft loop and its (211) dimensional
analog—the magnetic vortex operator. We formulate the
guments for the existence of the magneticZN symmetry in
theories without fundamental matter fields. We also show
explicit construction that the generator of this symmetry
the pure gluodynamics is none other than the spatial Wil
loop.

In Sec. III we discuss the relation between the behavio
the ’t Hooft loop and the realization of the magneticZN in
the ground state of the theory. We demonstrate that the m
of the realization of the symmetry changes at the deconfin
phase transition, while spontaneously broken at low temp
ture the symmetry is restored above the phase transition

In Sec. IV we present in a toy model a simple physic
picture explaining how the behavior of a spatial Wilson lo
discriminates at zero temperature between the phases
broken and unbroken magneticZN . In the phase where th
ZN symmetry is broken,W must have an area law while i
the case of unbrokenZN it must have a perimeter law. W
explain why this argument does not generalize to the h
temperature phase and thus why the area law behavior o
Wilson loop in the hot phase is consistent with restoration
the magneticZN symmetry.

Finally in Sec. V we conclude with a short discussion.

II. THE MAGNETIC ZN SYMMETRY
AND THE ’T HOOFT LOOP OPERATOR

In this section we discuss the notion of the magneticZN
symmetry and its order parameter—’t Hooft loop or ma
netic vortex operator. Most of the material contained her
not new and, perhaps with the exception of explicit ident
cation of theZN generator with the spatial Wilson loop,
contained in@2,4,5#. At the risk of being repetitive we hav
decided nevertheless to include this extended introduc
part, since we feel that the concept of magneticZN symmetry
is not widely appreciated in the community. TheZN symme-
try structure is the basis for our discussion of the deconfin
phase transition in the following sections.

Let us start by recalling the argument due to ’t Hooft th
a non-AbelianSU(N) gauge theory with charged fields i
adjoint representation possesses a globalZN symmetry@2#.

We discuss the (211)-dimensional case first. Consider
theory with several adjoint Higgs fields so that varying p
rameters in the Higgs sector theSU(N) gauge symmetry can
be broken completely. In this phase the perturbative sp
trum will contain the usual massive ‘‘gluons’’ and Higg
particles. However, in addition to that there will be hea
stable magnetic vortices. Those are the analogues
Abrikosov-Nielsen-Olesen vortices in the superconduct
and they must be stable by virtue of the following topolo
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cal argument. The vortex configuration away from the vor
core has all the fields in the pure gauge configuration

Ha~x!5U~x!ha, Am5 iU ]mU†. ~2!

Here the indexa labels the scalar fields in the theory,ha are
the constant vacuum expectation values of these fields,
U(x) is a unitary matrix. As one goes around the location
the vortex in space, the matrixU winds nontrivially in the
gauge group. This is possible, since the gauge group in
theory without fundamental fields isSU(N)/ZN and it has a
nonvanishing first homotopy groupP1„SU(N)/ZN…5ZN .
Practically it means that when going around the vortex lo
tion full circle, U does not return to the sameSU(N) group
elementU0, but rather ends up at exp$i2/N%U0. Adjoint
fields do not feel this type of discontinuity inU and therefore
the energy of such a configuration is finite. Since such
configuration cannot be smoothly deformed into a trivial on
a single vortex is stable. Processes involving annihilation
N such vortices into a vacuum are allowed sinceN-vortex
configurations are topologically trivial. One can of cour
find explicit vortex solutions once the Higgs potential
specified. As with any other semiclassical solution in t
weak coupling limit the energy of such a vortex is inverse
proportional to the gauge coupling constant and theref
very large. One is therefore in a situation where the spect
of the theory contains a stable particle even though its m
is much higher than masses of many other particles~gauge
and Higgs bosons! and the phase space for its decay in
these particles is enormous. The only possible reason for
existence of such a heavy stable particle is that it must c
a conserved quantum number. The theory therefore m
possess a global symmetry which is unbroken in the co
pletely Higgsed phase. The symmetry group must beZN
since the number of vortices is only conserved moduloN.

Now imagine changing smoothly the parameters in
Higgs sector so that the expectation values of the Hi
fields become smaller and smaller, and finally the the
undergoes a phase transition into the confining phase.
can further change the parameters so that the adjoint sc
become heavy and eventually decouple completely from
glue. This limiting process does not change the topology
the gauge group and therefore does not change the symm
content of the theory. We conclude that the pure Yang-M
theory also possesses aZN symmetry. Of course, since th
confining phase is separated from the completely Higg
phase by a phase transition, one may expect that theZN
symmetry in the confining phase is represented differen
In fact the original paper of ’t Hooft as well as subseque
work @4# convincingly argued that in the confining phase t
ZN symmetry is spontaneously broken and this breaking
related to the confinement phenomenon.

The physical considerations given above can be put
firmer formal basis. In particular one can construct explici
the generator of theZN as well as the order parameter ass
ciated with it—the operator that creates the magnetic vor
@5#. We will now describe this construction.
8-2
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MAGNETIC ZN SYMMETRY IN HOT QCD AND THE . . . PHYSICAL REVIEW D 62 096008
A. Abelian case

Consider first an Abelian gauge theory. In this case
homotopy group isZ and therefore we expect theU(1)
rather thanZN magnetic symmetry. It is in fact absolute
straightforward to identify the relevant charge. It is no
other than the magnetic flux through the equal time pla
with the associated conserved current being the dual of
electromagnetic field strength

F5E d2xB~x!, ]mF̃m50. ~3!

The current conservation is ensured by the Bianchi iden
A group element of theU(1) magnetic symmetry group i
exp$iaF% for any value ofa. A local order parameter—a
local field V(x) which carries the magnetic charge—is al
readily constructed. It has a form of the singular gauge tra
formation operator with the singularity at the pointx,

V~x!5exp
i

gE d2y F e i j

~x2y! j

~x2y!2
Ei~y!1Q~x2y!J0~y!G

~4!

where Q(x2y) is the polar angle function andJ0 is the
electric charge density of whatever matter fields are pre
in the theory. The cut discontinuity in the functionQ is not
physical and can be chosen parallel to the horizontal a
Using the Gauss’ law constraint this can be cast in a differ
form, which we will find more convenient for our discussio

V~x!5exp
2p i

g E
C
dyi e i j Ei~y!, ~5!

where the integration goes along the cut of the functionQ
which starts at the pointx and goes to spatial infinity. The
operator does not depend on where precisely one choose
cut to lie. To see this, note that changing the position of
cut C-C8 adds to the phase (2p/g)*Sd2x] iE

i whereS is the
area bounded byC-C8. In the theory we consider only
charged particles with charge multiples ofg are present.
Therefore the charge within any closed area is a mult
integer of the gauge coupling*Sd2x] iE

i5gn and the extra
phase factor is always unity.

The meaning of the operatorV is very simple. From the
commutation relation

V~x!B~y!V†~x!5B~y!1
2p

g
d2~x2y! ~6!

it is obvious thatV creates a pointlike magnetic vortex o
flux 2p/g. Despite its nonlocal appearance the operatoV
can be proved to be a local Lorentz scalar field@6#. The
locality is the consequence of the fact thatV(x) commutes
with any local gauge invariant operator in the theoryO(y)
except whenx5y. This is due to the coefficient 2p/g in the
exponential which ensures that the Aharonov-Bohm phas
the vortex created byV and any dynamical charged partic
present in the theory vanishes. Equations~3!, ~5! formalize
the physical arguments of ’t Hooft in the Abelian case.
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B. Non-Abelian case at weak coupling

Let us now move onto the analogous construction
non-Abelian theories. Ultimately we are interested in t
pure Yang-Mills theory. It is however illuminating to sta
with the theory with an adjoint Higgs field and take the d
coupling limit explicitly later. For simplicity we discuss th
SU(2) gauge theory. Consider the Georgi-Glashow mode
SU(2) gauge theory with an adjoint Higgs field:

L52
1

4
Fmn

a Famn1
1

2
~D m

abHb!21m̃2H22l̃~H2!2 ~7!

where

D m
abHb5]mHa2g fabcAm

b Hc. ~8!

At large and positivem̃2 the model is weakly coupled. Th
SU(2) gauge symmetry is broken down toU(1) and the
Higgs mechanism takes place. Two gauge bosons,W6, ac-
quire a mass, while the third one, the ‘‘photon,’’ remai
massless to all orders in perturbation theory. The theory
this region of parameter space resembles very much ele
dynamics with vector charged fields. The Abelian constr
tion can therefore be repeated. TheSU(2) gauge invariant
analogue of the conserved dual field strength is

F̃m5
1

2 FemnlFnl
a na2

1

g
emnleabcna~Dnn!b~Dln!cG ~9!

wherena[Ha/uHu is the unit vector in the direction of the
Higgs field. Classically this current satisfies the conservat
equation

]mF̃m50. ~10!

The easiest way to see this is to choose a unitary gauge o
form Ha(x)5H(x)da3. In this gaugeF̃ is equal to the Abe-
lian part of the dual field strength in the third direction
color space. Its conservation then follows by the Bian
identity. Thus classically the theory has a conservedU(1)
magnetic chargeF5*d2xF̃0 just like QED. However, the
unitary gauge cannot be imposed at the points whereH van-
ishes, which necessarily happens in the core of a ’t Hoo
Polyakov monopole. It is well known of course@7# that the
monopoles are the most important nonperturbative confi
rations in this model. Their presence leads to a nonvanish
small mass for the photon as well as to confinement of
charged gauge bosons with a tiny nonperturbative string
sion. As far as the monopole effects on the magnetic flux
concerned, their presence leads to a quantum anomaly in
conservation equation~10!. As a result only the discreteZ2
subgroup of the transformation group generated byF re-
mains unbroken in the quantum theory. The detailed disc
sion of this anomaly, the residualZ2 symmetry and their
relation to monopoles is given in@5#.

The order parameter for the magneticZ2 symmetry is
constructed analogously to QED as a singular gauge tr
formation generated by the gauge invariant electric cha
operator
8-3
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C. P. KORTHALS ALTES AND A. KOVNER PHYSICAL REVIEW D62 096008
Jm5emnl]n~ F̃l
ana!, Q5E d2xJ0~x!. ~11!

Explicitly

V~x!5exp
i

gE d2y F e i j

~x2y! j

~x2y!2
na~y!Ei

a~y!

1Q~x2y!J0~y!G
5exp

2p i

g E
C
dyie i j n

aEj
a~y!. ~12!

One can think of it as a singularSU(2) gauge transformation
with the field dependent gauge function

la~y!5
1

g
Q~x2y!na~yW !. ~13!

This field dependence of the gauge function ensures
gauge invariance of the operatorV. Just like in QED it can be
shown@5,6# that the operatorV is a local scalar field. Again
like in QED, the vortex operatorV is a local eigenoperator o
the Abelian magnetic fieldB(x)5F̃0:

@V~x!,B~y!#52
2p

g
V~x!d2~x2y!. ~14!

That is to say, when acting on a state it creates a point
magnetic vortex which carries a quantized unit of magne
flux. TheZ2 magnetic symmetry transformation is genera
by the operator

U5expH i
g

2
FJ ~15!

and acts on the vortex fieldV as a phase rotation byp:

ei (g/2)FV~x!e2 i (g/2)F52V~x!. ~16!

An operator closely related toU and which will be of interest
to us in the following is the generator of the magneticZ2
transformation only inside some closed contourC:

U~C!5expH i
g

2ES
d2xB~x!J ~17!

where the integration is over the areaS bounded byC. The
analogue of the commutator, Eq.~16!, for this operator is

UCV~x!UC
† 52V~x!, xPS,

V~x!, x¹S. ~18!
09600
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Taking the contourC to run at infinityUC becomes the gen
erator ofZ2.

We now have the explicit realization of the magneticZ2

symmetry in the Georgi-Glashow model.

C. Pure gauge theory

Our next step is to move on to the pure Yang-Mi

theory. This is achieved by smoothly varying them̃2 coeffi-
cient in the Lagrangian so that the coefficient of the m
term of the Higgs field becomes positive and eventually
bitrarily large. It is well known that in this model the weakl
coupled Higgs regime and strongly coupled confining regi
are not separated by a phase transition@8#. The pure Yang-
Mills limit in this model is therefore smooth.

In the pure Yang-Mills limit expressions~9!, ~12!, ~17!
have to be taken with care. When the mass of the Higgs fi
is very large, the configurations that dominate the path in
gral are those with very small value of the modulus of t
Higgs fielduHu}1/M . The modulus of the Higgs field in turn
controls the fluctuations of the unit vectorna, since the ki-
netic term forn in the Lagrangian isuHu2(Dmn)2. Thus as
the mass of the Higgs field increases the fluctuations on
grow in both amplitude and frequency and the magnetic fi
operatorB as defined in Eq.~9! fluctuates wildly. This situ-
ation is of course not unusual. It happens whenever
wants to consider in the effective low energy theory an o
erator which explicitly depends on fast, high energy va
ables. The standard way to deal with it is to integrate o
the fast variables. There could be two possible outcome
this procedure. Either the operator in question becom
trivial ~if it depends strongly on the fast variables! or its
reduced version is well defined and regular on the low
ergy Hilbert space. The ‘‘magnetic field’’ operatorB in Eq.
~9! is obviously of the first type. Since in the pure Yan
Mills limit all the orientations ofna are equally probable
integrating over the Higgs field at fixedAm will lead to van-
ishing of B. However, what interests us is not so much t
magnetic field but rather the generator of the magneticZ2
transformationUC of Eq. ~17!. In the pure Yang-Mills limit
we are thus lead to consider the operator

UC5 lim
H→0

E Dna exp$2uHu2~DW na!2%

3expH i
g

4EC
d2xS e i j Fi j

a na

2
1

g
e i j eabcna~Din!b~Djn!cD J . ~19!

The weight for the integration overn is the kinetic term for
the isovectorna . As was noted before the action does n
depend onna in the YM limit. This term however regulate
the integral and we keep it for this reason. This operator m
look somewhat unfamiliar at first sight. However, in a r
8-4
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MAGNETIC ZN SYMMETRY IN HOT QCD AND THE . . . PHYSICAL REVIEW D 62 096008
markable paper@9# Diakonov and Petrov showed that E
~19! is equal to the trace of the fundamental Wilson lo
along the contourC:2

UC5WC[Tr P expH igE
C
dliAi J . ~20!

We conclude that in the pure Yang-Mills theory the ge
erator of the magneticZ2 symmetry is the fundamental spa
tial Wilson loop along the boundary of the spatial plane.

There is a slight subtlety here that may be worth menti
ing. The generator of a unitary transformation should b
unitary operator. The trace of the fundamental Wilson lo
on the other hand is not unitary. One should therefore stri
speaking consider instead a unitarized Wilson loopW̃
5W/AWW†. However, the factor between the two operato
AWW† is an operator that is only sensitive to behavior of t
fields at infinity. It commutes with all physical local oper
tors O(x) unlessx→`. In this it is very different from the
Wilson loop itself, which has a nontrivial commutator wi
vortex operatorsV(x) at all values ofx. Since the correlators
of all gauge invariant local fields in the pure Yang-Mil
theory are massive and therefore short range, the ope
AWW† must be a constant operator on all finite ener
states. The difference betweenW andW̃ is therefore a trivial
constant factor and we will not bother with it in the follow
ing. Perhaps of more concern is the difference betweenWC

andW̃C when the contourC is not at infinity. However, here
again the factor between the two operators,AWCWC

† , is only
sensitive to physical degrees of freedom on the contouC
and not inside it. Because of its presence, the vacuum a
ages ofWC andW̃C may differ at most by a factor which ha
a perimeter behavior,̂WC&5exp$mP(C)%^W̃C&, whereP(C)
is the perimeter ofC. The question we will be interested in
whether̂ WC& has a perimeter or area behavior. As far as
answer to this question is concernedWC and W̃C are com-
pletely equivalent, and we will not make distinction betwe
them. In the rest of this paper we will therefore refer toW as
the generator ofZ2, keeping this little caveat in mind.

Next we consider the vortex operator, Eq.~12!. Again we
have to integrate it over the orientations of the unit vec
na. This integration in fact is equivalent to averaging ov
the gauge group. Following@9# one can writena in terms of
the SU~2! gauge transformation matrixV:

nW 5
1

2
Tr VtV†t3 . ~21!

The vortex operator in the pure gluodynamics limit then b
comes

2We note that Diakonov and Petrov had to introduce a regulato
define the path integral overn. The regulator they required wa
precisely of the same form as in Eq.~19!. It is pleasing to see tha
this regulator appears naturally in our approach as the remna
the kinetic term of the Higgs field.
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Ṽ~x!5E DV exp
2p i

g E
C
dyie i j Tr VEjV

†t3 . ~22!

This form makes it explicit thatṼ(x) is defined as the gaug
singlet part of the following, apparently non-gauge-invaria
operator:

V~x!5exp
2p i

g E
C
dyie i j Ei

3~y!. ~23!

The integration overV obviously projects out the gauge sin
glet part ofV. In the present case however this projection
redundant. This is because even thoughV itself is not gauge
invariant, when acting on a physical state it transforms it in
another physical state.3 By physical states we mean the stat
which satisfy the Gauss’ constraint in the pure Yang-Mi
theory. This property ofV was noticed by ’t Hooft@2#. To
show this let us considerV(x) as defined in Eq.~23! and its
gauge transformVV5V†VV whereV is an arbitrary nons-
ingular gauge transformation operator. The wave functio
of any physical state depends only on gauge invariant c
acteristics of the vector potential, i.e. only on the values
Wilson loops over all possible contours:

C@Ai #5C@$W~C!%#. ~24!

Acting on this state by the operatorsV andVV respectively
we obtain

VuC&5CV@Ai #5C@$VW~C!V†%#

VVuC&5CV
V@Ai #5C@$VVW~C!VV

† %#. ~25!

It is however easy to see that the action ofV(x) andVV(x)
on the Wilson loop is identical—they both multiply it by th
center-group phase~which stays unaffected byV) if x is
insideC and do nothing otherwise. Therefore we see tha

VuC&5VVuC& ~26!

for any physical stateC. Thus we have

VVuC&5VVV†uC&5VuC& ~27!

where the first equality follows from the fact that a physic
state is invariant under action of any gauge transformationV
and the second equality follows from Eq.~26!. But this equa-
tion is nothing but the statement that the stateVuC& is physi-
cal, i.e. invariant under any nonsingular gauge transform
tion.

We have therefore proved that when acting on a phys
state the vortex operator creates another physical state.
an operator of this type the gauge invariant projection o
affects its matrix elements between unphysical states. S
we are only interested in calculating correlators ofV between

to

of

3This is not a trivial statement, since a generic non-gau
invariant operator has nonvanishing matrix elements between
physical and an unphysical sector.
8-5



c
.
by
o
ra

th

e

m
se

at
o

n-

st

ts
o

-

etic
on-
ed

he

r-
in

ux
is

n-

at it
ral.

for-
of
s in
re-

ent
for
c
r

to

e

ra

s
so

n
-
il

d
the

C. P. KORTHALS ALTES AND A. KOVNER PHYSICAL REVIEW D62 096008
physical states, the gauge projection is redundant and we
freely useV rather thanṼ to represent the vortex operator

It is instructive to note that this property is not shared
the Wilson loop. One can in fact represent the Wilson lo
as a singlet gauge projection of a simple Abelian loop ope
tor. The second exponential in Eq.~20! can be written as

expH i
g

2EC
dliAa

i na2
i

2E d2xe i j e
abcna] inb] jncJ . ~28!

Using Eq. ~21! we can rewrite the integral in Eq.~20!—
omitting the regulating kinetic piece—as

WC5E DV expH i
g

2E Tr t3~VAiV†1 iV] iV†!dli J .

~29!

The Wilson loop is therefore the gauge singlet part of
Abelian loop:

UC
A5expi

g

2E Tr Ait3dli . ~30!

The matrix elements ofWC and UC
A on physical subspac

therefore are the same. However,UC
A as opposed toV does

have nonvanishing nondiagonal matrix elements, that is
trix elements between the physical and the unphysical
tors. It thereforecannot be used instead ofWC in gauge
theory calculations. For example non-gauge-invariant st
will contribute as intermediate states in the calculation
quantities like the correlation function̂UC1

A UC2

A &, while

their contribution vanishes in similar correlators which i
volve the Wilson loop.

The generalization of the preceding discussion toSU(N)
gauge theories is straightforward. Once again one can
with the Georgi-Glashow-like model, where theSU(N) is
broken down toU(1)(N21) by the Higgs mechanism.4 The
construction of the vortex operator and the generator ofZN in
this case is very similar and the details are given in@5#.
Taking the mass of the Higgs field to infinity again projec
the generator onto the trace of the fundamental Wilson lo
The vortex operator can be taken as

V~x!5expH 4p i

gN E
C
dyie i j Tr@YEi~y!#J ~31!

where the hypercharge generatorY is defined as

Y5diag„1,1, . . . ,2~N21!… ~32!

4In SU(N) theories withN.2 there in principle can be phase
separated from each other due to spontaneous breaking of
global symmetries. For instance theSU(3) gauge theory with ad-
joint matter has a phase with spontaneously broken charge co
gation invariance@10#. Still even in this phase the confining prop
erties are the same as in the strongly coupled pure Yang-M
theory, with the Wilson loop having an area law.
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and the electric field is taken in the matrix notationEi

5laEi
a with la—the SU(N) generator matrices in the fun

damental representation.

D. Generalization to 3¿1 dimensions

To conclude this section we discuss how the magn
symmetry structure generalizes to four dimensions. The c
servedZN generator in the Georgi-Glashow model is defin
through

US5expH i
g

2ES
d2Si S Bi

ana2
1

g
e i jkeabcna~Djn!b~Dkn!cD J .

~33!

Although the definition ofU contains explicitly the surfaceS
through which the Abelian magnetic flux is integrated, t
operator in fact does not depend onS but is specified com-
pletely by its boundary. This is because changingS changes
the phase ofU by the magnetic flux through the closed su
face. The only dynamical objects that carry magnetic flux
the theory are ’t Hooft–Polyakov monopoles. Since their fl
is quantized in units of 4p/g, the change in the phase
always a multiple integer of 2p. In the pure Yang-Mills
limit the operatorUS again reduces to the trace of the fu
damental Wilson loop along the boundary ofS. Taking the
contour to infinity defines the generator of magneticZN . As
we have already noted, this charge is a little unusual in th
is defined as a surface integral rather than a volume integ
As a result the order parameter for this symmetry trans
mation is not a local but rather a stringy field. This is
course just a restatement of the fact that magnetic vortice
311 dimensions are stringlike objects. The operator that c
ates a vortex can still be defined in a way similar to 211
dimensions. Skipping the intermediate steps which we w
through in the previous discussion we give the final result
the pure Yang-MillsSU(N) gauge theory. The magneti
vortex along the curveC is created by the following operato
of the ‘‘singular gauge transformation’’5

V~C!5expH i

gNE d3x Tr~DivCY!Ei J
5expH 4p i

gN E
S
d2Si Tr~YEi !J ~34!

with vC(x), the singular gauge function which is equal
the solid angle subtended byC as seen from the pointx. The
function v is continuous everywhere, except on a surfacS
bounded byC, where it jumps by 4p. Other than the fact
that S is bounded byC, its location is arbitrary. The vortex
loop and the spatial Wilson loop satisfy the ’t Hooft algeb

V†~C!W~C8!V~C!5e(2p i /N)n(C,C8)W~C8! ~35!
me

ju-

ls

5The derivative term] iv in this expression should be understoo
to contain only the smooth part of the derivative and to exclude
contribution due to the discontinuity ofv on the surfaceS.
8-6
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MAGNETIC ZN SYMMETRY IN HOT QCD AND THE . . . PHYSICAL REVIEW D 62 096008
wheren(C,C8) is the linking number of the curvesC and
C8. One can consider closed contoursC or infinite contours
that run through the whole system. For an infinite contouC
and the Wilson loop along the spatial boundary of the sys
the linking number is always unity. TheV(C) for an infinite
loop is therefore an eigenoperator of theZN magnetic sym-
metry and is the analogue of the vortex operatorV(x) in
211 dimensions. Any closed vortex loop of fixed size co
mutes with the Wilson loop if the contourC8 is very large.
Such a closed loop is thus an analogue of the vort
antivortex correlatorV(x)V†(y), which also commutes with
the global symmetry generator, but has a nontrivial comm
tator with UC if C encloses only one of the pointsx or y.

To summarize this section, we have shown that p
Yang-Mills theory in 211 and 311 dimensions has a globa
ZN magnetic symmetry. The generator of the symme
group in both cases is the trace of the fundamental Wil
loop along the spatial boundary of the system. The or
parameter for this symmetry in 211 dimensions is a loca
scalar fieldV(x), while in 311 dimensions a stringlike field
V(C). In both cases the fieldV is gauge invariant on physi
cal states and is abona fidecanonical order parameter whic
distinguish in gauge invariant way the phases of the the
In the next section we discuss the realization of the magn
symmetry in the confined and the deconfined phases.

III. HOT AND COLD REALIZATIONS OF THE
MAGNETIC ZN

As with any global symmetry, it is important to unde
stand what is the mode of realization of magneticZN in the
ground state of the theory. This mode of realization depe
of course on the parameters of the theory as well as on
temperature. The situation at zero temperature is well un
stood.

A. 2¿1 dimensions

Again we start with three dimensions. There is a ve
general argument6 due to ’t Hooft @2# stating that if the
theory does not have zero mass excitations, the area la
the Wilson loop implies the nonvanishing expectation va
of the vortex operatorV(x). Conversely, if the Wilson loop
has a perimeter law, the expectation value ofV(x) must
vanish and the correlation functionV(x)V†(y) must have an
exponential falloff with ux2yu. It follows that in the pure
Yang-Mills theory the vacuum expectation value of the v
tex operator does not vanish and therefore theZN magnetic
symmetry is spontaneously broken. The same is true in
partially broken Higgs phase of the Georgi-Glashow mod
As mentioned in the last section the confining and the Hi
regimes in this model are analytically connected and the
fore the realization of all global symmetries in the two r
gimes is the same.

6The original argument as stated in@2# is formulated for
(311)-dimensional theories; however, its generalization to 211
dimensions requires only linguistic changes.
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In fact in the weakly coupled Higgs phase this can
verified by the direct calculation of the expectation value
V @5#. This calculation maps very simply into the class
monopole plasma calculation of Polyakov and was discus
in detail in @5#. One can also explicitly construct the low
energy effective Lagrangian in terms of the fieldV which
realizes the spontaneously brokenZN symmetry and de-
scribes the low energy spectrum of the Georgi-Glash
vacuum:

L5]mV* ]mV2l~V* V2m2!22z~V21V* 2!. ~36!

A similar effective Lagrangian with some quantitative diffe
ences was argued to be valid also for the pure Yang-M
theory in @11#.

The application of the ’t Hooft argument at finite temper
ture is somewhat less straightforward. Since at finite te
perature the Lorentz invariance is broken, the temporal
spatial Wilson loops do not necessarily have the same be
ior and one has to be more careful. The original argum
relates the behavior of the vortex operator and the temp
Wilson loop. At finite temperature in the Euclidean forma
ism the extent of the system in the temporal direction
finite. As a result it is not possible to distinguish between
area and perimeter law for ‘‘asymptotically’’ large tempor
loops. Instead the role of the temporal Wilson loop is tak
over by the Polyakov line—the loop that winds around t
total volume of the system in the temporal direction. Th
one expects that in the deconfining phase where the Po
kov line has a nonvanishing vacuum average, the vortex
erator should have vanishing expectation value. Indeed
can be easily confirmed by the explicit calculation of t
vacuum expectation value~VEV! of the vortex operator us
ing the method of@1#. In @1# the calculation was performe
in 311 dimensions, but adapting it to the~211!-dimen-
sional case is trivial. We give below a brief outline.

Consider the equal time vortex-antivortex correlati
function. At finite temperature is it given by the followin
expression:

^V~x!V†~y!&5Tr expS 2
b

2
~E21B2! D

3expS i
2p i

g E
x

y

e i j dl iE3
j D . ~37!

The line integral can be taken along the straight lineL con-
necting the pointsx andy. For definiteness we takex andy to
be separated in the direction of the first axis. Introducing
imaginary time axis and the Lagrange multiplier fieldA0 in
the standard way this expression can be transformed to

^V~x!V†~y!&5E DAiDA0 expH 2
1

2E0

b

dtE d3x

3@]0Ai
a2~DiA0!a2d~ t !ai

a#21~Ba!2J
~38!
8-7
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where the ‘‘external field’’ai is given by

ai
a~x!5da3d i2

2p

g
d~x2L !. ~39!

The delta function in time in front of the external fieldai in
Eq. ~38! appears for the following reason. As we saw in S
II C the product of the vortex and an antivortex operator
gauge invariant. This is because it induces a singular ga
transformation which is continuous up to the center elem
However, if we split it up in imaginary time into infinitesi
mal bitsVdt5exp@idtT(2pi/g)*x

yeijdliE3
j #, then any single such

bit separately is not gauge invariant, since the transforma
it induces is genuinely discontinuous across the line conn
ing the pointsx and y. The operatorsVdt therefore do not
commute with the projection operator on physical states.
obtain the path integral representation for the expecta
value, Eq.~37!, we should introduce the projection operat
only at the last point in imaginary time and not at the int
mediate points. In path integral language this correspond
the gauge fixingA050 everywhere except at one time, s
t50. In this gauge it is straightforward to see that the Gau
ian integration over the electric field leads to the usual p
integral with] iA0 shifted byai . This can then be rotated t
an arbitrary gauge with the result Eq.~38!.7

To evaluate the path integral, Eq.~38!, we follow the
standard procedure and integrate out all modes except fo
Polyakov loop in a saddle point approximation@13,14#. This
leads to the effective actionSe f f(q,ai), where 1/2 TrP
5cosq:

^V~x!V†~y!&5E Dq exp2Se f f~q,ai !. ~40!

To one loop order the effective action is given by

Se f f5E d2xF2T

g2 S ] iq1
g

2
ai D 2

1U~q!G . ~41!

The matricesta in Am are the generators ofSU(2) in the
fundamental representation and are normalized accordin
tr tatb5 1

2 dab.
The one loop effective potentialU is related to a Bernoulli

polynomial and can be read off the expressions in@12,13#.
The only property ofU which is important to us is that it ha
two degenerate minima atq50,p.

To calculate the correlator we have to find the configu
tion of q which minimizes the action, Eq.~41!. Qualitatively
the form of the solution is clear. The considerations identi
to those in@1# tell us that it must be the ‘‘broken’’ electricZ2
domain wall: half a wall@q→x2→`0, q(x250)5p/2] above

7In this derivation we dropped commutator terms between
Hamiltonian and the exponent in the vortex-antivortex opera
These commutator terms only exist att50 and therefore drop ou
in the continuum limit@i.e. areO(dt)]. In the lattice realization
they are indeed present and complete the expression~38! to the
twisted plaquette representation@12#.
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the line L and half a wall@q(x250)52p/2, q→x2→2`0]

below the lineL separated by a discontinuitydq5p. The
action of such a configuration isSe f f5ãux2yu where ã is
the ‘‘Z2 domain wall tension.’’ The vortex correlator is thu
given by

^V~x!V†~y!&5exp$2ãux2yu%. ~42!

As ux2yu becomes large the correlation function decrea
exponentially, and thus the expectation value of the vor
operator vanishes. For theSU(N) group this calculation
trivially generalizes and gives the same result. The expon
tial decay is also obtained for the correlator ofVm with any
powerm,N.

Recall that the vortex operator is the order parameter
the magneticZN symmetry. Moreover, the powers ofV ex-
haust all possible local order parameters.8 Their vanishing is
therefore an unambiguous indication that the magneticZN is
restored in the high temperature deconfined phase.

In hindsight this is not very surprising. Indeed, we a
dealing with physical discrete symmetry which is sponta
ously broken at zero temperature. When the system is he
it is unavoidable that entropy effects take over and at so
sufficiently high temperature the symmetry must be restor
A good qualitative guide here is the effective Lagrangia
Eq. ~36!. It describes a simpleZ2 invariant scalar theory.
There is very little doubt that a system described by t
Lagrangian indeed undergoes a symmetry restoring ph
transition at someTc . Moreover, the effective Lagrangia
approach also suggests that this phase transition has de
fining character. As shown in@5,6,11# the charged states in
the effective theory, Eq.~36!, are represented by solitoni
configurations of the vortex fieldV with unit winding num-
ber. The energy of any such state is linearly divergent in
infrared. The reason is that due to the finite degeneracy
vacuum states, the minimum energy configuration looks l
a quasi-one-dimensional strip across which the phase oV
winds. The energy density inside this ‘‘electric flux tube’’
proportional to the vacuum expectation value ofV. When the
VEV vanishes, so does the string tension. Stated in o
words, whenV vanishes, the phase fluctuations are large a
the winding number is not a sharp observable. An exter
charge is thus screened easily by regions of space arou
with vanishingV. The phase witĥ V&50 is therefore not
confining. In the theory with several Higgs fields this pha
exists even at zero temperature and corresponds to a c
pletely Higgsed phase—where the gauge group is bro
completely. In such a Higgs phase indeed the color
screened rather than confined. In the pure Yang-Mills the
this phase is absent at zero temperature, but is realized a
deconfined phase atT.Tc . We thus see that the behavior o

e
r.

8The latter statement is correct modulo multiplication ofVm by
local gauge invariant andZN invariant operators. These possib
factors do not change the fact of the exponential decay of the
relators and are therefore unimportant for our discussion.
8-8
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MAGNETIC ZN SYMMETRY IN HOT QCD AND THE . . . PHYSICAL REVIEW D 62 096008
the vortex operator at high temperature does indeed m
the simple intuition coming from aZN invariant effective
Lagrangian very well.

B. Extension to 3¿1 dimensions

The ’t Hooft argument now states that the vanishi
vacuum average of the Polyakov line is incompatible w
the area law behavior of the spatial ’t Hooft loop and vi
versa. This means that in the confining phase the ’t Ho
loop has perimeter law. In the high temperature deconfi
phase the behavior of the spatial ’t Hooft loop must beco
the area since the average of the Polyakov line is fin
Again this is confirmed by explicit calculation in@1#.

A more subtle question is how the behavior of the
Hooft loop relates to the realization of the magneticZN sym-
metry. TheZN symmetry does not have an order parame
which is a local field defined at a point. The only ord
parameters in the strict sense~an eigenoperator with a non
vanishing eigenvalue! is a ’t Hooft line V(C) which runs
through the whole system@15#.

In a system which is finite in the direction of the loop, b
is infinite in the perpendicular directions, everything is cle
cut. In this case there are two possibilities:

~a! ^V&Þ0 and the magneticZN broken or
~b! ^V&50 and the magneticI N restored.
In the system infinite in all directionsC is necessarily an

infinite line, and the expectation value^V(C)& clearly van-
ishes irrespective of whetherZN is broken or not. The ’t
Hooft loop along a closed contour on the other hand is ne
zero, since it is globally invariant under theZN transforma-
tion. It is therefore impossible to find an operator who
VEV distinguishes between the two possible realizations
the magnetic symmetry by vanishing in one phase and
vanishing in the other. Nevertheless, the behavior of
closed loop does indeed reflect the realization mode of
symmetry, since it is qualitatively different in the two po
sible phases. Namely the vacuum expectation value o
large closed ’t Hooft loop~by large, as usual we mean th
the linear dimensions of the loop are much larger than
correlation length in the theory! has an area law decay if th
magnetic symmetry is spontaneously broken and perim
law decay if the vacuum state is invariant.

To understand the physics of this behavior it is usefu
think of the ’t Hooft line as built of ‘‘local’’ operators—little
‘‘magnetic dipoles.’’ Consider Eq.~34! with the contourC
running along thex axis and the surfaceS chosen as the
(x,y) plane. Let us mentally divide the line into~short! seg-
ments of length 2D centered atxi . Each one of these seg
ments is a little magnetic dipole and the ’t Hooft loop is
product of the operators that create these dipoles. The
nition of these little dipole operators is somewhat ambigu
but since we only intend to use them here for the purpos
an intuitive argument any reasonable definition will do. It
convenient to define a single dipole operator in the follow
way:

DD~x!5expH i E d3y@ai
1~x1D2y!

1ai
2~x2D2y!#Tr@YEi~y!#J ~43!
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whereai
6(x2y) is the c-number vector potential of the Abe

lian magnetic monopole~antimonopole! of strength 4p/gN.
The monopole field corresponding toai contains both the
smoothxi /x3 part as well as the Dirac string contribution
The Dirac string of the monopole-antimonopole pair in E
~43! is chosen so that is connects the pointsx2D and x
1D along the straight line. The dipole operators obviou
have the property

DD~x!DD~x12D!5D2D~x1D!. ~44!

This is because in the product the smooth field contribut
of the monopole inDD(x) cancels the antimonopole contr
bution in DD(x12D), while the Dirac string now stretche
between the points (x2D) and (x13D). When multiplied
over the closed contour, the smooth fields cancel out co
pletely, while the surviving Dirac string is precisely the ma
netic vortex created by a closed ’t Hooft loop operator. The
Hooft loop can therefore be written as

V~C!5Pxi
DD~xi !. ~45!

The dipole operatorD(xi) is an eigenoperator of the mag
netic flux defined on a surface that crosses the segmen@xi
2D,xi1D#. Suppose the magnetic symmetry is broke
Then we expect the dipole operator to have a nonvanish
expectation value9 ^D&5d(D). If there are no massless ex
citations in the theory, the operatorsD(xi) andD(xj ) should
be decorrelated if the distancexi2xj is greater than the cor
relation lengthl. Because of Eq.~45!, the expectation value
of the ’t Hooft loop should therefore roughly behave as

^V~C!&5d~ l !L/ l5expH 2 lnS 1

d~ l ! DL

l J ~46!

whereL is the perimeter of the loop. In the system of fini
length Lx , the vacuum expectation value of the vortex lin
which winds around the system in thex direction is therefore
finite as in Eq.~46! with L→Lx .

On the other hand in the unbroken phase the VEV of
dipole operator depends on the size of the system in
perpendicular planeLy . For largeLy it must vanish expo-
nentially asd5exp$2aLy%. So the expectation value ofV
behaves at finiteLy in the unbroken phase as

^V~C!&5exp$2aLyLx% ~47!

and vanishes asLy→`. Thus in a system which is finite inx
direction, but infinite iny direction, the ’t Hooft line in thex
direction has a finite VEV in the broken phase and vanish
VEV in the unbroken phase.

In the limit of the infinite system sizeLx→` the VEV
obviously vanishes in both phases. This is of course du

9The magnetic dipole operators defined above are strictly sp
ing not local, since they carry the long range magnetic field o
dipole. However, the dipole field falls off with distance very fas
Therefore even though this falloff is not exponential the slight no
locality of D should not affect the following qualitative discussio
8-9
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the fact thatV is a product of infinite number of dipole op
erators, and this product vanishes even if individual dip
operators have finite VEV.10 However, one can avoid an
reference to a finite size system and infinite vortex lines
considering closed ’t Hooft loops.

For a closed loop with long sides alongx axis aty50 and
y5R the above argument leads to the conclusion that in
broken phaseV must have a perimeter law, Eq.~46!. In the
unbroken phase the correlation between the dipoles aty50
and dipoles at y5R should decay exponentiall
^D(0)D(R)&}exp$2aR/l% and thus

^V~C!&5expH 2a
LR

l 2 J 5expH 2a
S

l 2J . ~48!

Thus the perimeter behavior of^V(C)& indicates a vacuum
state which breaks spontaneously the magneticZN while the
area behavior means that the magneticZN is unbroken. The
results of@1# then mean that in 311 dimensions as well as in
211 dimensions the magnetic symmetry is restored ab
the deconfining phase transition, in the sense of Eq.~47!.

In the next section we discuss what is the implication
this conclusion on the behavior of the spatial Wilson loop

IV. SPATIAL WILSON LOOP AT LOW AND HIGH
TEMPERATURE

As we have shown in Sec. II the spatial Wilson loop is t
generator of the magneticZN symmetry. We expect therefor
that the mode of realization of the magneticZN is strongly
linked to the behavior ofW. The argument is simplest t
state for a toy model which exemplifies the basic physics
a very simple setting.

Rather than talk about non-Abelian gauge theory, c
sider a scalar theory of a complex fieldf with global ZN
theory in 211 dimensions:

L5]mf]mf* 1l~f* f2m2!21z„fN1~f* !N
…. ~49!

The generator of theZN symmetry is given by

U5expH i
2p

N E d2x j0~x!J 5expH 2p

N E d2x~pf2p* f* !J
~50!

wherep5]0f* is the momentum conjugate to the fieldf.
Obviously with the canonical commutation relations betwe
p andf one has

Uf~x!U†5ei2p/Nf~x!. ~51!

We will be interested in the behavior of the operator wh
generates theZN transformation only inside some regionSof
the two dimensional plane:

10The VEV of the dipoleD must be smaller than one sinceD is
defined as a unitary operator.
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U~S!5expH 2p

N E
S
d2x~pf2p* f* !J ~52!

U~S!f~x!U†~S!5ei2p/Nf~x! ~xPS!

5f~x! ~x¹S!.

We will refer to this operator as theU loop. Throughout this
discussion we assume that there are no massless excita
in the spectrum of the theory and that the linear dimensi
of the areaS are much larger than the correlation length.

The statement we are aiming at is that at zero tempera
in the phase with brokenZN the U loop has an area law
behavior while in the phase with unbrokenZN this changes
into the perimeter law behavior.

A. U loop in the broken phase

Consider the broken phase first. We are interested in
vacuum expectation value ofU(S). This is nothing but the
overlap of the vacuum statê0u and the state which is ob
tained by acting withU(S) on the vacuum stateuS&
5Uu0&. If the symmetry is broken, the fieldf in the vacuum
state is pointing in some fixed direction in the internal spa
In the stateuS& on the other hand its direction in the intern
space is different—rotated by 2p/N—at points inside the
areaS. In the local theory with finite correlation length th
overlap between the two states approximately factorizes
the product of the overlaps taken over the region of spac
linear dimension of order of the correlation lengthl:

^0uS&5Px^0xuSx& ~53!

where the labelx is the coordinate of the point in the cent
of a given small region of space. Forx outside the areaS the
two statesu0x& anduSx& are identical and therefore the ove
lap is unity. However, forx insideS the states are differen
and the overlap is therefore some numbere2g smaller than
unity. The number of such regions inside the area is ob
ously of orderS/ l 2 and we thus

^U~S!&5expH 2g
S

l 2J . ~54!

In a weakly coupled theory this argument is confirmed
explicit calculation. The expectation value of theU loop in
the theory, Eq.~49!, is given by the following path integral

^U~C!&5E dfdf* expH 2E ~]mf1 ifxm!~]mf*

2 if* xm!1l~f* f2m2!21z„fN1~f* !N
…J
~55!

with

xm~x!5
2p

N
dm0d~x0! ~xPS! ~56!
8-10
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50, ~x¹S!. ~57!

This expression directly follows from Eq.~52! and integra-
tion over the canonical momentum in the phase space
integral. At weak coupling this path integral is dominated
a simple classical configuration. First, it is clear that the
lution must be such that the phase of the fieldf has a dis-
continuity of 2p/N when crossing the surfaceSsince other-
wise the action is UV divergent due to singularx.
Asymptotically at large distance from the surface the fi
should approach its vacuum expectation value. Since
source termx vanishes outsideS, everywhere wheref is
continuous it has to solve classical equations of moti
Also, for values ofx1 and x2 which are well insideS the
profile f should not depend on these coordinates, but sho
only depend onx0. It is easy to see that a solution with the
properties exists: it is given by the ‘‘broken’’ domain wa
solution. Recall that the vacuum is degenerate and so t
certainly exists a classical solution of the equations of m
tion which interpolates between two adjacent vacuum st
f→x0→`f0 andf→x0→2`ei2p/Nf0. Breaking this classica

solution along the planex050 and rotating the piecex0,0
by 2p/N produces precisely the configuration with the co
rect boundary conditions and the discontinuity structure. T
path integral in Eq.~55! is therefore dominated by this clas
sical configuration. Its action~up to corrections associate
with the boundary effects ofS) is aS wherea is the classi-
cal wall tension of the domain wall which separates t
adjacentZN vacua. Thus we find that the expectation val
of theU loop is related to the domain wall tension of theZN
domain wall by

^U~S!&5exp$2aS%. ~58!

B. U loop in the unbroken phase

Now consider the unbroken phase. Again theU loop av-
erage has the form of the overlap of two states which fac
izes as in Eq.~53!. Now however all observables noninvar
ant underZN vanish in the vacuum. The action of th
symmetry generator does not affect the stateu0&. The state
uS& is therefore locally exactly the same as the stateu0&
except along the boundary of the areaS. Therefore the only
regions of space which contribute to the overlap are th
which lay within one correlation length from the boundar
Thus

^U~S!&5exp$2gP~S!% ~59!

whereP(S) is the perimeter of the boundary ofS. The ab-
sence of the area law is again easily verified by a pertu
tive calculation. In the unbroken phase the fluctuations of
field f as well as the current densityj 05 i (pf2p* f* ) are
small. To leading order in the coupling constant

^U~S!&5expH 2
1

2Ex,yPS
d2xd2y^ j 0~x! j 0~y!&J . ~60!

The possible area law contribution in the exponent is
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p→0

G~p! ~61!

whereG(p) is the Fourier transform of the charge dens
correlation function. The correlator of the charge densit
however vanishes at zero momentum. This is because in
leading perturbative order the symmetry of the theory is
tually U(1) and not justZN as seen in Eq.~55!. Since the
vacuum state is invariant, it follows that the total chargeQ
5*d2x j0(x)5 j 0(p50) on this state vanishes, and so do
any correlation function that involves zero momentum co
ponent of the charge density. So the area contribution in
~61! is zero. Strictly speaking in the leading order in pertu
bation theory, Eq.~60! is not the complete result. The exa
expression contains in the exponential also higher point c
relators of the current density. Again however the possi
area law contribution contains correlators of the total cha
Q with powers ofj 0 and therefore vanishes.

C. U loop at high temperature

Let us see now how the argument changes at high t
perature. The important difference is that the vacuum is n
pure state but rather a statistical ensemble. The averag
the U loop is therefore not given by a single matrix eleme
but rather by

^U&5(
i

e2EiT^ i uUu i &. ~62!

Let us consider the theory in which theZN symmetry is
broken at zero temperature. For concreteness we will th
aboutZ2 symmetric theory, although qualitatively the discu
sion does not change for anyN. The two degenerate vacuum
states are characterized by the value of the condensate^f&
56m.

In order to understand the behavior of theU loop we have
to figure out what types of states contribute to the therm
ensemble. At zero temperature the only states that ar
interest are those with finite energy. There are two towers
such statesun&m and un&2m—constructed above each one
the degenerate vacua. These two towers of states do no
to each other, not only because their overlap is zero, but
because they cannot be connected to each other by actio
any local~or semilocal! operatorm^nuOun8&2m50. An im-
mediate corollary of this is that a superposition of the ty
ua,b&5aunm&1bun&2m violates clustering property of the
correlators of local operators. For this reason at zero te
perature in a spontaneously broken theory we are neve
terested in states which carry sharp quantum numbers o
broken symmetry.

At finite temperature however we are also asking af
states with finite energy density and, therefore, infinite
ergy. This part of the spectrum looks rather different if t
energy density involved is high enough. The two vacuu
configurations of the potential in Eq.~49! are separated by a
finite barrier. Let us call the height of this barrierH. The
states with energy density lower thanH still separate into
two towers. We will denote these states byu l &. However,
8-11
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C. P. KORTHALS ALTES AND A. KOVNER PHYSICAL REVIEW D62 096008
higher energy density states, withe.H, have a different
nature. Their wave function is not localized in the field spa
to the vicinity of one of the vacua, but rather is spread o
distances larger than the distance between the two vac
states, 2m. These states therefore naturally carry sharp qu
tum numbers with respect to the brokenZ2 symmetry. These
states we will denote byuh&. In fact one expects that th
higher the energy density the more these states look like
multiparticle states of a symmetric phase. That is to say
long ase@H it does not matter whether the potential has
double well structure or a single vacuum. These highly
cited states should look like states with finite density of p
ticles which carry theZ2 charge.

At low temperatures, when the entropy effects are
important the contribution to the thermal ensemble com
only from theu l & sector since the Bolzman factor for any
the uh& states vanishes exponentially in the infinite volum
limit. As we have argued earlier, the average ofU in each
one of these states has an area law behavior and so doe
whole temperature average ofU.

When the temperature reachesTC the phase transition oc
curs. The reason for the onset of the phase transition is
when the equilibrium energy density reaches critical thre
old value, theuh& sector states start contributing to the the
mal ensemble. The sudden change in the entropy due to t
new channels drives the phase transition. Above the ph
transition therefore there are two kinds of states that cont
ute to thermal averages. One can then write

^U&T.Tc
5(

n
e2En

l /T^n,l uUun,l &1(
s

e2En
h/T^n,huUun,h&

~63!

wheren stands for all other quantum numbers. In fact on
the entropy effects become important enough to excite
uh& sector, the contribution ofu l & states to any physical ob
servable becomes negligible. As discussed earlier each
in the second term gives a perimeter contribution exp$gsP% to
the average of theU loop, so one could be tempted to co
clude that the loop must have a perimeter law just like
zero temperature vacuum of a symmetric phase. This h
ever is not necessarily the case. The reason is
^n,huUun,h& is not positive definite. In fact the number o
states in which it is positive is roughly equal to the numb
of states on which it is negative. It is therefore very like
that the leading perimeter behavior will cancel and the
result will again be an area law for^U&.

Indeed, if the ensemble can be thought of as an ensem
of Z2 charged free particles, the area law for theU loop
follows immediately.11 The U loop in such an ensemble is

^U~S!&5(
xi ,n

1

n!
mn~21!n ~64!

11This argument is borrowed from@16#. We thank Mike Teper and
Biaggio Lucini for discussions of this point.
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wherem is the fugacity of a single particle, and the summ
tion goes over all coordinatesxi of the particles inside the
areaS and over all possible numbers of particlesn. Assum-
ing that particles have a finite sizeD, so that there areS/D
possibilities to place one particle inside the areaS in the
dilute gas approximation, the sum gives

^U~S!&5expH 2
m

D
SJ . ~65!

We stress that the thermal ensemble of particles isZ2 invari-
ant. The density matrix for such an ensemble can be wri
in the particle basis as

r5(
n(x)

1

n!
mnun&^nu. ~66!

The operator of theZ2 transformation acts on then-particle
states as

Uun&5~21!nun& ~67!

and so

UrU†5r. ~68!

The explicit simple formula~65! is derived in the dilute
gas approximation. We expect that the physics will be sim
lar as long as the interaction between the particles is s
range. Whenever the interaction is long range the behavio
^U(S)& can be different. For instance one does not exp
area law behavior if the particles are bound into pairs si
in this case onlyZ2 invariant states contribute to the therm
ensemble.

Our conclusion is that at finite temperature the behav
of the U loop is not strongly related to the mode of th
realization of theZN symmetry. It is rather more likely to
have an area behavior.

To reiterate, the physics involved is very simple. At ze
temperature when acting on a state, theU loop performs the
ZN transformation inside the loop. The only degrees of fre
dom that are changed by this operation inside the loop
the ZN-noninvariant fields. If the vacuum wave function d
pends on the configuration of the noninvariant degrees
freedom~the state in question is notZN invariant!, the action
of the U loop affects the state everywhere inside the loo
The VEV of the U loop then falls off as an area. If th
vacuum isZN invariant, the wave function does not depe
on the configuration of the noninvariant degrees of freedo
The action of theU loop then perturbs the state only alon
the perimeter, hence the perimeter law in the unbrok
phase.

At finite temperature however the thermal ensemble m
even in the symmetric phase contain significant contributi
from states with nonvanishingZN charges. TheU loop there-
fore perturbs the thermal ensemble very significantly eve
where inside the area, and the natural outcome is an area

The argument is quite general and does not depend on
exact form of theZN invariant potential and more general
on the field content of the theory—we could have added
8-12
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MAGNETIC ZN SYMMETRY IN HOT QCD AND THE . . . PHYSICAL REVIEW D 62 096008
number of extra fields to the theory, Eq.~49!, without chang-
ing the conclusions. The same relation must exist betw
the mode of realization of the magneticZN symmetry and the
behavior of the Wilson loop in the pure Yang-Mills theor
The direct analogues of the scalar fieldf(x) in Eq. ~49! and
the U loop of the scalar theory are correspondingly the v
tex field V(x) and the spatial Wilson loopW(C).

As we have shown in the previous section, the magn
ZN is restored at high temperature. The Wilson loop is n
ertheless likely to have an area law as is indeed indicate
all existing lattice data. In this context we note that analy
strong coupling results also give area behavior@17#.

D. Wilson loop in 3¿1 dimensions

The previous considerations generalize to 311 dimen-
sions. At zero temperature in the broken phase when ac
with the Wilson loopW(C) on the vacuum one changes th
state of those magnetic vortices which loop throughC. The
number of such vortices which are present in a generic c
figuration in the broken phase is proportional to the minim
area subtendingC. The number of degrees of freedom that
changed by the action ofW is thus proportional to the areaS.
Each of these degrees of freedom contributes a factor sm
than unity to the overlap with the vacuum state and so
VEV of W scales with the exponential of the area. In t
unbroken phase the vacuum does not contain vortices o
bitrarily large size. The size of the vortices present in
vacuum is cut off by the relevant correlation length. This
the case if the gauge group is completely broken by
Higgs mechanism. Therefore, for contoursC of linear di-
mension much larger than this length, the action ofW(C)
only disturbs degrees of freedom close to the contourC itself
and the VEV must have the perimeter behavior.

At high temperature even the symmetric thermal e
semble is populated by vortices. These vortices are not
since apart from them the ensemble also contains ‘‘fre
charges. However, unless this background of charges ind
long range interactions between the vortices, the most p
able result for the Wilson loop is the area law. A more d
tailed knowledge of vortex dynamics is necessary to dra
firm conclusion.

To close this section we note that the present consi
ations do not apply to Abelian theories. The magnetic sy
metry does exist in this case too, but here it is the continu
U(1) group and the spectrum is massless. In this case t
is no reason to expect the local factorization of the over
and generically therefore the arguments of this section do
hold. In particular in the presence of long range correlatio
it is perfectly possible that the Wilson loop has a perime
law even though the state is perturbed everywhere inside
area bounded by the loop.12

12In 211 dimensions it is actually only the noncompact Abeli
theories that are excluded from the consideration. Compact the
are massive and therefore should behave in the same way a
non-Abelian Yang-Mills theory.
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V. DISCUSSION

In this paper our aim was to point out two facts. First th
the calculation of the VEV of the ’t Hooft loop@1# implies
the restoration of the magneticZN symmetry above the de
confinement transition. Second, that the mode of realiza
of magnetic symmetry is closely related to the behavior
the spatial Wilson loop.

At zero temperature this relation is very rigid: spontan
ous breaking ofZN implies the area law behavior forW
while unbrokenZN leads to perimeter law behavior. At hig
temperature however even though theZN symmetry is re-
stored, the Wilson loop may have an area law. This is
consequence of the fact that even aZN-invariant thermal en-
semble can contain a significant contribution ofZN non-
singlet states. The area law is particularly simply understo
if the thermal ensemble at high temperature is well apppro
mated by an ensemble of weakly interacting magnetic vo
ces. The vortex gas argument has been previously brough
in favor of the area behavior of the spatial Wilson loop
@18#. This behavior is also confirmed by several lattice gau
theory calculations@19#.

An alternative possibility is that due to the as yet u
known vortex dynamics, there is vortex-antivortex bindin
To explore such a possibility it would be very interesting
measure on the lattice the free energy of a magnetic vor
In Ref. @15# the behavior of the free energy of magnetic a
electric fluxes has been discussed in thelow temperature
phase. To be able to do it in the lattice framework one ha
define the theory in a finite volume. As discussed by ’t Ho
this can be achieved by imposing on the potentials perio
boundary conditions modulo a gauge transformation. As d
cussed in Ref.@15# this admits the presence of vortices
211 and of the vortex lines in 311 dimensions. ’t Hooft’s
discussion was based on a Euclidean rotation identity for
twisted 4D path integrals valid for any temperature, and
factorization property of magnetic and electric fluxes.In t
notation of Ref.@15#,

F~eW ,mW !5Fe~eW !1Fm~mW !. ~69!

Its validity at low T is very reasonable, but is inconsiste
with the Euclidean rotation identity at highT. Based on this
’t Hooft could prove (N<3) that in the confining phase
where the free energy of an electric flux is linear with t
length ~with the string tensionr), the free energy of mag
netic flux vanishes exponentially in the infinite volum
limit. For a magnetic flux in, say thez direction it is
exp(2rLxLy). Thus the free energy of a magnetic flux is r
lated to the behavior of the Wilson loop. The free energy
an electric flux in the z direction in thehot phase vanishes
exponentially like exp(2aLxLy) wherea is the surface ten-
sion found in Ref.@1#. So the next obvious question is ho
the magnetic flux free energy behaves in the hot phase.
vortex gas picture this free energy should vanish expon
tially in the infinite volume limit. Such a calculation in 211
dimensions has been performed and~modulo some uncer-
tainty related to imperfect measurement of global vortici!
results are consistent with this expectation@16#. It will be

ies
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8-13



ec

fo
le

b
-

is
on
a
s

ken

eter
he

ther-
at

spa-
m-
is

f
o-
g

io
s-
tal

in

ion

C. P. KORTHALS ALTES AND A. KOVNER PHYSICAL REVIEW D62 096008
instructive to see how in the hot phase the additivity of el
tric and magnetic fluxes is broken.

We note that a recent lattice calculation@20# measures the
monopole-antimonopole correlation. The results of@20#
point to the screened behavior of this correlation function
all temperatures. So in the hot phase it behaves like its e
tric partner, the correlator of Polyakov loops.13 This, via ’t
Hooft’s argument, is consistent with the measured area
havior of Wilson loops@19# and would imply that the mag
netic flux energy would fall off with an area law forall
temperatures.

It is interesting to note that the vortex gas picture
equally applicable in high temperature confining and n
confining gauge theory. In particular one can consider
SU(N) gauge theory with sufficient number of adjoint Higg

13We note however that this simulation@20# also points to the
Coulomb behavior for the spatial ’t Hooft loop in the hot phase,
contradiction to analytic results@1,21# and early lattice results@22#.
We feel that here more work should be done to clarify the situat
tt

O

A

er
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fields, so that the gauge theory at zero temperature is bro
completely. In this situation the magneticZN symmetry is
unbroken in the vacuum and the Wilson loop has a perim
law. Magnetic vortices are finite energy excitations with t
mass of orderM5M v

2/g2, where M v is the vector boson
mass. When the system is heated one expects that the
mal ensemble will contain a dilute gas of these vortices
any temperature. Therefore at any finite temperature the
tial string tension should be nonzero, although at low te
peratures it will be exponentially suppressed if the theory
weakly coupled:s}M v

2 exp$2Mv
2/g2T%.
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