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Renormalization of the Cabibbo-Kobayashi-Maskawa matrix
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Using the on-shell scheme and the general linRargauge we calculate the one-loop amplitudé”
—u,d;. In agreement with previous work, we show that the Cabibbo-Kobayashi-Maskaisl) matrix
ought to be renormalized. We show how to renormalize the CKM matrix and, at the same time, obtain a
gauge-independeMV decay amplitude.

PACS numbgs): 11.10.Gh, 12.15.Ff, 12.15.Lk

[. INTRODUCTION the downtype quarks. Then, at the tree level the decay am-
plitude Ty is
The electroweak sector of the standard mo@&W) has
been the subject of extensive studies during the last 25 years. To=Vi;AL, (1)
Since the renormalizability of the SM was provgt], an
immense effort has been made to implement this renormalith
ization program at the one-loop lev@df. Refs.[2] and[3]
for a review. The agreement between these calculations and g Ne—
the experimental results is impressive. Aszqul)é yLvj(d—pa). 2
Despite these facts, the renormalization of the Cabibbo-

Kobayashi-MaskawdCKM) quark mixing matrlx_[4] was V; are the elements of the CKM matri, is the number of
done only by one group, Denner and S&6k(DS) in 1990. ﬁolors andg is the SU2) coupling constant

They have shown that, as soon as one takes into account the .. - S o

non()j/e eneracy of the quark masses, the CKM matrix ought. Atone loop, Eq(1) is modified in sgveral @fferent ways-

9 Yy q ' ) ; gklilrst, one has to sum all one-loop irreducible vertex dia-
to be.renormallzed. However, r_ecently Gambino, Grassi, a”grams. This gives a contribution proportional\tg but not
Madricardo[6] (GGM) have raised some doubts about thegnsirely proportional toA, . Second, we have the counter-
DS renormalization prescription. In particular, they haveiarms stemming from the usual variation of the Lagrangian
claimed that the on-shell conditions used by DS lead to Barameters. The  counterterms g and  8Zy
gauge-dependent width for the dec#y—qq. Then, they (W-wave-function renormalizatioralso give rise to contri-
propose an alternative renormalization prescription. butions proportional to the tree-level amplitude. However,

In view of this situation, we decided that it is appropriate since the quarks get mixed by the renormalization procedure,
to carry out another independent calculation of the renormalthis is not true for the quark wave function renormalization
ization of the CKM matrix. This is our aim. We repeat the constantssz);, and6Z", . Finally, an additional counterterm

. : ij
work of DS, but with a fundamental difference. Rather than5vlj has to be included.
using the common 't Hooft—Feynman gauge<(1) we do For a realW that decays into on-shell quarks, it is easy to
our calculation in the general line&, gauge. Hence, we gshow that the vertex diagrams can be written in terms of four
will be able to show, explicitly, the problem raised by GGM jndependent form factors. Each one is associated with a
and make a proposal to solve it. o given Lorentz structure for the spinors. Denoting dgy the

To address the question of the CKM renormalization on&q ,r.momentum of the incomingv* and by p# the four-

has to consider a process where this matrix appears at thg,mentum of the outgoingp quarkl, let us define

tree level. To be precise, let us consider the dedday ’

—0,q;, wherel andj are generation indices. We use upper- gNe— &p

case letters for thep-type quarks and lowercase letters for BLZ_Cul(pl)m_l yL0;(q—py), 3
W

V2
*Email address: barroso@alfl.cii.fc.ul.pt wheree* is theW polarization vector. Similarly, replacing in
"Email address: bruecher@alf1.cii.fc.ul.pt Egs. (2) and (3) vy, by yg we defineAg and B, respec-
*Email address: rsantos@alf1.cii.fc.ul.pt tively. Now, the one-loop amplitud€; is
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smaller thanF, because they are proportional to the quark
masses divided by the/ mass.

5y 1 1, 1,

+ 2 52:_:\/', + 2 Vi 252 i 5\/” Ill. COUNTERTERMS

17 #1

A. W-wave-function renormalization 6Zy

+Vij [ ARFr+B G +BgrGRr1, (4 Calculating thew-boson self-energy at one-loop and im-
posing the on-shell renormalization conditions one obtains
whereF |z andG_ y are the form factors. We calculate the [2]
different terms in Eq(4) using the generdR; gauge for the

W propagators. However, to simplify the calculation, we use _ e? A
the 't Hooft—Feynman gauge for tl#and photon propaga- Zw= 9672 Sir? 6y {12238 2Ng(1+Nc) ]+ 6Zyy -
tors. This is not inconsistent, since tijeparameters of the (6)

gauge-fixing Lagrangian,

As beforesZ,, denotes the finite contribution. We will fol-

Lop=— i(a.A)Z ——(9-Z— &m,G0)? low this notation for all countertermd\g=N.=3 are the
2¢, 2¢7 number of generations and the number of colors, respec-
1 tively. We found that it is convenient to show these param-
——|0-W"+igymyG*|? eters explicitly in order to keep track of the contributions of
w lepton and quark loops.

From theW self-energy one also obtains the mass coun-

are independent. For our purpose it is sufficient to et (arterm namely

=¢,=1 but to keeptyy, as a free parameter. From this point
onwards it will be denoted simply by. For the numerical 2
calculations we used the values from Particle Data Group Sm2 = € ¢

=———— | (34— 3&)m3,— 6m3
[7]. W 96m2 sir? 6y, £)miy=6m;

Il. IRREDUCIBLE VERTEX DIAGRAMS —2Ng(1+Ng)m?+3>, m?
|

In Fig. 1 we show the irreducible diagrams that give the
+ b . . .
one—loopw —>g,dj amphtude. Thg ca!cula}tlon of these dia- +3N E |V.,j |2(m|2,+m?,)
grams using dimensional regularization is standard. It was
done using thexLoops program[8]. To keep track of the
divergences it is convenient to introduce the notation

+oma.  (7)

B. Coupling counterter g

2

My | 2 Itis di i il i
. _ 2 w is discussed in great detail in R¢2] how to obtainsg.
(= D=2 vetindar In(—ﬂ ) ,

So, again, we simply summarize our results, which agree

with those in Ref[2] for £&=1. It is easy to show that

whereD is the dimension of momentum spade-¢4), ye

is the Euler constant, and is the arbitrary renormalization o9 _de Jdsinby (8a)

mass. g e sinfy’
It is not particularly instructive to show in detail the form

factors. So we have decided to show explicitly the divergentvhere

contributions and plot the finite parts as a functionéofin

Fig. 2 we display the& dependence of the real part bk,

G, , andGg for the decayw ™ —ud. As one can see, these
form factors aret independent and finite as they should be.
In fact, any divergence or gauge dependence here would be
impossible, given the gauge structure of the theory. On th&rom theZ self-energy one obtam&mz Like the analogue

Ssinfy, mM&,6ms—mzéms,

- = . 8b
Sinfw — 2m3 (mz—mf) (&

contrary,F, is both divergent ang dependent, i.e., result shown in Eq(7), dmZ depends oré. However, the
combination given by Eq(8b) is ¢ independent. Further-
- e2 . 3¢+8 N 1 N m,2+m12 1 e more, de is also¢ independent. This makes the final result
- 64’7T2 S|n2 aw 9CO§ aw m\zN S|n2 GW L 5g e2 5@
©) e T T [N 1+Ny)— 5|+ — 9
g 9esqrzsin2ewg ol1+Ne) =5 g ®

whereF is finite but & dependent. This is clearly seen in
Fig. 2. Notice, that the form factorBg, G, , andGg are  fully ¢ independent.
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FIG. 1. Irreducible electroweak one-loop diagrams\mf—ma

C. Quark-field renormalization 5Z|L| _ _EL(mf)_mf[EL,(mf)‘FER/(m%)"‘ZEM,(m|2)],
As is well known, under renormalization the quark fields (113
are mixed. Let us write the self-energy of amtype quark in
the general form whereX " denotes the derivatives(dq?)S" and, forl’ #I,
EH':E:]r(pz)FSYL"’Eﬁr(pz)lb’}’R s7-
I’
M2
+ , m +m;, . 10
2 (PAImy+ My vg] (10 (mZ+m>)SM(m?) +mm, SRm?) + m? 3 (mP)
Then, using the on-shell renormalization condition one ob- m2— m2 :
tains the matrix elements of the wave function renormaliza- ! v
tion constantssZ" [9], namely, (11b
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FIG. 2. The real part ofFg, G, , Gg, IEL, andFq; for the
W' —ud decay as a function of.

In our case we obtain

mé+ 25 |Vli’|2mi2/

L —€ | 1+2¢
0Ly = 5 + =
642" | sirf 6y mi,Sir? Oy
+—9 —y +6Z}; (129
W
for the diagonal terms and
2 2 2 2
—e m;+2m; m;, A
6Zpy= Vi Vi, —+ 6ZF
Y 32n?sin? 6y,” mi—m? .2 e, Y
(12b
for the off-diagonal terms. In the latter equation a

é-dependent term in the divergent part was canceled due
the unitarity of the CKM matrix. The corresponding result
for the downtype quarks is

_ a2
L €
ij—

oz

+82Z;
(13

2

m

i * I’

Vv —

2 o 2 2 PRy a2
32m?sir? 6y, mf—m 7 may

and the diagonal part is identical to E§2a replacingl by

i andl’ byi’. Itis interesting to point out that the matrices
5Z" are neither Hermitian nor anti-Hermitian. Of course,
they can be decomposed in a sum of such matrié&s,

= 6Z"H+ 57", However, one should realize that the diver-
gence is present both #Z"" and in5Z“A. In fact, from Eq.
(12b) it is straightforward to obtain

m2

S vVt finite (14
64wzsin20W§; 2 (143

2

6Zi'=

and
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2

mZ+m mS,
—2+f|n|te.
m

—3¢?
642 sir? y, M3

2

J *
> > ViV,
_ml i,

8Zi=
(14b)

Clearly, Eq.(128 shows that the diagonal terms 6" are
real. These remarks will be important in Sec. V, when we
consider the renormalization of the CKM matrix.

IV. W DECAY INTO LEPTONS
Using Egs«(5), (6), (9), (129, (12b), and(13) it is easy to

obtain

o9

FL+ E+§5zw+%5zh*+%5zh

eZ

12872 sir? 0W§

mZ— 2 Vi

2ml 4 mi =2 |V, )2

X
iy

+finite. (15
Notice that there are no divergences proportional to the
gauge paramete. If V\;, =46, andV,,;=4,,;, i.e., if the
CKM matrix is the unit matrix, the divergent term is identi-
cally zero. In this case, we call the above combinatiof of
and counterterms j;;.*
From Eq.(4) it is now clear that the one-loop leptonic
decay amplitudeVv* —1*y, can be written as
Ti=A_F_(1;+BgGr. (16)
here inF[;; and Gg the leptonic masses are used and in
gs.(2) and(3) we setN.=1. The form factorsg andG,
are proportional tan, . Hence, they vanish for massless neu-
trinos. As we have showii is finite, as it should be. Fur-
thermore, Fig. 2, where we shok [1; as a function ofg,
clearly proves that the one-loop leptonic amplitl]’deis also
gauge independent. Having established the finiteness and the
gauge independence &% ;; we are now in a position to
return to Eq.(4) and consider théV,; counterterm.

V. CKM COUNTERTERM

Let us consider theaN-quark coupling in the standard
model Lagrangian. Introducing an obvious matrix notation
we write

- iULVD,_W#—F H.c.,

V2

c (17)

10bviously in Fi {1y 69 and 6Zy, are not calculated with a unit
CKM matrix.
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whereU, and D, are the left-handed up and down quark  Now, the unitarity ofV reduces Eq(21) to the form:
fields, respectively. Leaving aside the renormalizatiorg of

and of theW field, let us focus our attention on the renor- 4 _e2 mZ+ m?

malization of the quark fields and. In the former work of ez v+vezh 1= - J i
NP S ) . 2L7uL OLII™ 642 Gir? o 2 i

DS the matrixV is multiplicatively renormalized, i.e., TSI Oy My 22
V—U,;VU,=V+8U,V+VsU,, (18

_ _ . . which is exactly what we need to cancel a similar divergence
whereU; andU, are unitary matrices. Then, introducing the j, V|;F, namely the third term in E¢5).

usual quark wave-function renormalization Hence, from the point of view of canceling the diver-
— = ot gences inT 4, the renormalization proposal by DS works. In

U —ULZy0, other words, it is sufficient to choos&v as the divergent

o part of the right-hand side of EG20) to obtain a finite one-

DiL—ZpDy, loop amplitude. DS have also included ¥ the finite con-

tributions stemming fromsZ”. We have checked that this
gives rise to a gauge-dependent result.
To solve this problem let us define the quantity

Eqg. (17) becomes

U, VD, —U, z¥*"u,vu,z¥?p,

_ 1
—U| V+ L[6Z] + 62y IV + 2 V[ 6Zp, + 677, ] Xya=3Vud 6Zs = OZily+ 0Zda— 9Zaapay]
L 1 T L > sztk ! ¥ Vi 23
+ 7 [0ZyL= 6Zy IV + 3 VI 6ZpL— 6Zp, ] +§I’¢u ZIIUV',dJrzj’#d VijréZpg (23
+5U1V+V6U2} D, (199  Which obviously represents the difference between the
“leptonic” 2 and the quark transition amplitude. Notice that

8Zy%1y is given by Eq.(12a but replacing the CKM by the
unit matrix. After introducing the quantityx;; it is clear
Yhat Eq.(4) can be rewritten as

where, for convenience, we have split thé matrices into
its Hermitian and anti-Hermitian parts. Because the unitarit
of the matrixesU; implies that thesU, are anti-Hermitian,
DS concluded thadV=6U,V+V U, is required to absorb _
the divergence in the anti-Hermitian parts &, . Hence, T1=VilAFL T ARFR T BLGL T+ BRGR]
they have introduced the following renormalization condi- +AL[X);+ 8V;]. (24)
tion:
N + . + Having proved that the first term of E4), proportional to
OV=—3[6Zy —6Zy V-3 V[6Zp —6Zp ]. (20 V;, is both finite and gauge independent, it is obvious that

T . . %he CKM counterterm should be
Of course, there are still divergences in the Hermitian part o

8Z, but, as we will see, they are the ones needed to cancel
the divergences in the vertex contribution Fp . In fact,
using Eqs(149,(14b) and(129,(12b) it is straightforward to
obtain

This is our main result. In physical terms what we are saying
is that all contributions to th&,; amplitude arising from the
1 renormalization of the quark mixing are canceled by the
ol SZ5, V+V8Zh, 1y CKM counterterm. ThissV is an alternative to the one pro-
posed by GGM which requires the use of quark wave-
m2 2 function renormalization constants at zero momentum. Both
2 Vi ,Vji,vjj—'z +— schemes lead to gauge-invariant results. In fact, the unitarity
N My My of the CKM matrix implies thatbX is gauge independent.
Obviously, if we impose Eq(25) for the nine decay pro-

cessesW*—>q|aj .2 we are overconstraining the system. De-
spite this, if one is simply interested in one-loop results, this

12872 sir? 0W§

2
* m,, mjz
+ 2 ViV Vi — + V)
i’ My, My

+finite.

(21)

In the equation above, when using the diagonal elements of°Here leptonic means that no mixing takes place among the dif-
the matrixéZH, only the contribution of the second term of ferent generations. Of course, for calculating &2g,; renormaliza-
Eq. (123 is explicitly shown. The other two terms are irrel- tion constants, massive quarks were used.

evant for the discussion since they cancel with similar diver- *Simply kinematics prevent®V" —tq;, but one can take the
gences coming fronk, , §Z,,, and 9. equivalent proces&W*Ej.
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prescription could be of some practical use. But at two-loopconstruct the CKM counterterm matréV/. Our final result is
order the unitarity of the CKM is lost, giving rise to serious given in Eq.(25). With this prescription the tree-level rela-

renormalization problems. tion
The CKM matrix has four independent parameters. So the .
renormalization conditior(25) should be enforced only in T(W"—=ud)=V,N.T(W"—e vy,

four independent processes. Let us stress that the divergences

of the counterterm matri¥V are entirely due to the anti- residing asidexg corrections and obvious kinematic differ-
Hermitian parts of the5Zy, and 6Zp, matrixes. Then, our ences, is maintained at the next order. We have proved that
renormalization prescription, which introduces a gauge-at one loop one obtains a finite and gauge independent am-
independent finite part iBV, can be forced to obey the plitude. It is interesting to point out that a finite amplituBie

unitarity of the CKM matrix to all orders. can only be obtained if the CKM matrix is unitary. This is
particularly important in view of some recent discussions
VI. CONCLUSIONS about the possible nonunitarity of this matfik0].

Beyond the tree level, quarks with the same electric
charge get mixed under renormalization. Then, the amplitude

for the W —ud explicitly depends on these flavor-changing  We thank Paolo Gambino for pointing out an error in a
renormalization constants. Therefore, to obtain a finite amprevious version of this work. This work is supported by
plitude it is essential to renormalize the corresponding eleFunda@o para a Ciacia e Tecnologia under Contract No.
ment of the CKM matrix)V. Using the on-shell renormaliza- CERN/P/FIS/15183/99. L.B. is supported by JNICT under
tion scheme and thdk, gauge we have shown how to Contract No. BPD.16372.
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