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Renormalization of the Cabibbo-Kobayashi-Maskawa matrix
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Using the on-shell scheme and the general linearRj gauge we calculate the one-loop amplitudeW1

→uId̄j . In agreement with previous work, we show that the Cabibbo-Kobayashi-Maskawa~CKM! matrix
ought to be renormalized. We show how to renormalize the CKM matrix and, at the same time, obtain a
gauge-independentW decay amplitude.

PACS number~s!: 11.10.Gh, 12.15.Ff, 12.15.Lk
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I. INTRODUCTION

The electroweak sector of the standard model~SM! has
been the subject of extensive studies during the last 25 ye
Since the renormalizability of the SM was proved@1#, an
immense effort has been made to implement this renorm
ization program at the one-loop level~cf. Refs. @2# and @3#
for a review!. The agreement between these calculations
the experimental results is impressive.

Despite these facts, the renormalization of the Cabib
Kobayashi-Maskawa~CKM! quark mixing matrix@4# was
done only by one group, Denner and Sack@5# ~DS! in 1990.
They have shown that, as soon as one takes into accoun
nondegeneracy of the quark masses, the CKM matrix ou
to be renormalized. However, recently Gambino, Grassi,
Madricardo@6# ~GGM! have raised some doubts about t
DS renormalization prescription. In particular, they ha
claimed that the on-shell conditions used by DS lead t
gauge-dependent width for the decayW→qq̄. Then, they
propose an alternative renormalization prescription.

In view of this situation, we decided that it is appropria
to carry out another independent calculation of the renorm
ization of the CKM matrix. This is our aim. We repeat th
work of DS, but with a fundamental difference. Rather th
using the common ’t Hooft–Feynman gauge (j51) we do
our calculation in the general linearRj gauge. Hence, we
will be able to show, explicitly, the problem raised by GG
and make a proposal to solve it.

To address the question of the CKM renormalization o
has to consider a process where this matrix appears a
tree level. To be precise, let us consider the decayW1

→qIq̄j , whereI and j are generation indices. We use uppe
case letters for theup-type quarks and lowercase letters f
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the down-type quarks. Then, at the tree level the decay a
plitude T0 is

T05VI j AL , ~1!

with

AL5
g Nc

A2
ūI~p1!«”gLv j~q2p1!. ~2!

VI j are the elements of the CKM matrix,Nc is the number of
colors, andg is the SU~2! coupling constant.

At one loop, Eq.~1! is modified in several different ways
First, one has to sum all one-loop irreducible vertex d
grams. This gives a contribution proportional toVI j but not
entirely proportional toAL . Second, we have the counte
terms stemming from the usual variation of the Lagrang
parameters. The counterterms dg and dZW
(W-wave-function renormalization! also give rise to contri-
butions proportional to the tree-level amplitude. Howev
since the quarks get mixed by the renormalization proced
this is not true for the quark wave function renormalizati
constantsdZII 8

L anddZj j 8
L . Finally, an additional counterterm

dVI j has to be included.
For a realW that decays into on-shell quarks, it is easy

show that the vertex diagrams can be written in terms of f
independent form factors. Each one is associated wit
given Lorentz structure for the spinors. Denoting byqm the
four-momentum of the incomingW1 and by p1

m the four-
momentum of the outgoingup quark I, let us define

BL5
g Nc

A2
ūI~p1!

«•p1

mW
gLv j~q2p1!, ~3!

where«m is theW polarization vector. Similarly, replacing in
Eqs. ~2! and ~3! gL by gR we defineAR and BR , respec-
tively. Now, the one-loop amplitudeT1 is
©2000 The American Physical Society03-1



e

s
-

nt

ou

he
-
a

en

e
e

d
th

in

rk

-
ins

-

ec-
m-
of

un-

ree

-
lt
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T15ALF VI j S FL1
dg

g
1

1

2
dZW1

1

2
dZII

L* 1
1

2
dZj j

L D
1 (

I 8ÞI

1

2
dZI 8I

L* VI 8 j1 (
j 8Þ j

VI j 8

1

2
dZj 8 j

L
1 dVI j G

1VI j @ ARFR1BLGL1BRGR #, ~4!

whereFL,R andGL,R are the form factors. We calculate th
different terms in Eq.~4! using the generalRj gauge for the
W propagators. However, to simplify the calculation, we u
the ’t Hooft–Feynman gauge for theZ and photon propaga
tors. This is not inconsistent, since thej parameters of the
gauge-fixing Lagrangian,

LGF52
1

2jg
~]•A!22

1

2jZ
~]•Z2jZmZG0!2

2
1

jW
u]•W11 i jWmWG1u2,

are independent. For our purpose it is sufficient to setjg
5jZ51 but to keepjW as a free parameter. From this poi
onwards it will be denoted simply byj. For the numerical
calculations we used the values from Particle Data Gr
@7#.

II. IRREDUCIBLE VERTEX DIAGRAMS

In Fig. 1 we show the irreducible diagrams that give t
one-loopW1→uId̄j amplitude. The calculation of these dia
grams using dimensional regularization is standard. It w
done using theXLOOPS program@8#. To keep track of the
divergences it is convenient to introduce the notation

z5
2

D24
2gE1 ln 4p22 lnS mW

m D 2

,

whereD is the dimension of momentum space (D→4), gE
is the Euler constant, andm is the arbitrary renormalization
mass.

It is not particularly instructive to show in detail the form
factors. So we have decided to show explicitly the diverg
contributions and plot the finite parts as a function ofj. In
Fig. 2 we display thej dependence of the real part ofFR ,
GL , andGR for the decayW1→ud̄. As one can see, thes
form factors arej independent and finite as they should b
In fact, any divergence or gauge dependence here woul
impossible, given the gauge structure of the theory. On
contrary,FL is both divergent andj dependent, i.e.,

FL5
e2

64p2
z F 3j18

sin2 uW

1
1

9cos2 uW

1
mI

21mj
2

mW
2

1

sin2 uW
G1F̂L ,

~5!

where F̂L is finite but j dependent. This is clearly seen
Fig. 2. Notice, that the form factorsFR , GL , and GR are
09600
e

p
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t

.
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e

smaller thanF̂L because they are proportional to the qua
masses divided by theW mass.

III. COUNTERTERMS

A. W-wave-function renormalization dZW

Calculating theW-boson self-energy at one-loop and im
posing the on-shell renormalization conditions one obta
@2#

dZW5
e2

96p2 sin2 uW

z @2223j22Ng~11Nc!#1dẐW .

~6!

As beforedẐW denotes the finite contribution. We will fol
low this notation for all counterterms.Ng5Nc53 are the
number of generations and the number of colors, resp
tively. We found that it is convenient to show these para
eters explicitly in order to keep track of the contributions
lepton and quark loops.

From theW self-energy one also obtains the mass co
terterm, namely,

dmW
2 5

2e2

96p2 sin2 uW

zF ~3423j!mW
2 26mZ

2

22Ng~11Nc!mW
2 13(

l
ml

2

13Nc(
I 8 j 8

uVI 8 j 8u
2~mI 8

2
1mj 8

2
!G1dm̂W

2 . ~7!

B. Coupling counterter dg

It is discussed in great detail in Ref.@2# how to obtaindg.
So, again, we simply summarize our results, which ag
with those in Ref.@2# for j51. It is easy to show that

dg

g
5

de

e
2

d sinuW

sinuW
, ~8a!

where

d sinuW

sinuW
5

mW
2 dmZ

22mZ
2dmW

2

2 mZ
2 ~mZ

22mW
2 !

. ~8b!

From theZ self-energy one obtainsdmZ
2 . Like the analogue

result shown in Eq.~7!, dmZ
2 depends onj. However, the

combination given by Eq.~8b! is j independent. Further
more,de is alsoj independent. This makes the final resu

dg

g
5

e2

96p2 sin2uW

z FNg~11Nc!2
43

2 G1
dĝ

g
~9!

fully j independent.
3-2
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FIG. 1. Irreducible electroweak one-loop diagrams forW1→ud̄.
ds

ob
za
C. Quark-field renormalization

As is well known, under renormalization the quark fiel
are mixed. Let us write the self-energy of anup-type quark in
the general form

S II 85S II 8
L

~p2!p”gL1S II 8
R

~p2!p”gR

1S II 8
M

~p2!@mIgL1mI 8gR#. ~10!

Then, using the on-shell renormalization condition one
tains the matrix elements of the wave function renormali
tion constantsdZL @9#, namely,
09600
-
-

dZII
L 52SL~mI

2!2mI
2@SL8~mI

2!1SR8~mI
2!12SM8~mI

2!#,

~11a!

whereSL8 denotes the derivative (]/]q2)SL and, forI 8ÞI ,

dZII 8
L

52
~mI

21mI 8
2

!SM~mI 8
2

!1mImI 8S
R~mI 8

2
!1mI 8

2 SL~mI 8
2

!

mI
22mI 8

2 .

~11b!
3-3
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A. BARROSO, L. BRÜCHER, AND R. SANTOS PHYSICAL REVIEW D62 096003
In our case we obtain

dZII
L 5

2e2

64p2
z F 112j

sin2 uW

1

mI
21( i 8 uVIi 8u

2mi 8
2

mW
2 sin2 uW

1
1

9 cos2 uW

G1dẐII
L ~12a!

for the diagonal terms and

dZIJ
L 5

2e2

32p2 sin2 uW

z
mI

212mJ
2

mJ
22mI

2 (
i 8

VIi 8VJi8
*

mi 8
2

mW
2

1dẐIJ
L

~12b!

for the off-diagonal terms. In the latter equation
j-dependent term in the divergent part was canceled du
the unitarity of the CKM matrix. The corresponding resu
for the down-type quarks is

dZi j
L 5

2e2

32p2 sin2 uW

z
mi

212mj
2

mj
22mi

2 (
I 8

VI 8 iVI 8 j
*

mI 8
2

mW
2

1dẐi j
L

~13!

and the diagonal part is identical to Eq.~12a! replacingI by
i and I 8 by i 8. It is interesting to point out that the matrice
dZL are neither Hermitian nor anti-Hermitian. Of cours
they can be decomposed in a sum of such matrices,dZL

5dZLH1dZLA. However, one should realize that the dive
gence is present both indZLH and indZLA. In fact, from Eq.
~12b! it is straightforward to obtain

dZIJ
LH5

2e2

64p2 sin2 uW

z(
i 8

VIi 8VJi8
*

mi 8
2

mW
2

1finite ~14a!

and

FIG. 2. The real part ofFR , GL , GR , F̂L , andFL[1] for the

W1→ud̄ decay as a function ofj.
09600
to

,

dZIJ
LA5

23e2

64p2 sin2 uW

z
mI

21mJ
2

mJ
22mI

2 (
i 8

VIi 8VJi8
*

mi 8
2

mW
2

1finite.

~14b!

Clearly, Eq.~12a! shows that the diagonal terms ofdZL are
real. These remarks will be important in Sec. V, when
consider the renormalization of the CKM matrix.

IV. W¿ DECAY INTO LEPTONS

Using Eqs.~5!, ~6!, ~9!, ~12a!, ~12b!, and~13! it is easy to
obtain

FL1
dg

g
1 1

2 dZW1 1
2 dZII

L* 1 1
2 dZj j

L

5
e2

128p2 sin2 uW

z

3

mI
22( i 8 uVIi 8u

2mi 8
2

1mj
22( I 8 uVI 8 j u2mI 8

2

mW
2

1finite. ~15!

Notice that there are no divergences proportional to
gauge parameterj. If VIi 85d I i 8 and VI 8 j5d I 8 j , i.e., if the
CKM matrix is the unit matrix, the divergent term is ident
cally zero. In this case, we call the above combination ofFL
and countertermsFL[1] .1

From Eq. ~4! it is now clear that the one-loop leptoni
decay amplitudeW1→ l 1n l can be written as

T1
l 5ALFL[1]1BRGR , ~16!

where inFL[1] andGR the leptonic masses are used and
Eqs.~2! and~3! we setNc51. The form factorsFR andGL
are proportional tomI . Hence, they vanish for massless ne
trinos. As we have shownT1

l is finite, as it should be. Fur
thermore, Fig. 2, where we showFL[1] as a function ofj,
clearly proves that the one-loop leptonic amplitudeT1

l is also
gauge independent. Having established the finiteness an
gauge independence ofFL[1] we are now in a position to
return to Eq.~4! and consider thedVI j counterterm.

V. CKM COUNTERTERM

Let us consider theW-quark coupling in the standar
model Lagrangian. Introducing an obvious matrix notati
we write

L52
g

A2
ŪLVDLWm1H.c., ~17!

1Obviously in FL[1] dg and dZW are not calculated with a uni
CKM matrix.
3-4
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where UL and DL are the left-handed up and down qua
fields, respectively. Leaving aside the renormalization og
and of theW field, let us focus our attention on the reno
malization of the quark fields andV. In the former work of
DS the matrixV is multiplicatively renormalized, i.e.,

V→U1VU25V1dU1V1VdU2 , ~18!

whereU1 andU2 are unitary matrices. Then, introducing th
usual quark wave-function renormalization

ŪL→ŪLZUL
1/2†,

DL→ZDL
1/2DL ,

Eq. ~17! becomes

ŪLVDL→ŪLZUL
1/2†U1VU2ZDL

1/2DL

5ŪLF V1 1
4 @dZUL

† 1dZUL#V1 1
4 V@dZDL1dZDL

† #

1
1

4
@dZUL

† 2dZUL#V1 1
4 V@dZDL2dZDL

† #

1dU1V1VdU2 G DL, ~19!

where, for convenience, we have split thedZ matrices into
its Hermitian and anti-Hermitian parts. Because the unita
of the matrixesUi implies that thedUi are anti-Hermitian,
DS concluded thatdV5dU1V1VdU2 is required to absorb
the divergence in the anti-Hermitian parts ofdZL . Hence,
they have introduced the following renormalization con
tion:

dV52 1
4 @dZUL

† 2dZUL#V2 1
4 V@dZDL2dZDL

† #. ~20!

Of course, there are still divergences in the Hermitian par
dZ, but, as we will see, they are the ones needed to ca
the divergences in the vertex contribution toFL . In fact,
using Eqs.~14a!,~14b! and~12a!,~12b! it is straightforward to
obtain

1

2
@dZUL

H V1VdZDL
H # I j

5
2e2

128p2 sin2 uW

z F(
i 8J

VIi 8VJi8
* VJ j

mi 8
2

mW
2

1
mI

2

mW
2

VI j

1(
I 8 i 8

VIi 8VI 8 i 8
* VI 8 j

mI 8
2

mW
2

1
mj

2

mW
2

VI j G1finite.

~21!

In the equation above, when using the diagonal element
the matrixdZH, only the contribution of the second term o
Eq. ~12a! is explicitly shown. The other two terms are irre
evant for the discussion since they cancel with similar div
gences coming fromFL , dZW , anddg.
09600
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Now, the unitarity ofV reduces Eq.~21! to the form:

1

2
@dZUL

H V1VdZDL
H # I j 5

2e2

64p2 sin2 uW

z
mI

21mj
2

mW
2

VI j ,

~22!

which is exactly what we need to cancel a similar divergen
in VI j FL , namely the third term in Eq.~5!.

Hence, from the point of view of canceling the dive
gences inT1, the renormalization proposal by DS works.
other words, it is sufficient to choosedV as the divergent
part of the right-hand side of Eq.~20! to obtain a finite one-
loop amplitude. DS have also included indV the finite con-
tributions stemming fromdZA. We have checked that thi
gives rise to a gauge-dependent result.

To solve this problem let us define the quantity

dXud5
1

2
Vud@dZuu

L* 2dZuu[1]
L* 1dZdd

L 2dZdd[1]
L #

1
1

2 (
I 8Þu

dZI 8u
L* VI 8d1

1

2 (
j 8Þd

Vu j8dZj 8d
L , ~23!

which obviously represents the difference between
‘‘leptonic’’ 2 and the quark transition amplitude. Notice th
dZuu[1]

L* is given by Eq.~12a! but replacing the CKM by the
unit matrix. After introducing the quantitydXI j it is clear
that Eq.~4! can be rewritten as

T15VI j @ALFL[1]1ARFR1BLGL1BRGR#

1AL@dXI j 1dVI j #. ~24!

Having proved that the first term of Eq.~24!, proportional to
VI j , is both finite and gauge independent, it is obvious t
the CKM counterterm should be

dVI j 52dXI j . ~25!

This is our main result. In physical terms what we are say
is that all contributions to theT1 amplitude arising from the
renormalization of the quark mixing are canceled by t
CKM counterterm. ThisdV is an alternative to the one pro
posed by GGM which requires the use of quark wav
function renormalization constants at zero momentum. B
schemes lead to gauge-invariant results. In fact, the unita
of the CKM matrix implies thatdX is gauge independent.

Obviously, if we impose Eq.~25! for the nine decay pro-
cessesW1→qIq̄j ,3 we are overconstraining the system. D
spite this, if one is simply interested in one-loop results, t

2Here leptonic means that no mixing takes place among the
ferent generations. Of course, for calculating thedZ[1] renormaliza-
tion constants, massive quarks were used.

3Simply kinematics preventsW1→tq̄ j , but one can take the

equivalent processt→W1q̄ j .
3-5
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prescription could be of some practical use. But at two-lo
order the unitarity of the CKM is lost, giving rise to seriou
renormalization problems.

The CKM matrix has four independent parameters. So
renormalization condition~25! should be enforced only in
four independent processes. Let us stress that the diverge
of the counterterm matrixdV are entirely due to the anti
Hermitian parts of thedZUL and dZDL matrixes. Then, our
renormalization prescription, which introduces a gau
independent finite part indV, can be forced to obey th
unitarity of the CKM matrix to all orders.

VI. CONCLUSIONS

Beyond the tree level, quarks with the same elec
charge get mixed under renormalization. Then, the amplit
for theW1→ud̄ explicitly depends on these flavor-changin
renormalization constants. Therefore, to obtain a finite a
plitude it is essential to renormalize the corresponding e
ment of the CKM matrix,V. Using the on-shell renormaliza
tion scheme and theRj gauge we have shown how t
,

. B

09600
p

e
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construct the CKM counterterm matrixdV. Our final result is
given in Eq.~25!. With this prescription the tree-level rela
tion

T~W1→ud̄!5VudNcT~W1→e1ne!,

residing asideas corrections and obvious kinematic diffe
ences, is maintained at the next order. We have proved
at one loop one obtains a finite and gauge independent
plitude. It is interesting to point out that a finite amplitudeT1
can only be obtained if the CKM matrix is unitary. This
particularly important in view of some recent discussio
about the possible nonunitarity of this matrix@10#.
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ods Phys. Res. A389, 327~1997!; L. Brücher, J. Franzkowski,
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