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Emergence of the Skyrme crystal in Gross-Neveu and ’t Hooft models at finite density

Verena Scho¨n and Michael Thies
Institute for Theoretical Physics III, University of Erlangen-Nu¨rnberg, Staudtstr. 7, 91058 Erlangen, Germany

~Received 11 April 2000; published 25 September 2000!

We study two-dimensional, largeN field theoretic models~Gross-Neveu model, ’t Hooft model! at finite
baryon density near the chiral limit. The same mechanism which leads to massless baryons in these models
induces a breakdown of translational invariance at any finite density. In the chiral limit baryonic matter is
characterized by a spatially varying chiral angle with a wave number depending only on the density. For small
bare quark masses a sine-Gordon kink chain is obtained which may be regarded as the simplest realization of
the Skyrme crystal for nuclear matter. Characteristic differences between confining and non-confining models
are pointed out.

PACS number~s!: 11.10.Kk, 11.15.Kc, 11.15.Pg, 11.30.Rd
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I. INTRODUCTION

The description of baryonic matter on the basis of QC
remains a theoretical challenge, especially since lattice ga
calculations have so far been of little help for this proble
Nuclear physics, relativistic heavy-ion physics and ast
physics are some of the fields which would greatly ben
from any progress on this issue. Recently, a new surge
interest has been triggered by the suggestion that at
density the novel phenomenon of color superconductiv
might set in @1,2#. This development has highlighted ho
little is known reliably about dense, strongly interacting m
ter.

Here, we address a much simpler finite density probl
where a full analytic solution can be found: We consid
two-dimensional model field theories with interacting ferm
ons at or near the chiral limit. Specifically, we have in mi
the two-dimensional version of the Nambu–Jona-Lasi
model @3#, i.e., the chiral Gross-Neveu model@4#, and two-
dimensional QCD (QCD2) with fundamental quarks, the ’
Hooft model@5#. In both cases, one considers a large num
N of fermion species and investigates the limitN→`, keep-
ing Ng2 fixed @6#. These two models are quite similar as f
as their chiral properties are concerned but differ with
spect to confinement of quarks which is only exhibited
the ’t Hooft model. So far, the phase diagram of the Gro
Neveu model has been studied extensively as a functio
temperature and chemical potential@7–11#, and the results
seem to be uncontroversial. The ’t Hooft model on the ot
hand has been investigated only sporadically at finite te
perature@12,13#, most recently in Ref.@14#, but hardly any-
thing is known yet about its properties at finite density@13#.

Our point of departure is the following observation: Bo
of these models possess light baryons whose mass van
in the chiral limit @15–17# ~by light, we mean thatMB /N is
small on the relevant physical scale!. This is of course no
accident, but a generic feature of models with broken ch
symmetry in 111 dimension—the baryons are topologica
non-trivial excitations of the Goldstone boson~‘‘pion’’ !
field. By contrast, the Gross-Neveu model with discrete c
ral symmetry can only accommodate baryons whose m
scales with the physical fermion mass and hence stays fi
in the chiral limit. Nevertheless, it has been argued that b
0556-2821/2000/62~9!/096002~13!/$15.00 62 0960
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variants of the Gross-Neveu model have identical phase
grams@11#. Since we find it rather perplexing that the stru
ture of the single baryon should have no influence on
structure of baryonic matter, we have reinvestigated this
sue. We have found that a combination of largeN techniques
with the strong constraints arising from broken chiral sy
metry is powerful enough to allow for a simple, analyt
solution of this problem in the vicinity of the chiral limit
The results of our analysis differ qualitatively from the co
ventional wisdom about the Gross-Neveu model and ca
over to the~confining! ’t Hooft model as well. They seem to
confirm a number of investigations of other field theories
finite fermion density, where strikingly similar behavior wa
found. These include exact studies of two-dimensional m
els like the massive@18# and massless Schwinger model@19#
or finite Nc and Nf massless QCD2 @20# as well as more
approximate treatments of 4-dimensional largeN QCD @21–
23# and effective chiral quark models@24,25#.

A word of caution is in order here: Throughout this pap
we shall constantly deal with spontaneous breaking of c
tinuous symmetries and Goldstone bosons in 111 dimen-
sions, in seeming conflict with the Coleman-Mermin-Wagn
theorem@26,27#. It is well understood by now that the larg
N limit enables one to circumvent this no-go theorem.
clearly explained by Witten@28#, the bad infrared behavio
of the boson propagator, when exponentiated, gives rise
power law correlatorux2yu21/N which becomes constant i
the limit N→`. This kind of almost long-range order is als
familiar from the two dimensionalXY model@29,30#. Alter-
natively, one may argue that the mean field approximat
predicts symmetry breakdown and that this result is p
tected against fluctuations~which would otherwise restore
the symmetry in two dimensions! by 1/N suppression factors
In this sense, low dimensional largeN theories are not only
more tractable, but also physically more appealing than th
finite N counterparts. They bear more resemblance to
real, 311 dimensional world.

This paper is organized as follows. In Sec. II we brie
review the conventional analytical treatment of the chi
Gross-Neveu model at finite density and point out a cert
deficiency of this approach. In Sec. III we repeat a simi
analysis for the ’t Hooft model, supplementing the analytic
methods by numerical computations where necessary
©2000 The American Physical Society02-1
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VERENA SCHÖN AND MICHAEL THIES PHYSICAL REVIEW D 62 096002
Sec. IV the Skyrme@31# type of approach to the light bary
ons in both models is recalled@16# and generalized to the
case of baryonic matter in the strict chiral limit. In Sec. V w
then allow for a small symmetry breaking mass term a
make contact with the sine-Gordon kink chain, the two
mensional analogue of the Skyrme crystal@32#. This is fol-
lowed by a short summary and conclusions in Sec. VI.

II. CHIRAL GROSS-NEVEU MODEL AT FINITE DENSITY:
CONVENTIONAL APPROACH

Let us first recall the standard treatment of the Gro
Neveu model at finite density. In the largeN limit mean-field
techniques become exact. Technically, they may be phra
in a variety of ways. We choose the language of relativis
many-body theory, following Refs.@16,17,33#, which we
find particularly intuitive for the problem at hand. Then th
vacuum, the baryon and baryonic matter are all described
a relativistic Hartree-Fock approach~for baryons in the large
N limit this was first recognized in Ref.@34#!. ‘‘Conventional
approach’’ in the title of this section refers to translation
invariance—we shall assume that the system is describe
an interacting Fermi gas with prescribed, homogeneous d
sity. We shall first deal with the Gross-Neveu model w
continuous chiral symmetry (c→eiag5c) and Lagrangian
density@4#

L5c̄ i]”c1
1

2
g2@~ c̄c!21~ c̄ ig5c!2#. ~1!

As a matter of fact, the corresponding calculation would
identical for the model with discrete chiral symmetry on
(c→g5c), where theg5 term in Eq. ~1! is omitted. The
results presented here are well known, but our aim is
criticize them in a novel way.

We denote the fermion density per color~or baryon den-
sity! by rB5pf /p (pf : Fermi momentum!. At the mean
field level, the fermions acquire a physical massm which has
to be determined self-consistently. The ground state ene
density per color is given by

E
N

522E
pf

L/2 dk

2p
Am21k21

m2

2Ng2
~2!

whereL is an ultraviolet cutoff. The first term is just the su
over single particle energies for all occupied states~the Dirac
sea plus all positive energy states withupu,pf), the second
term the usual correction for double counting of interact
effects familiar from the Hartree-Fock approximation. T
renormalize the theory, let us first consider the limitpf→0,
denoting the physical fermion mass in the vacuum bym0:

E
N

522E
0

L/2 dk

2p
Am0

21k21
m0

2

2Ng2
. ~3!

Minimizing E with respect tom0 yields the relativistic
Hartree-Fock equation
09600
d
-

-

ed
c

by

l
by
n-

e

o

gy

m0S 11
Ng2

p
ln

m0

L D50. ~4!

Because of the similarity in structure between the relativis
Hartree-Fock approach and BCS theory@35#, this is often
referred to as the ‘‘gap equation.’’ The non-trivial solutio
~which has always lower vacuum energy! yields the relation

Ng2

p
ln

L

m0
51 ~5!

which teaches us how the bare coupling constant depend
the cutoff parameter, givenm0. Recall that the Gross-Neve
model shares with real QCD both asymptotic freedom a
dimensional transmutation; these properties are containe
Eq. ~5!. Using this relation to renormalize the matter grou
state energy density, Eq.~2!, we find ~dropping an irrelevant
term 2L2/8p)

E
N

52
m2

4p
1

1

2p
pfApf

21m21
1

2p
m2lnS pf1Am21pf

2

m0
D .

~6!

The energy is minimal providedm satisfies

m ln S pf1Am21pf
2

m0
D 50, ~7!

i.e., for

m50 or m5m0A12
2pf

m0
S pf,

m0

2 D . ~8!

The corresponding energy densities are

E
N U

m50

5
pf

2

2p
,

E
N U

mÞ0

52
m0

2

4p
1

pfm0

p
2

pf
2

2p S pf,
m0

2 D . ~9!

The physical quark masses~8! and the energy densities~9!
are plotted in Figs. 1 and 2. From these figures one migh
tempted to conclude that chiral symmetry is broken at l
densities and gets restored in a second order phase tran
at pf5m0/2. As is well known, this does not occur; rath
there is a first order chiral phase transition atpf5m0 /A2.
This can easily be inferred by inspection of the thermod
namic potential of the Gross-Neveu model@9#. For our pur-
pose, the following physical reasoning is perhaps more
structive: Let us compare the energy densities~9! with the
energy density for a system of sizeL divided into two ho-
mogeneous regions I~size l ) and II ~sizeL2 l ). In region I
chiral symmetry is restored; it contains the extra fermio
needed to get the prescribed average density~the ‘‘MIT
bag’’ @36#!. Region II consists of the physical vacuum wi
broken chiral symmetry, void of excess fermions. The me
energy density obtained in this way is
2-2
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EMERGENCE OF THE SKYRME CRYSTAL IN GROSS- . . . PHYSICAL REVIEW D 62 096002
E
N

52S L2 l

L D m0
2

4p
1

Lpf
2

2p l
. ~10!

Minimization with respect tol yields

l 5
A2pfL

m0
, ~11!

valid for pf,m0 /A2, and hence the optimal energy dens

E
N

52
m0

2

4p
1

pfm0

A2p
S pf,

m0

A2
D . ~12!

As shown in Fig. 2, this solution is lower in energy than t
homogeneous one; moreover, it yields the convex hull oE.
It ends exactly at the first order phase transition pointpf

5m0 /A2 where all space is filled with one big bag. Th
should be contrasted to the scenario underlying Fig. 1 wh
the fermion mass decreases continuously. We thus rec
the generally accepted mixed phase interpretation of
Gross-Neveu model at finite density. Notice also that o
the total size of regions I and II matters, not how they a
subdivided; there could be baryon ‘‘droplets’’ as well. Alte
natively, the mixed phase curve in Fig. 2 with its linear d
pendence onpf could have been inferred from a standa
Maxwell construction. It is interesting that a very simil
qualitative behavior was found recently in 311 dimensions,
where the close relationship with the bag model was a
stressed@1#.

One important point to which we would like to draw th
attention of the reader is the behavior ofE nearrB5pf /p
50. Since ultimately, at very low density, the fermionic ma
ter problem must reduce to the problem of a single bary
one would expect

FIG. 1. Physical fermion mass as a function of the Fermi m
mentum in the Gross-Neveu model, in units ofm0.
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U
rB50

5MB ~13!

whereMB is the baryon mass. In the present calculation,MB
is not the physical baryon mass, but the mass of an alle
‘‘delocalized’’ baryon. This is inherent in the translational
invariant Hartree-Fock approach, i.e., the assumption that
single particle orbitals are momentum eigenstates. Using
~13! we obtain in the homogeneous, single phase calculat
Eq. ~9!, MB5Nm0, consistent with a short range force and
delocalized baryon. The~physically more viable! mixed
phase approach, Eq.~12!, predicts a baryon mass lower by
factor of 1/A2. This factor can readily be understood in term
of the bag model. Indeed, it follows from Eq.~10! that (E
5EL)

EB2E05NlS m0
2

4p
1

qf
2

2p D , qf5
pB

l
. ~14!

For B51, this expression can be interpreted as the energ
a single baryon,l being its diameter. The first term is just th
bag pressure@the difference between the energy density
the physical vacuum and that of the perturbative one; cf.
~9! for pf50], the second the kinetic energy ofN massless
quarks. The bag sizel is found through minimization of the
energy~for B51) to be

l 5
A2p

m0
. ~15!

Inserting this result into Eq.~14!, one finds that the bag
pressure and the quark kinetic energy contributions are
actly equal in this model and thatMB5Nm0 /A2.

- FIG. 2. Energy density per color as a function of the Fer
momentum in the Gross-Neveu model. Solid curve, chirally sy
metric solution (m50); dotted line, broken chiral symmetry (m
according to Fig. 1!; dot-dashed straight line, mixed phase. Units
m0.
2-3
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VERENA SCHÖN AND MICHAEL THIES PHYSICAL REVIEW D 62 096002
However, the Gross-Neveu model possesses bound b
ons with lowest massNm0 /p ~kink solution for the model
with discrete chiral symmetry@4,33#! or even massless bary
ons ~model with continuous chiral symmetry@16#!. These
binding effects are not 1/N suppressed and should be co
rectly reproduced in a Hartree-Fock approach, in the l
density limit. They have obviously been missed here due
our tacit assumption of translational invariance. There is
good reason why such effects should not play a role at hig
densities as well. Moreover, differences between the cont
ous and discrete chirally symmetric Gross-Neveu mod
based on their different baryon structure and masses are
at all captured by the ‘‘conventional’’ approach. Below, w
shall present a cure for this disease. Before that howeve
us first repeat the naive calculation for the ’t Hooft mod
where the corresponding results are not yet available in
literature.

III. ’t HOOFT MODEL AT FINITE DENSITY,
ASSUMING TRANSLATIONAL INVARIANCE

The ’t Hooft model is defined as the largeN limit of (1
11)-dimensional SU(N) gauge theory with quarks in th
fundamental representation@5#:

L5c̄ iD” c2
1

2
trFmnFmn. ~16!

Since the light-cone approach originally used by ’t Hooft
determine the meson spectrum seems to be less conve
for the vacuum, baryon and baryonic matter problems,
shall work in normal coordinates. This approach was p
neered by Bars and Green@37# and further developed in
Refs. @16,17,38#. Common to all of these works is the fa
that the gluons are gauged away~axial gauge!, leaving be-
hind a theory of fermions interacting via a linear Coulom
potential. We refer the reader to the detailed derivation of
Hartree-Fock approach in Refs.@16,17# and immediately
proceed to the formulas which are relevant for our purpo
Let us first summarize the treatment of the vacuum. A cen
quantity is the single particle density matrix in momentu
space:

r~p!5
1

2
1g0r0~p!2 ig1r1~p!1g5r5~p!. ~17!

Its precise definition in terms of the quark fields is

rab~p!5E dx e2 ipx^0u
1

N (
i

c ib
† ~0!c ia~x!u0&. ~18!

The Slater determinant condition characteristic for
Hartree-Fock approach,

r2~p!5r~p!→r0
2~p!1r1

2~p!1r5
2~p!51/4 ~19!

holds manifestly in the parametrization
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S r0(p)

r1(p)

r5(p)
D 52

1

2 S sinu(p)cosw

sinu(p)sinw

cosu(p)
D . ~20!

u(p) is the Bogoliubov angle,w the global angle which lo-
cates the broken symmetry vacuum on the chiral cir
~hence it has nop dependence!. The Bogoliubov angles are
the variational parameters; this terminology stems once m
from BCS theory, which has the same formal structure as
relativistic Hartree-Fock approach. We choosew50, the
value reached if one lets the bare quark mass approach
starting from a finite value. Then,

r~p!5v~p!v†~p! ~21!

with the ~positive and negative energy! Hartree-Fock spinors

u~p!5S cosu~p!/2

sinu~p!/2D , v~p!5S 2sinu~p!/2

cosu~p!/2D . ~22!

The vacuum expectation value of the Hamiltonian dens
reads

E
N

52E dp

2p
p cosu~p!2

Ng2

8 E dp

2p

3E dp8

2p

cos@u~p!2u~p8!#21

~p2p8!2
~23!

where the first term is the kinetic energy, the second
Coulomb interaction of the quarks. Varying with respect
the Bogoliubov anglesu(p), the gap equation is obtained i
the form

p sinu~p!1
Ng2

4 «
dp8

2p

sin@u~p!2u~p8!#

~p2p8!2
50. ~24!

The integral has to be defined as a principal value integ
cf. Refs. @17,37,38#. We shall also need the expression f
the quark condensate in the vacuum,

^c̄c&v52NE dp

2p
sinu~p!, ~25!

and the quark single particle energies,

v~p!5p cosu~p!1
Ng2

4 E dp8

2p

cos@u~p!2u~p8!#

~p2p8!2
.

~26!

Although the gap equation~24! for the ’t Hooft model must
be solved numerically, the value of the quark condens
~25! is known analytically, owing to an indirect determina
tion via sum rules and the ’t Hooft equation for mesons@39#;
it is

^c̄c&v52
N

A12
S Ng2

2p D 1/2

. ~27!
2-4
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EMERGENCE OF THE SKYRME CRYSTAL IN GROSS- . . . PHYSICAL REVIEW D 62 096002
The single particle energies~26! are badly infrared divergent
a source of a long and ongoing debate in the literature@40#.
To exhibit the divergence, we follow Ref.@17#, isolate the
divergent part of the integral and regularize it by using
finite box of lengthL:

v~p!5p cosu~p!1
Ng2

4 E dp8

2p

cos@u~p!2u~p8!#21

~p2p8!2

1
Ng2L

48
. ~28!

This last constant diverges forL→` but seems to be essen
tial to account for confinement in such an independent p
ticle picture: The isolated quarks behave roughly as if th
had infinite mass. If one simply throws the infinite consta
away, as is often done, one gets an awkward sign chang
v(p) at some low momentump ~cf. Refs. @16,17,38#! and
runs into serious inconsistencies in finite temperat
Hartree-Fock calculations@13,14#. Fortunately, the constan
drops out of the calculation of color singlet mesons, as
ready noticed by ’t Hooft~his IR cutoff parameterl is re-
lated to our box sizeL by l512/pL; cf. Ref. @17#!: The
infinite self-energy term is canceled by an equally infin
piece in the Coulomb interaction. We also note in pass
that if one employs a finite box as infrared regulator, one
unambiguously led to ’t Hooft’s treatment of the quark se
energies rather than to Wu’s alternative regularization p
scription @40,41#. Since the emergence of the consta
Ng2L/48 in the single particle energy~28!, but not in the
vacuum energy~23!, is rather important for our discussio
and somewhat hidden in Ref.@17#, we have included a sim
plified version of the arguments underlying Eqs.~23! and
~28! in the Appendix.

After this review of the treatment of the vacuum, we a
in a position to include a finite baryon density, assum
translational invariance. Ifpf denotes the Fermi momentum
we have to replace the density matrix~21! by

FIG. 3. Quark condensate as a function of the Fermi momen
in the ’t Hooft model, in units of (Ng2/2p)1/2.
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r~p!5Q~pf2upu!u~p!u†~p!1v~p!v†~p!

5Q~pf2upu!1Q~ upu2pf !v~p!v†~p! ~29!

where we have used the completeness relation for the spi
in the second step. In the expression for the Hartree-F
ground state energy density~23!, according to the second
line of Eq.~29!, we must exclude the region@2pf ,pf # from
the momentum integrations and pick up an additional te
due to the change in the baryon density trr

E
N

52E dp

2p
Q~ upu2pf !pcosu~p!2

Ng2

8

3E dp

2pE dp8

2p
Q~ upu2pf !Q~ up8u2pf !

3
cos@u~p!2u~p8!#21

~p2p8!2
1

Ng2

4 E dp

2pE dp8

2p

3Q~pf2upu!Q~ up8u2pf !
1

~p2p8!2
. ~30!

This yields at once the following finite density generalizati
of the gap equation:

p sinu~p!1
Ng2

4 «
dp8

2p
Q~ up8u2pf !

sin@u~p!2u~p8!#

~p2p8!2
50

~ upu.pf !, ~31!

whereas the condensate now becomes

^c̄c&52NE dp

2p
u~ upu2pf !sinu~p!. ~32!

The gap equation~31! can easily be solved numerically fo
variouspf . The resulting condensate is shown in Fig. 3. W
find that it decreases monotonically with increasing dens
disappearing at a critical Fermi momentum

pf
c'0.117S Ng2

2p D 1/2

. ~33!

This behavior is strikingly similar to the corresponding res
for the Gross-Neveu model depicted in Fig. 1, again sugg
ing some phase transition with restoration of chiral symm
try at high density. Here we are not able to go on and disc
whether we are dealing with a first or second order ph
transition. The reason lies in the following problem: If w
compute the energy density~30! for the ’t Hooft model, we
discover that subtraction of the value atpf50 is not suffi-
cient to give a finite result. Unlike in the Gross-Neve
model, the difference is still IR divergent. To be able
proceed, we enclose the system once more in a box of le
L. We then find that the divergence is due to the last term
Eq. ~30! ~the one which does not involve the Bogoliubo
angles! which now contributes the following double sum
the energy per color:

m

2-5
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VERENA SCHÖN AND MICHAEL THIES PHYSICAL REVIEW D 62 096002
E

N U
div

5
Ng2L

16p2 (
pPI

(
nÞ0,(p2n)¹I

1

n2
. ~34!

Here antiperiodic boundary conditions for fermions ha
been employed in the box regularization, and correspo
ingly the intervalI is defined in the following way:

I 5@2nf ,nf # for B52nf11 odd,

I 5@2nf21,nf # for B52nf12 even. ~35!

The result~34! is even more alarming than the non-conv
behavior ofE in the Gross-Neveu model, Fig. 2, due to itsL
dependence. Adding quarks to the vacuum causes the en
to increase by an infinite amount in the limitL→`. Evalu-
ating the double sums in Eq.~34! for low values ofB, we
obtain information on the origin of this divergent behavio
For B51 (I 5@0,0#) in particular, the calculated baryo
mass~to leading order inL) is

MB5NS Ng2L

48 D . ~36!

This is the same relation asMB5Nm0 in the Gross-Neveu
model except that the physical fermion mass is replaced
the infinite constantNg2L/48 characteristic of confinemen
cf. Eq. ~28!. For larger values ofB, Eq. ~34! does not simply
yield multiples of the baryon mass~36!, but one finds ‘‘in-
teraction effects’’ of the same order of magnitude as
mass. As far asN counting is concerned, this is still in agre
ment with Witten’s analysis of baryons at largeN @34#. How-
ever, since these delocalized baryons are presumably
very physical in the ’t Hooft model, we refrain from furthe
discussing these effects.

Summarizing, the problems encountered in the Gro
Neveu model with translationally invariant baryonic mat
again show up in the ’t Hooft model, although in a mu
more severe form. The physics reason is clear: In the Gr
Neveu model the cost of distributingN fermions over the
whole space is governed by their physical mass; in th
Hooft model, due to confinement of quarks, the correspo
ing quark effective mass diverges with the volume. On
other hand, it is known that both models do possess m
less, delocalized baryons in the chiral limit. Evidently, th
has to be accounted for, and we conclude that the na
translationally invariant Hartree-Fock approximation fa
miserably in describing the properties of baryonic matter

IV. MASSLESS BARYONS AND BARYONIC MATTER
IN THE SKYRME PICTURE

The existence of massless baryons in the chiral limit
the ’t Hooft model has been demonstrated by bosoniza
@15,40#, variational @16#, and light-cone@17# techniques.
These exotic objects are characteristic for (111)-
dimensional models with broken chiral symmetry and,
such, also present in the chiral Gross-Neveu model. A p
ticularly illuminating derivation is due to Salcedoet al. @16#.
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These authors point out that the potential energy in s
models is invariant under local chiral transformations, unl
the kinetic term which is only invariant under global one
This led them to the following variational ansatz for the on
body density matrix of the baryon:

r~x,y!5eix(x)g5rv~x2y!e2 ix(y)g5. ~37!

Hererv(x2y) is the vacuum density matrix. If the vacuum
breaks chiral symmetry, one can generate with expres
~37! a new ~exact or approximate! Hartree-Fock solution
which breaks translational invariance but can carry non-z
baryon number. As shown in@16#, the baryon density is
given by

rB~x!5tr@r~x,x!2rv~0!#5
1

p
]xx~x!, ~38!

so that the baryon number coincides with the winding nu
ber of the chiral phasex(x):

B5E
0

L

dx
1

p
]xx5

x~L !2x~0!

p
PZ. ~39!

@Notice thatx(L)2x(0) must be an integer multiple ofp
since otherwise bilinear fermion observables would
longer be periodic.# For this topological reasoning it is agai
recommendable to work in a finite box of sizeL. The topo-
logical interpretation of the baryon number also agrees w
exact results of Ref.@17# which were not restricted to the
largeN limit. In the absence of an explicit quark mass ter
the ground state energy obtained from Eq.~37! is

E@r#5E@rv#1NE
0

L

dx
1

2p
~]xx!2. ~40!

This result holds independently of the specific model, sin
the potential energy does not contribute toE@r#2E@rv#.
Differences between various models are of course
present in the vacuum density matrixrv in Eq. ~37! but do
not manifest themselves in the baryon energy. Minimizi
E@r# with respect tox yields the free~static! bosonic equa-
tion

]x
2x~x!50, x~L !5x~0!1pB ~41!

with the solution

x~x!5pBS x2x0

L D . ~42!

Herex0 is a parameter which reflects the breakdown of tra
lational invariance. The baryon density isx independent
@rB(x)5B/L# as follows more generally from axial curren
conservation in the chiral limit@16#. However, the scalar and
pseudoscalar condensates acquire a non-trivialx dependence:
2-6
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^c̄c&5^c̄c&vcos@2pB~x2x0!/L#,

^c̄ ig5c&52^c̄c&vsin@2pB~x2x0!/L#. ~43!

Since fluctuations ofx(x) describe the massless Goldsto
boson field, the baryon picture emerging here is very sim
in spirit to the Skyrme model@31#. The fact that the baryon is
a topological soliton will become somewhat clearer once
include a small bare quark mass~see Sec. V! but this solito-
nic character also holds in the strict chiral limit consider
here.

We can now discuss the baryon as well as baryonic ma
from this point of view. The single baryon (B51) is spread
out over the whole space, the chiral phasex(x) making one
turn with constant speed to minimize the kinetic energy~Fig.
4!. The baryon energy is, using Eqs.~40!–~42!,

EB5N
p

2L
. ~44!

This confirms that indeed the baryon becomes massles
the limit L→`. Incidentally, expression~44! is identical to
the kinetic energy ofN non-interacting, massless quarks
the lowest momentum state available for antiperiodic bou
ary conditions. Nevertheless, we are not dealing with
free, chirally symmetric theory, but with the broken phase
an interacting theory where the quarks are massive or e
confined.

It may be worthwhile to contemplate the structure of t
baryon for a moment from the point of view of the relati
istic Hartree-Fock approximation. In chirally non-invaria
models one would suspect that the baryon comprises
filled Dirac sea plus one filled, positive energy valence lev
This is exactly what one finds analytically in the non-chi
Gross-Neveu model@33# or numerically in QCD2 with
heavy quarks@16#. The picture implied by the ansatz~37! in
the chiral limit is rather different though. Denoting the neg
tive energy single particle orbitals in the Dirac sea

FIG. 4. The complex condensate^c̄c&1 i^c̄ ig5c& for the single

baryon in units of̂ c̄c&v , as a function ofx in units of L ~chiral
limit !.
09600
r

e

er

in

-
e
f
en

he
l.
l

-

wk
(2)(x) ~solutions of the first quantized Dirac equation wi

Hartree-Fock potential!, the Skyrme type baryon~37! admits
the density matrix

r~x,y!5eipxg5 /L(
k

wk
(2)~x!wk

(2)†~y!e2 ipyg5 /L ~45!

where

wk
(2)~x!5eikxv~k!, ~46!

and thek are discrete momenta appropriate to the interva
lengthL. We first observe that the chiral phase factor sp
the momenta of the right- and left-handed components
k6p/L. Since the transformed single particle wave fun
tions are no longer momentum eigenstates, translationa
variance is lost. Second, we note that the presence o
infinite Dirac sea is crucial for getting the extra baryo
charge, rather than a single valence state. If the sum o
occupied statesk in Eq. ~45! was finite, we would trivially
conclude thatr(x,y) and rv(x2y) belong to the same
baryon density@rB(x)5trr(x,x)#. Because of the infinite
number of occupied states, however,rv(x2y) develops a
singularity atx5y, and one has to do a more careful poi
splitting in order to compute the baryon density. The div
gence is due to the UV region and therefore determined
the free theory~for more details, cf. Ref.@16#!:

lim
x→y

tr@r~x,y!2rv~x2y!#

5 lim
z→0

trH eipzg5 /LS 1

2
d~z!2

ig5

2pzD2
1

2
d~z!J 5

1

L
.

~47!

The result 1/L is the baryon density forB51. This mecha-
nism is strongly reminiscent of the calculation of anomalo
current commutators, for instance in the Schwinger mod
The extra baryon number does not reside in a valence l
added on top of the Dirac sea but somehow emerges from
bottom of the Dirac sea if one modifies all the leve
slightly—it is a vacuum polarization effect.

Equipped with this exotic kind of baryon, we can no
easily find the ground state of the system for any bary
density. As discussed above and illustrated in Fig. 4,
single baryon consists of one turn of a ‘‘chiral spiral’’@pa-
rametrized byx(x)] over the total spatial lengthL of the
system—admittedly a somewhat elusive object in the th
modynamic limit. A finite densityrB5B/L5pf /p on the
other hand implies that

x~x!5pf~x2x0!, ~48!

i.e., one full rotation over a physical distance which has
well-defined limit forL→`, namely 2/rB . The baryon den-
sity remains constant in space, but the condensates
modulated as
2-7
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^c̄c&5^c̄c&vcosl2pf~x2x0!,

^c̄ ig5c&52^c̄c&vsin2pf~x2x0!. ~49!

They can be viewed as projections of a ‘‘chiral spiral’’
radiusu^c̄c&vu onto two orthogonal planes; see Fig. 5. Th
state breaks translational symmetry; it is a crystal. In fac
may be viewed as the simplest possible realization of the
idea of a Skyrme crystal@32#, here in the context of largeN
two-dimensional field theories. One cannot tell where o
baryon begins and ends—each full turn of the spiral conta
baryon number 1. Only the condensates reveal that tran
tional symmetry has been broken down to a discrete s
group. The energy density of this unusual kind of ‘‘nucle
matter’’ is simply~after subtracting the vacuum energy de
sity!

E
N

5
pf

2

2p
. ~50!

Surprisingly, this is exactly what one would expect for a fr
Fermi gas of massless quarks although Eq.~50! holds for
interacting theories where the vacuum has lower energy
to chiral symmetry breaking. In Fig. 6 we compare the e
ergy density for this state to the ones discussed above fo
Gross-Neveu model, where translational symmetry had b
assumed. The crystal is always energetically favored, the
pendence onpf is now convex, and there is no trace of
phase transition, neither first nor second order, at any d
sity. The horizontal slope atpf50 correctly signals the pres
ence of massless baryons and eliminates the ab
mentioned problems with the spurious massive, delocali
baryons. We cannot even draw the corresponding picture
the ’t Hooft model, simply because in this case the qu
Fermi gas is infinitely higher in energy than the Skyrm
crystal for L→`. Nevertheless, all the results for baryon
matter discussed in this section apply to the ’t Hooft mo
as well.

In the high density limit the oscillations of the conde
sates become more and more rapid. If we are interested
in length scales large as compared to 1/pf , the condensate

FIG. 5. Same as Fig. 4, but for baryonic matter. Each full turn
the spiral increases the baryon number by one unit.
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average to zero. In this sense, one might argue that ch
symmetry gets restored at high density, although not in
naive way suggested by Fig. 2.

Finally, we remark that the ‘‘chiral spiral’’ ground stat
for fixed baryon density still preserves one continuous,
broken symmetry, namely the combination of translation a
chiral rotation generated byP1pfQ5 (P is the momentum
operator, andQ5 is the axial charge!. One would therefore
predict that random phase approximation~RPA! excitations
on this ground state@16,17# ~or mesons in nuclear matter!
will have only one collective, gapless mode, a hybrid of
‘‘phonon’’ and a ‘‘pion.’’

V. NON-VANISHING BARE QUARK MASSES

In Ref. @16# the Skyrme picture of the baryons in the
Hooft model and chiral Gross-Neveu model was develop
for small, finite bare quark masses, using the expressio
Eq. ~37! as a variational ansatz. For a single baryon, th
authors have tested the accuracy of their procedure ag
the full, numerical Hartree-Fock calculation on a lattice. T
results agreed perfectly atmq50.05 and were still surpris-
ingly good atmq50.20, in units ofANg2/2p. This makes it
very tempting to speculate that the corresponding variatio
calculation can also give us a reliable picture of baryo
matter at finite density, away from the chiral limit. As com
pared to the formulas in the preceding section, the o
change is the fact that the bare mass term now also con
utes to the energy functional Eq.~40!:

E@r#5E@rv#1NE
0

L

dxH 1

2p
~]xx!2

1
mq^c̄c&v

N
~cos 2x21!J . ~51!

f

FIG. 6. Same as Fig. 2~Gross-Neveu model!. Here we have
included the energy density of the Skyrme crystal type of st
~dashed line!, the true ground state.
2-8
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Here the condensate^c̄c&v refers to the vacuum in the chira
limit. Varying with respect tox(x) then gives the static sine
Gordon equation@42#

]x
2x1

2pmq^c̄c&v

N
sin 2x50, ~52!

from which one reads off the ‘‘pion’’ mass~two dimensional
version of the Gell-Mann–Oakes–Renner relation@43#!

mp
2 524pmq

^c̄c&v

N
. ~53!

The B51 baryon can be identified with the familiar kin
solution of the sine-Gordon equation,

x~x!52arctan~emp(x2x0)!, ~54!

with mass

MB5N
2mp

p
. ~55!

Since the single baryon has been discussed in detail in
@16#, let us immediately turn to multi-kink solutions as ca
didates for baryonic matter. Luckily, the sine-Gordon ki
crystal has already been studied thoroughly in the literat
first in solid state physics@44,45# and more recently as a to
model for the Skyrme crystal@46#, in terms of Jacobi elliptic
functions and elliptic integrals@47#. We take over the result
from Ref. @46# which is close in spirit to the present stud
although the authors did not have in mind two-dimensio
largeN field theories. Adapting the formulas of this work
our notation, the following steps allow us to generalize
Skyrme crystal of the previous section to small, finite ba
quark masses: Letmp denote the mass of the Goldstone b
son, Eq.~53!, andr̄B5pf /p the average baryon density~this

FIG. 7. Solid curve, spatial oscillation of the baryon density
the regimepf!mp ; circles, baryon density for a single baryon.
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is our definition ofpf for the case of broken translationa
symmetry!. We then first have to solve the transcenden
equation

pmp

pf
52kK ~k! ~56!

for k whereK (k) is the complete elliptic integral of the firs
kind. The sine-Gordon kink crystal is then given by the fo
lowing solution of Eq.~52!:

x~x!5
p

2
1am~j,k!, j5

mp

k
~x2x0! ~57!

@am(j,k) is the Jacobian elliptic amplitude function#. From
this, we can express the baryon density and the various
densates in terms of further Jacobian elliptic functio
(dn,sn,cn) as follows:

rB~x!5
1

p
]xx~x!5

mp

pk
dn~j,k!,

^c̄c&5^c̄c&vcos 2x~x!

52^c̄c&v@cn2~j,k!2sn2~j,k!#,

^c̄ ig5c&52^c̄c&vsin 2x~x!

5^c̄c&v2sn~j,k!cn~j,k!. ~58!

Herej is as defined in Eq.~57!. Finally, the energy divided
by the volume of this kind of matter is given by

E
N

5
mppf

4p2 H 8

k
E~k!14kS 12

1

k2D K ~k!J , ~59!

E(k) denoting the complete elliptic integral of the seco
kind.

Let us now illustrate these results in two regimes of int
est, namely at low and high density. At low density (pf
!mp), k in Eq. ~56! approaches 1 exponentially, and th
baryon density features a chain of well-resolved lum
whose shape is determined by the single kink solution~Fig.
7!. Likewise, the condensates behave like those of a sin
baryon: ^c̄c& changes from the vacuum value outside t
baryons to its negative in their center whereas^c̄ ig5c& is
peaked in the surface region of each baryon~Figs. 8, 9!.
These condensates are projections of the distorted ‘‘ch
spiral’’ shown in Fig. 10. The energy~59! for low densities
behaves as

E'N
2mppf

p2
5MBrB , ~60!

showing the expected connection to the baryon mass.
high densities (pf@mp), k approaches 0 like
2-9
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VERENA SCHÖN AND MICHAEL THIES PHYSICAL REVIEW D 62 096002
k'
mp

pf
. ~61!

Thus j in Eq. ~57! becomespf(x2x0). Moreover, for k
→0, the Jacobian elliptic functions am(j,k),sn(j,k),
cn(j,k) are known to reduce to the argumentj and the or-
dinary trigonometric functions sinj and cosj, respectively.
We thus recover the results for the simple chiral spiral
Sec. IV@the parameterx0 has to be readjusted to take care
the shift by p/2 in Eq. ~57!#. The energy in this case i
approximately

E
N

'
pf

2

2p
1

mp
2

8p
. ~62!

The condensates look very much like the sin and cos fu
tions of the massless case and need not be plotted.

FIG. 8. Solid curve, spatial oscillations of the scalar chiral co
densate in the regimepf!mp ; circles, scalar chiral condensate fo
a single baryon.

FIG. 9. Same as Fig. 8, but for the pseudoscalar chiral cond
sate.
09600
f
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baryon density wiggles around a constant value, reflec
the strong overlap of the baryons, and can be approxima
at high density by

rB~x!'
pf

p F12
1

2 S mp

pf
D 2

sin2pf~x2x0!G . ~63!

The behavior of the baryon densityrB(x) as one increasespf
~i.e., the mean density! is illustrated in Fig. 11. In the chiral-
or high-density limit (mp /pf→0), rB(x) eventually be-
comesx independent. This provides us with another way
understanding the structure of matter described in the pr
ous section, namely as arising from a chain of very extend
strongly overlapping lumps.

Finally, let us come back to the question of validity of th
variational calculation based on the chirally modulat
vacuum density matrix~37!, which we have left open so far
At very low densities when the individual baryons are f
apart, we can presumably rely on the numerical results
Ref. @16# since the interaction effects between the baryo
become small~as discussed in Refs.@16# and @46#, the
baryon-baryon interaction is repulsive and falls off expone
tially with the pion Compton wavelength!. At high densities,
on the other hand, one would expect that a finite quark m
cannot make much difference as long aspf@mp . This takes

-

n-

FIG. 10. Illustration of the distorted ‘‘chiral spiral’’ for baryonic
matter at non-zero bare quark mass.

FIG. 11. Spatial dependence of baryon density as it evolves w
increasing average density~or Fermi momentum!, in units ofmp .
2-10
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EMERGENCE OF THE SKYRME CRYSTAL IN GROSS- . . . PHYSICAL REVIEW D 62 096002
us back to the massless case discussed in Sec. IV. In
limit, in turn, it is easy to convince oneself that the calcu
tion becomes exact in the sense that one gets a true sol
of the Hartree-Fock equation. Thus for instance for the
Hooft model, the massless Hartree-Fock equation reads@16#

vnwa
(n)~x!52 i~g5!ab

]

]x
wb

(n)~x!1
Ng2

4

3E dyux2yurab~x,y!wb
(n)~y!. ~64!

Upon substituting

wa
(n)~x!5~e2 ipfxg5!abw̃b

(n)~x! ~65!

as we are instructed to do by the ansatz~37!, we discover
that w̃ (n) does indeed solve the Hartree-Fock equation,
only change being that the single particle energyvn gets
replaced byvn1pf . The same argument goes through in t
chiral Gross-Neveu model or in any field theory where
interaction term has a local chiral invariance. This prov
that the result becomes exact in the chiral limit~to leading
order in the 1/N expansion, of course! and makes plausible
the hypothesis that it also correctly describes the high den
regime for finite quark masses as long aspf@mp .

VI. SUMMARY AND CONCLUSIONS

In this paper, we have addressed the problem of baryo
matter in a certain class of exactly soluble field theore
models, namely chirally invariant, largeN, interacting fer-
mion theories. We started out from a seemingly innocu
and well understood problem, the chiral Gross-Neveu mo
at finite density, and identified one remaining weak spot: T
energy density for baryonic matter in the standard Hartr
Fock approach does not have the correct low density li
which can be predicted from the known baryon spectrum
the theory. The origin of this problem, which is not cured
a mixed phase approach conceptionally related to the
model, is evidently the assumption of translational inva
ance. Whereas this inconsistency can perhaps be ignore
the Gross-Neveu model~as it has been so far, to the best
our knowledge!, in QCD2, it becomes fatal: Because of con
finement, the analogous calculation yields an infinite ene
for delocalized baryons or quark matter. This is unavoida
if one is careful in treating the infrared behavior of the qua
single particle energies. These findings have prompted u
think more thoroughly about the structure of baryons in su
models and possible implications for the matter problem.
found that it takes only very little effort to generalize a pr
vious Skyrme type treatment of the single, massless bar
to the case of baryonic matter. In the chiral limit, an e
tremely simple, yet non-trivial, picture emerges: Both t
baryon and dense matter are described by a spatially var
chiral angle which is best characterized as a ‘‘chiral spira
with constant helix angle. The number of windings with
the full space of lengthL measures the number of baryons
the box. Since, by construction, this kind of state does
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cost any potential energy in addition to what is alrea
stored in the vacuum, one does not have to pay the expe
high price for delocalizing quarks. The energy density
baryonic matter is identical to that of a free Fermi gas
massless quarks, in spite of the presence of interaction
fects. The same picture applies to the chiral Gross-Neve
well as to the massless ’t Hooft model and should be gen
for all chiral largeN models. The baryon density is consta
in space as a consequence of axial current conservation
we have verified that the whole scenario is exact to lead
order in the 1/N expansion. In a slightly more speculativ
vein we then investigated modifications due to a small b
quark mass. Here our task was greatly facilitated by the
that we only needed to pull together two independent inv
tigations, the one of Ref.@16# of the single baryon in field
theoretic models with the one of Ref.@46# of the sine-Gordon
kink crystal, both inspired in some way by Skyrme’s origin
ideas. As a result, we have arrived at a rather comprehen
picture of matter at low and high density on the scale of
pion Compton wavelength. The crystal structure now b
comes more conspicuous since also the baryon density
plays a lattice of individual lumps. As an additional bonu
we have obtained a purely classical, mechanical mode
what is going on~the sine-Gordon equation describes a ch
of coupled pendulums, the quark mass playing the role
gravity!. Given our starting point, namely the problem
baryonic matter in two dimensional quantum field theor
such as the Nambu–Jona-Lasinio model or QCD, this
rather amusing.

It is noteworthy that a similar chiral structure of fermion
matter has been reported previously in a variety of mod
different from the present ones. This indicates that the ba
results are more generally valid than our derivation mig
suggest. We mention here in particular the early work on
massive Schwinger model@18# and the more recent work o
the massless Schwinger model with inert background cha
@19# and QCD2 with a finite number of colors and flavor
@20#. Even more surprising are perhaps quite a number
speculations about spatially inhomogeneous chiral cond
sates with the same wave number as in our case, but in11
dimensions, in the context of pion condensation@24#, largeN
QCD @21–23#, or effective chiral models@25#. In some of
these works, the analogy with the Overhauser effect
spin-density waves~pairing of particle holes on opposit
sides of the Fermi sphere! has been stressed. Although th
language used is quite different from ours, there is no do
that we are dealing with the same physical phenomenon

As a last remark, we wish to comment on the origin
Gross-Neveu model with only discrete chiral symmetry@pure
(c̄c)2 interaction#. Most of the studies of the phase diagra
for the Gross-Neveu model have in fact been performed
this model, and one might think that our analysis does
have anything to say about it. However, the criticism of S
II also applies here. Since the non-chiral Gross-Neveu mo
has~massive! bound baryons, the low density behavior of th
energy obtained in standard Hartree-Fock approxima
cannot be correct, and the phase diagram may also have
reconsidered.
2-11
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APPENDIX: HARTREE-FOCK SINGLE PARTICLE
ENERGIES IN THE ’t HOOFT MODEL

The Hamiltonian for the massless ’t Hooft model in t
axial gauge has the form

H5(
p,i

2p

L
~p11/2!@ai

†~p!ai~p!2bi
†~p!bi~p!#

1
g2L

16p2 (
i j ,nÞ0

j i j ~n! j j i ~2n!

n2
. ~A1!

Here we have regularized the theory by enclosing it in a b
of length L with antiperiodic boundary conditions for th
fermions. Note that this form is only valid in the limitL
→` @14#. The ai(p),bi(p) denote right- and left-hande
quark operators, respectively, and the currentsj i j (n) can be
taken in the U(N) form at largeN:

j i j ~n!5(
p

@aj
†~p!ai~p1n!1bj

†~p!bi~p1n!#. ~A2!

It is important to understand that the Coulomb term s
contains one- and two-body operators which can be dis
tangled by normal ordering~up to 1/N corrections! as fol-
lows:

(
i j

j i j ~n! j j i ~2n!5N(
i ,p

@ai
†~p!ai~p!1bi

†~p!bi~p!#

2 (
i j ,pq

@aj
†~p!aj~q!ai

†~q1n!ai~p1n!

1aj
†~p!bj~q!bi

†~q1n!ai~p1n!

1bj
†~p!aj~q!ai

†~q1n!bi~p1n!

1bj
†~p!bj~q!bi

†~q1n!bi~p1n!#.

~A3!

The Hamiltonian can be decomposed correspondingly
one- and two-body operators. Using the basic vacuum ex
tation values
09600
-
-

x

l
n-

to
c-

(
i

^0uai
†~p!ai~q!u0&5

N

2
dpq„12cosu~p!…,

(
i

^0ubi
†~p!bi~q!u0&5

N

2
dpq„11cosu~p!…,

(
i

^0uai
†~p!bi~q!u0&5(

i
^0ubi

†~p!ai~q!u0&

52
N

2
dpq sinu~p!, ~A4!

the vacuum expectation value of these two contributions
found to be

^0uH (1)u0&5N(
p

F2
2p

L S p1
1

2D cosu~p!1
Ng2L

48 G ,
^0uH (2)u0&5N(

p
S 2

Ng2L

32p2 (
nÞ0

1

n2

3$11cos@u~p!2u~p1n!#% D . ~A5!

TheNg2L/48 term in the 1-body part is just minus twice th
‘‘1’’ term in the 2-body part ~remember that(nÞ01/n2

5p2/3). Hence, in the sum of both terms, the Coulomb e
ergy involves the combination

1

n2
$cos@u~p!2u~p1n!#21% ~A6!

where the infrared divergence has been tamed since the
nominator and numerator both vanish atn50. This cancel-
lation between quark self-energy and Coulomb potentia
similar to what happens in the meson equation of the ’t Ho
model. The continuum limit then yields Eq.~23!. It is impor-
tant to distinguish between one- and two-body operat
here, because they enter with different relative weights in
single particle energies and in the total energy. Indeed, in
Hartree-Fock approach, if the single particle energies are
composed according to their 1- and 2-body contributions

v~p!5v (1)~p!1v (2)~p!, ~A7!

then the ground state energy is

^0uHu0&5N(
p

S v (1)~p!1
1

2
v (2)~p! D . ~A8!

The factor of 1/2 is necessary to avoid double counting of
2-body interaction term. By comparison with Eq.~A5!, we
can turn this observation around and simply read off
single particle energies. We find in this way

v (1)~p!52
2p

L S p1
1

2D cosu~p!1
Ng2L

48
,

v (2)~p!52
Ng2L

16p2 (
nÞ0

1

n2
$11cos@u~p!2u~p1n!#%. ~A9!
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Adding up the two contributions tov(p), the ‘‘1’’ term is
now canceled instead of changing sign. This is the rea
why in the continuum limit we get the badly infrared dive
gent expression~26! for the quark energies. This shortc
.

R

.

09600
n
derivation gives the same result as the more elaborate
proach of Ref.@17#, where a single particle Hartree-Foc
Hamiltonian was first identified by commutingH with the
quark operators and subsequently diagonalized.
.
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