PHYSICAL REVIEW D, VOLUME 62, 096002

Emergence of the Skyrme crystal in Gross-Neveu and 't Hooft models at finite density
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We study two-dimensional, largd field theoretic model§Gross-Neveu model, 't Hooft modeét finite
baryon density near the chiral limit. The same mechanism which leads to massless baryons in these models
induces a breakdown of translational invariance at any finite density. In the chiral limit baryonic matter is
characterized by a spatially varying chiral angle with a wave number depending only on the density. For small
bare quark masses a sine-Gordon kink chain is obtained which may be regarded as the simplest realization of
the Skyrme crystal for nuclear matter. Characteristic differences between confining and non-confining models
are pointed out.

PACS numbgs): 11.10.Kk, 11.15.Kc, 11.15.Pg, 11.30.Rd

[. INTRODUCTION variants of the Gross-Neveu model have identical phase dia-
grams[11]. Since we find it rather perplexing that the struc-
The description of baryonic matter on the basis of QCDture of the single baryon should have no influence on the
remains a theoretical challenge, especially since lattice gaugsructure of baryonic matter, we have reinvestigated this is-
calculations have so far been of little help for this problem.sue. We have found that a combination of lahygchniques
Nuclear physics, relativistic heavy-ion physics and astrowith the strong constraints arising from broken chiral sym-
physics are some of the fields which would greatly benefimetry is powerful enough to allow for a simple, analytic
from any progress on this issue. Recently, a new surge dfolution of this problem in the vicinity of the chiral limit.
interest has been triggered by the suggestion that at highhe results of our analysis differ qualitatively from the con-
density the novel phenomenon of color superconductivityventional wisdom about the Gross-Neveu model and carry
might set in[1,2]. This development has highlighted how over to the(confining 't Hooft model as well. They seem to
little is known reliably about dense, strongly interacting mat-confirm a number of investigations of other field theories at
ter. finite fermion density, where strikingly similar behavior was
Here, we address a much simpler finite density problenfound. These include exact studies of two-dimensional mod-
where a full analytic solution can be found: We considerels like the massivgl8] and massless Schwinger mofi&9]
two-dimensional model field theories with interacting fermi- or finite N, and N; massless QCB [20] as well as more
ons at or near the chiral limit. Specifically, we have in mind approximate treatments of 4-dimensional lal)@CD [21—
the two-dimensional version of the Nambu—Jona-Lasinia23] and effective chiral quark mode[g4,25.
model[3], i.e., the chiral Gross-Neveu moddl], and two- A word of caution is in order here: Throughout this paper,
dimensional QCD (QCBE with fundamental quarks, the 't we shall constantly deal with spontaneous breaking of con-
Hooft model[5]. In both cases, one considers a large numbetinuous symmetries and Goldstone bosons inlldimen-
N of fermion species and investigates the lilit>o, keep-  sions, in seeming conflict with the Coleman-Mermin-Wagner
ing Ng? fixed [6]. These two models are quite similar as far theorem[26,27]. It is well understood by now that the large
as their chiral properties are concerned but differ with re-N limit enables one to circumvent this no-go theorem. As
spect to confinement of quarks which is only exhibited byclearly explained by Wittei28], the bad infrared behavior
the 't Hooft model. So far, the phase diagram of the Grosseof the boson propagator, when exponentiated, gives rise to a
Neveu model has been studied extensively as a function gfower law correlatofx—y| =N which becomes constant in
temperature and chemical potentid-11], and the results the limit N—o. This kind of almost long-range order is also
seem to be uncontroversial. The 't Hooft model on the othefamiliar from the two dimensionaXY model[29,30. Alter-
hand has been investigated only sporadically at finite temnatively, one may argue that the mean field approximation
peraturg/ 12,13, most recently in Ref{14], but hardly any- predicts symmetry breakdown and that this result is pro-
thing is known yet about its properties at finite den$itg].  tected against fluctuationsvhich would otherwise restore
Our point of departure is the following observation: Both the symmetry in two dimensiohby 1N suppression factors.
of these models possess light baryons whose mass vanishesthis sense, low dimensional largétheories are not only
in the chiral limit[15-17 (by light, we mean thaMg/N is  more tractable, but also physically more appealing than their
small on the relevant physical scal@his is of course no finite N counterparts. They bear more resemblance to the
accident, but a generic feature of models with broken chirateal, 3+1 dimensional world.
symmetry in %1 dimension—the baryons are topologically  This paper is organized as follows. In Sec. Il we briefly
non-trivial excitations of the Goldstone bosdfipion” ) review the conventional analytical treatment of the chiral
field. By contrast, the Gross-Neveu model with discrete chi-Gross-Neveu model at finite density and point out a certain
ral symmetry can only accommodate baryons whose masieficiency of this approach. In Sec. Il we repeat a similar
scales with the physical fermion mass and hence stays finitenalysis for the 't Hooft model, supplementing the analytical
in the chiral limit. Nevertheless, it has been argued that botimethods by numerical computations where necessary. In
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Sec. IV the Skyrmé31] type of approach to the light bary-
ons in both models is recallgd 6] and generalized to the Mg
case of baryonic matter in the strict chiral limit. In Sec. V we

then allow for a small symmetry breaking mass term andgecause of the similarity in structure between the relativistic
make contact with the sine-Gordon kink chain, the two di-Hartree-Fock approach and BCS the¢Bp], this is often
mensional analogue of the Skyrme cryq82]. This is fol-  referred to as the “gap equation.” The non-trivial solution

1+ —In—|=0. @)
T

A

Ng? mo)

lowed by a short summary and conclusions in Sec. VI.  (which has always lower vacuum enefgyelds the relation
2
Il. CHIRAL GROSS-NEVEU MODEL AT FINITE DENSITY: Ng |n£ =1 (5)
CONVENTIONAL APPROACH T mg

Let us first recall the standard treatment of the GrOSSWhich teaches us how the bare Coup"ng constant depends on
Neveu model at finite denSity. In the |argH|m|t mean-field the cutoff parameter, givemnol Recall that the Gross-Neveu
techniques become exact. Technically, they may be phrasgflodel shares with real QCD both asymptotic freedom and
in a variety of ways. We choose the language of relativisticdimensional transmutation; these properties are contained in
many-body theory, following Refs[16,17,33, which we  Eq. (5). Using this relation to renormalize the matter ground

find pal’ticulal‘ly intuitive for the pl’oblem at hand. Then the state energy density’ E(ﬂ)' we find (dropp|ng an irrelevant
vacuum, the baryon and baryonic matter are all described byarm — A 2/87)

a relativistic Hartree-Fock approaéfor baryons in the large

N limit this was first recognized in Reff34]). “Conventional 2 + Jm2+p?
approach” in the title of this section refers to translational §= - ;n_er %pf\/p?+ m?+ %mzm % :
invariance—we shall assume that the system is described by 0 ©®)
an interacting Fermi gas with prescribed, homogeneous den-
S|ty We Sha” fiI‘St deal W|th the lGrOSS'NeVeU m0de| W|th The energy is minimal providem Satisfies
continuous chiral symmetry {—€“?s¢) and Lagrangian
density[4] ps+ Jmé+ p%
min| ——— =0, )
_ 1. _ Mo
L=yiby+ SGL)>+ (Piysh)?]. D e for
As a matter of fact, the corresponding calculation would be 2py Mo
identical for the model with discrete chiral symmetry only m=0 or m=m, 1_Fo f 7) ®)
(¥— ys¢p), where theys term in Eq. (1) is omitted. The
results presented here are well known, but our aim is td'he corresponding energy densities are
criticize them in a novel way.
We denote the fermion density per col@r baryon den- & pf
sity) by pg=p;/7 (ps: Fermi momenturh At the mean N “or
field level, the fermions acquire a physical mas#hich has m=0
':joerlzseitdetermmed_self consistently. The ground state energy £ mé DMy pf ( mo)
y per color is given by _ =t | p<=]. (9)
N A1 T 2 2
m#0
2
fz _ZJAIZ % m2+ k2+ m (2)  The physical quark massé8) and the energy densitig€9)
N pr 27 2Ng? are plotted in Figs. 1 and 2. From these figures one might be

tempted to conclude that chiral symmetry is broken at low
whereA is an ultraviolet cutoff. The first term is just the sum densities and gets restored in a second order phase transition
over single particle energies for all occupied stdtee Dirac ~ at p;=mg/2. As is well known, this does not occur; rather
sea plus all positive energy states wi<p;), the second there is a first order chiral phase transitionpat mO/\/E.
term the usual correction for double counting of interactionThis can easily be inferred by inspection of the thermody-
effects familiar from the Hartree-Fock approximation. To namic potential of the Gross-Neveu mod@]. For our pur-
renormalize the theory, let us first consider the limit-0,  pose, the following physical reasoning is perhaps more in-

denoting the physical fermion mass in the vacuumipy structive: Let us compare the energy densiti@swith the
energy density for a system of sitedivided into two ho-
£ A2 dk m2 mogeneous regions(kizel) and Il (sizeL—1). In region |
—= —2J —mj+k2+ ) (3)  chiral symmetry is restored; it contains the extra fermions
N o 2m 2Ng? needed to get the prescribed average dengitg “MIT

bag” [36]). Region Il consists of the physical vacuum with
Minimizing £ with respect tom, yields the relativistic broken chiral symmetry, void of excess fermions. The mean
Hartree-Fock equation energy density obtained in this way is
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FIG. 1. Physical fermion mass as a function of the Fermi mo- FIG. 2. Energy density per color as a function of the Fermi
mentum in the Gross-Neveu model, in unitsno. momentum in the Gross-Neveu model. Solid curve, chirally sym-

metric solution (h=0); dotted line, broken chiral symmetrym(
according to Fig. }; dot-dashed straight line, mixed phase. Units of

£ L—1\m3 Lp? .
—_= = — — —_ 0"
N ( L )47r+2w|' (10
o€
Minimization with respect td yields 908 o: Mg (13
P~
_ \/Epr whereMy is the baryon mass. In the present calculatidmp,

| (11

mg is not the physical baryon mass, but the mass of an alleged
“delocalized” baryon. This is inherent in the translationally
invariant Hartree-Fock approach, i.e., the assumption that the
single particle orbitals are momentum eigenstates. Using Eq.
(13) we obtain in the homogeneous, single phase calculation,
Eq. (9), Mg=Nmy, consistent with a short range force and a
delocalized baryon. Thdphysically more viable mixed
phase approach, E¢L2), predicts a baryon mass lower by a
factor of 1A/2. This factor can readily be understood in terms
of the bag model. Indeed, it follows from E¢LO) that (E
=£L)

valid for p;<mgy/+/2, and hence the optimal energy density

2
€ My PfMg

N~ 4m 2

m

< .
[oF \/E

As shown in Fig. 2, this solution is lower in energy than the
homogeneous one; moreover, it yields the convex huff.of
It ends exactly at the first order phase transition pqnt

12

=my/\2 where all space is filled with one big bag. This m g2 B
should be contrasted to the scenario underlying Fig. 1 where Eg—Eo=NI o, . Q= (14)
the fermion mass decreases continuously. We thus recover 4m 2w I

the generally accepted mixed phase interpretation of the

Gross-Neveu model at finite density. Notice also that only " B=1, this expression can be interpreted as the energy of

the total size of regions | and Il matters, not how they ared single baryon, being its diameter. The first term is just the

subdivided; there could be baryon “droplets” as well. Alter- bag pres_suréthe difference between the energy density of

natively, the mixed phase curve in Fig. 2 with its linear de_the physical vacuum and that of. thg perturbative one; cf. Eq.

pendence omp; could have been inferred from a standard (9) for Ps=0], the second the kinetic energy Nfmassless

Maxwell construction. It is interesting that a very similar 9uarks. The bag sizeis found through minimization of the

qualitative behavior was found recently in-3 dimensions, €nergy(for B=1) to be

where the close relationship with the bag model was also

stressed1]. |— @
One important point to which we would like to draw the mgy

attention of the reader is the behavior &hearpg=p¢/m

=0. Since ultimately, at very low density, the fermionic mat- Inserting this result into Eq(14), one finds that the bag

ter problem must reduce to the problem of a single baryonpressure and the quark kinetic energy contributions are ex-

one would expect actly equal in this model and thMg=Nmy/ /2.

(15
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However, the Gross-Neveu model possesses bound bary- po(p) sin 6(p)cose
ons with lowest mas&lm, /7 (kink solution for the model . .
with discrete chiral symmetri4,33]) or even massless bary- PaP) | =~ 2 sind(p)sing | . (20
ons (model with continuous chiral symmetijj16]). These ps(p) coso(p)

binding effects are not IV suppressed and should be cor- ) _ _

rectly reproduced in a Hartree-Fock approach, in the low/(P) is the Bogoliubov anglee the global angle which lo-
density limit. They have obviously been missed here due t&ates the broken symmetry vacuum on the chiral circle
our tacit assumption of translational invariance. There is nghence it has n@ dependende The Bogoliubov angles are
good reason why such effects should not play a role at highéhe variational param.eters; this terminology stems once more
densities as well. Moreover, differences between the continffom BCS theory, which has the same formal structure as the
ous and discrete chirally symmetric Gross-Neveu modelgelativistic Hartree-Fock approach. We chooge=0, the
based on their different baryon structure and masses are né@lué reached if one lets the bare quark mass approach zero
at all captured by the “conventional” approach. Below, we Starting from a finite value. Then,

shall present a cure for this disease. Before that however, let

_ t
us first repeat the naive calculation for the 't Hooft model, p(p)=v(p)v'(p) (2D
}Nhere the corresponding results are not yet available in thg, the (positive and negative energartree-Fock spinors
iterature.
cosf(p)/2 —sind(p)/2
lll. 't HOOFT MODEL AT FINITE DENSITY, - siné(p)/2)’ - cosé(p)/2)’ 22

ASSUMING TRANSLATIONAL INVARIANCE
The vacuum expectation value of the Hamiltonian density
The 't Hooft model is defined as the largélimit of (1 reads
+1)-dimensional SUY) gauge theory with quarks in the

e & dp Ng? [ dp
fundamental representatidf]: “__ f -~ 2 f -
N 27 PCOSOP) ——~ | oo
— 1
L=yl y— trF | FH7. 16 dp’ coga(p)—06(p')]—1
Pb =Sk, (16) Xf dp’ cos 6(p) (pz)] 23
27 (p—p")

Since the light-cone approach originally used by 't Hooft to he fi is the Kineti h d th
determine the meson spectrum seems to be less conveniglifere the first term is the kinetic energy, the second the

for the vacuum, baryon and baryonic matter problems, w oulomb .interaction of the quarks. Varying With regpect_ to
shall work in normal coordinates. This approach was pio-N€ Bogoliubov angle®(p), the gap equation is obtained in
neered by Bars and GredB87] and further developed in the form
Refs.[16,17,3§. Common to all of these works is the fact

that the gluons are ggugeq awéwgial gguga_leaving be- psing(p)+ —/, — 0. (29
hind a theory of fermions interacting via a linear Coulomb 47 2w (p—p')?

potential. We refer the reader to the detailed derivation of the

Hartree-Fock approach in Ref§16,17] and immediately The integral has to be defined as a principal value integral;
proceed to the formulas which are relevant for our purposecf. Refs.[17,37,38. We shall also need the expression for
Let us first summarize the treatment of the vacuum. A centralhe quark condensate in the vacuum,

quantity is the single particle density matrix in momentum

space: ()= — Nf S—ZSin 0(p), (25

Nng dp’ sir{ (p) — 6(p")] _

1
p(P)==+v’po(p)—ivip1(p)+7°ps(p). (170  and the quark single particle energies,

2

Ng® [ dp’ cog 8(p)—6(p’

Its precise definition in terms of the quark fields is w(p)=pcoso(p)+ Tg 21 1 ((p) )ip )].
m p—p’

(26)

) 1
= | dxe "PX0| = 15(0)4(x)[0). (18
Pap(P) j xe (0] N z.: ¥ip(0)#1a(x)[0). (19 Although the gap equatio24) for the 't Hooft model must

be solved numerically, the value of the quark condensate
The Slater determinant condition characteristic for the(25) is known analytically, owing to an indirect determina-

Hartree-Fock approach, tion via sum rules and the 't Hooft equation for mes@d@);
it is
p?(p)=p(p)—p§(P) +p5(p) +pi(p)=1/4 (19 B N (Ng?| 2
=— —| == 2
holds manifestly in the parametrization (i \/1—2( 277) @)
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~0.80 ' ' ' p(P)=0(pi—|phu(p)u’(p)+v(p)v'(p)
=0(pi—[p)+O(|p|—ppv(pv'(p) (29

where we have used the completeness relation for the spinors

-0.20 1 in the second step. In the expression for the Hartree-Fock
_ ground state energy densit23), according to the second
(¥) line of Eq.(29), we must exclude the regidn-p;,ps] from
the momentum integrations and pick up an additional term
010 ] due to the change in the baryon density tr
£ f dp o ; Ng?
N=" | 2,9(pl=prpcosd(p)———
1 L L d d
%00 0.05 0.10 0.15 020 xf z—p i®(|p| PO(p’|=pr)
o
by
. 0046(p) —0(p")] Ng
FIG. 3. Quark condensate as a function of the Fermi momentum (p—p )2 o
in the 't Hooft model, in units of Klig%/27)2,
1
The single particle energi€26) are badly infrared divergent, XO(ps—[phO(|p'|—p)——- (30
a source of a long and ongoing debate in the literaftdes. (P—p")

To exhibit the divergence, we follow Reff17], isolate the
divergent part of the integral and regularize it by using a
finite box of lengthL:

Thls yields at once the following finite density generalization
of the gap equation:

. Ng?( dp’ sin 6(p)—6(p')]
dp’ 1 2y "_ _
wo(p) = pcosa(p)+—J P cos{a((p; g()pZ )]- psin6(p)+— J/ >~ 0(p'|-p1) )2
48 (28) whereas the condensate now becomes

This last constant diverges far— o but seems to be essen- — .
tial to account for confinement in such an independent par- ()= _Nf E0(|p|—pf)sm0(p).
ticle picture: The isolated quarks behave roughly as if they
had infinite mass. If one simply throws the infinite constantThe gap equatiori31) can easily be solved numerically for
away, as is often done, one gets an awkward sign change irariousp;. The resulting condensate is shown in Fig. 3. We
w(p) at some low momenturp (cf. Refs.[16,17,38) and find that it decreases monotonically with increasing density,
runs into serious inconsistencies in finite temperaturalisappearing at a critical Fermi momentum
Hartree-Fock calculationgl3,14. Fortunately, the constant NG| 12

:

(32

drops out of the calculation of color singlet mesons, as al- c
ready noticed by 't Hoofthis IR cutoff parametek is re- pf%o'lﬂ(ﬁ
lated to our box sizd. by N=12/wL; cf. Ref. [17]): The
infinite self-energy term is canceled by an equally infinite This behavior is strikingly similar to the corresponding result
piece in the Coulomb interaction. We also note in passingor the Gross-Neveu model depicted in Fig. 1, again suggest-
that if one employs a finite box as infrared regulator, one igng some phase transition with restoration of chiral symme-
unambiguously led to 't Hooft's treatment of the quark self- try at high density. Here we are not able to go on and discuss
energies rather than to Wu’s alternative regularization prewhether we are dealing with a first or second order phase
scription [40,41]. Since the emergence of the constanttransition. The reason lies in the following problem: If we
Ng?L/48 in the single particle energ§28), but not in the compute the energy densitg0) for the 't Hooft model, we
vacuum energy23), is rather important for our discussion discover that subtraction of the value @t=0 is not suffi-
and somewhat hidden in R€fL7], we have included a sim- cient to give a finite result. Unlike in the Gross-Neveu
plified version of the arguments underlying Eq&3) and model, the difference is still IR divergent. To be able to
(28) in the Appendix. proceed, we enclose the system once more in a box of length
After this review of the treatment of the vacuum, we arelL. We then find that the divergence is due to the last term in
in a position to include a finite baryon density, assumingEqg. (30) (the one which does not involve the Bogoliubov
translational invariance. Ip; denotes the Fermi momentum, angle$ which now contributes the following double sum to
we have to replace the density mat(&l) by the energy per color:

(33
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2 These authors point out that the potential energy in such
E Ng-L 1 o . i . :
Nl = > —. (34  models is invariant under local chiral transformations, unlike
dv 167" pel n#0(p-mel n the kinetic term which is only invariant under global ones.

o N ) This led them to the following variational ansatz for the one-
Here antiperiodic boundary conditions for fermions havepody density matrix of the baryon:

been employed in the box regularization, and correspond-
ingly the intervall is defined in the following way: p(x,y)=eXN7sp (x—y)e X5, (37)

I=[=ng,n] for B=2n;+1 odd, Here p,(x—Y) is the vacuum density matrix. If the vacuum

breaks chiral symmetry, one can generate with expression
(37) a new (exact or approximajeHartree-Fock solution

. . which breaks translational invariance but can carry non-zero
The re;ult(34) is even more alarming thar) the non—cor'wexb(,iryon number. As shown ifl6], the baryon density is
behavior of€ in the Gross-Neveu model, Fig. 2, due tolits given by

dependence. Adding quarks to the vacuum causes the energy

to increase by an infinite amount in the linkit—. Evalu- 1

ating the double sums in E¢34) for low values ofB, we pa(X) =t p(X,X) — py(0)]=—dyx(X), (39)
obtain information on the origin of this divergent behavior. ™

For B=1 (1=[0,0]) in particular, the calculated baryon
mass(to leading order irl.) is so that the baryon number coincides with the winding num-

ber of the chiral phasg(x):

I=[-n;—1n] for B=2n;+2 even. (35

Moo Ng’L
BT 48 |-

;6&){2 - 7. (39

(36) -
B:deX g iy (CN
0

This is the same relation @dg=Nm, in the Gross-Neveu

model except that the physical fermion mass is replaced bE/Notice thaty(L) — x(0) must be an integer multiple of

the infinite constanNg?L/48 characteristic of confinement; since otherwise bilinear fermion observables would no
cf. Eq.(28). For larger values oB, Eq.(34) does not simply |onger be periodid.For this topological reasoning it is again
yield multiples of the baryon mag86), but one finds “in-  recommendable to work in a finite box of sike The topo-
teraction effects” of the same order of magnitude as thqqgjcal interpretation of the baryon number also agrees with
mass. As far abl counting is concerned, this is still in agree- gyact results of Ref[17] which were not restricted to the
ment with Witten's analysis of baryons at laye34]. How-  |argeN limit. In the absence of an explicit quark mass term,

ever, since these delocalized baryons are presumably n@{e ground state energy obtained from Ef) is
very physical in the 't Hooft model, we refrain from further

discussing these effects. L1

Summarizing, the problems encountered in the Gross- E[p]:E[pv]+Nj dX =— (dex)?. (40)
Neveu model with translationally invariant baryonic matter o 2w
again show up in the 't Hooft model, although in a much
more severe form. The physics reason is clear: In the Gross-his result holds independently of the specific model, since
Neveu model the cost of distributiny fermions over the the potential energy does not contribute Epp]—E[ p,].
whole space is governed by their physical mass; in the 'Differences between various models are of course still
Hooft model, due to confinement of quarks, the correspondpresent in the vacuum density matpy in Eq. (37) but do
ing quark effective mass diverges with the volume. On thenot manifest themselves in the baryon energy. Minimizing
other hand, it is known that both models do possess mas&] p] with respect toy yields the freg(statio bosonic equa-
less, delocalized baryons in the chiral limit. Evidently, thistion
has to be accounted for, and we conclude that the naive,
translationally invariant Hartree-Fock approximation fails 2x(x)=0, x(L)=x(0)+=B (41)
miserably in describing the properties of baryonic matter.

with the solution
IV. MASSLESS BARYONS AND BARYONIC MATTER
IN THE SKYRME PICTURE

X X°> . (42)

: . o X(X)=7TB(
The existence of massless baryons in the chiral limit of L
the 't Hooft model has been demonstrated by bosonization

[15,40, variational [16], and light-cone[17] techniques. Herex, is a parameter which reflects the breakdown of trans-
These exotic objects are characteristic for +(I)- lational invariance. The baryon density jisindependent
dimensional models with broken chiral symmetry and, ag pg(x)=B/L] as follows more generally from axial current
such, also present in the chiral Gross-Neveu model. A pareonservation in the chiral lim[tL6]. However, the scalar and
ticularly illuminating derivation is due to Salcedo al.[16]. pseudoscalar condensates acquire a non-tsvd@pendence:
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cp(k’)(x) (solutions of the first quantized Dirac equation with
Hartree-Fock potentiglthe Skyrme type baryo(87) admits
the density matrix

]
05

@ir’*y) o
05

p(x,y) =™/ ol (x) ol T(y)e ™5/t (45)
k

where

ol (x) =¥ (k), (46)

and thek are discrete momenta appropriate to the interval of
lengthL. We first observe that the chiral phase factor splits
_ _ the momenta of the right- and left-handed components into
FIG. 4. The complex condensalg) +i(yiysy) for the single  k+ 7/ Since the transformed single particle wave func-
baryon in units of(),, as a function ok in units of L (chiral  tjons are no longer momentum eigenstates, translational in-
limit). variance is lost. Second, we note that the presence of an
infinite Dirac sea is crucial for getting the extra baryon
(Zz//):(Zw)vcos[ZwB(x—xo)/L], chargg, rather th_an a single valgnpe state. If the sum over
occupied statek in Eq. (45) was finite, we would trivially
_ _ conclude thatp(x,y) and p,(x—Yy) belong to the same
(Piys)=—(ih),SiIN2wB(X—Xg)/L]. (43)  baryon density[ pg(x) =trp(x,x)]. Because of the infinite
number of occupied states, however(x—y) develops a
Since fluctuations of¢(x) describe the massless Goldstonesingularity atx=y, and one has to do a more careful point
boson field, the baryon picture emerging here is very similasplitting in order to compute the baryon density. The diver-
in spirit to the Skyrme mod¢B1]. The fact that the baryon is gence is due to the UV region and therefore determined by
a topological soliton will become somewhat clearer once weéhe free theoryfor more details, cf. Ref.16]):
include a small bare quark ma&ee Sec. Ybut this solito-

nic character also holds in the strict chiral limit considered limtr p(X,y) — py(X—Y)]
here. x—y

We can now discuss the baryon as well as baryonic matter 1 iy 1 1
from this point of view. The single baryoB& 1) is spread = Iimtr( éw275/L(_5(z)_ _5> _ _5(2)} =
out over the whole space, the chiral phag®) making one 2—0 2 2mz) 2 L
turn with constant speed to minimize the kinetic ene(fgig. 47)
4). The baryon energy is, using Eq4.0)—(42),

The result 1 is the baryon density foB=1. This mecha-

nism is strongly reminiscent of the calculation of anomalous
(44) ; : _

current commutators, for instance in the Schwinger model.

The extra baryon number does not reside in a valence level

This confirms that indeed the baryon becomes massless ftfided on top of the Dirac sea but somehow emerges from the
the limit L—oo. Incidentally, expressiof44) is identical to bqttom O.f _the Dirac sea 'f. one modifies all the levels
the kinetic energy ofN non-interacting, massless quarks in Sl'ghtly._'t IS a vacuum pol_arlzgtlon effect.

the lowest momentum state available for antiperiodic bound- E_quu_:)ped with this exotic kind of baryon, we can now
ary conditions. Nevertheless, we are not dealing with the&@Sily find the ground state of the system for any baryon
free, chirally symmetric theory, but with the broken phase Ofd_ensny. As discussed above and illustrated in Fig. 4, the

an interacting theory where the quarks are massive or evetind!€ baryon consists of one turn of a “chiral spirgpa-
confined. rametrized byyx(x)] over the total spatial length of the

It may be worthwhile to contemplate the structure of theSyStem—admittedly a somewhat elusive object in the ther-
baryon for a moment from the point of view of the relativ- Modynamic limit. A finite densitypg=B/L=p;/m on the
istic Hartree-Fock approximation. In chirally non-invariant Other hand implies that
models one would suspect that the baryon comprises the

E—NTr
B~ Z

filled Dirac sea plus one filled, positive energy valence level. X(X)=ps(X—Xo), (48)
This is exactly what one finds analytically in the non-chiral
Gross-Neveu mode[33] or numerically in QCL with i.e., one full rotation over a physical distance which has a

heavy quark$16]. The picture implied by the ansat27) in  well-defined limit forL— oo, namely 2p5. The baryon den-
the chiral limit is rather different though. Denoting the nega-sity remains constant in space, but the condensates are
tive energy single particle orbitals in the Dirac sea bymodulated as
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FIG. 5. Same as Fig. 4, but for baryonic matter. Each full turn of —0.1 . . . ;
the spiral increases the baryon number by one unit. 0 0.2 0.4 0.6 0.8 1
i o p
(W)= (dh)\cosl 2pe(X—Xo), d
. o FIG. 6. Same as Fig. 2Gross-Neveu modgl Here we have
(Piysh) = —(Pih)Sin2pg(X—Xo). (49)  included the energy density of the Skyrme crystal type of state

(dashed ling the true ground state.
They can be viewed as projections of a “chiral spiral” of

radius|(¢),| onto two orthogonal planes; see Fig. 5. Thisaverage to zero. In this sense, one might argue that chiral
state breaks translational symmetry; it is a crystal. In fact, iSsymmetry gets restored at high density, although not in the
may be viewed as the simplest possible realization of the ol@aive way suggested by Fig. 2.
idea of a Skyrme crystdB2], here in the context of largd Finally, we remark that the “chiral spiral” ground state
two-dimensional field theories. One cannot tell where ondor fixed baryon density still preserves one continuous, un-
baryon begins and ends—each full turn of the spiral containroken symmetry, namely the combination of translation and
baryon number 1. Only the condensates reveal that translghiral rotation generated by +p;Qs (P is the momentum
tional symmetry has been broken down to a discrete subeperator, and)s is the axial charge One would therefore
group. The energy density of this unusual kind of “nuclearpredict that random phase approximati@®PA) excitations
matter” is simply (after subtracting the vacuum energy den-on this ground statg16,17 (or mesons in nuclear matjer
sity) will have only one collective, gapless mode, a hybrid of a
“phonon” and a “pion.”

— = (50
N 2 V. NON-VANISHING BARE QUARK MASSES

Surprisingly, this is exactly what one would expect for a free  In Ref.[16] the Skyrme picture of the baryons in the 't
Fermi gas of massless quarks although Ef) holds for  Hooft model and chiral Gross-Neveu model was developed
interacting theories where the vacuum has lower energy duter small, finite bare quark masses, using the expression in
to chiral symmetry breaking. In Fig. 6 we compare the en-Eq. (37) as a variational ansatz. For a single baryon, these
ergy density for this state to the ones discussed above for thuthors have tested the accuracy of their procedure against
Gross-Neveu model, where translational symmetry had beeifie full, numerical Hartree-Fock calculation on a lattice. The
assumed. The crystal is always energetically favored, the deesults agreed perfectly at,=0.05 and were still surpris-
pendence orp; is now convex, and there is no trace of aingly good atm,=0.20, in unlts of Ng?/27r. This makes it
phase transition, neither first nor second order, at any dervery tempting to speculate that the corresponding variational
sity. The horizontal slope at;=0 correctly signals the pres- calculation can also give us a reliable picture of baryonic
ence of massless baryons and eliminates the abovenatter at finite density, away from the chiral limit. As com-
mentioned problems with the spurious massive, delocalizegared to the formulas in the preceding section, the only
baryons. We cannot even draw the corresponding picture fathange is the fact that the bare mass term now also contrib-
the 't Hooft model, simply because in this case the quarkutes to the energy functional E0):

Fermi gas is infinitely higher in energy than the Skyrme

crystal forL—o. Nevertheless, all the results for baryonic L 1
matter discussed in this section apply to the 't Hooft model - f _ 2
as well Elp]=Elp,J+N | dx]5—(dxx)

In the high density limit the oscillations of the conden-
sates become more and more rapid. If we are interested only
in length scales large as compared tp;1/the condensates

mq<¢lﬂ>v

+ ———(cos2y— 1)] (51)
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‘ ' ‘ is our definition ofp; for the case of broken translational
symmetry. We then first have to solve the transcendental
equation

ko

o = 2KK (K (56)

for k whereK (k) is the complete elliptic integral of the first
kind. The sine-Gordon kink crystal is then given by the fol-
lowing solution of Eq.(52):

m m,,
X(X)=§+aﬁf§,k), §=T(X—Xo) (57)

[am(£,k) is the Jacobian elliptic amplitude functibrFrom
this, we can express the baryon density and the various con-
densates in terms of further Jacobian elliptic functions

FIG. 7. Solid curve, spatial oscillation of the baryon density in (dn,sn,cn) as follows:
the regimep;<m_,; circles, baryon density for a single baryon.

T — Xy

1 m
— = = dex(X)=— dn(£,k),
Here the condensate/ ), refers to the vacuum in the chiral Pe(X) T xX(X) wk n(&:k)
limit. Varying with respect tgy(x) then gives the static sine-
Gordon equatio42] (J¢)=<E¢//)Vcos 2¢(%)
2mmy{ Yib), = — () JCrR(£,K) —srR(£,K)],
Pyt ™ T\it/ﬂ/f) sin2¢=0, (52 (gip)len(§,k) (£,k)]

(Wiys)=—(P)ysin 2x(x)

from which one reads off the “pion” masswo dimensional

version of the Gell-Mann—Oakes—Renner rela{id]) = (Y 2sr € k)en(£K). (58)
b Here¢ is as defined in Eq57). Finally, the energy divided
(i)
m?2 = —4mm, N (53 by the volume of this kind of matter is given by
The B=1 baryon can be identified with the familiar kink € _m.p|8 1
solution of the sine-Gordon equation, N 472 kE(k)+4k 1 k2 Ko (s (59
x(x)=2arctarie™=* o), (54 E(k) denoting the complete elliptic integral of the second
. kind.
with mass Let us now illustrate these results in two regimes of inter-
est, namely at low and high density. At low density; (
MB:szW- (55) <m,), k in Eq. (56) approaches 1 exponentially, and the

baryon density features a chain of well-resolved lumps
whose shape is determined by the single kink solutfeg.
Since the single baryon has been discussed in detail in ReT). Likewise, the condensates behave like those of a single
[16], let us immediately turn to multi-kink solutions as can- paryon: (yp) changes from the vacuum value outside the

didates for baryonic matter. Luckily, the sine-Gordon kink : Lo . - .
crystal has already been studied thoroughly in the Iiteratureb"iryons o its negative in their center wherégléysy) is

I ) ) peaked in the surface region of each baryéigs. 8, 9.
f'rsh'nl ?Ol'thtgtf physmEM,ig a_nd more r;agentl)l;.as”_a toy These condensates are projections of the distorted “chiral
model for the Skyrme crystgél, in terms of Jacobi elliptic spiral” shown in Fig. 10. The energ{p9) for low densities
functions and elliptic integralgt7]. We take over the results behaves as

from Ref.[46] which is close in spirit to the present study

although the authors did not have in mind two-dimensional

largeN field theories. Adapting the formulas of this work to S~N 2m,py
our notation, the following steps allow us to generalize the w2
Skyrme crystal of the previous section to small, finite bare

quark masses: Leh, denote the mass of the Goldstone bo-showing the expected connection to the baryon mass. At
son, Eq.(53), andpg=p; /7 the average baryon densiithis  high densities |p;>m_), k approaches 0 like

=Mgpg, (60)
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1
05
($iv*p) o
05

FIG. 10. lllustration of the distorted “chiral spiral” for baryonic
5 -z matter at non-zero bare quark mass.

FIG. 8. Solid curve, spatial oscillations of the scalar chiral con-baryon density wiggles around a constant value, reflecting
densate in the regimg;<m,_ ; circles, scalar chiral condensate for the strong overlap of the baryons, and can be approximated

a single baryon. at high density by
Mo il s LM 63
k”a- (61 PB(X)’“; ~ 2\ SiN“ps(X—Xop) |- (63

Thus £ in Eq. (57) becomesp;(x—X,). Moreover, fork  The behavior of the baryon densjig(x) as one increasgs
—0, the Jacobian elliptic functions ak),sn( k), (i.e., the mean densitys illustrated in Fig. 11. In the chiral-
cn(é,k) are known to reduce to the argumenand the or-  or high-density limit (,/ps—0), pg(x) eventually be-
dinary trigonometric functions sinand cog, respectively. comesx independent. This provides us with another way of
We thus recover the results for the simple chiral spiral inunderstanding the structure of matter described in the previ-
Sec. IV[the parametex, has to be readjusted to take care of ous section, namely as arising from a chain of very extended,
the shift by 7/2 in Eq. (57)]. The energy in this case is strongly overlapping lumps.

approximately Finally, let us come back to the question of validity of the
variational calculation based on the chirally modulated

& pr me vacuum density matrix37), which we have left open so far.
N 27 81 (62 At very low densities when the individual baryons are far

apart, we can presumably rely on the numerical results of

Ref. [16] since the interaction effects between the baryons

The condensates look very much like the sin and cos func: . .
tions of the massless case and need not be plotted. Tc}%ecome small(as discussed in Ref416] and [46], the

aryon-baryon interaction is repulsive and falls off exponen-
tially with the pion Compton wavelengthAt high densities,

on the other hand, one would expect that a finite quark mass
cannot make much difference as longms m,,. This takes

1

0.5
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o r— Ty
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FIG. 9. Same as Fig. 8, but for the pseudoscalar chiral conden- FIG. 11. Spatial dependence of baryon density as it evolves with
sate. increasing average densifgr Fermi momentum in units ofm,, .
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us back to the massless case discussed in Sec. IV. In thi®st any potential energy in addition to what is already
limit, in turn, it is easy to convince oneself that the calcula-stored in the vacuum, one does not have to pay the expected
tion becomes exact in the sense that one gets a true solutigiigh price for delocalizing quarks. The energy density of
of the Hartree-Fock equation. Thus for instance for the 'tbaryonic matter is identical to that of a free Fermi gas of
Hooft model, the massless Hartree-Fock equation reb@ls  massless quarks, in spite of the presence of interaction ef-
fects. The same picture applies to the chiral Gross-Neveu as
well as to the massless 't Hooft model and should be generic
for all chiral largeN models. The baryon density is constant
in space as a consequence of axial current conservation, and
xf dy|X—y|paﬂ(X,y)(p(Bn)(y)_ (64) we have verified that the whole scenario is exact to leading
order in the 1N expansion. In a slightly more speculative
vein we then investigated modifications due to a small bare
quark mass. Here our task was greatly facilitated by the fact
that we only needed to pull together two independent inves-
tigations, the one of Ref.16] of the single baryon in field
theoretic models with the one of R¢#6] of the sine-Gordon
kink crystal, both inspired in some way by Skyrme’s original
fdeas. As a result, we have arrived at a rather comprehensive

?:Waggggge lielng _It_nztsg';esg‘rgIem%?]rtt'cfe;?her[gy %e.tr? thepicture of matter at low and high density on the scale of the
b Mon ™ Ps - gu 9 ugn | pion Compton wavelength. The crystal structure now be-

chiral Gross-Neveu model or in any field theory where thecomes more conspicuous since also the baryon density dis
interaction term has a local chiral invariance. This proves P A y

that the result becomes exact in the chiral liftd leading plays a Iattice.of individual Iumps: As an addit?onal bonus,
order in the 1IN expansion, of courseand makes plausible we have obtained a purely classical, mechanical model of

the hypothesis that it also correctly describes the high densitjyat is going orithe sine-Gordon equation describes a chain
regime for finite quark masses as longm@s m.. . of coupled pendulums, the quark mass playing the role of
gravity). Given our starting point, namely the problem of

baryonic matter in two dimensional quantum field theories
such as the Nambu—Jona-Lasinio model or QCD, this is

In this paper, we have addressed the problem of baryonitather amusing.
matter in a certain class of exactly soluble field theoretic It is noteworthy that a similar chiral structure of fermionic
models, namely chirally invariant, largs, interacting fer- matter has been reported previously in a variety of models
mion theories. We started out from a Seeming]y innocuougifferent from the present ones. This indicates that the basic
and well understood problem, the chiral Gross-Neveu modelesults are more generally valid than our derivation might
at finite density, and identified one remaining weak spot: Théuggest. We mention here in particular the early work on the
energy density for baryonic matter in the standard Hartreetassive Schwinger modgl8] and the more recent work on
Fock approach does not have the correct low density limithe massless Schwinger model with inert background charge
which can be predicted from the known baryon spectrum of19] and QCI with a finite number of colors and flavors
the theory. The origin of this problem, which is not cured by[20]. Even more surprising are perhaps quite a number of
a mixed phase approach conceptionally related to the ba’gaeculations about spatially inhomogeneous chiral conden-
model, is evidently the assumption of translational invari-sates with the same wave number as in our case, butih 3
ance. Whereas this inconsistency can perhaps be ignored @imensions, in the context of pion condensafi4], largeN
the Gross-Neveu modéhs it has been so far, to the best of QCD [21-23, or effective chiral model$25]. In some of
our knowledgg in QCD,, it becomes fatal: Because of con- these works, the analogy with the Overhauser effect and
finement, the analogous calculation yields an infinite energypPin-density wavegpairing of particle holes on opposite
for delocalized baryons or quark matter. This is unavoidabléides of the Fermi spherdias been stressed. Although the
if one is careful in treating the infrared behavior of the quarklanguage used is quite different from ours, there is no doubt
single particle energies. These findings have prompted us fhat we are dealing with the same physical phenomenon.
think more thoroughly about the structure of baryons in such As a last remark, we wish to comment on the original
models and possible implications for the matter problem. wésross-Neveu model with only discrete chiral symmepyre
found that it takes only very little effort to generalize a pre- (4)? interactior]. Most of the studies of the phase diagram
vious Skyrme type treatment of the single, massless baryofor the Gross-Neveu model have in fact been performed for
to the case of baryonic matter. In the chiral limit, an ex-this model, and one might think that our analysis does not
tremely simple, yet non-trivial, picture emerges: Both thehave anything to say about it. However, the criticism of Sec.
baryon and dense matter are described by a spatially varying also applies here. Since the non-chiral Gross-Neveu model
chiral angle which is best characterized as a “chiral spiral” has(massive bound baryons, the low density behavior of the
with constant helix angle. The number of windings within energy obtained in standard Hartree-Fock approximation
the full space of length measures the number of baryons in cannot be correct, and the phase diagram may also have to be
the box. Since, by construction, this kind of state does noteconsidered.

. J Ng?
0nel (X)= =i( ) ap 7 @ (0 +

Upon substituting

P (x)=(e7Prrs) ol (x) (65)

as we are instructed to do by the anseZ), we discover
that ¢ does indeed solve the Hartree-Fock equation, th

VI. SUMMARY AND CONCLUSIONS
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APPENDIX: HARTREE-FOCK SINGLE PARTICLE
ENERGIES IN THE 't HOOFT MODEL _ E

5 dpgSinO(p), (A4)
The Hamiltonian for the massless 't Hooft model in the

axial gauge has the form the vacuum expectation value of these two contributions are

found to be

2 1 Ng°L
(O[HM]0Y=ND, [—%(p%—i cosd(p) + g }
P

2
H=3 T (p+ 12l (p)a(p) ~b(p)bi(p)] e
' Ng?L . 1
g2L jij(njji(—n) | AL <0|H(2)|O>:N% - 302 & ?
162 ij’n#0 n?

X{1+cog 6(p)—a(p+n)l}]|. (A5)

Here we have regularized the theory by enclosing it in a box 5 ) o . .
of length L with antiperiodic boundary conditions for the TheNg-L/48 term in the 1-body part is just minus twice the
fermions. Note that this form is only valid in the limit 1 Zterm in the 2-body part (remember thaty,.o1/n

—.oo [14]. The a,(p),bi(p) denote right- and left-handed — ™ /_3). Hence, in the sum of both terms, the Coulomb en-
quark operators, respectively, and the currgp{s) can be ergy involves the combination

taken in the UN) form at largeN:

1
p{coiﬁ(p)—é’(lyr nJ-1; (A6)

S = t A t , where the infrared divergence has been tamed since the de-
By % [aj(Pai(p+m)+bj(p)bi(p+m)]. (A2) nominator and numerator both vanishrat 0. This cancel-
lation between quark self-energy and Coulomb potential is
similar to what happens in the meson equation of the 't Hooft
It is important to understand that the Coulomb term stillmodel. The continuum limit then yields E@®3). It is impor-
contains one- and two-body operators which can be disertant to distinguish between one- and two-body operators
tangled by normal orderingup to 1N correctiong as fol-  here, because they enter with different relative weights in the
lows: single particle energies and in the total energy. Indeed, in the
Hartree-Fock approach, if the single particle energies are de-
composed according to their 1- and 2-body contributions as

> §i(Mii(=m=NX [al(p)a(p)+b](p)bi(p)] w(p)=w(p)+w(p), (A7)
! " then the ground state energy is

_ Toa(q)al _
i%q[aj(p)a‘(qm'(Q+n)a'(p+n) (O|H|0)=N>, (w(1>(p)+%w<2)(p) . (A9
p

+al(p)bj(q)b](q+n)a;(p+n
H(PIbj(a)bitatn)ai(p+n) The factor of 1/2 is necessary to avoid double counting of the

+b;’(p)aj(q)ai’r(q+n)bi(p+ n) 2-body interaction term. By comparison with E@\5), we
+ + can turn this observation around and simply read off the
+bj(p)bj(a)bi(q+n)bi(p+n)]. single particle energies. We find in this way
(A3) w2 1 Ng2L
@ (p)=— 1| P+ 5| cosd(p)+ — o=,
The Hamiltonian can be decomposed correspondingly into 5
one- and two-body operators. Using the basic vacuum exXpeg;(2)(p) = — Ng'L 2 i{1+cos{ 9(p)— O(p+n)]}. (A9)
tation values 1672 770 n?
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Adding up the two contributions ta(p), the “1” term is

PHYSICAL REVIEW D 62 096002

derivation gives the same result as the more elaborate ap-

now canceled instead of changing sign. This is the reasoproach of Ref.[17], where a single particle Hartree-Fock

why in the continuum limit we get the badly infrared diver-
gent expressior{26) for the quark energies. This shortcut

Hamiltonian was first identified by commuting with the
quark operators and subsequently diagonalized.
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