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q-deformed conformal quantum mechanics

Donam Youm*
Theory Division, CERN, CH-1211, Geneva 23, Switzerland

~Received 19 July 2000; published 9 October 2000!

We construct aq-deformed version of the conformal quantum mechanics model of de Alfaro, Fubini, and
Furlan for which the deformation parameter is complex and the unitary time evolution of the system is
preserved. We also study the differential calculus on theq-deformed quantum phase space associated with such
a system.

PACS number~s!: 11.25.Hf, 03.65.Ca, 04.60.Nc, 04.90.1e
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I. INTRODUCTION

It has long been suggested that the description of sp
time based on the usual notion of geometry may not be v
at the Planck scale, and perhaps the spacetime becomes
commutative or may show a non-Archimedean structure
such a small length scale. It has therefore been believed
the noncommutative description of spacetime might be
evant to a quantum theory of gravity. It is a generic prope
of a noncommutative space that the notion of a point has
meaning but the lattice structure of spacetime emerges du
the uncertainty in the measurement of the particle positio
space. So in some cases such a lattice structure of spac
at the Planck scale eliminates the ultraviolet diverge
problem. Recently, there has been active investigation
noncommutative theories after it was found that noncomm
tative spacetime emerges naturally in M theory compacti
in the presence of constant background three-form field@1#
and in the world volume theory of D-branes with nonze
constant Neveu-Schwarz~NS! B field @2,3#.

It is the purpose of this paper to study the noncommu
tive generalization of the conformal quantum mechanics
de Alfaro, Fubini, and Furlan@4#. In Ref. @5#, it is observed
that such a conformal quantum mechanics model can be
alized as a special limit of the mechanics of a mass
charged point particle in the near-horizon background of
extremal Reissner-Nordstro¨m black hole, indicating the pos
sible relevance of the conformal quantum mechanics mo
to the quantum theory of black holes. Furthermore,
fact that theSO(1,2)>SU(1,1) isometry symmetry of the
AdS23Sn near-horizon geometry of the extremal Reissn
Nordström black hole coincides with theSL(2,R)
>SU(1,1) symmetry of the conformal quantum mechan
indicates that conformal quantum mechanics may have s
relevance to the poorly understood AdS2 one-dimensional
conformal field theory (CFT1) duality.

In the case of one spatial dimension, it is unclear wha
meant by noncommutative space~in this paper we assum
that the time coordinate is a commutative variable!, since a
coordinate always commutes with itself. A possible way
introducing noncommutativity for such a case is by follo
ing Manin’s proposal@6–8#, which is based upon a differen
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tial calculus on a quantum plane@9#, that the Heisenberg
algebra can be modified throughq deformation of phase
space. Manin’s proposal was first applied to some nonr
tivistic dynamical systems in Refs.@10,11#. Following this
line of approach, we shall construct aq-deformed version of
the conformal quantum mechanics model of Ref.@4# and
study its properties.

The paper is organized as follows. In Sec. II, we revie
the relevant aspect of conformal quantum mechanics. In S
III, we discuss theq-deformed Heisenberg algebra with
complex deformation parameter and with unitary time ev
lution of the system, and apply this to construct aq-deformed
version of conformal quantum mechanics. In Sec. IV,
study the dynamics of the system and from this we const
a differential calculus onq-deformed phase space.

II. CONFORMAL QUANTUM MECHANICS

In the following, we briefly summarize the conforma
quantum mechanics studied in Refs.@4,12,13#. The Lagrang-
ian density for the system is given by

L5
1

2
mẋ22

g

2x2 . ~1!

The action is invariant under the followingSL(2,R) confor-
mal algebra, spanned by the HamiltonianH, the dilation
generatorD, and the special conformal generatorK:

@D,H#52iH, @D,K#522iK, @H,K#52 iD. ~2!

Here, theSL(2,R) generators are explicitly given by

H5
p2

2m
1

g

2x2 , D5
1

2
~px1xp!, K5

1

2
mx2. ~3!

The problem with the above HamiltonianH is that its
eigenspectrum is continuous and bounded from below
without an end point or ground state, and its eigenstates
not normalizable. Such problem was circumvented@4# by
redefining the Hamiltonian as a linear combination of t
aboveSL(2,R) generators with a suitable condition on th
coefficients. Particularly, the following choice is found to b
convenient@4#:

L05
1

2 S aH1
1

a
KD , ~4!
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DONAM YOUM PHYSICAL REVIEW D 62 095009
where the introduction of the constanta leads to a break-
down of scale invariance. Then, the potential term inL0 has
a minimum and the energy eigenstates become discrete
normalizable. Furthermore, along with the linear combin
tions

L615
1

2 S aH2
1

a
K7 iDD , ~5!

L0 satisfies the followingSL(2,R) algebra in the Virasoro
form:

@L1 ,L21#52L0 , @L0 ,L61#57L61 . ~6!

III. q DEFORMATION OF CONFORMAL
QUANTUM MECHANICS

For ordinary commutative quantum mechanics in t
spacetime dimensions, the Heisenberg algebra of observa
can be defined as the quotient

H~ I ,x,p!5C@ I ,x,p#/J~ I ,x,p!, ~7!

whereC@ I ,x,p# is a unital associative algebra freely gene
ated by the identityI, the position operatorx, and the canoni-
cal momentum operatorp, andJ(I ,x,p) is a two-sided ideal
in C@ I ,x,p# generated by the following relation correspon
ing to the Heisenberg rule:

xp2px5 i I , ~8!

where we are using units in which\51. The operatorsx and
p are assumed to have the following property under the
tilinear anti-involution operation inC@ I ,x,p#:

x* 5x, p* 5p. ~9!

The formalism of Manin’s quantum space@6–8# can be
applied to the above Heisenberg algebra by making us
the q-deformed differential calculus developed in Ref.@9#.
Namely, one can deform the above Heisenberg algebra
deforming the usual Heisenberg rule~8! as follows:

xp2qpx5 i I , ~10!

where the deformation parameterq can be either complex o
real. First, ifq is a complex number, the consistency of r
lation ~10! along with the Hermiticity condition~9! on x and
p requires thatuqu51. According to Ref.@10#, which first
studiedq-deformed classical and quantum mechanics~with a
complex deformation parameterq) of a particle in one-
dimensional space and whose work was later generalize
the relativistic case in Ref.@14#, the parameters of the dy
namics such as the inertial massm of the particle do not
commute with the generatorsx andp of the algebra and ther
is no unitary time evolution of the system at the quant
level. Later, it was found@15–17# that to achieve unitary
noncommutativeq dynamics on the quantum level, i.e., fo
the Heisenberg equation of motionV̇5( i /\)@H,V#1] tV to
be satisfied after theq deformation, one has to introduc
additional generators into the algebra. Second, ifq is a real
09500
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number,x andp cannot both be Hermitian, as can be seen
applying the involution operation to Eq.~10!. So one has to
assume that only one ofp andx is Hermitian and the invo-
lution of the other is a separate operator@11#. One can alter-
natively describe theq-deformed Heisenberg algebra with
realq by redefining the generators, say, in terms of the ab
generatorsp, x, andx* so that new momentum and positio
operators can be both Hermitian, as was done in Ref.@11#. In
such a case, an additional generator~expressed in terms ofp,
x andx* ), which approachesI asq→1, other than the Her-
mitian position and momentum operators, is introduced i
the algebra. Such an alternative algebra can be obtained@18#
also by making use of the Leibniz rule]xx511qx]x for the
differential calculus in the one-dimensionalq-deformed Eu-
clidean spaceRq

1 . In the present paper, we shall apply th
first approach for studying theq-deformed generalization o
the conformal quantum mechanics of Refs.@4,12,13#.

Theq-deformed Heisenberg algebra of observables wit
complex deformation parameter is given by the followi
quotient:

H5A@ I ,x,p,K,L#/J~ I ,x,p,K,L!. ~11!

In the case of a particle under the influence of a nontriv
potentialV, with the assumption of the proper limit of noq
deformation, the two-sided idealJ is defined by the follow-
ing q deformed Heisenberg relations or the Bethe ansatz
ordering rules:

xp5q2px1 iqL2, xL5jLx, pL5j21Lp,

xK5j22Kx, pK5Kp, LK5j21KL. ~12!

Here, the generatorsK and L are assumed to be invertibl
and time independent, and one can consistently~with the
aboveq-deformed Heisenberg relations! impose the follow-
ing reality conditions on the generators under the involut
operation:

x* 5x, p* 5p, K* 5K, L* 5L, ~13!

along with uqu515uju.
In the q-deformed quantum phase space described ab

the Hamiltonian~3! of the conformal quantum mechanics
Ref. @4# is deformed in the following way:

Hj5p2K21
mg

j4 x22K2L4, ~14!

where we obtained this form of the Hamiltonian from th
requirement of the consistency of the Hamiltonian form
the Heisenberg equations with theq-deformed Heisenberg
relations~12!, namely, the requirement of the unitary tim
evolution of the system. To further impose the naturaln
condition that the velocityẋ be linear in the momentump in
the Heisenberg equation of motionẋ5 i @Hj ,x#, one has to
further letj5q, which we assume from now on. Note that
the limit of noq deformationK andL belong to the center o
the algebra. The requirement of irreducibility of the repr
sentation level implies that they should be proportional to
9-2
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q-DEFORMED CONFORMAL QUANTUM MECHANICS PHYSICAL REVIEW D 62 095009
identity I when j5q51. We chooseK5(1/A2m)I and L
5I when j5q51 so that the Hamiltonian~14! reduces to
the form ~3! in the limit of no q deformation.

The dilation generatorD and the special conformal gen
eratorK in Eq. ~3! of theSL(2,R) algebra can beq deformed
in such a way that the commutation relations~2! of the
SL(2,R) algebra continue to be satisfied after theq deforma-
tion. Suchq-deformedSL(2,R) generators are given by

Hq5p2K21
mg

q4 x22K2L4,

Dq5
1

2
~qpx1q21xp!L22,

Kq5
1

4q4 x2K22L24. ~15!

By using theq-deformed Heisenberg relations~12! with j
5q, one can show that theseq-deformed generators satisf
the following commutation relations:

@Dq ,Hq#52iHq , @Dq ,Kq#522iKq ,

@Hq ,Kq#52 iDq . ~16!

Just as in the case of undeformed conformal quantum
chanics, one can redefine the generators through linear c
binations so that the resulting new generators satisfy
SL(2,R) algebra in the Virasoro form. Theq-deformed
forms of theSL(2,R) generators~4! and ~5! are given by

L0
q5

1

2 S aHq1
1

a
KqD ,

L61
q 5

1

2 S aHq2
1

a
Kq7 iDqD , ~17!

where Hq , Dq , and Kq are defined in Eqs.~15!. It is
straightforward to show that theq-deformed generators~17!
still satisfy Eqs. ~6!. It might be possible to construct
q-deformed version of the de Alfaro–Fubini– and Furl
conformal quantum mechanics in such a way that the g
erators instead satisfy theq-deformed commutation relation
and thereby theSL(2,R) algebra~6! is deformed to the quan
tum SLq(2,R) algebra. Theq-deformed version of the sym
metry group, the so-called quantum group, of a dynam
system was originally studied in Refs.@19,20# within the
context of the quantum noncommutative harmonic oscilla
with q-deformed creation and annihilation operators.

IV. DIFFERENTIAL CALCULUS ON THE q-DEFORMED
PHASE SPACE

Note that the aboveq-deformed algebra~11! generated by
I, x, p, K, andL, satisfying the commutation relations~12!,
is the zero-form sector of theq-deformed quantum de Rham
complex generated by these generators and their diffe
tials. The quantum de Rham complex contains informat
09500
e-
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e
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about not only the algebra of observables but also the
namics of the theory. Namely, by relating the velocity vec
( ẋ,ṗ) for a particle in quantum phase space to the one-fo
dx anddp asdx5 ẋdt anddp5 ṗdt, one can learn about th
dynamics of a particle moving on quantum phase space f
the commutation relations among the generators of the a
bra and their differentials. Here, the overdot denotes the
rivative with respect to the time coordinatet, which we as-
sume to be a commuting parameter. According to Ref.@21#,
there are three families1 of possible differential calculi asso
ciated with the Manin’s plane defined by commutation re
tions among the generators. In this section, we construct
q-deformed quantum de Rham complex directly from t
Heisenberg equations of motion, instead of applying the
sult of Refs.@9,21#. In the following, we restore Planck’s
constant\ in the equations just for the purpose of making
easy to see various limits. In particular, in theq→1 and\
→0 limit ~i.e., the limit of undeformed classical theory!, the
formulas obtained in the following reduce to those of t
usual commutative classical geometry.

The Heisenberg equations associated with theq-deformed
Hamiltonian~14! with j5q have the following form:2

ẋ5
i

\
@Hq ,x#52qpK2L2,

~19!

ṗ5
i

\
@Hq ,p#5

2mg

q4 x23K2L6.

One can also show by using Eq.~12! that K̇

5( i /\)@Hq ,K#50 and L̇5( i /\)@Hq ,L#50. The
Aref’eva-Volovich limit @10# is achieved by further letting
L5I . In this case, the system does not evolve unitary w
time, as can be seen from the fact that the reordering r
~12!, which are derived from the condition of unitary tim
evolution, cannot be consistent whenL5I . As expected, in
the limit of no q deformation, the above Heisenberg equ
tions of motion reduce to the Heisenberg equations ass
ated with the Hamiltonian given by Eq.~3!.

1In the case of the relativistic motion of a particle in two
dimensional noncommutative Minkowski spacetime, one of
families is excluded and the remaining two coincide@14# under the
condition of a reasonable description of the particle dynamics.

2For the more generaljÞq case, the Heisenberg equations ta
the following form:

ẋ5F i

\
~j42q4!p2x1q~q21j2!pL2GK2,

ṗ52
img

\q4 FSqjD
4

21Gpx22K2L4

1
mg

q4 FSqjD
2

11Gx23K2L6. ~18!

As mentioned in the previous section, the velocityẋ becomes linear
in the momentump whenj5q.
9-3
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DONAM YOUM PHYSICAL REVIEW D 62 095009
From the above Heisenberg equations, one can exp
the differentials of the generators as follows:

dx5 ẋdt52qpK2L2dt, dp5 ṗdt5
2mg

q4 x23K2L6dt,

dK5K̇dt50, dL5L̇dt50. ~20!

By using the fact that we defined the time coordinatet to be
a commuting parameter, one can derive the commutation
lations among the generators and their differentials. The
lowing commutation relations can be obtained by mak
use of the relations~20! and theq-deformed Heisenberg re
lations ~12! with j5q:

x dx5dx~x1 i\q21p21L2!,

p dx5q22dx p,

K dx5q2dx K,

L dx5q21dx L,

x dp5q2dp x,

p dp5dp ~p13i\qx21L2!,

K dp5dp K,

L dp5qdpL. ~21!

The first and the sixth relations in Eq.~21! can be rewritten
in more symmetric forms as follows:

px dx5q24dx xp, x23K2L4p dp5q24dp px23K2L4.
~22!

By assuming the usual Leibniz rule and nilpotency condit
for the external differential operatord, one obtains the fol-
lowing product rules for the differentials:

~dx!25
i\

2
q27p22 dxdp,

~dp!25
3

2
i\qdxdp~]xx

21!L2,

dxdp52q2dpdx, ~23!

where]x denotes the generalizedq- and\-deformed partial
derivative with respect tox, which we define in the follow-
ing. We see that the first commutation relation in Eq.~21! is
similar to that of the universal calculus over a lattice, exc
that the ‘lattice spacing’ is an operator. In fact, theq defor-
mation leads to a deformation of continuous phase space
lattice structure, where the Hilbert space of representat
of the q-deformed system has a discrete spectrum, put
physics on aq lattice.
09500
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We further enlarge the algebra by defining the derivativ
]x and ]p on theq-deformed phase space in the followin
way:

d5dx ]x1dp ]p , ~24!

along with the assumption of the usual Leibniz rule and
nilpotency condition as above. Note that we have seen in
above thatdK505dL. The following commutation rela-
tions between the partial derivatives and the generators
be obtained by applying the Leibniz rule:

]xx511~x1 i\q21p21L2!]x ,

]xp5q22p]x ,

]xK5q2K]x ,

]xL5q21L]x ,

]px5q2x]p ,

]pp511~p13i\qx21L2!]p ,

]pK5K]p ,

]pL5qL]p , ~25!

The commutation relations between the partial derivati
and the differentials can be obtained by demanding their c
sistency with the q-deformed Heisenberg rules and the p
uct rules obtained in the above. We have not yet been s
cessful in obtaining the commutation relations for t
general\Þ0 case. In theq-deformed classical phase spa
~the \50 case!, the commutation relations are given by

]xdx5dx ]x , ]xdp5q22dp ]x ,

~26!

]pdx5q2dx ]p , ]pdp5dp ]p .

In theq→1 and\→0 limit ~i.e., the limit of undeformed
classical theory!, the formulas obtained in the above redu
to those of the usual commutative classical geometry. P
ticularly interesting limits are theq→1 limit and the\→0
limit, which, respectively, correspond to the\ deformation
~or quantization! and theq deformation of the differential
calculus on the ‘‘classical’’ commutative phase space. N
that theq deformation and the\ deformation generally do
not commute with one another; i.e., the so-called Faddee
rectangle is not always commutative. In this paper, we c
sider the case of theq deformation of commutative-
quantized~or \-deformed! classical conformal mechanics
Had we firstq deformed the commutative classical confo
mal quantum mechanics and then quantized it, we mi
have obtained a different noncommutative theory.
9-4
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