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g-deformed conformal quantum mechanics
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We construct aj-deformed version of the conformal quantum mechanics model of de Alfaro, Fubini, and
Furlan for which the deformation parameter is complex and the unitary time evolution of the system is
preserved. We also study the differential calculus orgtdeformed quantum phase space associated with such
a system.
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[. INTRODUCTION tial calculus on a quantum plari®], that the Heisenberg
algebra can be modified through deformation of phase
It has long been suggested that the description of spacépace. Manin’s proposal was first applied to some nonrela-
time based on the usual notion of geometry may not be validivistic dynamical systems in Ref§10,11. Following this
at the Planck scale, and perhaps the spacetime becomes ndine of approach, we shall constructisdeformed version of
commutative or may show a non-Archimedean structure athe conformal guantum mechanics model of Ref} and
such a small length scale. It has therefore been believed thgfudy its properties.

the noncommutative description of spacetime might be rel- The paper is organized as follows. In Sec. II, we review
>;he relevant aspect of conformal quantum mechanics. In Sec.

Y. we discuss theg-deformed Heisenberg algebra with a

meaning but the lattice structure of spacetime emerges due lc}?{gglg;(tgeefgrg:gaor;ﬁg?m?t%igrt‘g é’;’)':gtlrjl:“tigfgrr?neegvo'
the uncertainty in the measurement of the particle position in” . y ' PPy : C

space. So in some cases such a lattice structure of spaceti he ~lon of confo_rmal quantum mechanics. Ir_1 Sec. 1V, we
?th ' Planck I iminates the ultraviolet di udy the dynamics of the system and from this we construct
at the Flanck scale eliminates the ullraviolel dIVErgence, e ential calculus om-deformed phase space.

problem. Recently, there has been active investigation o

noncommutative theories after it was found that noncommu-

. X ) - Il. CONFORMAL QUANTUM MECHANICS
tative spacetime emerges naturally in M theory compactified Q

in the presence of constant background three-form fig]d In the following, we briefly summarize the conformal
and in the world volume theory of D-branes with nonzeroquantum mechanics studied in R€#,12,13. The Lagrang-
constant Neveu-SchwafiS) B field [2,3]. ian density for the system is given by

It is the purpose of this paper to study the noncommuta-
tive generalization of the conformal quantum mechanics of L= Em'xz— ﬁz (1)
de Alfaro, Fubini, and Furlaf4]. In Ref.[5], it is observed 2 2%

that such a conformal quantum mechanics model can be re- L ) )

alized as a special limit of the mechanics of a massivel "€ action is invariant under the followir§L(2,R) confor-

charged point particle in the near-horizon background of thé"@l algebra, spanned by the Hamiltonia) the dilation

extremal Reissner-Nordstroblack hole, indicating the pos- 9eneratorD, and the special conformal generator

sible relevance of the conformal quantum mechanics model o o .

to the quantum theory of black holes. Furthermore, the [DHI=21K, [D.K]==2IK, [HK]==1D. (2)

fact that theSO(1,2)=SU(1,1) isometry symmetry of the Here, theSL(2R) generators are explicitly given by

AdS, X S" near-horizon geometry of the extremal Reissner-

Nordstran black hole coincides with theSL(2,R) p> g

=SU(1,1) symmetry of the conformal quantum mechanics H= ﬁJr 2%2!

indicates that conformal quantum mechanics may have some

relevance to the poorly understood Ad8ne-dimensional The problem with the above Hamiltonigh is that its

conformal field theory (CFj) duality. eigenspectrum is continuous and bounded from below but
In the case of one spatial dimension, it is unclear what isvithout an end point or ground state, and its eigenstates are

meant by noncommutative spaée this paper we assume not normalizable. Such problem was circumveniddl by

that the time coordinate is a commutative variagbnce a redefining the Hamiltonian as a linear combination of the

coordinate always commutes with itself. A possible way ofaboveSL(2,R) generators with a suitable condition on the

introducing noncommutativity for such a case is by follow- coefficients. Particularly, the following choice is found to be

ing Manin’s proposal6—8], which is based upon a differen- convenien{4]:

1 1 2
D—E(px+xp), IC—Em . 3

: 4

1 1
Lo=5|aH+ -
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where the introduction of the constaatleads to a break- numberxandp cannot both be Hermitian, as can be seen by
down of scale invariance. Then, the potential ternjphas  applying the involution operation to E¢L0). So one has to

a minimum and the energy eigenstates become discrete amgsume that only one @f andx is Hermitian and the invo-
normalizable. Furthermore, along with the linear combinadution of the other is a separate operdtbt]. One can alter-
tions natively describe theg-deformed Heisenberg algebra with a
realq by redefining the generators, say, in terms of the above
generator, X, andx* so that new momentum and position
operators can be both Hermitian, as was done in[Ré{. In
such a case, an additional generdexpressed in terms @

LO satisfies the fO”OWin@ L(Z,R) algebra in the Virasoro X andx*), which approachesasq_ﬁly other than the Her-
form: mitian position and momentum operators, is introduced into
the algebra. Such an alternative algebra can be obtgir&d

Lii=

1
E aH— 5/C+ID), (5)

[Li,L-1]=2Lg, [Lo,Leq]=+Luy. ©®  aiso by making use of the Leibniz rufgx= 1+ qxd, for the
differential calculus in the one-dimensiorgdeformed Eu-
lll. q DEFORMATION OF CONFORMAL clidean spaceRé. In the present paper, we shall apply the
QUANTUM MECHANICS first approach for studying thg-deformed generalization of

For ordinary commutative quantum mechanics in twot® conformal quantum mechanics of R¢#%.12,13.

spacetime dimensions, the Heisenberg algebra of ObservablesTheq-deformed_Heisenberg alg.ebrq of observables Wi.th a
can be defined as the quotient complex deformation parameter is given by the following

quotient:
H(l,x,p)=C[I,x,p]/3(1,x,p), (7)

whereC[I,x,p] is a unital associative algebra freely gener-

ated by the identity, the position operator, and the canoni- potentialV, with the assumption of the proper limit of rp

cal momentum operatq, andJ(1,x,p) is a wo-sided ideal 4 (i Yk two-sided idedlis defined by the follow-

in C[1,x,p] generated by the following relation correspond- . . .
ing to the Heisenberg rule: ing q deformed Heisenberg relations or the Bethe ansatz re-

ordering rules:

H=A[1,x,p,K,A1/3(I,x,p,K,A). (12)

In the case of a particle under the influence of a nontrivial

xp—px=il, ® Xp=g2px+iqA2, xA=£&Ax, pA=¢ Ap,

where we are using units in whié¢h=1. The operatorz and s 1
p are assumed to have the following property under the an- XK=& “Kx,  pK=Kp, AK=£""KA. (12)

tiinear anti-involution operation IC[I,x,p]: Here, the generators and A are assumed to be invertible

X*=x, p*=p. (9) and time independent, and one can consistetligh the
aboveg-deformed Heisenberg relationinpose the follow-
The formalism of Manin’s quantum spa¢é—8] can be ing reality conditions on the generators under the involution
applied to the above Heisenberg algebra by making use afperation:
the g-deformed differential calculus developed in RES]. . . . .
Namely, one can deform the above Heisenberg algebra by xX*=x, p*=p, K'=K, A*=A, (13

deforming the usual Heisenberg ru® as follows: along with|q|=1=|¢l.

Xp—qpx=il , (10) In the g-deformed quantum phase space described above,
the Hamiltonian(3) of the conformal quantum mechanics of

where the deformation parametgran be either complex or Ref.[4] is deformed in the following way:
real. First, ifq is a complex number, the consistency of re-
lation (_10) along with the Hermiticity conditiorf9) onx qnd He= p2K 2+ m_fjxfszAzt, (14)
p requires thatg|=1. According to Ref[10], which first
studiedg-deformed classical and quantum mechaiesh a ) ) o
complex deformation parametey) of a particle in one- Wher_e we obtained thls_form of the Hamlltpman from the
dimensional space and whose work was later generalized f§duirement of the consistency of the Hamiltonian form of
the relativistic case in Ref14], the parameters of the dy- the Heisenberg equations with tigedeformed Heisenberg
namics such as the inertial massof the particle do not relatlo_ns(12), namely, the requirement of the unitary time
commute with the generatoxsandp of the algebra and there evolution of the system.'To further impose the naturalness
is no unitary time evolution of the system at the quantumcondition that the velocitx be linear in the momentum in
level. Later, it was fOUﬂ({lS—lﬂ that to achieve unitary the Heisenberg equation of moti(-xn:i[’]—{g,x]’ one has to
noncommutativeg dynamics on the quantum level, i.e., for further let¢=gq, which we assume from now on. Note that in
the Heisenberg equation of motiéh= (i/A)[ H,Q ]+ d;Q to  the limit of noq deformationK andA belong to the center of
be satisfied after the deformation, one has to introduce the algebra. The requirement of irreducibility of the repre-
additional generators into the algebra. Second, i§ a real  sentation level implies that they should be proportional to the
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identity | when ¢=q=1. We chooseK = (1/y2m)l and A about not only the algebra of observables but also the dy-
=| when é=qg=1 so that the Hamiltonia14) reduces to namics of the theory. Namely, by relating the velocity vector
the form(3) in the limit of no q deformation. (x,p) for a particle in quantum phase space to the one-forms
The d_ilation generatoD and the special conformal gen- 4y anddp asdx=xdt andd p=pdt, one can learn about the
eratorCin Eq. (3) of the SL(2,R) algebra can bg deformed 4y namics of a particle moving on quantum phase space from

in such a way that the commutation relatio(® of the  {he commutation relations among the generators of the alge-
SL(2R) algebra continue to be satisfied after theeforma- 5 and their differentials. Here, the overdot denotes the de-

tion. Suchg-deformedSL(2,R) generators are given by rivative with respect to the time coordinatewhich we as-
m sume to be a commuting parameter. According to IRf],
Hq= p2K 2+ _“gxfszA{ there are three familiéof possible differential calculi asso-
q ciated with the Manin’s plane defined by commutation rela-

tions among the generators. In this section, we construct the

g-deformed quantum de Rham complex directly from the

Heisenberg equations of motion, instead of applying the re-

sult of Refs.[9,21]. In the following, we restore Planck’s

constanti in the equations just for the purpose of making it

easy to see various limits. In particular, in the-1 and#

—0 limit (i.e., the limit of undeformed classical thegryhe

By using theg-deformed Heisenberg relatiorié2) with ¢  formulas obtained in the following reduce to those of the

=(, one can show that thespdeformed generators satisfy usual commutative classical geometry.

the following commutation relations: The Heisenberg equations associated withcHaeformed
Hamiltonian(14) with £=q have the following forn?:

1 -1 -2
Dy=5(apx+q xp)A~?,

1
X2K 72N 4, (15)

/Cq=4—q4

[Dq Hql=2iHy, [Dq,Kql=—2iK,,

. Cod
[quKq]:_lpq- (16) X= %[Hq,x]=2qu2A2,
Just as in the case of undeformed conformal quantum me- (19
chanics, one can redefine the generators through linear com- i 2mg
binations so that the resulting new generators satisfy the p= %[Hq,p]=?x‘3K2A6.

SL(2R) algebra in the Virasoro form. The-deformed
forms of theSL(2,R) generatorg4) and (5) are given by

One can also show by using Eq(12) that K

L9= L[ ar+ E,Cq), =(ih)[Hy.K1=0 and A=(i/h)[Hq,A]=0. The
2 a Aref'eva-Volovich limit [10] is achieved by further letting
A=1. In this case, the system does not evolve unitary with
L9 — E aH.— EIC ~iD ) 17) time, as can be seen from the fact that the reordering rules
=12 9 a a/ (12), which are derived from the condition of unitary time

. _ . evolution, cannot be consistent whan=1. As expected, in
where H,, Dy, and Kq are defined in Eqs(15). It is  the limit of no q deformation, the above Heisenberg equa-
straightforward to show that thgdeformed generatord?7)  tions of motion reduce to the Heisenberg equations associ-

still satisfy Egs.(6). It might be possible to construct a ated with the Hamiltonian given by E¢g).
g-deformed version of the de Alfaro—Fubini— and Furlan

conformal quantum mechanics in such a way that the gen———
erators instead satisfy tlepdeformed commutation relations
and thereby th&L(2,R) algebra(6) is deformed to the quan-
tum SL,(2,R) algebra. Theg-deformed version of the sym-
metry group, the so-called quantum group, of a dynamic
system was originally studied in Refgl9,2Q within the
context of the quantum noncommutative harmonic oscillatoq
with g-deformed creation and annihilation operators.

lin the case of the relativistic motion of a particle in two-
dimensional noncommutative Minkowski spacetime, one of the
aiamilies is excluded and the remaining two coincfdd] under the
condition of a reasonable description of the particle dynamics.
2For the more generaj# q case, the Heisenberg equations take
he following form:

X=

i
7 (€ —ap’xra(e’+ fz)pAz}Kz,
IV. DIFFERENTIAL CALCULUS ON THE g-DEFORMED

H 4
PHASE SPACE b= %[(g) —1|px 2K2A*
Note that the abovg-deformed algebréll) generated by )
I, X, p, K, and A, satisfying the commutation relatiori$2), L (9) 1l 3K2AG (18)
is the zero-form sector of thgzdeformed quantum de Rham q [\¢ '

complex generated by these generators and their differems mentioned in the previous section, the velogityecomes linear
tials. The quantum de Rham complex contains informatiorin the momentunp whené=q.
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From the above Heisenberg equations, one can express We further enlarge the algebra by defining the derivatives

the differentials of the generators as follows: dy and d, on theg-deformed phase space in the following
way:
. . 2mg Y
dx=xdt=2qpK?A2dt, dp=pdt=—7x 3K?A°%dt,
q d=dxdy+dpd,, (29)
dK=Kdt=0, dA=Adt=0. (200 along with the assumption of the usual Leibniz rule and the

. ) i ) nilpotency condition as above. Note that we have seen in the
By using the fact that we defined the time coordinate be )56 thatdk=0=dA. The following commutation rela-

a commuting parameter, one can derive the commutation r§jong petween the partial derivatives and the generators can
lations among the generators and their differentials. The folpo ohtained by applying the Leibniz rule:

lowing commutation relations can be obtained by making
use of the relation$20) and theg-deformed Heisenberg re- ax=1+(x+ihq p tA?)4,,
lations (12) with ¢é=q:

&xp:q_zpaw
x dx=dx(x+irq p 1A?),

— 2
pdx=q 2dx p, K=0q"Kdy,
K dx=q2dx K, aA=q TAdy,
Adx=q tdxA,

a IpX=0°Xdp ,
x dp=g°dpx,

dpp=1+(p+3ifqx *A?)d,,
dp=dp(p+3ihgx *A?),

pdp=dp(p q 5oK=Kd,,

Kdp=dpK,

dpA=0qAd,, (29

A dp=qdpA. (21) : : : .
The commutation relations between the partial derivatives

The first and the sixth relations in E(R1) can be rewritten and the differentials can be obtained by demanding their con-

in more symmetric forms as follows: sistency with the g-deformed Heisenberg rules and the prod-
uct rules obtained in the above. We have not yet been suc-
px dx=q %dxxp, x 3K2A%p dp=q *dp px 3K2A%, cessful in obtaining the commutation relations for the

(22) generali #0 case. In thej-deformed classical phase space
(thes=0 case, the commutation relations are given by
By assuming the usual Leibniz rule and nilpotency condition
for the external differential operatal, one obtains the fol- _ — -2
' dydx=dxdy,, ddp=q “dpdy,
lowing product rules for the differentials: X X xAP=0q "CPox

(26)

ih
(dx)?=—-q~'p~2dxdp, 2
2 dpdx=0%dxd,, dpdp=dpd,.

3 In theq—1 and%z—0 limit (i.e., the limit of undeformed
(dp)?= = ihqdxdp(dx~1)A?, classical theory the formulas obtained in the above reduce
2 to those of the usual commutative classical geometry. Par-
ticularly interesting limits are thg— 1 limit and thefi—0
dxdp=—qg?dpdx (23 limit, which, respectively, correspond to the deformation
(or quantization and theq deformation of the differential
where g, denotes the generalizeg and#-deformed partial calculus on the “classical” commutative phase space. Note
derivative with respect ta, which we define in the follow- that theq deformation and thé deformation generally do
ing. We see that the first commutation relation in E2l) is  not commute with one another; i.e., the so-called Faddeev’s
similar to that of the universal calculus over a lattice, exceprectangle is not always commutative. In this paper, we con-
that the ‘lattice spacing’ is an operator. In fact, thelefor- sider the case of they deformation of commutative-
mation leads to a deformation of continuous phase space toquantized(or %z-deformed classical conformal mechanics.
lattice structure, where the Hilbert space of representationslad we firstq deformed the commutative classical confor-
of the g-deformed system has a discrete spectrum, puttingnal quantum mechanics and then quantized it, we might
physics on & lattice. have obtained a different noncommutative theory.
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