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Gauge invariant study of the monopole condensation in non-Abelian lattice gauge theories
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We investigate the Abelian monopole condensation in finite temperature SU~2! and SU~3! pure lattice gauge
theories. To this end we introduce a gauge invariant disorder parameter built up in terms of the lattice
Schrödinger functional. Our numerical results show that the disorder parameter is different from zero and
Abelian monopoles condense in the confined phase. On the other hand, our numerical data suggest that the
disorder parameter tends to zero, in the thermodynamic limit, when the gauge coupling constant approaches the
critical deconfinement value. In the case of SU~3! we also compare the different kinds of Abelian monopoles
which can be defined according to the choice of the Abelian subgroups.

PACS number~s!: 11.15.Ha
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I. INTRODUCTION

The dual superconductivity of the vacuum in gauge th
ries to explain color confinement was proposed long ago
’t Hooft @1# and Mandelstam@2#. These authors propose
that the confining vacuum behaves as a coherent stat
color magnetic monopoles. In other words the confin
vacuum is a magnetic~dual! superconductor. This fascina
ing proposal offers a picture of confinement whose phys
can be clearly extracted. Indeed, the dual Meissner ef
causes the formation of chromoelectric flux tubes betw
chromoelectric charges leading to a linear confining pot
tial.

Following Ref.@3# let us consider gauge theories witho
matter fields. In order to realize gauge field configuratio
which describe magnetic monopoles we need a scalar H
field @4#. In the ’t Hooft’s scheme the role of the scalar fie
is played by any operator which transforms in the adjo
representation of the gauge group. LetX(x) be an operator in
the adjoint representation, then one fixes the gauge by di
nalizing X(x) at each point. This choice does not fix com
pletely the gauge, for it leaves as residual invariance gr
the maximal Abelian~Cartan! subgroup of the gauge group
This procedure is known as Abelian projection@3#. The
world line of the monopoles can be identified as the lin
where two eigenvalues of the operatorX(x) are equal. Thus
the dual superconductor idea is realized if these Abe
monopole condense. Because of the gauge invariance w
pect that the monopole condensation should manifest
spective to the gauge fixing. In other words all the Abeli
projections are physically equivalent. However, it is conce
able that the dual superconductor scenario could man
clearly with a clever choice of the operatorX(x). It is re-
markable that, if one adopts the so called maximally Abel
projection@5#, then it seems that the Abelian projected lin
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retain the information relevant to the confinement@6#.
It turns out that the Abelian projection can be impl

mented on the lattice@5#, so that one can analyze the dynam
ics of the Abelian projected gauge fields by means of n
perturbative numerical simulations. Indeed, the first dir
evidence of the dual Abrikosov vortex joining two stat
quark-antiquark pair has been obtained in lattice simulati
of gauge theories@6–9#. In particular in Ref.@8# we consid-
ered the pure gauge SU~2! lattice theory and found evidenc
of the dual Meissner effect both in the maximally Abelia
gauge and without gauge fixing. Moreover we showed t
the London penetration length is a physical gauge invar
quantity.

An alternative and more direct method to detect the d
superconductivity relies upon the very general assump
that the dual superconductivity of the ground state is reali
if there is condensation of Abelian monopoles. Various a
proaches have been exploited to explore the monopole
densation. In particular Refs.@10# and @11# use the entropy-
energy balance as a test for the monopole condensa
respectively in SU~2! and in SU~3! lattice gauge theory. Ref
erence@12# employs a monopole creation operator in t
monopole current representation of the SU~2! lattice gauge
theory. Reference@13# makes use of the effective constrai
potential to show the monopole condensation in the SU~2!
lattice gauge theory.

To investigate the monopole condensation it suffices
measure a disorder parameter defined as the vacuum ex
tation value of a nonlocal operator with nonzero magne
charge and nonvanishing vacuum expectation value in
confined phase@14#. However, in the case of non-Abelia
gauge theories, the disorder parameter is expected to bre
non-Abelian symmetry, while the dual superconductivity
realized by condensation of Abelian monopoles. As we h
already argued, the Abelian monopole charge can be ass
ated to each operator in the adjoint representation by
so-called Abelian projection@3,5#. Indeed, the authors o
Ref. @14# introduced on the lattice a disorder parameter
scribing condensation of monopoles within a particular Ab
©2000 The American Physical Society10-1
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lian projection. On the other hand, recent results@15# show
that the Abelian monopoles defined through several Abe
projection condense, suggesting that the monopole con
sation does not depend on the adjoint operator used in
Abelian projection procedure. This is in accordance with
theoretical expectation that monopole condensation sh
occur irrespective of the gauge fixing procedure. Howeve
gauge invariant evidence of the Abelian monopole cond
sation is still lacking.

The aim of the present paper is to investigate the Abe
monopole condensation in pure lattice gauge SU~2! and
SU~3! theories in a gauge-invariant way@16#. The meaning
of gauge invariance of our approach is that we do not nee
do any gauge fixing to perform the Abelian projection. I
deed, after choosing the type of Abelian monopoles, our
sults do not depend on the particular direction selected in
color space, which, actually, can be varied by a gauge tra
formation. To detect monopole condensation we introduc
disorder parameter defined in terms of a thermal partit
functional in presence of an external Abelian monop
background field. As we shall see, our thermal partition fu
tional is constructed by means of the Schro¨dinger functional
which is invariant against gauge transformations of the ba
ground field.

The plan of the paper is as follows. In Sec. II we intr
duce the thermal partition functional, built up using the l
tice Schro¨dinger functional@17,18#. In Sec. III we study the
Abelian monopole condensation for finite temperature SU~2!
lattice gauge theory. Section IV is devoted to the case
SU~3! gauge theory at finite temperature, where, accord
to the choice of the Abelian subgroup, different kinds
Abelian monopoles can be defined. Our conclusions
drawn in Sec. V.

II. THE THERMAL PARTITION FUNCTIONAL

To investigate the dynamics of the vacuum at zero te
perature we introduced@19,20# the gauge-invariant effective
action for external static~i.e., time-independent! background
field defined by means of the lattice Schro¨dinger functional

Z@Um
ext#5E DUe2SW, ~2.1!

whereSW is the standard Wilson action. The functional i
tegration is extended over links on a lattice with the hyp
torus geometry and satisfying the constraints

Um~x!ux4505Um
ext~xW !. ~2.2!

In Eqs. ~2.1! and ~2.2! Um
ext(xW ) is the lattice version of the

external continuum gauge fieldAW ext(xW )5AW a
ext(xW )la/2:

Um
ext~xW !5P expH iagE

0

1

dt Aa,m
ext ~xW1tm̂ !

la

2 J , ~2.3!

where P is the path-ordering operator andg the gauge cou-
pling constant.
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The lattice effective action for the external static bac
ground fieldAW ext(xW ) is given by

G@AW ext#52
1

L4
lnHZ@AW ext#

Z~0!
J , ~2.4!

whereL4 is the extension in Euclidean time andZ(0) is the
lattice Schro¨dinger functional, Eq.~2.1!, without the external
background field (Um

ext51). It can be shown@19# that in the

continuum limitG@AW ext# is the vacuum energy in presence
the background fieldAW ext(xW ).

We want now to extend our definition of lattice effectiv
action to gauge systems at finite temperature. In this case
relevant quantity is the thermal partition function. In the co
tinuum we have

Tr@e2bTH#5E DAW ^AW ue2bTHPuAW &, ~2.5!

wherebT is the inverse of the physical temperature,H is the
Hamiltonian, andP projects onto the physical states. As
well known, the thermal partition function can be written
@21#

Tr@e2bTH#5E
Am(bT ,xW )5Am(0,xW )

DAm~x4 ,xW !

3e2*
0

bTdx4 *d3xWLY2M(xW ,x4). ~2.6!

On the lattice we have

Tr@e2bTH#5E
Um(bT ,xW )5Um(0,xW )5Um(xW )

DUm~x4 ,xW !e2SW.

~2.7!

Comparing Eq.~2.7! with Eqs.~2.1! and ~2.2!, we get

Tr@e2bTH#5E DUm~xW !Z@Um~xW !#, ~2.8!

whereZ@Um(xW )# is the Schro¨dinger functional Eq.~2.1! de-
fined on a lattice withL45bT , with ‘‘external’’ links Um(xW )
at x450.

We are interested in the thermal partition function in pre
ence of a given static background fieldAW ext(xW ). In the con-
tinuum this can be obtained by splitting the gauge field in
the background fieldAW ext(xW ) and the fluctuating fieldsh(x).
So that we could write formally for the thermal partitio
function ZT@AW ext#:

ZT@AW ext#5E DhW ^AW ext,hW ue2bTHPuAW ext,hW &. ~2.9!

The lattice implementation of Eq.~2.9! can be obtained from
Eq. ~2.7! if we write

Uk~bT ,xW !5Uk~0,xW !5Uk
ext~xW !Ũk~xW !, ~2.10!
0-2
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whereUk
ext(xW ) is given by Eq.~2.3! and theŨk(xW )’s are the

fluctuating links. Thus we get

ZT@AW ext#5E DŨk~xW !DU4~xW !Z@Uk
ext~xW !,Ũk~xW !#,

~2.11!

where we integrate over the fluctuating linksŨk(xW ), while
the Uk

ext links are fixed. Note that in Eq.~2.11! only the
spatial links belonging to the hyperplanex450 are written as
the product of the external linkUk

ext(xW ) and the fluctuating

links Ũk(xW ). The temporal linksU4(x450,xW ) are left freely
fluctuating. It follows that the temporal linksU4(x) satisfy
the usual periodic boundary conditions. We stress that
periodic boundary conditions in the temporal direction a
crucial to retain the physical interpretation that the functio
ZT@AW ext# is a thermal partition function. In the following th
spatial links belonging to the time-slicex450 will be called
‘‘frozen links,’’ while the remainder will be the ‘‘dynamica
links.’’

From the physical point of view we are considering t
gauge system at finite temperature in interaction with a fi
external background field. As a consequence, in the Wil
actionSW we keep only the plaquettes built up with the d
namical links or with dynamical and frozen links. With the
limitations it is easy to see that in Eq.~2.11! we have

Z@Uk
ext~xW !,Ũk~xW !#5Z@Uk

ext~xW !#. ~2.12!

Indeed, let us consider an arbitrary frozen linkUk
ext(xW )Ũk(xW ).

This link enters in the modified Wilson action by means
the plaquette

Pk4~x450,xW !5Tr$Uk
ext~xW !Ũk~xW !U4~0,xW1 k̂!

3Uk
†~1,xW !U4

†~0,xW !%. ~2.13!

Now we observe that the linkU4(0,xW1 k̂) in Eq. ~2.13! is a
dynamical one, i.e., we are integrating over it. So that,
using the invariance of the Haar measure we obtain

Pk4~x450,xW !5Tr$Uk
ext~xW !U4~0,xW1 k̂!Uk

†~1,xW !U4
†~0,xW !%.

~2.14!

It is evident that Eq.~2.14! in turns implies Eq.~2.12!. Then,
we see that in Eq.~2.11! the integration over the fluctuatin
links Ũ(xW ) gives an irrelevant multiplicative constant. So w
have

ZT@AW ext#5E
Uk(bT ,xW )5Uk(0,xW )5Uk

ext(xW )
DUe2SW, ~2.15!

where the integrations are over the dynamical links with
riodic boundary conditions in the time direction. As concer
the boundary conditions at the spatial boundaries, we k
the fixed boundary conditionsUk(xW ,x4)5Uk

ext(xW ) used in the
Schrödinger functional Eq.~2.1!. Thus we see that, if we
send the physical temperature to zero, then the thermal f
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tional Eq.~2.15! reduces to the zero-temperature Schro¨dinger
functional Eq. ~2.1! with the constraints Uk(x)ux450

5Uk
ext(xW ) instead of Eq.~2.2!. In our previous study@19# we

checked that in the thermodynamic limit both conditio
agree as concerns the zero-temperature effective action
~2.4!.

III. ABELIAN MONOPOLE CONDENSATION: SU „2…

Let us consider the SU~2! pure gauge theory at finite tem
perature. We are interested in the thermal partition funct
Eq. ~2.15! in presence of an Abelian monopole field. In th
case of SU~2! gauge theory the maximal Abelian group is a
Abelian U~1! group. Thus, in the continuum the Abelia
monopole field turns out to be

gbW a~xW !5da,3
nmon

2

xW3nW

uxW u~ uxW u2xW•nW !
, ~3.1!

wherenW is the direction of the Dirac string and, according
the Dirac quantization condition,nmon is an integer. The lat-
tice links corresponding to the Abelian monopole field E
~3.1! can be readily obtained as

Uk
ext~xW !5P expH igE

0

1

dt
sa

2
bk

a~xW1t x̂k!J , ~3.2!

where thesa’s are the Pauli matrices. By choosingnW 5x3 we
get

U1,2
ext~xW !5cos@u1,2~xW !#1 is3 sin@u1,2~xW !#,

U3
ext~xW !51, ~3.3!

with

u1~xW !52
nmon

4

~x22X2!

uxWmonu

1

uxWmonu2~x32X3!
,

u2~xW !51
nmon

4

~x12X1!

uxWmonu

1

uxWmonu2~x32X3!
. ~3.4!

In Eq. ~3.4! (X1 ,X2 ,X3) are the monopole coordinates an
xWmon5(xW2XW ). In the numerical simulations we put the la
tice Dirac monopole at the center of the time slicex450. To
avoid the singularity due to the Dirac string we locate t
monopole between two neighboring sites. We have chec
that the numerical results are not too sensitive to the pre
position of the magnetic monopole.

According to the discussion in the previous section we
interested in the thermal partition functionZT@AW ext# given by
Eq. ~2.15!. Note that we do not need to fix the gauge due
the gauge invariance of the thermal partition function
against gauge transformations of the external backgro
field. On the lattice the physical temperatureTphys is given by
0-3



c-
he

lat

ar
th

th

-

s
-
he

th

ri
pl
-

ee

d
t

e
th

e of

no-

ice
on-

tic

q.

re-

der
ing

-

p

PAOLO CEA AND LEONARDO COSMAI PHYSICAL REVIEW D62 094510
1

Tphys
5bT5Lt , ~3.5!

whereLt5L4 is the lattice linear extension in the time dire
tion. In order to approximate the thermodynamic limit t
spatial extensionLs should satisfy

Ls@Lt . ~3.6!

To this end we performed our numerical simulations on
tices such that

Lt

Ls
<4. ~3.7!

In the numerical simulations we impose periodic bound
conditions in the time direction. As already discussed, at
spatial boundaries the links are fixed according to Eq.~3.3!.
This last condition corresponds to the requirement that
fluctuations over the background field vanish at infinity.

Following the suggestion of Ref.@15# we introduce the
gauge-invariant disorder parameter for confinement

m5e2Fmon/Tphys5
ZT@nmon#

ZT@0#
, ~3.8!

whereZT@0# is the thermal partition function without mono
pole field ~i.e., with nmon50).

From Eq.~3.8! it is clear thatFmon is the free energy to
create an Abelian monopole. If there is monopole conden
tion, thenFmon50 andm51. To avoid the problem of mea
suring a partition function we focus on the derivative of t
monopole free energy

Fmon8 5
]

]b
Fmon. ~3.9!

It is straightforward to see thatFmon8 is given by the differ-
ence between the average plaquette

Fmon8 5V@^P&nmon502^P&nmonÞ0#, ~3.10!

whereV is the spatial volume.
We use the over-relaxed heat-bath algorithm to update

gauge configurations. Simulations have been performed
means of the APE100/Quadrics computer facility in Ba
Since we are measuring a local quantity such as the
quette, a low statistics~from 2000 up to 12 000 configura
tions! is required in order to get a good estimation ofFmon8 .

In Fig. 1 we display the derivative of the monopole fr
energy versusb for nmon510 on a lattice withLt54 and
Ls524. We see thatFmon8 vanishes at strong coupling an
displays a rather sharp peak nearb.2.13. We expect tha
the peak corresponds to the finite temperature deconfinem
transition. In Fig. 1 we also display the absolute value of
Polyakov loop:
09451
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uPu5K U1

V (
xW

1

2
TrF)

t51

Lt

U4~xW ,t !GU L , ~3.11!

and, indeed, we see that the peak corresponds to the ris
Polyakov loop.

In the weak coupling region the plateau inFmon8 indicates
that the monopole free energy tends to the classical mo
pole action which behaves linearly inb. To see this, we
observe that deeply in the weak coupling region the latt
action should reduce to the classical action. In the naive c
tinuum limit the classical action reads

Sclass5
1

2E0

bT
dx4E d3xWBW a~xW !BW a~xW !, ~3.12!

where BW a(xW ) is the classical Abelian monopole magne
field. Introducing an ultraviolet cutoffL5a/a, with a a
constant anda the lattice spacing, and performing in E
~3.12! the spatial integral over the volumeV5Ls

3 , we get

Sclass.
pab

8Tphys
nmon

2 1O~1/Lsa!. ~3.13!

So that in the weak coupling region we have

Fmon8 .
p

8
anmon

2 . ~3.14!

From Fig. 1 we see that Eq.~3.14! with a.1.2 ~dashed line!
describes quite well the numerical data in the relevant
gion.

In order to determine the critical parameters and the or
of the transition, we need to perform the finite size scal

FIG. 1. The derivative of the SU~2! monopole free energy ver
sus b @Eq. ~3.10!# for nmon510 on a lattice withLt54 and Ls

524 ~open circles!, with the absolute value of the Polyakov loo
~full circles!. The dashed line is Eq.~3.13!.
0-4
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analysis. We plan to do this in a future work. In this pap
we restrict ourself to a preliminary qualitative analysis.
Fig. 2 we compare the derivative of the monopole free
ergy on lattices withLt54 andLs524,48. We see that in th
strong couplingFmon8 agrees for the two lattices. On the oth
hand, in the weak coupling region the different values of
plateaus can be ascribed to finite volume effects. In the c
cal region we see that the peak increases.

With the aim of obtaining the disorder parameterm @Eq.
~3.8!# we perform the numerical integration of the monopo
free energy derivative

Fmon~b!5E
0

b

db8Fmon8 ~b8!. ~3.15!

In Fig. 3 we show the disorder parameterm versusb for
lattices with Lt54 and Ls524,48. We see clearly thatm
51 in the confined phase. In other words the monopo
condense in the vacuum. On the other hand, it seems
m→0 in the thermodynamic limit whenb reaches the criti-
cal value. Indeed, by increasing the spatial volume of
lattice, the disorder parameterm decreases faster towar
zero. Moreover we see that the finite volume behavior of
disorder parameter is consistent with a second order de
finement phase transition.

It worthwhile to comment on the finite volume effects. A
a matter of fact, it appears that, even though the spatial
ume of our larger lattice looks enormous, we gain a rat
small increase in the peak value of the monopole free ene
derivative. This can be understood by observing that, du
our peculiar conditions at the spatial boundaries, the dyna
cal volume is smaller than the geometrical one. Moreove
is well known that the fixed boundary conditions for th

FIG. 2. The derivative of the SU~2! monopole free energy ver
susb @Eq. ~3.10!# on lattices withLt54 andLs524 ~open circles!
andLs548 ~full circles!.
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gauge fields lead to more severe finite volume effects w
respect to the usual periodic boundary conditions. So tha
reach the thermodynamic limit we must simulate our gau
system on lattices with very large spatial volumes. We str
again that the precise determination of the critical parame
requires a finite size scaling which will be presented el
where.

IV. ABELIAN MONOPOLE CONDENSATION: SU „3…

In the case of SU~3! gauge theory, the maximal Abelia
group is U(1)3U(1). Therefore we have two different type
of Abelian monopoles. Let us consider, first, the Abeli
monopole field given by Eq.~3.1!, which we call theT3
Abelian monopole. The lattice links are given by

U1,2
ext~xW !5F eiu1,2(x

W ) 0 0

0 e2 iu1,2(x
W ) 0

0 0 1
G , ~4.1!

with u1,2(xW ) defined in Eq.~3.4!. The second type of inde
pendent Abelian monopole can be obtained by conside
the diagonal generatorl8. In this case we have theT8 Abe-
lian monopole

U1,2
ext~xW !5F eiu1,2(x

W ) 0 0

0 eiu1,2(x
W ) 0

0 0 e22iu1,2(x
W )
G , ~4.2!

with

FIG. 3. The disorder parameterm @Eq. ~3.8!# for the SU~2!
monopoles versusb for lattices with Lt54 and Ls524 ~open
circles! or Ls548 ~full circles!.
0-5
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u1~xW !5
1

A3
F2

nmon

4

~x22X2!

uxWmonu

1

uxWmonu2~x32X3!
G ,

u2~xW !5
1

A3
F1

nmon

4

~x12X1!

uxWmonu

1

uxWmonu2~x32X3!
G .

~4.3!

Obviously, the lattice links Eq.~4.2! corresponds now to the
continuum gauge field

gbW a~xW !5da,8
nmon

2

xW3nW

uxW u~ uxW u2xW•nW !
. ~4.4!

The other Abelian monopoles can be generated by cons
ing the linear combination of theT3 and T8 generators. In
particular we have considered theT3a Abelian monopole
corresponding to the following linear combination@15# of
l3/2 andl8/2:

T3a52
1

2

l3

2
1

A3

2

l8

2
5F 0 0 0

0
1

2
0

0 0 2
1

2

G . ~4.5!

In Fig. 4 we compare the free energy monopole derivat
for the T3 , T3a , and T8 Abelian monopoles for the lattice
with Lt54 andLs532. We see that theT3 andT3a Abelian
monopoles agree within statistical errors in the whole ra
of b. On the other hand theT8 Abelian monopole displays a
signal about a factor two higher in the peak region. This is
variance of previous studies@15# which find out that the

FIG. 4. The derivative of the SU~3! monopole free energy in the
case ofT3 ~circles!, T3a ~squares!, and T8 ~diamonds! Abelian
monopoles.
09451
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disorder parameters for the three Abelian monopoles defi
by means of the Polyakov projection coincide within stat
tical errors. This result is quite interesting, for it suggests t
in the pattern of dynamical symmetry breaking due to
Abelian monopole condensation the color direction 8
slightly preferred.

Let us consider, now, in detail theT8 Abelian monopole.
In Fig. 5 we report the derivative of the monopole free e
ergy versusb for the lattice withLt54 andLs532. We also
display the absolute value of the Polyakov loop

uPu5K U1

V (
xW

1

3
TrF)

t51

Lt

U4~xW ,t !GU L , ~4.6!

We see thatFmon8 behaves like in the SU~2! case. Indeed, the
free energy monopole derivative is zero within errors in t
strong coupling region, while displays a sharp peak in cor
spondence of the rise of the Polyakov loop. In the we
coupling regionFmon8 is almost constant. The value of th
plateau corresponds to the classical action Eq.~3.12! which
in the present case gives

Sclass.
apb

12Tphys
nmon

2 1O~1/Lsa!, ~4.7!

so that

Fmon8 5a
p

12
nmon

2 . ~4.8!

The dashed line in Fig. 5 in the weak coupling region cor
sponds to Eq.~4.8! with a.2.0.

As in the SU~2! theory we find that by increasing th
spatial volume the peak increases~see Fig. 6!. Our data do

FIG. 5. The derivative of the SU~3! monopole free energy for
the T8 Abelian monopole~open circles! versusb with the absolute
value of the Polyakov loop~full circles!. The dashed line is Eq
~4.8!.
0-6
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not show a measurable shift of the peak. We feel that thi
a manifestation of the first order nature of the SU~3! decon-
finement transition. This is confirmed if we look at the d
order parameterm. In Fig. 7 we show the disorder paramet
m versusb for the Lt54 andLs532,48 lattices. Again we
see that the disorder parameterm is different from zero in the
confined phase and decreases towards zero in the therm
namic limit when we approach the critical coupling. Mor
over our numerical results suggest that by increasing the
tial volume the two curves cross. This is precisely the fin
volume behavior expected for the order parameter in the c
of a first order phase transition@22#.

V. CONCLUSIONS

In this paper we have investigated the Abelian monop
condensation in the finite temperature SU~2! and SU~3! lat-
tice gauge theories. By means of the lattice thermal parti
functional we introduce a disorder parameter which sign
the Abelian monopole condensation in the confined pha
By construction our definition of the disorder parameter
gauge invariant, so that we do not need to do any ga

FIG. 6. The derivative of theT8 Abelian monopole free energ
versusb, on lattices withLt54 andLs532 ~open circles! andLs

548 ~full circles!.
l

09451
is

dy-

a-
e
se

e

n
ls
e.
s
e

fixing to perform the Abelian projection. Our numerical r
sults suggest that the disorder parameterm is different from
zero in the confined phase and tends to zero when appro
ing the critical coupling in the thermodynamic limit. W
point out that in our approach the precise determination
the critical parameters could be obtained by means of a fi
size scaling analysis. However, our results are consis
with a second order deconfining phase transition in the c
of the SU~2! gauge theory. On the other hand, in the case
SU~3! the disorder parameterm displays the finite-size be
havior expected for a first order transition. It is clear that t
finite size analysis in the critical region requires a separ
study with both better statistic and larger lattice volum
Remarkably, in the case of SU~3! gauge theory, where ther
are two independent Abelian monopole fields related to
two diagonal generators of the gauge algebra, we find
the nonperturbative vacuum reacts moderately stronger in
case of theT8 Abelian monopole. We feel that this last resu
could be useful in the theoretical efforts to understand
pattern of symmetry breaking in the deconfined phase
QCD.

In conclusion we stress that our approach, while keep
the gauge invariance, can be readily extended to incorpo
the dynamical fermions. We hope to present results in
direction in a future study.

FIG. 7. The disorder parameterm @Eq. ~3.8!# for the SU~3! T8

Abelian monopoles versusb for lattices with Lt54 and Ls532
~open circles! andLs548 ~full circles!.
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