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Gauge invariant study of the monopole condensation in non-Abelian lattice gauge theories
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We investigate the Abelian monopole condensation in finite temperatui@ Shd SU3) pure lattice gauge
theories. To this end we introduce a gauge invariant disorder parameter built up in terms of the lattice
Schralinger functional. Our numerical results show that the disorder parameter is different from zero and
Abelian monopoles condense in the confined phase. On the other hand, our numerical data suggest that the
disorder parameter tends to zero, in the thermodynamic limit, when the gauge coupling constant approaches the
critical deconfinement value. In the case of(SlUwve also compare the different kinds of Abelian monopoles
which can be defined according to the choice of the Abelian subgroups.

PACS numbds): 11.15.Ha

I. INTRODUCTION retain the information relevant to the confinemggit
It turns out that the Abelian projection can be imple-

The dual superconductivity of the vacuum in gauge theoimented on the latticgs], so that one can analyze the dynam-
ries to explain color confinement was proposed long ago bycs of the Abelian projected gauge fields by means of non-
't Hooft [1] and Mandelstanj2]. These authors proposed perturbative numerical simulations. Indeed, the first direct
that the confining vacuum behaves as a coherent state efidence of the dual Abrikosov vortex joining two static
color magnetic monopoles. In other words the confiningquark-antiquark pair has been obtained in lattice simulations
vacuum is a magnetitdua) superconductor. This fascinat- of gauge theoriefs—9]. In particular in Ref[8] we consid-
ing proposal offers a picture of confinement whose physicgred the pure gauge $2) lattice theory and found evidence
can be clearly extracted. Indeed, the dual Meissner effeaif the dual Meissner effect both in the maximally Abelian
causes the formation of chromoelectric flux tubes betweegauge and without gauge fixing. Moreover we showed that
chromoelectric charges leading to a linear confining potenthe London penetration length is a physical gauge invariant
tial. quantity.

Following Ref.[3] let us consider gauge theories without  An alternative and more direct method to detect the dual
matter fields. In order to realize gauge field configurationssuperconductivity relies upon the very general assumption
which describe magnetic monopoles we need a scalar Higgat the dual superconductivity of the ground state is realized
field [4]. In the 't Hooft's scheme the role of the scalar field if there is condensation of Abelian monopoles. Various ap-
is played by any operator which transforms in the adjointproaches have been exploited to explore the monopole con-
representation of the gauge group. X€k) be an operator in  densation. In particular Ref§10] and[11] use the entropy-
the adjoint representation, then one fixes the gauge by diagenergy balance as a test for the monopole condensation
nalizing X(x) at each point. This choice does not fix com- respectively in S(R) and in SU3) lattice gauge theory. Ref-
pletely the gauge, for it leaves as residual invariance grouprence[12] employs a monopole creation operator in the
the maximal Abelian(Cartan subgroup of the gauge group. monopole current representation of the (3Ulattice gauge
This procedure is known as Abelian projectip8]. The theory. Referencgl3] makes use of the effective constraint
world line of the monopoles can be identified as the linegpotential to show the monopole condensation in the25U
where two eigenvalues of the operak(x) are equal. Thus, lattice gauge theory.
the dual superconductor idea is realized if these Abelian To investigate the monopole condensation it suffices to
monopole condense. Because of the gauge invariance we exeasure a disorder parameter defined as the vacuum expec-
pect that the monopole condensation should manifest irretation value of a nonlocal operator with nonzero magnetic
spective to the gauge fixing. In other words all the Abeliancharge and nonvanishing vacuum expectation value in the
projections are physically equivalent. However, it is conceiv-confined phas¢l14]. However, in the case of non-Abelian
able that the dual superconductor scenario could manifegfauge theories, the disorder parameter is expected to break a
clearly with a clever choice of the operat¥(x). It is re-  non-Abelian symmetry, while the dual superconductivity is
markable that, if one adopts the so called maximally Abelianealized by condensation of Abelian monopoles. As we have
projection[5], then it seems that the Abelian projected links already argued, the Abelian monopole charge can be associ-

ated to each operator in the adjoint representation by the

so-called Abelian projectio3,5]. Indeed, the authors of
*Electronic address: Paolo.Cea@bari.infn.it Ref. [14] introduced on the lattice a disorder parameter de-
"Electronic address: Leonardo.Cosmai@bari.infn.it scribing condensation of monopoles within a particular Abe-
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lian projection. On the other hand, recent res{dS| show The lattice effective action for the external static back-
that the Abelian monopoles defined through several Abeliagyround fieldA®(x) is given by
projection condense, suggesting that the monopole conden-

sation does not depend on the adjoint operator used in the 1 [Z[Aext]J

Z(0) (2.9

Abelian projection procedure. This is in accordance with the [[A®]= — L—In
theoretical expectation that monopole condensation should 4

occur irrespective of the gauge fixing procedure. However, %vhereL4 is the extension in Euclidean time adq0) is the

gauge .|nva.r|ant e_wdence of the Abelian monopole CondenI'attice Schrdinger functional, Eq(2.1), without the external
sation is still lacking.

: ext__ H
The aim of the present paper is to investigate the Abeliar?"’mkgr()l“Ind field ¢,,"=1). It can be showii19] that in the

monopole condensation in pure lattice gauge(Bland  continuum IimitF[Aei‘] is the vacuum energy in presence of
SU(3) theories in a gauge-invariant wa$6]. The meaning the background field\®{(x).
of gauge invariance of our approach is that we do not need to We want now to extend our definition of lattice effective
do any gauge fixing to perform the Abelian projection. In-action to gauge systems at finite temperature. In this case the
deed, after choosing the type of Abelian monopoles, our rerelevant quantity is the thermal partition function. In the con-
sults do not depend on the particular direction selected in thenuum we have
color space, which, actually, can be varied by a gauge trans-
formation. To detect monopole condensation we introduce a
disorder parameter defined in terms of a thermal partition
functional in presence of an external Abelian monopole
background field. As we shall see, our thermal partition funcwherep+ is the inverse of the physical temperatureis the
tional is constructed by means of the Satinger functional Hamiltonian, andP projects onto the physical states. As is
which is invariant against gauge transformations of the backwell known, the thermal partition function can be written as
ground field. [21]

The plan of the paper is as follows. In Sec. Il we intro-
duce the thermal partition functional, built up using the lat- —BH_ >
tice Schralinger functional17,18. In Sec. Ill we study the Trle f]= A#(BT,;):AM(Q;)DAM(X“’X)
Abelian monopole condensation for finite temperaturé23U ) )
lattice gauge theory. Section IV is devoted to the case of xe_ngdX4fd3X£Y7M(xrx4)_ (2.6
SU(3) gauge theory at finite temperature, where, according
to the choice of the Abelian subgroup, different kinds of On the lattice we have
Abelian monopoles can be defined. Our conclusions are
drawn in Sec. V.

Trle A= f DA(Ale” PTHPIA), (2.5

Tr e AH]= f i . DU ,(X4,X)€" W,
UL (BT 0 =U,,(00=U,()

II. THE THERMAL PARTITION FUNCTIONAL (2.7

To investigate the dynamics of the vacuum at zero temgComparing Eq(2.7) with Egs.(2.1) and(2.2), we get
perature we introduceld 9,20 the gauge-invariant effective

action for external stati@.e., time-independepbackground _BH - -
field defined by means of the lattice Sctirger functional Trle PT]= | DUL(X)Z[U (0], 239
Z[Uext]:f DUe~Sw 2.1) WhereZ[UM(i)] is the Schrdinger functional Eq(2.1) de-
: fined on a lattice with ,= B1, with “external” links U#(i)

. . . . . atx,=0.
whereS,y is the standard Wilson action. The functional in- We are interested in the thermal partition function in pres-

tegration is extended over links on a lattice with the hyper- . _ st
torus geometry and satisfying the constraints ence of a given static background fied®{(x). In the con-

tinuum this can be obtained by splitting the gauge field into
U U, 29 the background field®*(x) and the fluctuating fieldg(x).
“(X)|X4’° n ) @2 So that we could write formally for the thermal partition
H A Xt].
In Egs.(2.1) and (2.2 UfLX‘(x) is the lattice version of the function Z;[ A™):
external continuum gauge fieR®(x) = AZ(x)\ ,/2: é I L
gaug t( ) at( ) a ZT[Aext]:J Dn(AeXt,7]|e_BTHP|AeXt, 77>_ (2_9)

Aa

- 1 - A~
Uixt(x):Pex;{iagfo thg’fL(ert,u)z , (2.3

The lattice implementation of E§2.9) can be obtained from
Eq. (2.7) if we write

where P is the path-ordering operator apthe gauge cou- - - e~
pling constant. Ui(Br,%)=U(0x) = U (x)Uy(x), (2.10
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whereU®{(x) is given by Eq.(2.3) and theU(x)'s are the  tional Eq.(2.15 reduces to the zero-temperature Sclimger

ﬂuctuating links. Thus we get functional Eq (21) with the constraints Uk(X)|x4:O

=UP(x) instead of Eq(2.2). In our previous studj19] we
ZT[,&ext]:f DUk()?)DUA)Z)Z[UE"‘()?),Uk(i)], checked that in the thermodynamic limit both_ condi'tions
agree as concerns the zero-temperature effective action Eq.
(2.11

(2.9).

where we integrate over the fluctuating IinEIs(()Z), while

the UgX links are fixed. Note that in E¢2.11) only the lll. ABELIAN MONOPOLE CONDENSATION: SU  (2)

spatial links belonging to the hyperplarg=0 are written as Let us consider the S@) pure gauge theory at finite tem-

the product of the external IinkJEXt(i) and the fluctuating perature. We are interested in the thermal partition function

links U,(x). The temporal linkdJ ,(x,=0x) are left freely ~ EQ. (2.19 in presence of an Abelian monopole field. In the
fluctuating. It follows that the temporal links ,(x) satisfy ~ case of SW2) gauge theory the maximal Abelian group is an
the usual periodic boundary conditions. We stress that thé&belian U1) group. Thus, in the continuum the Abelian
periodic boundary conditions in the temporal direction aremonopole field turns out to be

crucial to retain the physical interpretation that the functional
Z:[ A% is a thermal partition function. In the following the
spatial links belonging to the time-slicg =0 will be called
“frozen links,” while the remainder will be the “dynamical
links. wheren is the direction of the Dirac string and, according to

From the phys[cal point of view we are cc_)nS|d¢r|ng _the he Dirac quantization conditiom,,,,,, iS an integer. The lat-
gauge system at finite temperature in interaction with a fixeq.

external background field. As a consequence, in the Wilsor(llgi)“g;r? g:rrreeaslgiclxnc(i)lggi;oe(tjhgsAbel|an monopole field Eg.
action Sy, we keep only the plaquettes built up with the dy- *" y

namical links or with dynamical and frozen links. With these 1
limitations it is easy to see that in E®.11) we have Uﬁxt(g): pex,{ igJ dt

0
ZIUPY%), 0, (x)]=2Z[UPx)]. (2.12

XX n
"2""” —, (3.9
|x|(]x|=x-n)

S n
gb*(x)= &%

o

2a bi(x+tx):, (3.2

R where theo,’s are the Pauli matrices. By choosing: X3 we
Indeed, let us consider an arbitrary frozen IBR(x) U (). get

This link enters in the modified Wilson action by means of

the plaquette UYx)=cog 01 A X)]+iossin 6, AX)],
Pra(x4=0x)=Tr{UZ(X)U(x)U,(0x+k -
ka(Xa=0x) = Tr{URx) Uy(x)U( ) Uix)=1, (3.3
t1 90T (0%
XUL(1X)UL(0x)}. 213
Now we observe that the link,(0x+k) in Eq.(2.13 is a N (X X,) 1
dynamical one, i.e., we are integrating over it. So that, by fy(X)= — —n2t2 T2 :
using the invariance of the Haar measure we obtain A Xmod  [Xmord = (X3—X3)
Pia(X4=0X)=TrH{UF(x)U,(0x+ k) Ui(1X)UL(0)}. - Npon (X=X
(2.14 O(X) =+ S

4 |)Zmor'1 |)zmor] - (XS_ XS) .
It is evident that Eq(2.14) in turns implies Eq(2.12. Then,
we see that in Eq(2.11) the integration over the fluctuating In Eq. (3.4) (X;,X,,X3) are the monopole coordinates and

links U()Z) gives an irrelevant multiplicative constant. So we )Zmon:(i—)?). In the numerical simulations we put the lat-
have tice Dirac monopole at the center of the time shige=0. To
avoid the singularity due to the Dirac string we locate the
ZT[ﬁeXt]= ) ) DUe Sw, (2.15 monopole betV\_/een two neighboring sites. _V_Ve have check_ed
Uk(BT %) =Ug(0x) = UF(x) that the numerical results are not too sensitive to the precise
position of the magnetic monopole.
where the integrations are over the dynamical links with pe- According to the discussion in the previous section we are
riodic boundary conditions in the time direction. As concernsinterested in the thermal partition functic&[ A®] given by
the boundary conditions at the spatial boundaries, we keepq. (2.15). Note that we do not need to fix the gauge due to
the fixed boundary conditiorték(i,x4)=UEXt(§) used inthe the gauge invariance of the thermal partition functional
Schralinger functional Eq.(2.1). Thus we see that, if we against gauge transformations of the external background
send the physical temperature to zero, then the thermal fundield. On the lattice the physical temperatdig,sis given by
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1 80 T T T T T LA BRI B B B
T = ﬁT: L'[ ’ (35) i L4 ]
phys r i
L $ 7] 0.6
wherelL =L, is the lattice linear extension in the time direc- i ]
tion. In order to approximate the thermodynamic limit the 60__ éé Jdos
spatial extensioh ¢ should satisfy | % ; 3 ]
L ¢ s {_ ___________ ]
LL,. (3.6 -t } . L T L
2 40} % 1 P
To this end we performed our numerical simulations on lat- | —:0-3
tices such that L # ]
- N Jo2
L, 20+ % ; ]
—=<4, (3.7 - ]
Ls L % P Jo.1
In the numerical simulations we impose periodic boundary n i f f . /| o Lo
conditions in the time direction. As already discussed, at the % 1 2 3 4 5 6
spatial boundaries the links are fixed according to Bp). B
This last condition corresponds to the requirement that the
fluctuations over the background field vanish at infinity. FIG. 1. The derivative of the Sd) monopole free energy ver-
Following the suggestion of Refl15] we introduce the susg [Eq. (3.10] for ny.=10 on a lattice withL,=4 andLg
gauge-invariant disorder parameter for confinement =24 (open circleg, with the absolute value of the Polyakov loop
(full circles). The dashed line is Eq43.13.
Z+¢n
n= e Fmon/TphyS:%, (38) 1 1 Lt N
T Pl=(|g 2 5T Il uaxv||), (3.1
V52 s

where Z{[ 0] is the thermal partition function without mono-

pole field (i.e., with n,,,=0). and, indeed, we see that the peak corresponds to the rise of
From Eq.(3.9) it is clear thatF ., is the free energy to Polyakov loop.

create an Abelian monopole. If there is monopole condensa- In the weak coupling region the plateauF,,, indicates

tion, thenF,,,,=0 andu=1. To avoid the problem of mea- that the monopole free energy tends to the classical mono-

suring a partition function we focus on the derivative of thepole action which behaves linearly i. To see this, we

monopole free energy observe that deeply in the weak coupling region the lattice
action should reduce to the classical action. In the naive con-
) J tinuum limit the classical action reads
I:monzﬁlzmon- (3-9)
1 (Bt e e o o
Sclasszif dX4f d*xB?(x)B(x), (3.12
’ 0

It is straightforward to see thd,,,, is given by the differ-

ence between the average plaquette o e , , )
where B?(x) is the classical Abelian monopole magnetic

o _ field. Introducing an ultraviolet cutofi\ =a/a, with « a
Fm°”_v[<P>“mon=° <P>“mon*°]’ (310 constant anda the lattice spacing, and performing in Eq.

_ _ (3.12 the spatial integral over the volumé=L2, we get
whereV is the spatial volume.

We use the over-relaxed heat-bath algorithm to update the maf
gauge configurations. Simulations have been performed by Selass™ g7 Nmont O(1/Ls2). (3.13
means of the APE100/Quadrics computer facility in Bari. phys
Since we are measuring a local quantity such as the plago that in the weak coupling region we have
quette, a low statisticgfrom 2000 up to 12000 configura-
tions) is required in order to get a good estimationFgf,,,,. , ™,

In Fig. 1 we display the derivative of the monopole free mon— g *Mmorr (3.14
energy versug3 for n,,,=10 on a lattice withL,=4 and
Ls=24. We see thaF/,,, vanishes at strong coupling and From Fig. 1 we see that E¢3.14) with «=1.2 (dashed ling
displays a rather sharp peak ngg=2.13. We expect that describes quite well the numerical data in the relevant re-
the peak corresponds to the finite temperature deconfinemegion.
transition. In Fig. 1 we also display the absolute value of the In order to determine the critical parameters and the order
Polyakov loop: of the transition, we need to perform the finite size scaling

094510-4



GAUGE INVARIANT STUDY OF THE MONOPOIE . .. PHYSICAL REVIEW D 62 094510

120:l LI ] LR L lIIllIIIIlIIII IIII: 0_II.I %.Io.lél I‘I Iél TT 7T i T T FT [ TTT1T ’ L IIl_I
: ¢ :
100 - -100 — % =
E E L o ]
: : - *%Q ]
80F l E 200 0 E
s F ] 0o ? .
Boof é% ARSI o
- % 3 E L ) N
: $ PTee ¢ & E I S e t 7
40t é = C L, =48 ]
: 3 -500 - } ]
205_ {{% _E -600:— —:
E E Foooabeva o bov v bvvoa b sa boaa o byv vy Lo 1
a dH 3t | | | | ] 05 1 15 2 25 3 35
00III 1”I 2 3 4 5 6 ﬁ
p

FIG. 3. The disorder parameter [Eq. (3.8)] for the SU2)
FIG. 2. The derivative of the S monopole free energy ver- Mmonopoles versug for lattices with L;=4 and Ls=24 (open
susp [Eq. (3.10] on lattices withL,=4 andL =24 (open circles  Circles or Ls=48 (full circles).
andL¢=48 (full circles).
gauge fields lead to more severe finite volume effects with
analysis. We plan to do this in a future work. In this paperrespect to the usual periodic boundary conditions. So that, to
we restrict ourself to a preliminary qualitative analysis. Inreach the thermodynamic limit we must simulate our gauge
Fig. 2 we compare the derivative of the monopole free ensystem on lattices with very large spatial volumes. We stress
ergy on lattices withL,=4 andLs=24,48. We see that in the again that the precise determination of the critical parameters
strong couplind~/,,, agrees for the two lattices. On the other requires a finite size scaling which will be presented else-
hand, in the weak coupling region the different values of thewhere.
plateaus can be ascribed to finite volume effects. In the criti-
cal region we see that the peak increases.
With the aim of obtaining the disorder parametefEq.
(3.8)] we perform the numerical integration of the monopole  |n the case of S(8) gauge theory, the maximal Abelian

IV. ABELIAN MONOPOLE CONDENSATION: SU (3)

free energy derivative group is U(1)X U(1). Therefore we have two different types
p of Abelian monopoles. Let us consider, first, the Abelian
= :f da'E’ N 31 monopole field given by Eq(3.1), which we call theT;
mor( B) 0 A Fmoil ') (319 Abelian monopole. The lattice links are given by

In Fig. 3 we show the disorder parameterversusg for
lattices withL;=4 andL,=24,48. We see clearly thai )
=1 in the confined phase. In other words the monopoles U X)= 0 e i1 0], 4.9
condense in the vacuum. On the other hand, it seems that 0 0 1

u—0 in the thermodynamic limit whep reaches the criti-
cal value. Indeed, by increasing the spatial volume of the R
lattice, the disorder parametgr decreases faster toward with 6, X(x) defined in Eq.(3.4). The second type of inde-
zero. Moreover we see that the finite volume behavior of oupendent Abelian monopole can be obtained by considering
disorder parameter is consistent with a second order decotthe diagonal generatarg. In this case we have thE; Abe-

el 01.4%) 0 0

finement phase transition. lian monopole
It worthwhile to comment on the finite volume effects. As
a matter of fact, it appears that, even though the spatial vol- i 01, 4%) 0 0
ume of our larger lattice looks enormous, we gain a rather .
small increase in the peak value of the monopole free energy U?(zt()Z)z 0 gl f1,4%) 0 . (4.2

derivative. This can be understood by observing that, due to
our peculiar conditions at the spatial boundaries, the dynami-
cal volume is smaller than the geometrical one. Moreover, it
is well known that the fixed boundary conditions for the with

0 0 e 2 01.4%)
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B
o _ FIG. 5. The derivative of the S8) monopole free energy for
FIG. 4. The derivative of the S8B) monopole free energy in the  the Ty Abelian monopoleopen circley versuss with the absolute
case of T3 (circles, T3, (squarel and Tg (diamondg Abelian  value of the Polyakov loogfull circles). The dashed line is Eq.

monopoles. (4.9).
- 1 Nimon (Xo2— X5) 1 disorder parameters for the thrge Abelian monop.olgs defined
01(X)= T ~ 72 > > , by means of the Polyakov projection coincide within statis-
3 [Xmor [ Xmor = (Xg—X3) tical errors. This result is quite interesting, for it suggests that

in the pattern of dynamical symmetry breaking due to the
0 (;):i . Mmon (X1 =X4) 1 Abelian monopole condensation the color direction 8 is
2 VBl 4 Kood  [Xmod = (Xs—Xa) | slightly preferred.
4.3 Let us consider, now, in detail tie; Abelian monopole.
In Fig. 5 we report the derivative of the monopole free en-
Obviously, the lattice links E(4.2) corresponds now to the ergy versug3 for the lattice withL,=4 andL¢=32. We also
continuum gauge field display the absolute value of the Polyakov loop

11 [fH N
v EX) 3Tr t]:[l U4(X,t)

.. n xXn
bA(x)= 6280 — 4.4 P|=
= R 49 P!

>, 4

The other Abelian monopoles can be generated by consideywe see thaF /., behaves like in the S@) case. Indeed, the
ing the linear combination of th&; and Tg generators. In  free energy monopole derivative is zero within errors in the
particular we have considered thig, Abelian monopole strong coupling region, while displays a sharp peak in corre-
corresponding to the following linear combinatiph5] of  spondence of the rise of the Polyakov loop. In the weak

A3/2 and\g/2: coupling regionF /. is almost constant. The value of the
plateau corresponds to the classical action Bdl2 which

00 0 in the present case gives
1XA; 3\ ol o B
—_ -3 N2T8_ 2 aT
3a 22 2 2 - 2 ) . (45) SCIaSS: Tphysnﬁqon‘l‘ O(l/LSa), (47)
00 -3 so that
In Fig. 4 we compare the free energy monopole derivative , T,
for the T3, T3,, and Tg Abelian monopoles for the lattice mon™" al_znmon' (4.8

with L;=4 andL,=32. We see that th&; andT;, Abelian

monopoles agree within statistical errors in the whole rang&he dashed line in Fig. 5 in the weak coupling region corre-
of 8. On the other hand th&g Abelian monopole displays a sponds to Eq(4.8) with a=2.0.

signal about a factor two higher in the peak region. Thisis at As in the SUW2) theory we find that by increasing the
variance of previous studigsl5] which find out that the spatial volume the peak increas@sge Fig. 6. Our data do
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B FIG. 7. The disorder parametgr [Eq. (3.8)] for the SU3) Ty

o ) Abelian monopoles versug for lattices withL,=4 and L =32
FIG. 6. The derivative of th&g Abelian monopole free energy (gpen circley and L =48 (full circles).

versusg, on lattices withL,=4 andL,=32 (open circlesandL
=48 (full circles). fixing to perform the Abelian projection. Our numerical re-

sults suggest that the disorder parametds different from

not show a measurable shift of the peak. We feel that this i€ in the confined phase and tends to zero when approach-

a manifestation of the first order nature of the(Sidecon- N9 the critical coupling in the thermodynamic limit. We
finement transition. This is confirmed if we look at the dis- point out that in our approach the precise determination of

odr parametes. I Fig. 7 we sho he isorder prameter ' LCA paeterscouldbe otaned by means o & e
u versusp for theL;=4 andL¢ =32,48 lattices. Again we 9 ysIs. '

. . . with a second order deconfining phase transition in the case
see that the disorder parameters different from zero in the f the SU2) gauge theory. On the other hand, in the case of
confined phase and decreases towards zero in the thermo '

S » . U(3) the disorder parametgr displays the finite-size be-
namic limit when we approach the critical coupling. More- j,yior expected for a first order transition. It is clear that the
over our numerical results suggest that by increasing the spgpjte size analysis in the critical region requires a separate
tial volume the two curves cross. This is precisely the finitestydy with both better statistic and larger lattice volumes.
volume behavior expected for the order parameter in the caggemarkably, in the case of $8) gauge theory, where there

of a first order phase transitid2]. are two independent Abelian monopole fields related to the
two diagonal generators of the gauge algebra, we find that
V. CONCLUSIONS the nonperturbative vacuum reacts moderately stronger in the

case of thel's Abelian monopole. We feel that this last result

In this paper we have investigated the Abelian monopoleould be useful in the theoretical efforts to understand the
condensation in the finite temperature (@Jand SU3) lat-  pattern of symmetry breaking in the deconfined phase of
tice gauge theories. By means of the lattice thermal partitioQCD.
functional we introduce a disorder parameter which signals In conclusion we stress that our approach, while keeping
the Abelian monopole condensation in the confined phasehe gauge invariance, can be readily extended to incorporate
By construction our definition of the disorder parameter isthe dynamical fermions. We hope to present results in this
gauge invariant, so that we do not need to do any gaugedirection in a future study.
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