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Almost perfect quantum lattice action for low-energy SU„2… gluodynamics
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We study various representations of infrared effective theory of SU~2! gluodynamics as a~quantum! perfect
lattice action. In particular we derive a monopole action and a string model of hadrons from SU~2! gluody-
namics. These are lattice actions which give almost cutoff independent physical quantities even on coarse
lattices. The monopole action is determined by numerical simulations in the infrared region of SU~2! gluody-
namics. The string model of hadrons is derived from the monopole action by using BKT transformation. We
illustrate the method and evaluate physical quantities such as the string tension and the mass of the lowest state
of the glueball analytically using the string model of hadrons. It turns out that theclassicalresults in the string
model are near to the one inquantumSU~2! gluodynamics.

PACS number~s!: 12.38.Gc, 11.15.Ha
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I. INTRODUCTION

The low-energy effective theory of QCD is important f
an analytical understanding of hadron physics. Before
derivation of such an effective theory we have to explain
most important nonperturbative phenomenon, quark confi
ment. Wilson’s lattice formulation@1# shows that confine-
ment is a property of a non-Abelian gauge theory of stro
interactions. At strong coupling the confinement is prov
analytically. At weak coupling~near to the continuum limit!
there are a lot of numerical calculations showing the confi
ment of color. The mechanism of confinement is, howev
still not well understood. One of the approaches to the c
finement problem is to search for relevant dynamical va
ables and to construct an effective theory in terms of th
variables.

From this point of view the idea proposed by ’t Hooft@2#
is very promising. It is based on the fact that after a par
gauge fixing~Abelian projection! SU(N) gauge theory is re-
duced to an Abelian U(1)N21 theory with N21 different
types of Abelian monopoles. Then the confinement of qua
can be explained as the dual Meissner effect which is du
condensation of these monopoles. The QCD vacuum is
to the ordinary superconductor: the monopoles playing
role of the Cooper pairs. The confinement occurs due to
formation of a string with an electric flux between the qua
and antiquark. It is a dual analogue of the Abrikosov str
@3#. The mechanism of confinement is usually called the d
superconductor mechanism.

There are many ways to perform Abelian projection, b
in the maximal Abelian~MA ! gauge@4# many numerical
results support the dual superconductor picture of confi
ment @5# in the framework of lattice gluodynamics~see, for
example, reviews@6,7#!. These results suggest that the Ab
lian monopoles which appear after the Abelian projection
QCD are relevant dynamical degrees of freedom in the
frared~IR! region. We expect hence, after integrating out
degrees of freedom other than the monopoles, an effec
theory described by the monopoles works well in the
region of gluodynamics.

The effective monopole action on the MA projection
0556-2821/2000/62~9!/094506~16!/$15.00 62 0945
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SU~2! lattice gluodynamics was obtained by Shiba and S
zuki @8# using an inverse Monte Carlo method@9#. Assuming
that the lattice action contains only quadratic terms of mo
pole currents, they found that the action has a form theor
cally predicted by Smit and van der Sijs@10#. This was the
first derivation of an effective theory of lattice gluodynami
in terms of the monopole currents. However, the steps
block-spin transformation performed in Ref.@8# were rather
few to see the continuum limit. In Ref.@11# they considered
also four- and six-point interactions assuming a direct
symmetric action on the large (484) lattice. More steps of the
block-spin transformations were carried out also. It
stressed that the action seems to satisfy a scaling beha
that is, it depends on the physical lengthb5na(b) alone,
wheren is the number of the blocking transformations a
a(b) is the lattice spacing. This remarkable scaling is co
sistent with the behavior of the perfect action on the ren
malized trajectory~RT! which is an effective theory in the
continuum limit formulated on the lattice with the lattic
distanceb. Hereb plays a role of the physical scale at whic
the effective theory is considered. On RT, although we c
predict physical quantities only on theb lattice sites, they are
the same as evaluated from the continuum theory. For
ample, the continuum rotational invariance should be sa
fied. The restoration of the continuum rotational invarian
for the quark-antiquark static potential was studied usin
naive Wilson loop operator. However, the continuum ro
tional invariance was not confirmed in the IR region
SU~2! gluodynamics@12#. This is because the cutoff effect o
such an operator is of order of the lattice spacing of
coarse lattice. To check restoration of the continuum ro
tional invariance, we should determine the correct form
physical operators~the perfect operator! as well as the per-
fect action on the blocked lattice.

The main task of this publication is to derive the perfe
monopole and the string action as a low-energy effect
theory of SU~2! gluodynamics and evaluate physical quan
ties analytically using a renormalized operator. In Sec. II
discuss how to derive the renormalized monopole and
string action from SU~2! gluodynamics. We show new re
sults of the analysis of the monopole action which is o
©2000 The American Physical Society06-1
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tained by using inverse Monte Carlo method. In Sec. III
discuss how to construct the perfect operator for the st
potential. In Sec. IV we calculate the string tension and
glueball mass for the SU~2! gluodynamics in terms of the
strong coupling expansion of the string model analytically
turns out that theclassicalresults in the string model is nea
to the one inquantumSU~2! gluodynamics. The continuum
rotational invariance of the static potential is shown also a
lytically. In Sec. V we analyze the numerical results in d
tails. Section VI is devoted to concluding remarks.

II. ALMOST PERFECT MONOPOLE ACTION
FROM SU„2… GLUODYNAMICS

A. Our method

The method to derive the monopole action is the follo
ing.

~1! We generate SU~2! link fields $U(s,m)% using the
simple Wilson action for SU~2! gluodynamics. We conside
244 and 484 hypercubic lattice forb52.0–2.8.

~2! Next we perform an Abelian projection in the max
mal Abelian gauge to separate Abelian link variab
$u(s,m)5eium(s)%(2p<um(s),p) from gauge fixed SU~2!
link fields.

~3! Monopole currents can be defined from Abeli
plaquette variablesumn(s) following DeGrand and Toussain
@13#. The Abelian plaquette variables are written by

umn~s![um~s!1un~s1m̂ !2um~s1 n̂ !2un~s!

@24p,umn~s!,4p#. ~1!

It is decomposed into two terms:

umn~s![ūmn~s!12pnmn~s!, @2p<ūmn~s!,p#. ~2!

Here, ūmn(s) is interpreted as the electro-magnetic fl
through the plaquette and the integernmn(s) corresponds to
the number of Dirac string penetrating the plaquette. One
define quantized conserved monopole currents

km~s!5
1

2
emnrs]nnrs~s1m̂ !, ~3!

where] denotes the forward difference on the lattice. T
monopole currents satisfy a conservation law]m8 km(s)50 by
definition, where]8 denotes the backward difference on t
lattice.

~4! We consider a set of independent and local monop
interactions which are summed up over the whole lattice.
denote each operator asSi@k#. Then the monopole action ca
be written as a linear combination of these operators

S@k#5(
i

GiSi@k#, ~4!

whereGi are coupling constants.
We determine the set of couplingsGi from the monopole

current ensemble$km(s)% with the aid of an inverse Monte
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Carlo method first developed by Swendsen and extende
closed monopole currents by Shiba and Suzuki@8,9#.

Practically, we have to restrict the number of interacti
terms. It is natural to assume that monopoles which are
apart do not interact strongly and to consider only sho
ranged interactions of monopoles. The form of actio
adopted here is 27 quadratic interactions and four-point
six-point interactions. We have not assumed a direction s
metric form of the action as done in Ref.@11#. The detailed
form of interactions are shown in Appendix A. Note that a
possible types of interactions are not independent due to
conservation law of the monopole current. So we get rid
almost all the perpendicular interactions by the use of
conservation rule. The validity of the truncation has be
studied and supported in the earlier works. For details,
Refs.@8,11#.

~5! We perform a block-spin transformation in terms
the monopole currents on the dual lattice to investigate
renormalization flow in the IR region. We adoptn
51,2,3,4,6,8 extended conserved monopole currents asn
blocked operator@14#:

Km~s(n)!5 (
i , j ,l 50

n21

km@ns(n)1~n21!m̂1 i n̂1 j r̂1 l ŝ#

~5!

[Bkm
~s(n)!. ~6!

The renormalized lattice spacing isb5na(b) and the con-
tinuum limit is taken as the limitn→` for a fixed physical
lengthb.

We determine the effective monopole action from t
blocked monopole current ensemble$Km(s(n))%. Then one
can obtain the renormalization flow in the coupling const
space.

~5! The physical lengthb5na(b) is taken in unit of the
physical string tensionAsphys. We evaluate the string tensio
s lat from the monopole part of the Abelian Wilson loops f
eachb since the error bars are small in this case. The lat
spacinga(b) is given by the relationa(b)5As lat /sphys

@11#. Note thatb51.0sphys
21/2 corresponds to 0.45 fm, whe

we assumesphys>(440 MeV)2.

B. Numerical results

We list new results below in comparison with earlier n
merical analysis of the monopole action.

~1! The inverse Monte Carlo method works well and t
coupling constants of the action are fixed beautifully. T
quadratic coupling constants and four-point coupling co
stant are plotted versus the physical lengthb5na(b) for
eachn extended monopole in Fig. 1. The first three figur
show quadratic self couplingG1(b), quadratic nearest
neighbor couplings@G2(b) ~black symbol!, G3(b) ~open
symbol!# andG10(b), respectively. The self-coupling term i
dominant and the coupling constants decrease rapidly as
distance between the two monopole currents increases.

G1~b!@G2~b!;G3~b!.•••.G10~b!.•••.
6-2
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FIG. 1. The couplings of quadratic interaction term and 4-point interaction term versus physical lengthb.
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The four-point coupling constant becomes negligibly sm
in comparison with the quadratic couplings for largeb region
(b.1.5sphys

21/2). The six-point coupling constant behav
similarly as the four-point coupling does and becomes m
smaller for largeb region:

quadratic couplings@four-point coupling

@six-point coupling.

From these figures we see a scaling of the act
S @km ,n,a(b)#→S @Km ,b5na(b)# for fixed physical
lengthb5na(b) looks almost good forn>4. The obtained
action appears to be a good approximation of the action
the RT.

~2! In Fig. 2 we plot the projected lines@G1(b)
2G2(b), G2(b)2G3(b), andG1(b)-4-point, respectively# of
the renormalization flow. Each flow line for smallerb
~which corresponds to largerb) is beautifully straight with
very small errors. The quadratic interactions for monopo
are dominant for largerb, that is, only the quadratic interac
tion subspace seems sufficient in the coupling space for l
energy SU~2! gluodynamics. We also see the effecti
monopole action tends to go to the weak coupling reg
when we go to the infrared region of SU~2! gluodynamics.
09450
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~3! The quadratic coupling constants atb52.14 are plot-
ted versus the squared distanceR2 in unit of squared physica
length b2 in Fig. 3. We see the direction asymmetry of th
current action.~For example,G2ÞG3.! This behavior of the
action does not occur in the case of compact QED, beca
the monopole action can be obtained from the Villain fo
of compact QED exactly in an analytical way and it does n
depend on the direction between two monopole currents
Ref. @11# they have neglected this effect and have conside
a direction symmetric form of the monopole action but as
will see later that this direction asymmetry of the curre
action is natural and important features of the perfect lat
action.

III. A PERFECT OPERATOR FOR PHYSICAL
QUANTITIES

In previous sections we have studied the renormali
monopole actionS @k# performing block spin transformation
up ton58 numerically, and have found the scaling for fixe
physical lengthb looks almost good. If the continuum rota
tional invariance of physical observables is satisfied in ad
tion in the framework ofS @k#, we can regardS @k# as a
good approximation of RT.
6-3
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FIG. 2. The renormalization flow on the projected plane.
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A. Improved and perfect operator

In gluodynamics, the string tension from the static pote
tial is one of important physical quantities. However, it is
problem how to evaluate the static potential between ele
cally charged particles after Abelian projection. In the ear
work @12# we considered a naive Abelian Wilson loop o
erator andS @k# on the coarse lattice to evaluate the sta
potential, but the continuum rotational invariance of the p
tential could not be well reproduced even for the infrar
region of SU~2! gluodynamics. This is because the cuto
09450
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effect of such an operator is of order of the lattice spacing
the coarse lattice. Only the scaling behavior of the action
insufficient. We should also adopt improved physical ope
tors on the coarse lattice in order to get the correct value
physical observables. An operator giving a cutoff indepe
dent value on RT is called the perfect operator.

B. The method

As will be shown in Sec. III D, when we consider
monopole action composed of general quadratic interact
6-4
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ALMOST PERFECT QUANTUM LATTICE ACTION FOR . . . PHYSICAL REVIEW D 62 094506
alone, a block spin transformation can be done analytic
@15#. We find a perfect operator for a static potential start
from an operator in the continuum limit. The continuum r
tational invariance is shown exactly with the operator. T
is an example of a perfect operator.

What happens in low-energy SU~2! gluodynamics? It is
natural that one can not perform a block spin transforma
analytically. However, as shown in the previous section,
Abelian monopole actionS @k# which is obtained numeri-
cally is well approximated by quadratic interactions alone
largeb. The monopole action on the renormalized trajecto
~RT! is expected to be near to the quadratic coupling c
stant plane in the infrared region. We can perform the a
lytic block spin transformation along the flow projected
the quadratic coupling constant plane as shown in Fig
When we define an operator on the finea lattice, we can find
a perfect operator along the projected flow in thea→0 limit
for fixed b. Let us adopt the perfect operator on the projec
space as an approximation of the correct operator for
actionS @k# on the coarseb lattice. It will be shown in the
following Sec. III E that the above standpoint may be jus
fied as long as the quadratic monopole interactions are do
nant.

C. Various operators for a static potential

There is another problem what is the correct operator
the Abelian static potential in Abelian projected SU~2! gluo-
dynamics on the finea lattice. First let us consider the fol

FIG. 3. The distance dependence of the couplings of quad
interaction terms atb52.14.

FIG. 4. Flow of the couplings under block spin transformation
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lowing Abelian gauge theory of the generalized Villain for
on a fine lattice with a very small lattice distance:

S @u,n#5
1

4p2 (
s,s8;m.n

@] [mun]~s!12pnmn~s!#

3~DLD0!~s2s8!@] [mun]~s8!12pnmn~s8!#,

~7!

where um(s) is a compact Abelian gauge field and th
integer-valued tensornmn(s) comes from the periodicity of
the lattice action~7!. Both of the variables are defined on th
original lattice.DL(s2s8)52]]8ds,s8 is the lattice Laplac-
ian and we writeD05bDL

211D08 for later convenience,
whereD08 is a general operator. Since we are considerin
fine lattice near to the continuum limit, we assume the dir
tion symmetry of D08 . Note that D052p2bVDL

21 corre-
sponds to the ordinary Villain action for compact QED.
this type of model, it is natural to use an Abelian Wilso
loop W(C)5exp(i(C„um(s),Jm(s)…) for particles with funda-
mental Abelian charge, whereJm(s) is an Abelian integer-
charged electric current. The expectation value ofW(C) is
written as

^W~C!&5K expH i(
s,m

Jm~s!um~s!J L 5Z@J#/Z@0#, ~8!

Z@J#[E
2p

p

)
s;m

dum~s! (
nmn(s)52`

1`

expH 2S @u,n#

1 i(
s,m

Jm~s!um~s!J . ~9!

Next it is known that the theory with the above action~7!
is equivalent to the lattice form of the modified London lim
of the dual Abelian Higgs model@16# as shown in Appendix
B

S @C,f,l #5
1

4b (
s;m.n

@] [mCn]~s!#21
1

4 (
s,s8;m

@]mf~s!

2Cm~s!12p l m~s!#D08
21~s2s8!@]mf~s8!

2Cm~s8!12p l m~s8!#. ~10!

The static potential for electrically charged particles is eva
ated by a dual ’t Hooft operator

H~C!5expH 2
1

4b (
s;m.n

@] [mCn]~s!22p * Smn
J ~s!#2

1
1

4b (
s;m.n

@] [mCn]~s!#2J , ~11!

where* Smn
J (s) is dual to the surface which is spanned insi

the contourJm(s).
Thirdly, when use is made of the Beresinskii-Kosterlit

Thouless~BKT! transformation@17–19#, the action~7! is
equivalent to the following monopole action:

tic
6-5
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S@km~s!#5 (
s,s8,m

km~s!D0~s2s8!km~s8!. ~12!

We see that the area law term is given correctly also by
following operator in the monopole representation as sho
in Appendix B:

Wm~C!5expS 2p i(
s,m

Nm~s!km~s! D , ~13!

Nm~s!5(
s8

DL
21~s2s8!

3
1

2
emabg]aSbg

J ~s81m̂ !, ~14!

where Sbg
J (s81m̂) is a plaquette variable satisfyin

]b8Sbg
J (s)5Jg(s) and the coordinate displacementm̂ is due

to the interaction between dual variables.
However, the expectation values of the above three op

tors are not completely equivalent. When we consider in
red effective Abelian theories, it is natural that the sta
potential between electric charges becomes Coulombic in
deconfinement phase. The ’t Hooft operator in the dual A
lian Higgs model or the Wilson loop in the generalized V
lain form reproduce this behavior. However, it is stress
that all three operators give the same area law, since
differences give only Coulombic or Yukawa potentia
Since we are interested in the string tension, let us cons
the operator~13! from now on. See Appendix B for details

D. Analytic block spin transformation

We construct a block spin transformation~6! of monopole
currents.1 Integrating out the monopole current variable
the fine lattice we arrive at an effective action and the lo
operator for the static potential on the coarse lattice@15#. Let
us start from

^Wm~C!&5 (
km(s)52`

]m8 km(s)50

`

expH 2 (
s,s8,m

km~s!D0~s2s8!km~s8!

12p i(
s,m

Nm~s!km~s!J
3 )

s(n),m

d@Km~s(n)!2Bkm
~s(n)!#/Z@k#. ~15!

1Note that the currentKm(s(n)) on the coarser lattice with a lattic
distanceb5na satisfies the current conservation]m8 Km(s(n))50 by
definition.
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The cutoff effect of the operator~15! is O(a) by definition.
This d-function renormalization group transformation can
done analytically. Taking the continuum limita→0, n→`
~with b5na is fixed! finally, we obtain the expectation valu
of the operator on the coarse lattice with spacingb5na @15#:

^Wm~C!&5expH 2p2E
2`

`

d4xd4y(
m

Nm~x!

3D0
21~x2y!Nm~y!1p2b8 (

s(n),s(n)8
m,n

Bm~bs(n)!

3Dmn~bs(n)2bs(n)8!Bn~bs(n)8!J
3 (

b3Km(bs)52`

]m8 Km50

`

expH 2S@Km~s(n)!#

12p ib8 (
s(n),s(n)8

m,n

Bm~bs(n)!Dmn~bs(n)2bs(n)8!

3Kn~bs(n)8!J Y (
b3Km(bs)52`

]m8 Km50

`

Z@K,0#, ~16!

where

Bm~bs(n)![ lim
a→0
n→`

a8 (
s,s8,n

P¬m~bs(n)2as!

3H dmn2
]m]n8

(
r

]r]r8
J

3D0
21~as2as8!Nn~as8!, ~17!

P¬m~bsn2as![
1

n3
d@nasm

(n)1~n21!a2asm#

3 )
i (Þm)

S (
I 50

n21

d~nasi
(n)1Ia2asi !D .

~18!

S@Km(s(n))# denotes the effective action defined on t
coarse lattice

S@Km~s(n)!#5b8 (
s(n),s(n)8

(
m,n

Km~bs(n)!

3Dmn~bs(n)2bs(n)8!Kn~bs(n)8!. ~19!
6-6
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Since we take the continuum limit analytically, the operator~16! does not have any cutoff effect.
The momentum representation ofDmn(bs(n)2bs(n)8) takes the form

Dmn~p!5Amn
GF21~p!2

1

l

p̂mp̂n

~ p̂2!2
ei (pm2pn)/2, ~20!

whereAmn8GF21
(p) is the gauge-fixed inverse of the following operator:

Amn8 ~p![S )
i 51

4

(
l i52`

` D H D0
21~p12p l !F dmn2

~p12p l !m~p12p l !n

(
i

~p12p l ! i
2 G ~p12p l !m~p12p l !n

)
i

~p12p l ! i
2 J S )

i 51

4

p̂i D 2

p̂mp̂n

. ~21!
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The explicit form ofDmn(p) is written in Ref.@15#. Perform-
ing the BKT transformation explained in Appendix B on th
coarse lattice, we can get the loop operator for the st
potential in the framework of the string model:

^Wm~C!&5^Wm~C!&cl

3
1

Z (
smn(s)52`

] [asmn] (s)50

`

expH 2p2 (
s,s8

mÞa
nÞb

sma~s!]a]b8

3Dmn
21~s2s1!DL

22~s12s8!snb~s8!

22p2(
s,s8
m,n

smn~s!]mDL
21~s2s8!Bn~s8!J . ~22!

^Wm(C)&cl is defined by

^Wm~C!&cl5expH 2p2E
2`

`

d4x d4y(
m

Nm~x!‘

3D0
21~x2y!Nm~y!J . ~23!

E. The on-axis case

In the above calculation, we have introduced the sou
term corresponding to the loop operator for the static pot
tial on the finea lattice and have constructed the operator
the coarseb lattice by making the blockspin transformatio
To check the validity of our analysis, it is to be emphasiz
that the same string tension for the flat on-axis Wilson lo
can be obtained forI ,T→` when we consider a naive Wil
son loop operator on the coarseb lattice instead of that on
the fine lattice~13!. When we consider only quadratic inte
actions for the monopole action, we get the classical str
tension from the large flat Wilson loop as follows@15#:
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sL5E
2p

p d2p

~2p!2
DL

22~k1 ,k2,0,0!Fsin2
k2

2
D21~k1 ,k2,0,0;1̂!

1sin2
k1

2
D21~k1 ,k2,0,0;2̂!G , ~24!

whereD denotes the coupling of the monopole action det
mined numerically on the coarseb lattice. ForI→` and T
→`, we can easily show thatsL agrees exactly with the
string tension derived later from Eq.~23! @15#. Therefore,
our analysis is natural as long as the quadratic monop
action is a good approximation in the IR region of SU~2!
gluodynamics. Note that we can show both quantum fluct
tion parts also coincide.

IV. ANALYTICAL RESULTS OF SU „2… GLUODYNAMICS

A. Parameter fitting

As shown already, the~numerically obtained! effective
monopole action for SU~2! gluodynamics in the IR region is
well dominated by quadratic interactions. Hence we reg
the renormalization flow obtained in Sec. III D as a proje
tion of RT to the quadratic-interaction plane as written
Fig. 4. We adopt the perfect operator discussed in the pr
ous section as the correct one on the coarseb lattice in the
low-energy SU~2! gluodynamics. In order to know the ex
plicit form of the operator, we need first to fixD0(s2s8).
This can be done by comparingDmn(bs(n)2bs(n)8) with the
set of numerically obtained coupling constants of the mo
pole action$Gi(b)% in Sec. II.

We assumeD0(s2s8) in the monopole action~12! to
take āds,s81b̄DL

21(s2s8)1ḡDL(s2s8), whereā, b̄, and

ḡ are free parameters. We can consider more general
dratic interactions, but as we see later, this choice is su
cient to derive the IR region of SU~2! gluodynamics.

The inverse operator ofD0(p)5ā1b̄/p21ḡp2 takes the
form

D0
21~p!5kS m1

2

p21m1
2

2
m2

2

p21m2
2D , ~25!
6-7
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where the new parametersk, m1, and m2 satisfy k(m1
2

2m2
2)5ḡ21,m1

21m2
25ā/ḡ,m1

2m2
25b̄/ḡ. Substituting Eq.

~25! into Eq. ~21! and performing a First Fourier transform
~FFT! on the 164 lattice for the several input valuesk, m1,
andm2 we calculateDmn(p). Then one can obtain distanc
dependence of theDmn(bs(n)2bs(n)8). By matching the dis-
tance dependence of theDmn(bs(n)2bs(n)8) with numerical
ones, one can fit the free parametersk, m1, andm2. We find
that the ratiom1 /m2 is around 104, butm1 andm2 cannot be
fixed well separately. Their optimal values forb52.1, 2.9,
and 3.8 are given in Table I, where we fixm151.03104 and
m2512 for all b. The coupling constants with the optim
values are illustrated in Fig. 5. Note that, in this figure, t
lattice monopole action obtained from the continuum by a
lytical blocking also show the direction asymmetry.

B. The string tension

Let us evaluate the string tension using the perfect op
tor ~22!. The plaquette variableSab

J in Eq. ~14! for the static
potentialV(Ib,0,0) is expressed by

TABLE I. The optimal valuesk, m1, andm2 for b52.1, 2.9,
and 3.8 from the inverse Monte Carlo method.

b 2.1 2.9 3.8

k 1.76 3.12 4.83
m1 1.03104 1.03104 1.03104

m2 12.0 12.0 12.0

FIG. 5. The coupling constants with the optimal valuesk, m1,
andm2 for b52.1, 2.9, and 3.8 from the comparison with nume
cal data.
09450
-

a-

Sab
J ~z!5da1db4d~z2!d~z3!u~z1!u~ Ib2z1!

3u~z4!u~Tb2z4!. ~26!

In Sec. II B we have seen that the monopole action on
dual lattice is in the weak coupling region for largeb. Then
the string model on the original lattice is in the strong co
pling region. Therefore, we evaluate Eq.~22! by the strong
coupling expansion. The method can be shown diagramm
cally in Fig. 6.

1. The classical part

As explicitly evaluated in Ref.@15#, the classical part of
the string tension coming from Eq.~23! is

scl5
pk

2
ln

m1

m2
. ~27!

Ascl /sphys using the optimal valuesk, m1, and m2 are
given in Table II, wheresphys is the physical string tension
The scaling ofAscl /sphys for physical lengthb seems good,
although its absolute value is larger than 1. The differen
will be analyzed later in Sec. V.

2. Quantum fluctuations

The next to leading quantum fluctuation term comes fr
the second part of Eq.~22!. It corresponds to the secon
figure in Fig. 6 and becomes@15#

sq f52
4

b2
e24P(0)b2

, ~28!

whereP(0) is the self-coupling constant of the string actio
~22!. The total string tension is the sums tot5scl1sq f .

The quantum corrections for the string tension are giv
in Table III. We see they are negligibly small in IR region
SU~2! gluodynamics. We can evaluate physical quantit
using the classical part alone in the strong coupling exp
sion of the string model. Therefore, the strong coupling
pansion works good and it is found that theclassicalstring
tension in the string model is near to the one inquantum
SU~2! gluodynamics.

TABLE II. Ascl /sphys for b52.1, 2.9, and 3.8.

b 2.1 2.9 3.8

A scl

sphys

1.64 1.56 1.45

FIG. 6. The strong coupling expansion of the Wilson loop c
culation.
6-8
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ALMOST PERFECT QUANTUM LATTICE ACTION FOR . . . PHYSICAL REVIEW D 62 094506
3. The on-axis case

We evaluate next the string tension using Eq.~24!, where
D21(k) are determined from the numerical data of coupli
constants. By using a first Fourier transform on the 322 lat-
tice, we perform the integration with respect to the mom
tum in Eq.~24!. The results are given in Table IV. We fin
that these are almost the same as those in Table II.
validity of our analysis in Sec. III is confirmed.

4. On the continuum rotational invariance

We here comment on the continuum rotational invarian
of the quark-antiquark static potential. For the sake of c
venience we place a pair of static quark and antiquark at
point (0,0,0) and (x1 ,x2 ,0) on a three-dimensiona
timeslice, respectively. Both of the coordinatesx1 and x2
denote the sites sitting on theb5na lattice. Therefore the
potential becomes dependent only on two coordinatesV
5V(x1 ,x2). In the framework of our analysis@15#, the static
potentialsV(Ib,0) andV(Ib,Ib) can be written as

V~ Ib,0!5
pkIb

2
ln

m1

m2
, ~29!

V~ Ib,Ib !5
A2pkIb

2
ln

m1

m2
. ~30!

The potentials from the classical part take only the lin
form and the rotational invariance is recovered complet
even for the nearestI 51 sites. The recovery of the con
tinuum rotational invariance of the static potential is na
rally expected also for the quantum fluctuation, since
have introduced the source term corresponding to the Wi
loop on the finea lattice and we have taken the continuu
limit a→0.

C. The glueball mass

The mass spectrum in SU~2! gluodynamics can be ob
tained by computing the correlation functions of gauge
variant local operators or Wilson loops, and looking for t
particle poles. For examples, one can consider a two p
function of an operatorO(t)5(xWTr(F2)(xW ,t). For large time
t it is expanded as

TABLE III. The leading quantum correction forb52.1, 2.9,
and 3.8.

b 2.1 2.9 3.8

4

b2
e24P(0)b2 1.2631025 1.4031029 1.65310214

TABLE IV. M011 /Ascl for b52.1, 2.9, and 3.8.

b 2.1 2.9 3.8

M011 /Ascl 5.56 4.18 3.36
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^O~ t !O~0!&.(
i

ci exp~2Mit !, ~31!

whereMi is a glueball mass.
We consider here the following U~1! singlet and Weyl

invariant operator

C~ t !5L23/2(
xW

Re~C121C231C31!~xW ,t ! ~32!

on thea-lattice at timeslicet. Here C i j (xW ,t) is an na3na
Abelian Wilson loop andL stands for the linear size of th
lattice. One can check easily that this operator carries 011

quantum number@20#. The connected two point correlatio
function of C is given by

^C~ t !•C~0!&c5^C~ t !•C~0!&2^C~ t !&^C~0!&

5
6

4V (
xW ,yW

@$^C12~xW ,t !•C12~yW ,0!&

1^C12~xW ,t !•C12* ~yW ,0!&22^C12~xW ,t !&2%

12$^C31~xW ,t !•C12~yW ,0!&

1^C31~xW ,t !•C12* ~yW ,0!&

22^C31~xW ,t !&•^C12~yW ,0!&%#. ~33!

Then we evaluate each expectation value in Eq.~33! by us-
ing the string model just as done in the case of the calc
tions of the string tension. It turns out that the quantum c
rection is negligibly small and the classical part of t
expectation value of the operatorOi @O15C12(xW ,t)
•C12(yW ,0), O25C12(xW ,t)•C12* (yW ,0), O35C12(xW ,t), O4

5C31(xW ,t)•C12(yW ,0), andO55C31(xW ,t)•C12* (yW ,0)# in the
string representation becomes

^Oi&m
cl

5expH 2p2E
2`

`

d4x d4y(
m

Nm~x!D0
21~x2y!Nm~y!J

~34!

corresponding to Eq.~23!.
The plaquette variableSab in Eq. ~34! for ^O1&m

cl is ex-
pressed by

Sab~z!5S ab
(1)~z!1S ab

(2)~z!, ~35!

S ab
(1)~z!5da1db2u~az12ay1!u~ay11b2az1!u~az2

2ay2!u~ay21b2az2!d~az32ay3!d~az4!,

~36!

S ab
(2)~z!5da1db2u~az12ax1!u~ax11b2az1!u~az2

2ax2!u~ax21b2az2!d~az32ax3!d~az4

2at!. ~37!
6-9
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This operator is shown diagrammatically in Fig. 7.
Substituting this into Eq.~34!, one finds in the momentum

representation

^O1&m
cl5expH 216p2E d4p

~2p!4
~eipW •yW1eipW •xW1 ip4t!~e2 ipW •yW

1e2 ipW •xW2 ip4t!P j 51,2S sin~pjb/2!

pj
D 2

@DD0#21~p!J .

~38!

Since we study largeb behaviors, we use the following
formula:

lim
b→`

S sinab

a D 2

5pbd~a!. ~39!

Then we obtain

^O1&m
cl.expH 22kp2b2E dp3 dp4

~2p!2 S 1

p4
21p3

21m2
2

2
1

p4
21p3

21m1
2D

1kp2b2E dp3

2p

e2Ep3
t

Ep3

cosp3~x32y3!J , ~40!

whereEp3
5Ap3

21m2
2. Sincem1@m2, we have neglected th

term proportional toe2Ap3
2
1m1

2t in Eq. ~40!.

FIG. 7. The plaquette variableSab for ^O1&m
cl .
09450
Next the plaquette variableSab in Eq. ~34! for the ^O2&m
cl

is expressed by

Sab~z!52S ab
(1)~z!1S ab

(2)~z!. ~41!

The same calculation yields

^O2&m
cl.expH 22kp2b2E dp3 dp4

~2p!2 S 1

p4
21p3

21m2
2

2
1

p4
21p3

21m1
2D

2kp2b2E dp3

2p

e2Ep3
t

Ep3

cosp3~x32y3!J . ~42!

The plaquette variableSab in Eq. ~34! for the ^O3&m
cl is

S ab
(2)(z) in Eq. ~37! and the result becomes

^O3&m
cl.expH 22kp2b2E dp3 dp4

~2p!2 S 1

p4
21p3

21m2
2

2
1

p4
21p3

21m1
2D J . ~43!

For the operatorO4, a naive choice ofSab in Fig. 8 does
not contribute. But whenSab is chosen as in Fig. 9, the
classical part~34! become nonzero and it is the leading co
tribution. The plaquette variableSab in this case is expresse
by

FIG. 8. The plaquette variableSab for ^O4&m
cl .
 Sab~z!5S ab
(1)~z!1S ab

(3)~z!, ~44!

S ab
(3)~z!5da1db2u~az12ax1!u~ax11b2az1!u~az22ax2!u~ax21b2az2!@d~az32ax3!2d~az32ax32b!#

3d~az42at!1da2db3u~az22ax2!u~ax21b2az2!u~az32ax3!u~ax31b2az3!

3@2d~az12ax1!1d~az12ax12b!#d~az42at!2da1db3u~az12ax1!u~ax11b2az1!

3u~az32ax3!u~ax31b2az3!d~az22ax22b!d~az42at!. ~45!

This leads us to
6-10
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^O4&m
cl.expH 2kp2b2E dp3 dp4

~2p!2
$524 cosp3x3%

3S 1

p4
21p3

21m2
2

2
1

p4
21p3

21m1
2D

1kp2b2E dp3

2p

e2Ep3
t

Ep3

1

2
@~12e2 ip3x3!e2 ip3(x32y3)

1~12eip3x3!eip3(x32y3)#J . ~46!

Finally, we get

^C~ t !•C~0!&c.
6

4V (
xW ,yW

~e22A1B1e22A2B22e22A

12e2A81B812e2A82B824e2A8,

~47!

where we define

A[kp2b2E dp3 dp4

~2p!2 S 1

p4
21p3

21m2
2

2
1

p4
21p3

21m1
2D

5scl•b2,

B[kp2b2E dp3

2p

e2Ep3
t

Ep3

cosp3~x32y3!,

~48!

A8[kp2b2E dp3 dp4

~2p!2
$524 cosp3x3%S 1

p4
21p3

21m2
2

2
1

p4
21p3

21m1
2D ,

B8[kp2b2E dp3

2p

e2Ep3
t

Ep3

•

1

2
@~12e2 ip3x3!e2 ip3(x32y3)

1~12eip3x3!eip3(x32y3)#.

SinceB andB8 containe2Ep3
t, it becomes very small when

t@1. Then one can expand the exponential and obtain fin
for t@1

FIG. 9. The plaquette variableSab for ^O4&m
cl .
09450
ly

^C~ t !•C~0!&c.
6

4V (
xW ,yW

~e2AB212e2A8B82!

5
6

4
L2e22AE

2`

` dp3

2p

e22Ap3
2
1m2

2t

p3
21m2

2

1
12

4V (
xW ,yW

e2A8E
2`

` dp3

2p
2$12cosp3x3%

3
e22Ap3

2
1m2

2t

p3
21m2

2
. ~49!

When t@1, the integrand decreases rapidly and the integ
is well approximated by the saddle point value atp350.
Hence we get at large timet

^C~ t !•C~0!&c.
3

2pm2
2 $L2e22scl•b2

12L~2L21!

3e25scl•b2
%exp$22m2t%, ~50!

where the second term coming from theO4 is seen to be
suppressed by the factore23scl•b2

, since scl•b2 become
large for b@1. Other quantum corrections are also su
pressed similarly. The lowest glueball massM011 is found
to beM01152m2.

The lowest glueball mass in unit of the string tensionscl
for b52.1, 2.9, and 3.8 are given in Table V. This is almo
consistent with the recent lattice resultsM (011)/Asphys
53.7460.12 @21#.

V. ANALYSIS

The value of the string tension calculated analytically
the previous section is about two times larger than the va
which is numerically determined from the monopole cont
bution to the Abelian Wilson loop and is used here to fix t
physical scale. Let us analyze the origin of the difference
details. The method and the assumptions we have ado
are summarized in the following.

~1! Abelian dominance. We have assumed first that afte
Abelian projection Abelian components alone are resp
sible for nonperturbative phenomena of SU~2! gluodynamics
in the infrared region. This assumption is based on the
merical data obtained in MA gauge@4,5#. Bali et al. @22#
have made a detailed test atb52.5115 and have confirme
the assumption of Abelian dominance of the string tensio
good at the level of 92%.

~2! Monopole dominance. The Abelian Wilson operator

TABLE V. AsL /sphys for b52.1, 2.9, and 3.8 from Eq.~24!.

b 2.1 2.9 3.8

A sL

sphys

1.73 1.59 1.39
6-11
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can be factorized into monopole and photon contributio
We have assumed only the monopole part is responsible
the string tension on the basis of the numerical analy
@8,23#. The values of the string tension we have used
listed in Table VI. The differences are not big.

~3! DeGrand-Toussaint (DT) definition of lattice mon
pole. We have used DT monopole in the numerical eval
tion done in Sec. II, since we do not know an alternat
which can be used in numerical simulations. The magn
charge of DT monopole is restricted. However, we have u
the definition of lattice monopole with any integer char
which we call as natural monopole in the step of the anal
block spin transformation. As checked in the case of co
pact QED @8#, there may be a considerable difference b
tween natural and DT monopoles on the finea lattice for
small b region. But the difference is expected to be d
creased after block spin transformations, since the bloc
monopole can take a wider range of charge. But we can
estimate the effect quantitatively in the present stage.

~4! Truncation and scaling. In the inverse Monte Carlo
calculations and numerical block spin transformations,
have truncated the number of the terms in the effec
monopole action. We have used 27 quadratic terms up
lattice distances and four-point and six-point se
interactions, assuming short-ranged interactions are m
dominant. Then we have performed the block spin trans
mation the number of steps of which isn51,2,3,4,6,8. The
data seem to show roughly the scaling behavior expecte
the renormalized trajectory. However, this step could s
give rise to fairly large systematic errors. The scaling beh
ior may not be enough. Actually, the dominant quadra
self-coupling term G(1) at b52.78 (b52.0,n54) is
around 0.16, whereas it is around 0.09 atb52.87 (b
52.3,n58).

~5! Analytic calculations. Since the quadratic terms see
to be dominant in the infrared region, we have evalua
the physical quantities in the framework of the quadra
monopole action. Using the mean-field approximatio
the quartic term can be approximated by the quadratic s
and the nearest-neighbor terms with an effective coup
8q(b)^km

2 (s)&, whereq(b) is the quartic coupling constan
and ^km

2 (s)& is the monopole density. The induced effecti
self-coupling is still by two or three order smaller than t
original quadratic self-coupling. Hence contributions fro
four and six point interactions can be neglected safely
b>1.5sphys

21/2. Since quantum corrections are also very sm

TABLE VI. String tensions from non-Abelian (s f) @24# and
monopole (sm) Wilson loops.

b As fa Asma

2.20 0.4690~100! 0.4804~52!

2.30 0.3690~30! 0.3589~36!

2.40 0.2660~20! 0.2678~82!

2.50 0.1905~8! 0.1851~32!

2.60 0.1360~40! 0.1346~39!

2.70 0.1015~10! 0.1016~21!
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we have made calculations using the classical contributi
alone. The strong coupling expansion of the string mo
calculations is reliable. We show the expected coupling c
stants of RT for largeb regions in Fig. 10. The compariso
of the three parametersā b̄ ḡ between the expected R
and the optimal fit to the numerical data are plotted also
Table VII.

As a result, we come to the conclusion that we have
perform Monte Carlo simulations on an improved action
largeb starting from the points nearer to the continuum a
more steps of block spin transformations to reproduce
correct value of the string tension. It is stressed, howev
that the other parts of the above procedure appear ra
reliable.

VI. CONCLUDING REMARKS

~1! In order to obtain the quantum perfect effective acti
of low-energy SU~2! gluodynamics, we have performed th
block spin transformations on the dual lattice after Abeli
projection in MA gauge numerically. In the inverse Mon
Carlo method, we have adopted more general form of mo

FIG. 10. The expected coupling constants of RT~star! versus
numerical data.

TABLE VII. The comparison of the three parametersā b̄ ḡ
between the expected RT and the optimal fit to the numerical d

b 2.1 2.9 3.8

ā 0.565 0.321 0.207

b̄ 6.78 3.85 2.49

ḡ 5.6531025 3.2131025 2.0731025

āRT
1.52 0.780 0.435

b̄RT
6.78 3.85 2.49

ḡRT
4.0931024 1.9031024 9.1531025
6-12
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TABLE VIII. The quadratic interactions used for the modified Swendsen method.

Coupling$Gi% Distance Type Coupling$Gi% Distance Type

G1 ~0,0,0,0! km(s) G15 ~2,1,1,0! km(s12m̂1 n̂1 r̂)
G2 ~1,0,0,0! km(s1m̂) G16 ~1,2,1,0! km(s1m̂12n̂1 r̂)
G3 ~0,1,0,0! km(s1 n̂) G17 ~0,2,1,1! km(s12n̂1 r̂1ŝ)
G4 ~1,1,0,0! km(s1m̂1 n̂) G18 ~2,1,1,1! km(s12m̂1 n̂1 r̂1ŝ)
G5 ~0,1,1,0! km(s1 n̂1 r̂) G19 ~1,2,1,1! km(s1m̂12n̂1 r̂1ŝ)
G6 ~2,0,0,0! km(s12m̂) G20 ~2,2,0,0! km(s12m̂12n̂)
G7 ~0,2,0,0! km(s12n̂) G21 ~0,2,2,0! km(s12n̂12r̂)
G8 ~1,1,1,1! km(s1m̂1 n̂1 r̂1ŝ) G22 ~3,0,0,0! km(s13m̂)
G9 ~1,1,1,0! km(s1m̂1 n̂1 r̂) G23 ~0,3,0,0! km(s13n̂)
G10 ~0,1,1,1! km(s1 n̂1 r̂1ŝ) G24 ~2,2,1,0! km(s12m̂12n̂1 r̂)
G11 ~2,1,0,0! km(s12m̂1 n̂) G25 ~1,2,2,0! km(s1m̂12n̂12r̂)
G12 ~1,2,0,0! km(s1m̂12n̂) G26 ~0,2,2,1! km(s12n̂12r̂1ŝ)
G13 ~0,2,1,0! km(s12n̂1 r̂) G27 ~2,1,1,0! kr(s12m̂12n̂1 r̂)
G14 ~2,1,0,0! kn(s12m̂1 n̂)
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pole actions than the one in the previous study@8,11# and
have stressed the important features of the almost pe
monopole action. We have transformed the monopole ac
into that of the string model of hadrons by using the BK
transformation.

~2! To evaluate the physical quantities, we have cons
ered the quadratic interaction subspace for the monopole
tion and find the correct form of perfect operators. We ha
evaluated the physical quantities such as string tension
the glueball mass for SU~2! gluodynamics using the strin
model of hadrons analytically. The strong coupling expa
sion works good and it turns out that theclassicalresults in
the string model is near to the one inquantumSU~2! gluo-
dynamics. Probably, it means that the classical string the
is a good approximation for IR gluodynamics.

~3! To get a better fit of the string tension, we have
perform more elaborate Monte Carlo simulations for largb
on larger lattices.
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APPENDIX A

The quadratic interactions used for the modified Swe
sen method are shown in Table VIII. Only the partner of t
current multiplied bykm(s) is listed. All terms in which the
relation of the two currents is equivalent should be added
09450
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satisfy translation and rotation invariances. The higher or
interactions used for the modified Swendsen method
listed in Table IX.

APPENDIX B

In this appendix we give various representations of
Wilson loop operator.

The original representation. Let us consider the genera
ized Villain action defined by Eq.~7!. In this model, the
quantum average of the Wilson loop operator is written a

^W~C!&5K expH i(
s,m

Jm~s!um~s!J L 5Z@J#/Z@0#,

~B1!

Z@J#[E
2p

p

)
s;m

dum~s! (
nmn(s)52`

1`

expH 2S @u,n#

1 i(
s,m

Jm~s!um~s!J . ~B2!

We designate this as the original representation of the W
son loop.

The monopole representation. The above original repre
sentation can be transformed into the monopole represe

TABLE IX. The higher order interactions used for the modifie
Swendsen method.

Coupling Distance Type

four-point ~0,0,0,0! (s((m524
4 km

2 (s))2

six-point ~0,0,0,0! (s((m524
4 km

2 (s))3
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tion exactly in the following way. Let us perform the BKT
transformation with respect to the integer-valued ten
nmn(s) in Eq. ~B2!:

nmn~s!5mmn~s!1] [mqn]~s!, ~B3!

] [mmnr]~s![
1

2
emnrlkl~s2m̂2 n̂2 r̂ !,

~B4!

wheremmn(s) andqm(s) are rank-2 tensor and vector field
on the original lattice, respectively. The vector fieldkm(s)
which can be interpreted as a monopole current on the
lattice obeys conservation law]m8 km(s)50 by definition.

Using the Hodge–de Rahm decomposition we write

] [mun]~s!12pnmn~s!

5] [mun]
(NC)~s!12p(

s8
]r8DL

21~s2s8!

3
1

2
ermnlkl~s82 r̂2m̂2 n̂ !, ~B5!

um
(NC)~s!5um~s!12p(

s8
DL

21~s2s8!]n8mmn~s8!

1qm~s!. ~B6!

Substituting Eq.~B5! in Eq. ~B2! and integrating out the
noncompact fieldum

(NC)(s) we get

Z@J#5 (
km(s)52`

1`

(
mmn(s)52`

1`

expH 2p2 (
s,s8;m

Jm~s!S 1

DL
2D0

D
3~s2s8!Jm~s8!2 (

s,s8;m

km~s!D0~s2s8!km~s8!

22p i(
s,s8

Jm~s!DL
21~s2s8!]n8mmn~s8!J . ~B7!

It is convenient to define the plaquette variableSbg
J (s) from

the Abelian integer-charged electric currentJg(s) by the fol-
lowing relation:

]b8Sbg
J ~s!5Jg~s!. ~B8!

By this definition,Smn(s) can be interpreted as the surfa
which is spanned on the contourJg(s). The third term on the
exponential in Eq.~B7! can be rewritten as
09450
r

al

(
s,m

Jm~s!DL
21]n8mmn~s!5(

s,m
]r8Smr

J ~s!DL
21]n8mmn~s!

5(
s,m

Smr
J ~s!]rDL

21]n8mmn~s!

5(
s,m

Smr
J ~s!mmr~s!

2(
s,m

Smr
J ~s!]n8DL

21] [rmmn]~s!.

~B9!

When use is made of Eq.~B4!, we have

(
s,m

Smr
J ~s!]n8DL

21] [rmmn]~s!

5(
s,s8

km~s!DL
21~s2s8!

1

2
emabg]aSbg

J ~s81m̂ !

5(
s,m

Nm~s!km~s!, ~B10!

whereNm(s) is defined by Eq.~14!.
The summation with respect to the integer fieldmmn(s) is

trivial since exp$2pi3integer%51. Therefore, the expecta
tion value of the Wilson loop operator in the monopole re
resentation becomes

^W~C!&5^W~C!&mexpH 2p2(
s,s8

(
m

Jm~s!S 1

DL
2D0

D
3~s2s8!Jm~s8!J , ~B11!

where^W(C)&m is written as

^W~C!&m5K expH 2p i(
s,m

km~s!Nm~s!J L 5Z@J#/Z@0#,

~B12!

Z@J#5 (
km(s)52`

` S)
s

d]
m8 km(s),0D

3expH 2S @k#12p i(
s,m

km~s!Nm~s!J . ~B13!

The monopole actionS @k# is shown in Eq.~12!.
Note that the difference between^W(C)&m and^W(C)& is

only an electric-electric currentJ-J interaction which comes
from the exchange of regular photons and has no line sin
larity leading to a linear potential. Hence the term of the a
law of both operators are completely the same. So conc
6-14
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ing the low-energy physics of QCD, such a term is not
important. We, therefore, neglectJ-J interactions and con
sider ^W(C)&m to evaluate the static potential. The analy
in Ref. @15# leads to Eq.~23!.

The dual representation. As is written in Ref.@10# the
theory described by the monopole action~12! is given in the
particle representation. It can be expressed in the field re
09450
o

e-

sentation as a field theory. This is a dual Abelian Hig
model. We show here the above monopole representatio
equivalent to the lattice form of the modified London limit o
the dual Abelian Higgs model.

Introducing an auxiliary dual fieldf(s) for the constraint
of the monopole currentd]

m8 km(s),0 and a dual vector field

Cm(s), Eq. ~B13! is rewritten as
the

integer-
Z@J#5expH 2p2 (
s,s8;m

Jm~s!S 1

DL
2D0

D ~s2s8!Jm~s8!J E
2`

`

)
s;m

dCm~s!E
2p

p

)
s;m

df~s!

3 (
km(s)52`

`

expH 2
1

4b (
s;m.n

@] [m8 Cn]~s!#21 i(
s;m

@Cm~s!1]m8 f~s!22pNm~s!#km~s!

2 (
s,s8;m

km~s!D08
21~s2s8!km~s8!J . ~B14!

Inserting the unity 15*2`
` DFd@Fm(s)2km(s)# to Eq. ~B14! and performing the Gaussian integration with respect to

Fm(s) field, we have

Z@J#5expH 2p2 (
s,s8;m

Jm~s!S 1

bDL
2

1

DL
2D0

D ~s2s8!Jm~s8!J
3E

2`

`

)
s;m

dCm~s!E
2p

p

)
s;m

df~s! (
l m(s)52`

`

expH 2
1

4b (
s;m.n

@] [m8 Cn]~s!22pSmn
J ~s!#2

2
1

4 (
s,s8;m

@Cm~s!1]m8 f~s!12p l m~s!#D08
21~s2s8!@Cm~s8!1]m8 f~s8!12p l m~s8!#J , ~B15!

where we have used also the Poisson summation formula

(
km(s)52`

`

d@Fm~s!2km~s!#5 (
l m(s)52`

`

expH 2p i(
s,m

Fm~s!l m~s!J . ~B16!

Therefore the expectation value of the Wilson loop operator in the dual representation becomes

^W~C!&5expH 2p2 (
s,s8;m

Jm~s!S 1

bDL
2

1

DL
2D0

D ~s2s8!Jm~s8!J ^H~C!&, ~B17!

whereH(C) is a ’t Hooft loop operator defined by Eq.~11!. We see

^H~C!&5Z@SJ#/Z@0#,

Z@SJ#5E
2`

`

)
s;m

dCm~s!E
2p

p

)
s;m

df~s! (
l m(s)52`

`

expH 2
1

4b (
s;m.n

@] [m8 Cn]~s!22pSmn
J ~s!#2

2
1

4 (
s,s8;m

@Cm~s!1]m8 f~s!12p l m~s!#D08
21~s2s8!@Cm~s8!1]m8 f~s8!12p l m~s8!#J . ~B18!

Equation~10! is the lattice form of the modified London limit of the dual Abelian Higgs model.Cm(s) and f(s) can be
interpreted as a dual Abelian gauge field and the phase variable of the dual Higgs field, respectively. Note that the
valued fieldl m(s) appears due to the compactness of the theory.
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The string representation. We show here the string representation is obtained from the monopole representation. In
ing an auxiliary fieldf(s) for the constraint of the monopole currentd]

m8 km(s),0 and inserting the unity 15*2`
` DFd@Fm(s)

2km(s)# into Eq. ~B13!, it is rewritten as

Z@J#5expH 2p2 (
s,s8;m

Jm~s!S 1

DL
2D0

D ~s2s8!Jm~s8!J E
2`

1`

DFm~s!E
2p

p

)
s

df~s!

3 (
l m(s)52`

`

expH 2
1

4 (
s,s8;m

Fm~s!D0~s2s8!Fm~s8!1 i(
s,m

Fm~s!@]m8 f~s!12p l m~s!12pNm~s!#J . ~B19!

Here we also have used the Poisson summation formula for the integer valued vector fieldkm(s).
Now we perform the BKT transformation with respect to the integer valued vector fieldl m(s):

l m~s!5sm~s!1]mr ~s!, ] [msn]~s![
1

2
emnabsab~s2â2b̂ !, ~B20!

wherer (s) is a scalar field defined on the dual lattice and the string fieldsab(s) defined on the original lattice obeys th
conservation law]m8 smn(s)50 by definition. This means the variablessab(s) form a closed surface on the original lattic
Integrating out all fields except for the string fieldsab(s), we obtain the following string representation defined on the orig
lattice:

Z@J#5expH 2p2 (
s,s8;m

Jm~s!S 1

DL
2D0

D ~s2s8!Jm~s8!2p2 (
s,s8;m

Nm~s!S 1

D0
D ~s2s8!Nm~s8!J

3 (
smn(s)52`

` S)
s

d]
m8 smn(s),0DexpH 2p2 (

s,s8;m.n

smn~s!S 1

DLD0
D ~s2s8!smn~s8!

22p2 (
s,s8;m.n

1

2
emnabsab~s2m̂2 n̂ !S 1

DLD0
D ~s2s8!] [m8 Nn]~s8!J . ~B21!
a
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