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We study various representations of infrared effective theory d2Bgluodynamics as éguantum perfect
lattice action. In particular we derive a monopole action and a string model of hadrons fr@@h @ubdy-
namics. These are lattice actions which give almost cutoff independent physical quantities even on coarse
lattices. The monopole action is determined by numerical simulations in the infrared region2fdghlbdy-
namics. The string model of hadrons is derived from the monopole action by using BKT transformation. We
illustrate the method and evaluate physical quantities such as the string tension and the mass of the lowest state
of the glueball analytically using the string model of hadrons. It turns out thatl#issicalresults in the string
model are near to the one quantumSU(2) gluodynamics.

PACS numbds): 12.38.Gc, 11.15.Ha

[. INTRODUCTION SU(2) lattice gluodynamics was obtained by Shiba and Su-
zuki [8] using an inverse Monte Carlo methff]. Assuming
The low-energy effective theory of QCD is important for that the lattice action contains only quadratic terms of mono-
an analytical understanding of hadron physics. Before th@ole currents, they found that the action has a form theoreti-
derivation of such an effective theory we have to explain thecally predicted by Smit and van der S[j%0]. This was the
most important nonperturbative phenomenon, quark confindirst derivation of an effective theory of lattice gluodynamics
ment. Wilson’s lattice formulatiofil] shows that confine- in terms of the monopole currents. However, the steps of
ment is a property of a non-Abelian gauge theory of strongolock-spin transformation performed in R¢8] were rather
interactions. At strong coupling the confinement is provedfew to see the continuum limit. In Reff11] they considered
analytically. At weak couplingnear to the continuum limit  also four- and six-point interactions assuming a direction
there are a lot of numerical calculations showing the confinesymmetric action on the large (%8lattice. More steps of the
ment of color. The mechanism of confinement is, howeverplock-spin transformations were carried out also. It is
still not well understood. One of the approaches to the constressed that the action seems to satisfy a scaling behavior,
finement problem is to search for relevant dynamical varithat is, it depends on the physical lendik-na(g) alone,
ables and to construct an effective theory in terms of thesavheren is the number of the blocking transformations and
variables. a(p) is the lattice spacing. This remarkable scaling is con-
From this point of view the idea proposed by 't Hof2{ sistent with the behavior of the perfect action on the renor-
is very promising. It is based on the fact that after a partiaimalized trajectory(RT) which is an effective theory in the
gauge fixing(Abelian projection SU(N) gauge theory is re- continuum limit formulated on the lattice with the lattice
duced to an Abelian U(1) ! theory with N—1 different  distanceb. Hereb plays a role of the physical scale at which
types of Abelian monopoles. Then the confinement of quarkshe effective theory is considered. On RT, although we can
can be explained as the dual Meissner effect which is due tpredict physical quantities only on thdattice sites, they are
condensation of these monopoles. The QCD vacuum is dushe same as evaluated from the continuum theory. For ex-
to the ordinary superconductor: the monopoles playing thample, the continuum rotational invariance should be satis-
role of the Cooper pairs. The confinement occurs due to théed. The restoration of the continuum rotational invariance
formation of a string with an electric flux between the quarkfor the quark-antiquark static potential was studied using a
and antiquark. It is a dual analogue of the Abrikosov stringnaive Wilson loop operator. However, the continuum rota-
[3]. The mechanism of confinement is usually called the duational invariance was not confirmed in the IR region of
superconductor mechanism. SU(2) gluodynamicg12]. This is because the cutoff effect of
There are many ways to perform Abelian projection, butsuch an operator is of order of the lattice spacing of the
in the maximal Abelian(MA) gauge[4] many numerical coarse lattice. To check restoration of the continuum rota-
results support the dual superconductor picture of confinetional invariance, we should determine the correct form of
ment[5] in the framework of lattice gluodynamidsee, for  physical operator¢the perfect operatpras well as the per-
example, review$6,7]). These results suggest that the Abe-fect action on the blocked lattice.
lian monopoles which appear after the Abelian projection of The main task of this publication is to derive the perfect
QCD are relevant dynamical degrees of freedom in the inmonopole and the string action as a low-energy effective
frared(IR) region. We expect hence, after integrating out alltheory of SU2) gluodynamics and evaluate physical quanti-
degrees of freedom other than the monopoles, an effectiviées analytically using a renormalized operator. In Sec. Il we
theory described by the monopoles works well in the IRdiscuss how to derive the renormalized monopole and the
region of gluodynamics. string action from SI) gluodynamics. We show new re-
The effective monopole action on the MA projection of sults of the analysis of the monopole action which is ob-

0556-2821/2000/69)/09450616)/$15.00 62 094506-1 ©2000 The American Physical Society



MAXIM N. CHERNODUB et al. PHYSICAL REVIEW D 62 094506

tained by using inverse Monte Carlo method. In Sec. Ill weCarlo method first developed by Swendsen and extended to
discuss how to construct the perfect operator for the staticlosed monopole currents by Shiba and SuZ8k9].

potential. In Sec. IV we calculate the string tension and the Practically, we have to restrict the number of interaction
glueball mass for the S@) gluodynamics in terms of the terms. It is natural to assume that monopoles which are far
strong coupling expansion of the string model analytically. Itapart do not interact strongly and to consider only short-
turns out that thelassicalresults in the string model is near ranged interactions of monopoles. The form of actions
to the one inquantumSU(2) gluodynamics. The continuum adopted here is 27 quadratic interactions and four-point and
rotational invariance of the static potential is shown also anasix-point interactions. We have not assumed a direction sym-
lytically. In Sec. V we analyze the numerical results in de-metric form of the action as done in R¢fL1]. The detailed

tails. Section VI is devoted to concluding remarks. form of interactions are shown in Appendix A. Note that all
possible types of interactions are not independent due to the
Il. ALMOST PERFECT MONOPOLE ACTION conservation law of the monopole current. So we get rid of
FROM SU(2) GLUODYNAMICS almost all the perpendicular interactions by the use of the

conservation rule. The validity of the truncation has been

studied and supported in the earlier works. For details, see
The method to derive the monopole action is the follow-Refs.[8,11].

ing. (5) We perform a block-spin transformation in terms of
(1) We generate S(2) link fields {U(s,u)} using the the monopole currents on the dual lattice to investigate the

simple Wilson action for S{2) gluodynamics. We consider renormalization flow in the IR region. We adopt

24* and 48 hypercubic lattice fop3=2.0-2.8. =1,2,3,4,6,8 extended conserved monopole currents as an
(2) Next we perform an Abelian projection in the maxi- blocked operatof14]:

mal Abelian gauge to separate Abelian link variables

A. Our method

)=l (—m=g (s)<m) f fixed S o
«l{i:J](ksﬁ,(él)dse wS(—m=<6,(s)<m) from gauge fixed S(2) K,(s™) = D K, [nS™+ (n— 1)t idtjpt1o]
' ijT=0
(3) Monopole currents can be defined from Abelian : (5)
plaquette variables,, ,(s) following DeGrand and Toussaint
[13]. The Abelian plaquette variables are written by Egkﬂ(s(n))_ (6)

0,,(8)=0,(8)+0,(s+p)—6,(s+v)=0,(5) The renormalized lattice spacing lis=na() and the con-

tinuum limit is taken as the limih—oo for a fixed physical
lengthb.

We determine the effective monopole action from the
blocked monopole current ensemHl ,(s()}. Then one
can obtain the renormalization flow in the coupling constant
space.

(5) The physical lengttb=na(g) is taken in unit of the

Here, 6,,(s) is interpreted as the electro-magnetic flux : . . . .
y7ax
. physical string tensior o, s We evaluate the string tension
through the plaquette and the integgy,(s) corresponds to aat from the monopole part of the Abelian Wilson loops for

the number of Dirac string penetrating the plaquette. One can : o .
define quantized conserved monopole currents eachp since the error bars are small in this case. The lattice

spacinga(B) is given by the relationa(s) = s/ Tphys

[—47<0,,(s)<4m]. (1)
It is decomposed into two terms:

0,,(S)=0,,(5)+2mn,,(s), [—7<6,,(s)<m]. (2)

1 A [11]. Note thatb=1.002 corresponds to 0.45 fm, when
k,u,(s): EGMVpUaVnPU(S+ Iu‘)i (3) we aSSUmeTphysE(44o '\/leV)2

where ¢ denotes the forward difference on the lattice. The B. Numerical results

monopole currents satisfy a conservation kg, (s) =0 by We list new results below in comparison with earlier nu-
definition, whered’ denotes the backward difference on themerical analysis of the monopole action.

lattice. (1) The inverse Monte Carlo method works well and the

(4) We consider a set of independent and local monopol@pling constants of the action are fixed beautifully. The

interactions which are summed up over the whole Ia_ttice. W‘?}uadratic coupling constants and four-point coupling con-
denote each operator 8§ k]. Then the monopole action can giant are plotted versus the physical lengtana(g) for

be written as a linear combination of these operators eachn extended monopole in Fig. 1. The first three figures
show quadratic self couplings,(b), quadratic nearest-
Sk]=> GS[K], (4)  neighbor couplingd G,(b) (black symbo), G3(b) (open
i

symbo)] andG,q(b), respectively. The self-coupling term is
dominant and the coupling constants decrease rapidly as the

whereG; are coupling constants. distance between the two monopole currents increases.
We determine the set of couplings from the monopole
current ensemblék ,(s)} with the aid of an inverse Monte G1(b)>Gy(b)~Gs(b)>-- - >Go(b)>- - -.
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FIG. 1. The couplings of quadratic interaction term and 4-point interaction term versus physicalbdength

The four-point coupling constant becomes negligibly small (3) The quadratic coupling constantstet 2.14 are plot-
in comparison with the quadratic couplings for latgeegion  ted versus the squared distaiin unit of squared physical
(b>1.50,,2). The six-point coupling constant behaves lengthb? in Fig. 3. We see the direction asymmetry of the
similarly as the four-point coupling does and becomes muclurrent action(For exampleG,+ G.) This behavior of the

smaller for largeb region: action does not occur in the case of compact QED, because
the monopole action can be obtained from the Villain form
quadratic couplings four-point coupling of compact QED exactly in an analytical way and it does not

depend on the direction between two monopole currents. In
Ref.[11] they have neglected this effect and have considered
_ ) _adirection symmetric form of the monopole action but as we
From these figures we see a scaling of the actiony see later that this direction asymmetry of the current

S[ky.n.a(B)]—=S[K,,b=na(p)] for fixed physical action is natural and important features of the perfect lattice
lengthb=na(B) looks almost good fon=4. The obtained g¢tion.

action appears to be a good approximation of the action on
the RT.

(2) In Fig. 2 we plot the projected line$G;(b)
—G,(b), G,(b) —G3(b), andG,(b)-4-point, respectivellof
the renormalization flow. Each flow line for smallgd
(which corresponds to largdn) is beautifully straight with In previous sections we have studied the renormalized
very small errors. The quadratic interactions for monopolesnonopole actiors[k] performing block spin transformation
are dominant for largeb, that is, only the quadratic interac- up ton=8 numerically, and have found the scaling for fixed
tion subspace seems sulfficient in the coupling space for lowphysical lengthb looks almost good. If the continuum rota-
energy SW2) gluodynamics. We also see the effective tional invariance of physical observables is satisfied in addi-
monopole action tends to go to the weak coupling regiortion in the framework ofS[k], we can regardS[k] as a
when we go to the infrared region of &) gluodynamics.  good approximation of RT.

> six-point coupling.

Ill. A PERFECT OPERATOR FOR PHYSICAL
QUANTITIES
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FIG. 2. The renormalization flow on the projected plane.

A. Improved and perfect operator effect of such an operator is of order of the lattice spacing of

In gluodynamics, the string tension from the static poten_the coarse lattice. Only the scaling behavior of the action is

tial is one of important physical quantities. However, it is ainsufficient. We should also adopt improved physical opera-

; . tors on the coarse lattice in order to get the correct values of
problem how to evaluate the static potential between eleCtr"hysical observables. An operator giving a cutoff indepen-

cally charged parti(_:les after Ab.elian prqjectior_x In the earliergem value on RT is called the perfect operator.
work [12] we considered a naive Abelian Wilson loop op-
erator andS[k] on the coarse lattice to evaluate the static
potential, but the continuum rotational invariance of the po- B. The method

tential could not be well reproduced even for the infrared As will be shown in Sec. Ill D, when we consider a
region of SU2) gluodynamics. This is because the cutoff monopole action composed of general quadratic interactions
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lowing Abelian gauge theory of the generalized Villain form
on a fine lattice with a very small lattice distance:

1
S[6,n]= i > [91,0,()+2mmn,,(s)]

T 88 u>v

()‘/ ’ ’ ’
1.0x107" | cé?_zes X (A Do)(s=s")[d},0,(s")+2mn,,(s")],
(7)
1.0x1072 | @© ® OO
o % o where 60,(s) is a compact Abelian gauge field and the

SN R a2 - © integer-valued tensam,,,(s) comes from the periodicity of
: - — the lattice actior(7). Both of the variables are defined on the

" original lattice.A (s—s")=—dd' d5¢ is the lattice Laplac-
‘-°"1°"0 1 2 3 4 5 6 7 8 ian and we writeDy= A, *+ D} for later convenience,

whereD| is a general operator. Since we are considering a
fine lattice near to the continuum limit, we assume the direc-
_ FIG._3. The distance dependence of the couplings of quadratiggp, symmetry ofDj. Note thatD0=27-rZ,8VA[1 corre-
interaction terms ab=2.14. sponds to the ordinary Villain action for compact QED. In
this type of model, it is natural to use an Abelian Wilson

alone, a block spin transformation can be done analyticallyoop W(C) =exp(=.(8,(s),J,(s))) for particles with funda-
[15]. We find a perfect operator for a static potential startingmental Abelian charge, wheik,(s) is an Abelian integer-
from an operator in the continuum limit. The continuum ro- charged electric current. The expectation valueNdtC) is
tational invariance is shown exactly with the operator. Thiswritten as
is an example of a perfect operator.

What happens in low-energy $2) gluodynamics? It is
natural that one can not perform a block spin transformation
analytically. However, as shown in the previous section, the

distance R’

<W(C)>=<eXp[i§ Jﬂ(s)aﬂ(s)}>=zp]/2[01, (8)

Abelian monopole actiorS[k] which is obtained numeri- T -

cally is well approximated by quadratic interactions alone for Z[J]= wg da#(s)n (SE):?% exW’ —S[6.n]
largeb. The monopole action on the renormalized trajectory ' -

(RT) is expected to be near to the quadratic coupling con- i

stant plane in the infrared region. We can perform the ana- +'§ Ju(9) 0M(S)]' ©)

lytic block spin transformation along the flow projected on
the quadratic coupling constant plane as shown in Fig. 4. Next it is known that the theory with the above acti@i
When we define an operator on the fm&attice, we can find  is equivalent to the lattice form of the modified London limit
a perfect operator along the projected flow in ge 0 limit of the dual Abelian Higgs mod¢IL6] as shown in Appendix
for fixed b. Let us adopt the perfect operator on the projecte
space as an approximation of the correct operator for the L L
action S[k] on the coarsd lattice. It will be shown in the _ T 2, *
following Sec. Il E that the above standpoint may be justi- S[C.¢.11= 4B S;%V [IuCn(S)]+ 4 3‘.# [9ud(s)
fied as long as the quadratic monopole interactions are domi- . o
nant. —C,(s)+27l,(s)]Dg “(s—s')[d,p(s")
C. Various operators for a static potential ~Culs)+2ml, (D] (10
There is another problem what is the correct operator forf he static potential for electrically charged particles is evalu-
the Abelian static potential in Abelian projected @Jgluo-  ated by a dual 't Hooft operator
dynamics on the fina lattice. First let us consider the fol- 1
= _— _ * 2
| H(C) exp{ 25 WZV [9{,C.i()—27*S), (s)]
higher(4pt,...)
true RT in (monopole) coupling space

1
*E%y [9;,.Coy(9)1?f, (12)

where* Sjw(s) is dual to the surface which is spanned inside
the contourd ,(s).

Thirdly, when use is made of the Beresinskii-Kosterlitz-
Thouless(BKT) transformation[17—19, the action(7) is
FIG. 4. Flow of the couplings under block spin transformations. equivalent to the following monopole action:

quadratic-int. plane

analytical blocking
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Sk,(s)]= 2 k,(S)Do(s—s)k,(s").

s,s'

12

PHYSICAL REVIEW D 62 094506

The cutoff effect of the operatdd5) is O(a) by definition.
This §-function renormalization group transformation can be
done analytically. Taking the continuum limat—0, n—o

o (with b=nais fixed) finally, we obtain the expectation value
We see that the area law term is given correctly also by thgf the operator on the coarse lattice with spadirgna [15]:

following operator in the monopole representation as shown
in Appendix B:

wm(C)=exp(27Ti2 NL(s)k,(S) |, (13)
S\
Nu(9)=2 Al Y(s—s)
1 -
Xieﬂaﬁy&as‘gy(s +/~’L)v (14)

where S}M(s’ +4) is a plaguette variable satisfying
a/’gsl];y(s)z\]y(s) and the coordinate displacememntis due
to the interaction between dual variables.

However, the expectation values of the above three opera-
tors are not completely equivalent. When we consider infra-
red effective Abelian theories, it is natural that the static
potential between electric charges becomes Coulombic in the
deconfinement phase. The 't Hooft operator in the dual Abe-
lian Higgs model or the Wilson loop in the generalized Vil-
lain form reproduce this behavior. However, it is stressed
that all three operators give the same area law, since the

differences give only Coulombic or Yukawa potentials. wh

Since we are interested in the string tension, let us consider
the operatol13) from now on. See Appendix B for details.

D. Analytic block spin transformation

We construct a block spin transformati@) of monopole
currentst Integrating out the monopole current variable on
the fine lattice we arrive at an effective action and the loop
operator for the static potential on the coarse lafticy. Let
us start from

e}

<Wm(C)>=k ()Z exp| — 2 K,(s)Do(s—s)k,(s")
ulS) == s,;s’ n
aLku(s)=0

+2mi Y, NM(S)kM(s)}
S,u

< 1 oK) = By (s™)1/ Z[K].

RO

(15

!Note that the curreri M(s(”)) on the coarser lattice with a lattice
distanceb=na satisfies the current conservatiaj;lKﬂ(s(”)) =0 by
definition.

<Wm(c)>:exp{ - szxmd4Xd4y§lL: N, (X)

ere

XDol(x—yIN,(y)+ 7?8 > B,(bs")
o g’
v

XD, (bs™— bs(”)/)BV(bs(“)')}

X X expl —SK,(sM)]
b3K ,(bs)=—2
(9;LK#:O
+2mib® > B,(bs)D, (bsM—bs™)
NOWOK
s
XK ,(bs™") > Z[K,0], (18
b3K ,(bs)=—c
(7;LKM:0

B,(bs™)=lima® >, II_,(bs™—as)

a—0

n—oo

s,s’ v
!
&M0V

2 9,9,

p

X ) Ouy—

XDy '(as—as')N,(as'),

17

1
I_,(bs"—as)= —35[na§;)+(n—1)a—asﬂ]
n

n—1

x [T | X snagV+1a-as)].

i(#p) \ =0

(18)

SK,(s™)] denotes the effective action defined on the
coarse lattice

SK,(s™M]=b® > X K,(bs")

094506-6
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Since we take the continuum limit analytically, the operdf6) does not have any cutoff effect.
The momentum representation Bf, ,(bs™ —bs™") takes the form

D,..(p) =A% }(p) - (p"f;; CRRLS (20

WhereAl’LfFfl(p) is the gauge-fixed inverse of the following operator:

I p)

(p+2ml),(p+27l), [(p+27l),(p+27l), (il

4 [
A,;V(mz(H1 P ) Do (p+27l)| 8, . (20)
e > (p+2ml)? [T (pr2m? | PuPe
I I
|

The explicit form ofD ,,(p) is written in Ref.[15]. Perform- = d%p K, X
ing the BKT transformation explained in Appendix B on the a'L=j 2AL’Z(kl,kz,O,O) sinZEDfl(kl,kz,O,O;l)
coarse lattice, we can get the loop operator for the static —m(2m)

potential in the framework of the string model:

K .
+sin2?1D’1(kl,k2,O,0;2) , (24)

<Wm(c)> = <Wm(c)>cl

whereD denotes the coupling of the monopole action deter-

1 < mined numerically on the coargelattice. Forl —e and T
X= > exp —WZE (83,94 —oo, we can easily show thak, agrees exactly with the
5"#(;(5)(13); . s’ string tension derived later from E§23) [15]. Therefore,
Leper] ’;‘#E our analysis is natural as long as the quadratic monopole

action is a good approximation in the IR region of @V
gluodynamics. Note that we can show both quantum fluctua-
tion parts also coincide.

XD H(s=S)A %(s—5")a,4(8")

—2m2Y, 7,,(8)d,A Y (s—s)B,(s') |. (22

v IV. ANALYTICAL RESULTS OF SU (2) GLUODYNAMICS

A. Parameter fitting

As shown already, thénumerically obtained effective
monopole action for S(2) gluodynamics in the IR region is
well dominated by quadratic interactions. Hence we regard
B the renormalization flow obtained in Sec. lll D as a projec-
W(0)) = exp — 2f d%x d* N (x)* tion of RT to the quadratlc-lnteractlon_plane as written in.
(Win(C)er p{ ). yE wX) Fig. 4. We adopt the perfect operator discussed in the previ-

ous section as the correct one on the codrsattice in the
¥ D= Y(x—Vv)N ' 23 low-energy SW2) gluodynamics. In order to know the ex-
o (x=Y) "(y)] 23 plicit form of the operator, we need first to fRy(s—5s').

This can be done by comparii, ,(bs™ —bs™") with the
set of numerically obtained coupling constants of the mono-
E. The on-axis case pole action{G;(b)} in Sec. Il.

In the above calculation, we have introduced the source W& assumeDo(s s') in_the monopole actior12) to
term corresponding to the loop operator for the static potentake adsq+BA H(s—S')+yA (s—s'), wherea, B, and
tial on the finea lattice and have constructed the operator ony are free parameters. We can consider more general qua-
the coarseb lattice by making the blockspin transformation. dratic interactions, but as we see later, this choice is suffi-
To check the validity of our analysis, it is to be emphasizedcient to derive the IR region of SB) gluodynam|cs

that the same string tension for the flat on-axis Wilson 100p  The inverse operator dby(p) = a+,8/p2+ yp? takes the
can be obtained for, T— when we consider a naive Wil- ¢,y

son loop operator on the coarbdattice instead of that on
the fine lattice(13). When we consider only quadratic inter- mf m§
(p)=

(Wi(C))¢ is defined by

actions for the monopole action, we get the classical string
tension from the large flat Wilson loop as follows5]:

: (29

iy _
p2+mi  p2+md
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TABLE |. The optimal valuesc, m;, andm, for b=2.1, 2.9,
and 3.8 from the inverse Monte Carlo method.

b 2.1 2.9 3.8

K 1.76 3.12 4.83
m, 1.0x 10* 1.0x10* 1.0x 10"
m, 12.0 12.0 12.0

where the new parameters, m;, and m, satisfy K(mi
—m3) =y 1, mi+mi=aly,mims=B/y. Substituting Eq.
(25) into Eq. (21) and performing a First Fourier transform

(FFT) on the 186 lattice for the several input valueg mj,
andm, we calculateD ,,(p). Then one can obtain distance
dependence of thB ,,,(bs™ —bs(™"). By matching the dis-
tance dependence of tie, ,(bs™ —bs™") with numerical
ones, one can fit the free parametersm,, andm,. We find
that the ratiom; /m, is around 16, butm; andm, cannot be
fixed well separately. Their optimal values for2.1, 2.9,
and 3.8 are given in Table I, where we fix = 1.0x 10* and
m,=12 for all b. The coupling constants with the optimal

PHYSICAL REVIEW D 62 094506

FIG. 6. The strong coupling expansion of the Wilson loop cal-
culation.

S)p(2)= 8,10548(25) 8(25) 6(21) 6(1b — 24)

X 0(24) 0(Th—2,4). (26)

In Sec. Il B we have seen that the monopole action on the
dual lattice is in the weak coupling region for largeThen

the string model on the original lattice is in the strong cou-
pling region. Therefore, we evaluate EG2) by the strong
coupling expansion. The method can be shown diagrammati-
cally in Fig. 6.

1. The classical part

As explicitly evaluated in Refl15], the classical part of
the string tension coming from EJ) is

values are illustrated in Fig. 5. Note that, in this figure, the

lattice monopole action obtained from the continuum by ana-

lytical blocking also show the direction asymmetry.

B. The string tension

TK My
=—In—.

2 m,

(27)

O¢|

Vo lopnys Using the optimal values, m;, and m, are
given in Table Il, wherar,, s is the physical string tension.

Let us evaluate the string tension using the perfect operalhe scaling ofy o/ onys for physical lengttb seems good,

tor (22). The plaquette variabIS;'[B in Eq. (14) for the static
potentialV(1b,0,0) is expressed by

Couplings vs distances
48" attice, 83monopole

ot Ob=2.1427 =24 §
Ob=2.8720 f=2.3
Ob=3.8430 p=2.2
%*m,=1.0x10° m,=12.0 k=177
#*m,=1.0x10" m,=12.0 x=3.12
S— ; m,=1.0x10" m,=12.0 x=4.83 |
O *
.-\ % 6
& *
G1 O % @ ;
1.000x10°2 | 1 333 & Q j
G2 o X
t o1
G4 G5
1.000x10°% | j
0 1 2

Distance R’

FIG. 5. The coupling constants with the optimal valugsm;,
andm, for b=2.1, 2.9, and 3.8 from the comparison with numeri-
cal data.

although its absolute value is larger than 1. The difference
will be analyzed later in Sec. V.

2. Quantum fluctuations

The next to leading quantum fluctuation term comes from
the second part of Eq22). It corresponds to the second
figure in Fig. 6 and becomd45]

4

- —e

—411(0)b?
b? ’

(28)

O'qf:

wherell(0) is the self-coupling constant of the string action
(22). The total string tension is the suMy=o¢ |+ o -

The quantum corrections for the string tension are given
in Table Ill. We see they are negligibly small in IR region of
SU(2) gluodynamics. We can evaluate physical quantities
using the classical part alone in the strong coupling expan-
sion of the string model. Therefore, the strong coupling ex-
pansion works good and it is found that tblassicalstring
tension in the string model is near to the onegmantum
SU(2) gluodynamics.

TABLE Il. o /opnysfor b=2.1, 2.9, and 3.8.

b 2.1 2.9 3.8

1.64 1.56 1.45

| Oc
ag

phys
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TABLE lll. The leading quantum correction fdr=2.1, 2.9,

and 3.8. (O(H)0(0))=2 ¢ exp(—Mit), (3D
b 21 2.9 38 whereM; is a glueball mass.
4 o 1.26X10°5 1.40<10°° 1.65x10 14 We consider here the following () singlet and Weyl
Ee‘ © invariant operator

V(1) =L 323 ReW+ Vost Va)(x,1) (32
3. The on-axis case X

VlVe evaluate next the string tension using E24), where  on thea-lattice at timeslicet. Here W;;(x,t) is annaxna
D~ 7(k) are determined from the numerical data of couplingAbelian Wilson loop and. stands for the linear size of the
constants. By using a first Fourier transform on thé B2 |attice. One can check easily that this operator carrié$ 0

tice, we perform the integration with respect to the momenquantum numbef20]. The connected two point correlation
tum in Eq.(24). The results are given in Table IV. We find function of ¥ is given by
that these are almost the same as those in Table Il. The

validity of our analysis in Sec. Il is confirmed. (W(t)-W(0))c=(W(t)- ¥ (0))—(W¥(t))(V(0))
. . L 6 - .
4. On the continuum rotatl.onal |nvar|arTce - . =V Z [{(W1o(X,1) - ¥ 1(,0))
We here comment on the continuum rotational invariance

of the quark-antiquark static potential. For the sake of con- i T > 2
venience we place a pair of static quark and antiquark at the (W 22000 - Wiy, 00) = 2(¥ 1A, 1)7
point (0,0,0) and X;,X,,0) on a three-dimensional +2{<q,31(; t)"hz()? 0)
timeslice, respectively. Both of the coordinates and x, ' ’
denote the sites sitting on the=na lattice. Therefore the +<\p31()2,t).qf*1<2(§’0)>
potential becomes dependent only on two coordinates R R
=V(Xq,X,). In the framework of our analys[45], the static —2(W3y(X,1))- (P 1(y,00)}. (33

potentialsV(l1b,0) andV(lb,Ib) can be written as ) _
Then we evaluate each expectation value in B§) by us-

wrlb my ing the string model just as done in the case of the calcula-
V(1b,0)= ——In_", (29 tions of the string tension. It turns out that the quantum cor-
2 rection is negligibly small and the classical part of the
J2mklb my expectation value of the operato®); [O;=W ,(X,t)
V(Ib,1b)= 2 InE. B0 Wy,0), 0= x,1)- PiAy,0), Os=T1X,1), O,

=Vai(X,t)- W1y,0), andOs=Vgy(x,1)- ¥y, 0)] in the
The potentials from the classical part take only the linearstring representation becomes
form and the rotational invariance is recovered completely
even for the nearedt=1 sites. The recovery of the con- <Oi>::r!
tinuum rotational invariance of the static potential is natu-
rally expected also for the quantum fluctuation, since we _ 2|7 g4y g —1,,,_
have introduced the source term corresponding to the Wilson —exp{ T f_ocd xd y% NL(ODo " (X=yINL(Y)
loop on the finea lattice and we have taken the continuum (34

limit a—0. )
corresponding to Eq23).

The plaquette variabl&, ; in Eq. (34) for (Oy)) is ex-
pressed by

The mass spectrum in $2) gluodynamics can be ob-
tained by computing the correlation functions of gauge in- S, ,(2)=S{)(2)+5%(2), (35)
variant local operators or Wilson loops, and looking for the
particle poles. For examples, one can consider a two point Sglﬁ)(z)zaalgﬁze(azl—ayl) 6(ay;+b—az))0(az,
function of an operato®(t) ==;Tr(F?)(x,t). For large time
tit is expanded as

C. The glueball mass

—ay,)f(ay,+b—az)ds(az;—ays)d(az,),

(36)
TABLE IV. Mg+ /o for b=2.1, 2.9, and 3.8.

SCN2)=58,185,0(az;—ax,) 6(ax,+b—az) 6(az,
b 2.1 2.9 3.8

—aXy)f(ax,+b—az)d(azz—axz)d(az,

Mo+ [og 5.56 4.18 3.36 0 -
—al).
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t2 t2
= ,O
(y,0) (x,t) @f ¥.0) X
________________ et
@/_ _______________ X,- y 7 tna (=tb) C 3
X,- Y = tna (=tb) N ra
1 4 FIG. 8. The plaquette variablg,; for ((94)5:.
FIG. 7. The plaquette variab®, , for (O,)% . . .
€ plaquette variabl, for (O1)r Next the plaquette variabB, z in Eq. (34) for the (O,)%

This operator is shown diagrammatically in Fig. 7. is expressed by

Substituting this into Eq.34), one finds in the momentum

representation Sup(2)==85)(2)+S0)(2). (41)

The same calculation yields

d4 i LT - -
<O1)ﬁql=eXp{ —16772f p4(elp~y+elpr+|p4t)(e—|p.y

(2m)
dpsd 1
I sin(p;b/2) 2 ) (0,)~ex —ZszbZJ Ps CPa —
+e P 'p4t)Hj:1,2+ [ADo] (p) - (2m)% \ pz+p5+m3
(39) ot
. . . P2+ p2+m?
Since we study largé behaviors, we use the following 4 P
formula: dp; e Ersl
_ 22 | 2 —
sinab! 2 kb f 27 E, CoSp3(X3—Yy3) (. (42
Iim( ) =mbd(a). (39) 3
b—o

The plaquette variabl§,; in Eq. (34) for the (03)%! is

Then we obtain S¢)(2) in Eq. (37) and the result becomes

dpsdp, 1
<Ol>gzexp{—2xw2b2f ol 2o [(dP3dPy 1
2m)% \ pi+pi+ms (Oz)p=exp, —2kmb
()" A Pitpatm " (2m)? | p2+ p+m?
1
- 1
2, 2+m2) ——)} (43
PattPs™ pi+p3+mi
5o [ dPs € Fpdf
+ kb f 5. E. COSPs(Xs—Ys)(, (40 For the operato®,, a naive choice 08, in Fig. 8 does
Ps not contribute. But wher§,; is chosen as in Fig. 9, the

: classical par{34) become nonzero and it is the leading con-
=J/p2+m3. > - . e .
whereEp3 P3+m3. Sincem, >m,, we have neglected the tribution. The plaquette variablg, ; in this case is expressed

term proportional tee” VP3* ™Mt in Eq. (40). by

S.p(2)=8(2)+5%(2), (44)
Sfﬁ)(z) =0,10p0(azy—ax,) f(ax; +b—az))d(az,—axy) #(ax,+b—az)[ d(azz—axs) — 6(azz—axs—b)]
X 8(azg—at)+ 6,00530(az,—axy) f(ax,+b—azy) f(azz;—axs) #(axs+b—azs)
X[—d(azy—ax,)+d(az;—ax,—b)]d(az,—at) = 5,10g36(az;—axy) #(ax, +b—az)
(45

X B(azz—axz) f(axg+b—az;)5(az,—ax,—b)s(az,—at).

This leads us to
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o
S
L2
1
1
|
1
1
|
1
I~
X
T
1
|

W\

X,- y = tna (=tb)
1 4
FIG. 9. The plaquette variabg,; for <O4>ﬁl.

dps;d
<O4>lezeX4 — K77-2b2J %{5—4 COSp3X3}

1 1
pi+pi+m;  pi+pi+mi

dp; e Fp . .
21,2 Zr(1—e~1P3*3) @ iPa(x3—Y3)

+ kb f 5 Ep3 2[(1 e )e
+ (1_eip3x3)eip3(X3y3)]] . (46)

Finally, we get

6
(W(1)W(0)e= 7y 2 (e ?A"B+e ?A 8-2e 2
X,y

+2e A B 42 ATB _ge A

(47)
where we define
AEKWZbZJ dp3dp4 1 . 1
2 2 2 2 2 2 2
(2m)° \ pytp3ztm; pz+p3+mg
:O'C|‘b2,
dp; e Epdt
B=«km’b? f _— COSpP3(Xz—Y3),
21 Ep3
(48)
dpsd 1
A'=k szf Ps 24{5—4cosp3x3} R
(27) 2t p3+m;
1
pi+p5+mi)’

dps e Fet 1 . :
P 2h2 . Z[(1— e~ P3X3)g~iP3(X3~Y3)
kDb f o Ep3 2[(1 e e

+(1—€e'P3¥3)elPslxa7Va)],

PHYSICAL REVIEW D 62 094506

TABLE V. Vo /opysfor b=2.1, 2.9, and 3.8 from Eq24).

b 2.1 2.9 3.8
oL 1.73 1.59 1.39
Ophys
6 /
(U(1)-¥(0))e= 7 > (e "B*+2e ~'B'?)
4V Xy

0 —2\/p§+m§t
_6 ze—ZAJ dps €

4 —o0 2T p%-}-mg
12 , dps
< a7 9P,
+ v E e | 5—2{1—cospaxs}
e~ 2\/p5+mit
X— (49
p5+m3

Whent>1, the integrand decreases rapidly and the integral
is well approximated by the saddle point valuemt=0.
Hence we get at large tinte

(T P(0)e= - S{L%e 27’421 (2L - 1)

x e~ 57c b} expl — 2myt}, (50)

where the second term coming from tli& is seen to be

suppressed by the fact@ 37¢'®* since o-b? become
large for b>1. Other quantum corrections are also sup-
pressed similarly. The lowest glueball mads -+ is found

to be Mg++=2m,.

The lowest glueball mass in unit of the string tensign
forb=2.1, 2.9, and 3.8 are given in Table V. This is almost
consistent with the recent lattice resul8(0" ")/ \opnys
=3.74+0.12[21].

V. ANALYSIS

The value of the string tension calculated analytically in
the previous section is about two times larger than the value
which is numerically determined from the monopole contri-
bution to the Abelian Wilson loop and is used here to fix the
physical scale. Let us analyze the origin of the difference in
details. The method and the assumptions we have adopted
are summarized in the following.

(1) Abelian dominanceWe have assumed first that after
Abelian projection Abelian components alone are respon-
sible for nonperturbative phenomena of @WUgluodynamics
in the infrared region. This assumption is based on the nu-
merical data obtained in MA gaudé,5]. Bali et al. [22]
have made a detailed test @t=2.5115 and have confirmed

SinceB andB’ containe™ Erd!, it becomes very small when the assumption of Abelian dominance of the string tension is
t>1. Then one can expand the exponential and obtain finallgood at the level of 92%.

fort>1

(2) Monopole dominanceThe Abelian Wilson operator
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TABLE VI. String tensions from non-Abelianof;) [24] and Couplings vs distances
monopole ¢,) Wilson loops.
48'lattice, 8°’monopole
B Jora Vora : .
2.20 0.4690100) 0.480452) 0F O b2 7 2
2.30 0.369080) 0.358936) T
2.40 0.266(20) 0.267882)
2.50 0.1908) 0.185132 1.000 x10"" {}; 3
2.60 0.136(40) 0.134639) \
2.70 0.1018510) 0.101621) » e
1.000x10°2 | (132 G3 o o 3
can be factorized into monopole and photon contributions. é4 35
We have assumed only the monopole part is responsible fo
the string tension on the basis of the numerical analysis'-000X10°* ¢ 3
[8,23. The values of the string tension we have used are L L
listed in Table VI. The differences are not big. 0 1
(3) DeGrand-Toussaint (DT) definition of lattice mono- Distance R2

pole We have used DT monopole in the numerical evalua-
tion done in Sec. Il, since we do not know an alternative FIG. 10. The expected coupling constants of [&tap versus
which can be used in numerical simulations. The magneti@umerical data.
charge of DT monopole is restricted. However, we have used
the definition of lattice monopole with any integer chargewe have made calculations using the classical contributions
which we call as natural monopole in the step of the analyticalone. The strong coupling expansion of the string model
block spin transformation. As checked in the case of comcalculations is reliable. We show the expected coupling con-
pact QED[8], there may be a considerable difference be-stants of RT for large regions in Fig. 10. The comparison
tween natural and DT monopoles on the fiadattice for  of the three parameters B8 7y between the expected RT
small 8 region. But the difference is expected to be de-and the optimal fit to the numerical data are plotted also in
creased after block spin transformations, since the blocke®able VII.
monopole can take a wider range of charge. But we can not As a result, we come to the conclusion that we have to
estimate the effect quantitatively in the present stage. perform Monte Carlo simulations on an improved action for
(4) Truncation and scalingln the inverse Monte Carlo largeb starting from the points nearer to the continuum and
calculations and numerical block spin transformations, wemore steps of block spin transformations to reproduce the
have truncated the number of the terms in the effectivecorrect value of the string tension. It is stressed, however,
monopole action. We have used 27 quadratic terms up to that the other parts of the above procedure appear rather
lattice distances and four-point and six-point self-reliable.
interactions, assuming short-ranged interactions are more
dominant. Then we have performed the block spin transfor-
mation the number of steps of whichrs=1,2,3,4,6,8. The
data seem to show roughly the scaling behavior expected on (1) In order to obtain the quantum perfect effective action
the renormalized trajectory. However, this step could stillof low-energy SW2) gluodynamics, we have performed the
give rise to fairly large systematic errors. The scaling behavblock spin transformations on the dual lattice after Abelian
ior may not be enough. Actually, the dominant quadraticprojection in MA gauge numerically. In the inverse Monte
self-coupling term G(1) at b=2.78 (83=2.0n=4) is Carlo method, we have adopted more general form of mono-
around 0.16, whereas it is around 0.09 l&2.87 (B
=2.3n=8). TABLE VII. The comparison of the three parameterss y

(5) Analytic calculations Since the quadratic terms seem petween the expected RT and the optimal fit to the numerical data.
to be dominant in the infrared region, we have evaluated

the physical quantities in the framework of the quadratich 2.1 2.9 3.8
monopole action. Using the mean-field approximation,—

VI. CONCLUDING REMARKS

the quartic term can be approximated by the quadratic self 0.565 0.321 0.207
and the nearest-neighbor terms with an effective couplings 6.78 3.85 2.49
8q(b)<ki(s)>, whereq(b) is the quartic coupling constant -, 5.65x 10" ° 3.21x10°° 2.07x10°°
and(ki(s)) is the monopole density. The induced effective —

self-coupling is still by two or three order smaller than the @rr 1.52 0.780 0.435
original quadratic self-coupling. Hence contributions from gy 6.78 3.85 2.49
four and six point interactions can be neglected safely for, 4.09x10 4 1.90x10 4 9.15x10°°
b= 1.50;@’52. Since quantum corrections are also very small

094506-12



ALMOST PERFECT QUANTUM LATTICE ACTION FQR . .. PHYSICAL REVIEW D 62 094506

TABLE VIII. The quadratic interactions used for the modified Swendsen method.

Coupling{G;}  Distance Type CouplingG;}  Distance Type
G (0,0,0,0 ku(s) Gis (2,1,1,0 K, (s+2u+v+p)
G, (1,0,0,0 K, (s+ 1) G (1,21,0 K, (s+u+2v+p)
Gs (0,1,0,0 K, (s+v) Gy 0,212 K,(s+2v+p+0)
G, (1,1,0,0 K, (s+p+v) Gis 211 Kk, (s+2u+v+p+o)
Gs (0,1,1,0 K,(s+v+p) Gio (121 Kk, (stp+2v+p+0o)
Ge (2,0,0,0 K, (s+2u) Gao (2,2,0,0 K, (s+2u+2v)
Gy (0,2,0,0 k,(s+2v) Gos (0,2,2,0 K, (s+2v+2p)
Gs L11Y Kk (s+p+v+p+o) Gy (3,0,0,0 K,(s+3x)
Gy (1,1,1,0 K,(s+ @+ v+ p) Gas (0,3,0,0 K, (s+3v)
Gio (0,1,1, K,(s+v+p+0) G (2210  k,(s+2u+2v+p)
G (2,1,0,0 K, (s+2u+) Gas (1220 k,(s+p+2v+2p)
Gz (1,2,0,0 K, (s+n+27) Gas 0223 k,(s+2v+2p+0)
G 0,2,1,0 k,(s+2v+p) Gay (21,10 Kk, (s+2u+2v+p)
Gia (2,1,0,0 K,(s+2u+7)

pole actions than the one in the previous stlilyl1] and satisfy translation and rotation invariances. The higher order
have stressed the important features of the almost perfeatteractions used for the modified Swendsen method are
monopole action. We have transformed the monopole actiolisted in Table IX.
into that of the string model of hadrons by using the BKT
transformation.

(2) To evaluate the physical quantities, we have consid-
ered the quadratic interaction subspace for the monopole ac-
tion and find the correct form of perfect operators. We have |n this appendix we give various representations of the
evaluated the physical quantities such as string tension angliilson loop operator.
the glueball mass for S@) gluodynamics using the string  The original representatian_et us consider the general-
model of hadrons analytically. The strong coupling expan+ized Villain action defined by Eq(7). In this model, the
sion works good and it turns out that thkassicalresults in guantum average of the Wilson loop operator is written as
the string model is near to the one guantumSU(2) gluo-
dynamics. Probably, it means that the classical string theory
is a good approximation for IR gluodynamics. (W(C))= < eXp[iE J.(s) GM(S)} > =Z[J]/Z[0],

(3) To get a better fit of the string tension, we have to S

APPENDIX B

perform more elaborate Monte Carlo simulations for laoge (B1)
on larger lattices.
+ 00
z[a=| Il deous) X exq’ ~-8[6,n]
— TS U Nup(S)=—=*
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for Scientific ResearcliB) (Grant No. 10440073 and No.  1he monopole representatiofihe above original repre-
11695029. sentation can be transformed into the monopole representa-

TABLE IX. The higher order interactions used for the modified
Swendsen method.

APPENDIX A
The quadratic interactions used for the modified Swend- Coupling Distance Type
sen method are shown in Table VIII. Only the partner of the  four-point (0,0,0,0 IS4 Ki(9))?
current multiplied byk ,(s) is listed. All terms in which the six-point (0,0,0,0 25(24:_4ki(3))3

relation of the two currents is equivalent should be added te
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tion exactly in the following way. Let us perform the BKT- L , L
transformation with respect to the integer-valued tensorE J(S)AL avmw(s)ZE aPS:Lp(S)AL m,.(S)
n,,(s) in Eq. (B2): S &

=2 S, (S)9,ALM0,m,,,(9)
n,uV(S):m'uV(S)'f'a[,qu](S), (B3) ly

> S,,(95m,,(9)

S,

x

1 A A A
&[vap](s)zEEMW))\k)\(S_M_V_p),
(B4) —SZ S} () ,AL Mdp,m,. ().
AL

wherem,,,(s) andq,(s) are rank-2 tensor and vector fields (B9)

on the original lattice, respectively. The vector figdg(s) .

which can be interpreted as a monopole current on the dudl/Nen use is made of E¢B4), we have

lattice obeys conservation law k,,(s)=0 by definition.
Using the Hodge—de Rahm decomposition we write E Sjtp(s)a’VA,fl&[me](s)

S,

I u0,)(8)+2mn,,(S) 3 o1 ,
: g =2 Ku(SALH(S5) 5 €uapyPaShy(S' + 1)
_ NC) 2 FA—1 / 5.8
=0d1,0,) (s)+2m / d,AL "(s—s')
) =0 NL(9)k,(9), (B10)
1 A~ A oA Sk
Xzepﬂy)\k)\(s'—p—p«—v), (BS)
whereN ,(s) is defined by Eq(14).
The summation with respect to the integer figig,(s) is
trivial since exg2wiXinteget=1. Therefore, the expecta-

tion value of the Wilson loop operator in the monopole rep-

oM s)=0,(s)+2m> AN (s—s")a,m,,(s")
s’ resentation becomes

+0,(8). (B6)
1
W(C))=(W(C))nexp| — 2 J. (s
Substituting Eq.(B5) in Eq. (B2) and integrating out the (W(C))=(W(C))m % T SES % wS) AZD,
noncompact field('“(s) we get
x(s—s’)Jﬂ(s’)], (B11
+ o =+ 1
z[J]= 2 > EXpl 72 J#(s)( > )
k(== m,, (== S ADo where(W(C)), is written as
X(s—s")J, (s")— Z k,(s)Dg(s—s")k,(s")
g oo, TP a (W(C))m=<exp{27ri52 kM(s)NM(s)}>=Z[J]/Z[O],
¥
(B12)
—27i Y, Jﬂ(s)ALl(s—s')a;mW(s')}. (B7)
s,s’ ™
Z[J]Zk (;im (I_SI 5&/’Lku(s),0)
It is convenient to define the plaguette variangy(s) from #
the Abelian integer-charged electric currdn(s) by the fol- _
lowing relation: X ex —S[k]+2m§ K, (SIN,(s). (B13)

%sggy(s)z\]y(s)_ (Bg)  The monopole actio&[k] is shown in Eq(12).
Note that the difference betweéW(C)),, and(W(C)) is
only an electric-electric currerdtJ interaction which comes
By this definition,S,,(s) can be interpreted as the surface from the exchange of regular photons and has no line singu-
which is spanned on the contoly(s). The third term on the larity leading to a linear potential. Hence the term of the area
exponential in Eq(B7) can be rewritten as law of both operators are completely the same. So concern-
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ing the low-energy physics of QCD, such a term is not sosentation as a field theory. This is a dual Abelian Higgs
important. We, therefore, negledtJ interactions and con- model. We show here the above monopole representation is
sider(W(C)), to evaluate the static potential. The analysisequivalent to the lattice form of the modified London limit of
in Ref.[15] leads to Eq(23). the dual Abelian Higgs model.

The dual representatiorAs is written in Ref.[10] the Introducing an auxiliary dual fielg(s) for the constraint
theory described by the monopole actid@®) is given in the ~ Of the monopole currend,: (0 and a dual vector field
particle representation. It can be expressed in the field repre ,(s), Eq. (B13) is rewritten as

Z[J]zexp{ > J, s)( °5

s,s’;u

—oSiu —TSip

(s—s)d (s’ )] IT acus | T decs)

SOES

X > wexp{ 4352 [4{,C ](s)]2+i§[CM(s)+ﬁ;¢(s)—27-rNM(s)]kM(s)

— 2 ku(s)D§ H(s—s")k,(s)}.

s,;s’iu

(B14)

Inserting the unity ¥ [“ DF §[F ,(s)—k,(s)] to Eq. (B14) and performing the Gaussian integration with respect to the
F.(s) field, we have

1
Z[J]=exp — =2 2 J (s)( )(s—s’)J (s’)]
p[ s u BAL  A?D, .

[

o 1
[Tdc,s | IIdes S exp| _ESEV [9{,C.y(s)—27S),,(s)]?

—© S — TS| lu(s)=—e
1
) [CM(S)+L?,'L¢(S)+27TIM(S)]D()l(s—s’)[CM(s’)+0L¢(s’)+2wlﬂ(s’)]], (B15)
X

where we have used also the Poisson summation formula

oo

> OLFu(9)—ku(9)]= ()E exp 27 Y, FM(s)I#(s)+. (B16)
u(s)=— S, 1

k(9=

Therefore the expectation value of the Wilson loop operator in the dual representation becomes

1
_ 2
(W(C)) exp{ SSE#J S)</3A A

(S s")J (s’ ))(H(C» (B17)

whereH(C) is a 't Hooft loop operator defined by E¢lL1). We see

(H(C0))=Z[S,]/2[0],

0

® 1
Z[s)]= fH dc,(s) | " I1 dg(s) » exp{—@s;y[afﬂcyl<s>—2ws,’Ly<s>]2

— TS )——oc

- E [CLu(s)+3d,p(s)+2ml,(s)]Dg" (S_S,)[CM(S')'F(9;L¢(S')+2’7T|M(S')] . (B18)

ssu

Equation(10) is the lattice form of the modified London limit of the dual Abelian Higgs modg|(s) and ¢(s) can be

interpreted as a dual Abelian gauge field and the phase variable of the dual Higgs field, respectively. Note that the integer-
valued fieldl ,(s) appears due to the compactness of the theory.
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The string representatio’’We show here the string representation is obtained from the monopole representation. Introduc-
ing an auxiliary fielde(s) for the constraint of the monopole currefy k, (9.0 and inserting the unity % [“_DF §[F ,(s)
M

—k,(s)] into Eq.(B13), it is rewritten as

Z[J]=exp|

w2 J,As( 7

ss’;p AfD

)(s s') M(s)f DFﬂ(s>f Hd¢><s>

X > exp{ -3 2 F,(S)Do(s—s')F (s’ )+|2 F.(S)[d,b(s)+2ml ,(s)+27N,(s)]}.  (B1Y)
(9=~ 581
Here we also have used the Poisson summation formula for the integer valued vectky, (f&ld
Now we perform the BKT transformation with respect to the integer valued vectorl fie)i:
1 Ao
|M(S):SM(S)+5M|'(S), &[,usv](s)EEE,uva,Bo-aﬁ(s_a_B)v (BZO)

wherer(s) is a scalar field defined on the dual lattice and the string fielg(s) defined on the original lattice obeys the
conservation Iavwl;crw(s)=0 by definition. This means the variablegs(s) form a closed surface on the original lattice.
Integrating out all fields except for the string fieid 5(s), we obtain the following string representation defined on the original

lattice:
Z[J]=exp{ 22 J, s)( )(s s')J,(s")— WZE N, ( (1)(3—5')Nﬂ(s')]
s,s' ;i s,s' i Do

- 1

Xglwg:_w (1;[ 58;LO'MD(S),O> exp{ —Wzs,s%>y UMV(S)<A DO)(S_S/)U;W(S,)
2 1 ~ - 1 ’ ’ ’

—2m X S €uapTap(STHV) 3.0y (57S)7uNu(s) - (B21)
S, S, u>v
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