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Lattice Schwinger model: Confinement, anomalies, chiral fermions, and all that

Kirill Melnikov * and Marvin Weinstein†
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~Received 24 April 2000; published 9 October 2000!

In order to better understand what to expect from numerical CORE computations for two-dimensional
massless QED~the Schwinger model! we wish to obtain some analytic control over the approach to the
continuum limit for various choices of fermion derivative. To this end we study the Hamiltonian formulation
of the lattice Schwinger model~i.e., the theory defined on the spatial lattice with continuous time! in A050
gauge. We begin with a discussion of the solution of the Hamilton equations of motion in the continuum; we
then parallel the derivation of the continuum solution within the lattice framework for a range of fermion
derivatives. The equations of motion for the Fourier transform of the lattice charge density operator show
explicitly why it is a regulated version of this operator which corresponds to the point-split operator of the
continuum theory and the sense in which the regulated lattice operator can be treated as a Bose field. The same
formulas explicitly exhibit operators whose matrix elements measure the lack of approach to the continuum
physics. We show that both chirality violating Wilson-type and chirality preserving SLAC-type derivatives
correctly reproduce the continuum theory and show that there is a clear connection between the strong and
weak coupling limits of a theory based upon a generalized SLAC-type derivative.

PACS number~s!: 11.15.Ha
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I. INTRODUCTION

It was argued in an earlier paper@1# that the contractor
renormalization group~CORE! method can be used to map
theory of lattice fermions and gauge fields into an equival
highly frustrated anti-ferromagnet. Although explicit comp
tations were presented only for the free fermion theory
was argued that a corresponding mapping must exist for
interacting theory because the space ofretained statesused
for the free theory coincides with the set of lowest ene
states of the strongly coupled gauge theory. While this ar
ment is true, it is obviously important to have a better und
standing of the details of how the mapping works. In orde
get some experience with this process for a theory whic
well understood we decided to study the lattice Schwin
model ~i.e., two-dimensional QED!, since the exact con
tinuum solution of this model exists. Before diving into th
CORE computation, however, we first needed to underst
the degree to which the lattice model exhibits the interes
features of the continuum theory. This paper is devoted to
analytical treatment of the lattice Schwinger model with
eye to clarifying the physics which underlines the continu
solution and identifying those general features of the mo
which should provide an ultimate check of the correctnes
any numerical solution.

The continuum Schwinger model@2–7#, in addition to
being a non-trivial interacting theory of fermions and gau
fields, provides a laboratory for studying a wide range
interesting phenomena. It exhibits the confinement of the
mionic degrees of freedom and the concomitant appeara
of a massive boson in the exact spectrum, breaking of ch
symmetry through the axial anomaly, screening of exter
charges and background electric fields, infinite degenerac
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the vacuum states of the theory~theta parameters!, and the
ability to produce arbitrary fermionic polarization charg

densities by applying an operator of the formei *dxa(x) j 5
0(x) to

the vacuum state~due to the anomalous commutator of th
electric and axial-charge density operators!. It is important to
ask which of these features can be understood in the la
theory before taking the continuum limit and how comp
cated a CORE computation has to be in order to extract
physics. Although the literature contains discussions of v
ous aspects of the model, such as confinement and the
anomaly@8–11#, we are not aware of any systematic discu
sion of the theory which attempts to parallel the derivation
the continuum solution within the lattice framework. This
what we do in this paper.

In order to make the physics as transparent as possible
formulate the Hamiltonian version of the theory inA050
gauge and only then rewrite it within the super-selected s
tor of gauge-invariant states. We then study the Hamilton
equations of motion for the electric charge density opera
whose form is completely determined by the way in whi
local gauge invariance is introduced into the lattice theo
Obviously, the form of the operator equations of motion d
pends upon the specific lattice fermion derivative and so
study this problem for a wide class of different derivative
in particular, generalizations of the so-called SLAC deriv
tive @13#, which explicitly maintain the lattice chiral symme
try and generalizations of the Wilson derivative@12#, which
break the chiral symmetry for non-zero momenta. We fi
that all of these approaches produce a satisfactory treatm
of the continuum theory, however the detailed physical p
ture of how things work varies greatly.

We show that a key issue for connecting the lattice the
to the continuum theory is which lattice currents go over
the continuum current operatorsj 0(x) and j 0

5(x). Obviously
the local lattice charge density operator, whose form is fix
by the way in which one introduces gauge invariance, can
©2000 The American Physical Society04-1
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KIRILL MELNIKOV AND MARVIN WEINSTEIN PHYSICAL REVIEW D 62 094504
have this property because the normal ordered version of
operator satisfies the identityj 0( i )35 j 0( i ) for all values of
the lattice spacing~since only the charges 0,1,21 can exist
on a single lattice site!. On the other hand, as we will show
the Fourier transformj 0(k) can be treated as a boson ope
tor and the the dynamics of the theory tells us that the cur
operators of the continuum theory are obtained by form
an appropriately regulated version of these lattice operat

In order to make our discussion essentially self-contai
we begin by briefly reviewing theA050 gauge treatment o
the Hamiltonian version of the continuum Schwinger mod
We discuss: the need for imposing a state condition, suc
restricting togauge-invariant states; why only the totalQ
50 sector of the theory can exist at finite energy; and w
different sectors of gauge-invariant states exist and are
beled by a continuous parameter21/2 <e<1/2, which can
be identified as abackground electric field. Finally, we re-
view the Hamiltonian derivation of the fact that the elect
charge density is a free massive Bose field and the
played by the anomalous commutator of the electric a
axial charge density operators in the derivation of this res
After reviewing the continuum theory we set up and disc
the physics of the lattice version of the Schwinger mode
A0(x)50 gauge. We then parallel the continuum argume
as closely as possible for a variety of fermion derivatives
careful treatment of the Hamilton equations of motion for t
Fourier transform of the charge density operator leads to
understanding of how regulated versions of these opera
go over to the point-split operators of the continuum the
and the sense in which these regulated operators ca
treated as Bose fields. The difference between the wa
which things work for generalized SLAC-type derivativ
and Wilson-type derivatives becomes clear due to this
cussion, as does the connection between the strong and
coupling theory for generalized SLAC-type derivatives.

II. THE CONTINUUM SCHWINGER MODEL

Hamiltonian formulations of the continuum Schwing
model have been discussed in the literature@6,7#. Our dis-
cussion will parallel these discussions to a degree but
differ in important details. Our goal is to allow the reader
understand the important features of the Schwinger mo
without unnecessary formalism.

As we have already noted, the Schwinger model is sim
QED in 111 dimensions, and has a Lagrangian dens
given by

L5c̄~ i ]mgm1eAmgm!c2
1

4
FmnFmn. ~1!

In 111 dimensions there are only three anti-commut
g matrices,g0 ,g1 ,g5, and so they can be realized in term
of the Paulis-matrices:

g052 isx ,

g152 isy ,

g55g0g15sz . ~2!
09450
is

-
nt
g
rs.
d

l.
as

y
a-

le
d
lt.
s
n
ts

n
rs

y
be
in

s-
eak

ill

el

ly
y

In order to enable us to give the most physical treatm
of gauge invariance of the theory we choose to work in te
poral, orA0(x)50, gauge. Making this choice the Lagran
ian density becomes

L5c̄„i ]mgm2eA~x!g1…c1
1

2
„]0A~x!…2. ~3!

Here, for convenience, we have denoted the spatial com
nent of the vector potential asA(x) and dropped its sub
script. Equation~3! tells us that the electric field,

E~x!5]0A~x!, ~4!

is the canonical momentum conjugate toA(x) and it has the
usual equal-time commutation relations withA(x):

@E~x!,A~x8!#52 id~x2x8!. ~5!

Similarly, the fermion operators satisfy the anti-commutati
relations

$ca
†~x!,cb~x8!%5d~x2x8!dab . ~6!

It follows immediately that the Hamiltonian inA050 gauge
is

H5E dxFE~x!2

2
1c†~x!„i ]11 ieA~x!…szc~x!G . ~7!

There is an essential piece of the physics of working
A050 gauge which requires discussion. Since we begin
setting A050 in the Lagrangian, we cannot varyL with
respect toA0 or ]0A0, and so we do not obtain Gauss’ law

G~x!5„]xE~x!2ec†~x!c~x!…50 ~8!

as an operator equation of motion. In fact, using the cano
cal commutation relation, Eq.~5!, we see that

e2 i *dya(y)A(y)G~x!ei *dya(y)A(y)

5„]x@E~x!1a~x!#2ec†~x!c~x!…

5G~x!1]xa~x!. ~9!

This means that even if we start with a stateuf& for which

G~x!uf&50, ~10!

we can generate states of the form

ufa&5ei *dja(j)A(j)uf& ~11!

for which

G~x!ufa&5]xa~x!ufa&. ~12!

Fortunately, the operatorsG(x) ~which we identify with the
generators of time-independent gauge transformations! com-
mute with one another and withH, and so they can all be
simultaneously diagonalized. Thus we are free to impose
~10! as a state condition because the Hamiltonian cannot
4-2
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LATTICE SCHWINGER MODEL: CONFINEMENT . . . PHYSICAL REVIEW D 62 094504
us out of this sector of the Hilbert space. Actually, we a
free to impose the more general condition of Eq.~12! for any
arbitrary functiona(x). What all this means is that the ca
nonical quantization of the Schwinger model inA050 gauge
produces not one, but rather an infinite number of theo
distinguished from one another by the fact that they have
addition to the dynamical fermion fields, different static cla
sical background charge distributionsr(x)class5]xa(x).
This should not be a surprise because one should be ab
formulate QED in the presence of an arbitrary distribution
static classical background charges. By quantizing inA0
50 gauge all we are doing is obtaining all of these pos
bilities at the same time.

Since, on physical grounds, we are not interested in
mulating the Schwinger model in the presence of any n
dynamical charge density, it is customary to limit attention
the so-calledgauge-invariantstates defined by the conditio
that r(x)class50. Note that this doesn’t quite reduce us to
single possibility since all it means is that]xa(x)50 or, in
other words,a(x) can be an arbitrary constant. If we mak
such a transformation we shift the operatorsE(x) by a con-
stant, which means that we are free to formulate the theor
the presence of a constant background fielde. If we worked
in finite volume this would amount to allowing for the po
sibility that there are non-vanishing classical charges on
boundaries; i.e. the remaining sectors of the theory differ
a choice of boundary conditions. One key question ass
ated with the Schwinger model is whether or not the phys
is different for different values of the background field.
particular, does the ground-state energy density, which
certainly different for the free theory, depend upon the va
of e when interacting fermions are introduced into the gam

A simple argument given by Coleman@5# shows that val-
ues ofe which differ by an integer must be equivalent to o
another. Before giving the details of the argument it is i
portant to note that in one dimension the solution to
equation

]xE~x!5(
j

ejd~x2xj ! ~13!

for a set of chargesej located at positionsxj only has a finite
energy solution when the total charge( jej50. This is so
because Eq.~13! tells us that in the regions between the tw
chargesE(x) is constant and it changes by an amountej at
each pointxj . If the sum of theej ’s is not zero then, assum
ing the field vanishes to the left of the first charge atx1, the
field must continue to infinity to the right of the last charg
This means that in order to minimize the field ener
*E2(x)/2 one or more of the charges must move off to
finity leaving behind a totally neutral system. In particular,
we assume no background field then the energy of a pa
particles with charges61 separated by a distances is s/2. In
the presence of a background fielde.0 the situation is dif-
ferent. When the field is present, there is a background
ergy density equal toe2/2. If one now separates a pair o
charges oriented so as to reduce the field between the ch
to e21, the total change in the energy of the system is giv
by
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„2se21s~e21!2

…

2
5

s~122e!

2
, ~14!

where the term2se2 occurs because in the region of leng
s we have replaced the original background fielde by e21.
From Eq.~14! it follows that fore,1/2 increasing the sepa
ration between the charges costs energy, while fore.1/2
separating the charges will gain energy~i.e., by moving the
charges off to infinity one reduces the background field
e85e21 and gains an infinite amount of energy!. Clearly
with that kind of energy gain nothing can stop this proce
from happening and, since the only change in the problem
that now there will be pairs of charges at6`, it will con-
tinue until the background field is reduced to the regi
21/2<e<1/2. For historical reasons this reduced range oe
is usually parametrized by an angleu52pe and is one of the
two angles which label the exact solutions to the continu
Schwinger model@3,5#.

If we work in the sector of physical states for which

Qtotuf&5eE
2`

`

djr~j!uf&50, ~15!

we can solve forE(x) in terms ofr(x)

E5eEx

djr~j!, Qtot5eE
2`

`

djr~j!50. ~16!

Substituting this into the Hamiltonian we obtain

H5E dxc̃†~x!i ]xszc̃~x!2
e2

4 E dxdyr̃~x!ux2yur̃~y!,

~17!

where c̃(x)5e2 i *2`
x djA(j)c(x). This field transformation

enables us to eliminate the termA(x) from the Hamiltonian
and simultaneously preserve the canonical commutation
lations of operatorsc(x), c†(x). It is important to observe
that even if we had not been able to eliminateE(x) from the
Hamiltonian we could have still made this definition but
would not have been particularly useful since in that ca
E(x) would have non-trivial equal time commutators wi
the fermion fields and we couldn’t use the canonical qua
zation rules to carry out computations. Note, in what follo
we will, by abuse of notation, drop the tilde and simply wri
c̃(x) asc(x).

The content of the exact solution of this model is that it
the theory of a free boson of massm25e2/p and, moreover,
the charge density operatorr(x) can be used as an interpo
lating field for this particle because it satisfies a free fie
equation with the same mass. To see how this happens a
need to do is derive the Heisenberg equations of motion
r(x).

The time derivative ofr(x) is

]0r~x!5
1

i
@r~x!,H#. ~18!
4-3
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Since r(x) commutes with itself, we use canonical equ
time anti-commutation relations for the fermionic fields E
~6! and obtain

]0r~x!5]xj ~x!, ~19!

where j (x)5c†(x)szc(x). Equation~19! simply states that
divergence of the vector current vanishes; i.e., the ve
current is conserved.

The second derivative of the charge density operato
now given by

]0
2r~x!5

1

i
@]xj ~x!,H#, ~20!

which evaluates to

]0
2r~x!5]x

2r~x!2
e2

4 E dy1dy2uy12y2u„r~y1!

3@2 i ]xj ~x!,r~y2!#1@2 i ]xj ~x!,r~y1!#r~y2!….

The key point in the solution of the Schwinger model
the commutator ofj (x) and r(x8). It is known that this
commutator acquires a Schwinger term which we will co
pute by considering Fourier components of the currents:

r~x!5E dk

2p
e2 ikxrk , j ~x!5E dk

2p
e2 ikxj k . ~21!

By introducing creation and annihilation operators for t
upperuk and lowerdk components of the fermion fields wit
standard anticommutation relations:

$uk
† ,uq%52pd~k2q!, $dk

† ,dq%52pd~k2q!, ~22!

one obtains

@ j k ,rq#5E dl

2p
„ul 2k

† ul 1q2ul 2k2q
† ul2~u→d!…. ~23!

At first sight, this is zero, since the integration momental can
be shiftedl→ l 2q in the first term of the integrand. This
however, is not true. The problem is that the momenta sh
can be safely done only in the operators that are nor
ordered with respect to the vacuum state, otherwise the
ference of two infinitec-numbers appears. Since, in this b
sis, thee50 HamiltonianH0 reads

H05E dk

2p
k~uk

†uk2dk
†dk!, ~24!

the vacuum~the lowest energy eigenstate ofH0) is obtained
by filling all negative energy states

uvac&5)
k,0

uk
†)

k.0
dk

†u0&, ~25!

whereu0& is the state annihilated by theuk’s anddk’s. One
may see, that forqÞ2k in Eq. ~23!, the right hand side
annihilates the vacuum and hence momenta shifts are
09450
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lowed. Fork52q, however, this is not the case, and th
can be easily seen by considering@ j k ,r2k#uvac&. One finally
obtains

@ j k ,rq#5
k

p
2pd~k1q!, ~26!

which translates to

@ j ~x!,r~x8!#5
i

p
]xd~x2x8!. ~27!

Consequently

@2 i ]xj ~x!,r~x8!#5
1

p
]x

2d~x2x8!, ~28!

and we obtain

]0
2r~x!5]x

2r~x!2
e2

2pE dy1dy2uy12y2ur~y1!]x
2d~y22x!.

~29!

Integrating by parts twice and using]x
2ux2x8u52d(x2x8),

we obtain

]0
2r5]x

2r2
e2

p
r. ~30!

We see therefore, that the charge density operatorr(t,x)
satisfies the equation for the free field with the massm2

5e2/p.
Let us take another look at the role of the anomalo

commutation relation and the gauge invariance in the ex
solution of the Schwinger model. First consider the case
50. The equations of motion

@rk ,H0#5k jk , @ j k ,H0#5krk , ~31!

allow us to write the free fermion Hamiltonian as a quadra
polynomial inrk and j k :

H05
1

2E0

`

dk~rkr2k1 j k j 2k!, ~32!

since, combined with the anomalous commutator Eq.~26!, it
produces exactly the same Heisenberg equations of mo
Since the gauge invariance of the theory allowed us to eli
nateA(x) from the Hamiltonian onceE(x) was replaced by
the Coulomb interaction written in terms of the operatorsrk
alone, the full Hamiltonian is obtained by adding the ope
tor

HI5e2E
0

` dk

2p

rkr2k

k2
~33!

to H0. Obviously,HI is also a quadratic polynomial inrk
and therefore, thanks to the equations of motion, the ano
lous commutator of the spatial and temporal component
the vector current and the gauge invariance, the total Ha
4-4
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LATTICE SCHWINGER MODEL: CONFINEMENT . . . PHYSICAL REVIEW D 62 094504
tonian is quadratic inrk and j k . This makes the theory com
pletely solvable in the continuum. We will discuss just ho
much of this picture survives when one moves from the c
tinuum to lattice version of the theory in the next section

To complete the usualbosonizationof the theory we ob-
serve thatrk and j k do not satisfy canonical commutatio
relations, however a simple rescaling remedies this prob
and at the same time casts the Hamiltonian into a more
miliar form. To be precise, sincerk has nok50 term,1 we
can define

sk5
Ap

k
rk , Pk5Ap j k . ~34!

Then, using Eq.~26!, we see that

@Pk ,sq#52pd~k1q!, ~35!

and the Hamiltonian takes the form

H5E
0

` dk

2p S PkP2k1S k21
e2

p Dsks2kD . ~36!

Given the canonical commutation relations forPk and sk
and this form of the Hamiltonian, it is obvious that we a
dealing with the theory of a free massive Bose field.

Let us now turn to the question of the dependence of
theory on the background electric field, or rather to the m
general question of what happens in the Schwinger mod
we introduce static classical charges. The remarkable p
erty of the Schwinger model is that independent of th
magnitude these charges are screened completely. Un
standing how this occurs will fully answer the question
how the theory depends upon a background electric fi
since we already noted that having a background field
magnitude21/2<e<1/2 corresponds to having classic
charges of magnitude6e on the boundaries~or equivalently
at 6`).

From the solution of the theory in terms ofj (x) it is easy
to understand the screening phenomena, since it follows
mediately from Eq.~30!. Let us consider the Schwinge
model with two external charges of the opposite sign:

rext~x!5eQext„d~x2x1!2d~x2x2!…. ~37!

As we have seen already, Eq.~10! gets modified to include
the external charge density. For this reason the part of
Hamiltonian corresponding to the Coulomb interaction
quires an additional term and the new equation of mot
becomes

]0
2r5]x

2r2m2
„r~x!1rext~x!…, ~38!

wherem25e2/p. This equation implies that there is now
classical, time-independent component of the charge den
operator induced by the external charge which satisfies

1r0Þ0 would imply that the system is not neutral and that wou
violate the state conditionG(x)uf&50.
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r ind~x!52m2eQextE dk

2p

cos~kux2x1u!

k21m2
2~x1→x2!.

~39!

Computing the integral, we obtain for the induced char
density

r ind52
eQextm

2
~e2mux2x1u2e2mux2x2u!, ~40!

which, as advertised, screens the external charge dens
One interesting feature of the screening is that two exte
charges get screened independently from each other@7#.
Note also that the screening occurs on the scalesDx;1/m,
which for small coupling constant can be rather large. N
ertheless, if we now move the external charges off to infin
so as to go over to the sector which in the free theory wo
have an external background field, we see that this field
totally screened in the groundstate of the interacting theo
Moreover, since all of the screening takes place within
finite distance of the boundary, there is no contribution to
groundstate energy density coming from the backgrou
field.

We should point out that while the previous computati
makes it clear that there shouldn’t be a change in the ene
density of the groundstate, it is not at all obvious that ther
not a finite change in the energy of the state due to
regions surrounding the screened external charge. In
there clearly is such a change when the external charges
located at a finite distance from one another; however,
question of what happens as one moves these charges to
and minus infinity is a bit subtle. The crux of the issue has
do with a definition of the limiting process. As will becom
apparent in a moment the conventional treatment of
Schwinger model amounts to a prescription in which o
defines the Hamiltonian of the system as a limit

H5 lim
V→`

HV5 lim
V→`

E djH~j! ~41!

whereV is the closed finite intervalV5@2v,v#. With this
definition in mind the usual prescription is to first take t
classical background charges to plus and minus infinity
then to take the limitV→`. Given this prescription it is
clear that the total Hamiltonian defined in this way nev
sees the classical screened charges and therefore there
change in the vacuum energy. In order to see that this is
usual prescription which follows frombosonizationof the
model let us go back to Eq.~36! and modify it to include the
possibility of having an arbitrary external classical char
densityrext(x). In configuration space we obtain

H5E dxS 1

2
P~x!21

1

2
„]xs~x!…21

e2

p
„s~x!1e~x!…2D ,

~42!

wheree(x) is the function which satisfies the equation
4-5
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rext~x!5
1

Ap
]xe~x!. ~43!

Now, if we sete(x) equal to a constante we see that all we
have to do is defines̃(x)5s(x)1e and the Hamiltonian
becomes identical to the one without a background field:

H5E dxS 1

2
P̃~x!21

1

2
„]xs̃~x!…21

e2

p
s̃~x!2D . ~44!

This is the usual way of handling this issue and so we
that this treatment says that the groundstate energy is i
pendent of the external constant background field, which c
responds to the prescription we gave above.

To complete our discussion of the continuum Schwin
model we present another way of seeing the screening o
classical background field which does not require work
with the exact solution to the problem, but only the anom
lous commutation relation ofr(x) and j (x). The key to this
discussion is the introduction of the conservedgauge-
dependentcurrent

j̃ ~x!5 j ~x!1
e

p
A~x!. ~45!

Obviously, sinceA(x) does not commute with thegauge-
generators G(x) defined in Eq.~8!, this current mixes state
which satisfy different forms of the general state-conditi
defined in Eq.~11!. This means that we should think ofj̃ (x)
as operating in the full Hilbert space of the theory obtain
by canonical quantization inA050 gauge without imposing
any gauge condition. To show thatj̃ (x) is conserved we
commute it with the Hamiltonian to obtain

]0 j̃ ~x!5
1

i
@ j̃ ,H#5

1

i
@ j ~x!,H#1

e

ip
@A~x!,H#. ~46!

Now, a slight rewrite of the derivation of Eq.~30! gives

1

i
@ j ~x!,H#5]0 j ~x!

5]xr~x!2
e2

p
]x

21r~x!

5]xr~x!2
e

p
E~x! ~47!

and since by construction]oA(x)5E(x), we obtain

]0 j̃ ~x!2]xr~x!50, ~48!

which means the current is conserved. Integrating this eq
tion over all space we obtain, under the usual assumpt
about surface terms, that

F E dx j̃~x!,H G50, ~49!
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a fact we will use in a moment.
To understand the significance of the fact thatj̃ (x) is

conserved imagine that we start in a sector of the the
whose lowest energy state satisfies^0uG(x)u0&50. Next
consider the transformed state

U~a!u0&5ei *dja(j)„j (j)1~e/p! A(j)…u0&. ~50!

We already saw in Eq.~11! and Eq.~12! that the effect of the
term proportional toA(j) in the exponent is to shift the field
E(x) so that

^0uU†~a!G~x!U~a!u0&5
e

p
]xa~x!. ~51!

This equation says thatU(a) takes us from a state with n
background charge density to one with background cha
density equal toe]xa(x)/p. Similarly, it follows from the
commutations relations ofr(x) and j (x) and an integration
by parts, that

^0uU†~a!r~x!U~a!u0&52
e

p
]xa~x!. ~52!

Thus, the total effect of applyingU(a) to the vacuum of
sector of the theory with no classical charges is to map
state into a sector which has a non-vanishing classical ch
density and at the same time to produce a fermionic cha
polarization which cancels it exactly. Now imagine thata(x)
is chosen as in Fig. 1. Since]xa(x) vanishes except in the
two narrow regions aroundxL andxR we see that the effec
of this operator is to map the original state into one wh
has equal and opposite classical charge densities arounxL
andxR and induced cancelling fermionic polarization char
densities. As we movexL andxR to minus and plus infinity
respectively the functiona(x) becomes a constant and in th
limit, the fact thatU(a) commutes withH implies that

^0uU†HUu0&5^0uHu0&. ~53!

FIG. 1. The functiona~x!. See text for the explanation.
4-6
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Hence, the energy of the vacuum of the sector with an a
trary background field is the same as the energy of
vacuum of the sector with no background field, which agr
with the previous argument for the bosonized version of
theory.

III. THE LATTICE SCHWINGER MODEL

Let us now discuss the Hamiltonian version of t
Schwinger model on a lattice. In the Hamiltonian formalis
time is continuous and space is taken to be an infinite lat
whose points are separated by a distancea. As in the con-
tinuum, we work inA050 gauge. Furthermore, we introduc
fermionic variablescn

† and cn associated with each site o
the spatial lattice and replace the continuous fieldsA(x) and
E(x) by conjugate variablesAn and En associated with the
link (n,n11) joining the sitesn and n11. This leads to a
lattice Hamiltonian of the form

H5HE1H f , ~54!

where

HE5
a

2 (
n

En
2,

H f5 (
n,n8

~cn
†!aK~n2n8!abe2 ie( j 5n

n821Aj~cn8!
b.

~55!

Here the kinetic termK(n2n8)ab is a two-by-two matrix for
each value ofn2n8, the fermion fields satisfy the anti
commutation relations

$~cn
†!a,~cn8!

b%5dn,n8da,b ~56!

and the link fields satisfy the usual harmonic oscillator co
mutation relations

@An ,En8#5 idn,n8 . ~57!

Note that the fermion fields are dimensionless and in orde
make the connection to continuum fields we will have
rescale them by a factor of 1/Aa to give them dimensions o
mass1/2. In direct analogy to the continuum theory, the eige
value of the operatorEn is the electric flux carried by the link
(n,n11). Since, as we have seen, the operatore2 ieAn shifts
the flux on the link (n,n11) by e it follows that if we define
the normal ordered charge density operator to be

rn5:~cn
†cn!:, ~58!

then the operators

G~n!5En112En2ern ~59!

commute with the Hamiltonian. Hence, similar to the co
tinuum, we are free to impose the discrete version of Gau
law

G~n!uf&5rn
classuf& ~60!
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as a general state condition. Therefore we see that the la
and continuum versions of the Schwinger model are ess
tially the same, in that canonical quantization inA050
gauge gives not one version of two-dimensional QED
rather an infinite number of versions of the theory cor
sponding to quantizing in the presence of an arbitrary c
sical background charge distribution. Note that the form
Gauss’ law expressed in Eq.~60! requires us to use the loca
charge density operatorrn as the lattice analog of the con
tinuum charge density operator.

Paralleling the discussion of the continuum theory
closely as possible, we focus attention on the zero cha
sector of the space of gauge-invariant states; i.e., the o
that satisfy the state condition

G~n!uf&50. ~61!

Once again, in this sector we can explicitly solve forEn in
terms ofrn and eliminate the factors ofeieAn by incorporat-
ing them in the definition ofcn . In this way, in theQ50
sector of gauge-invariant states, the lattice Hamiltonian
be written as

H5H f2
e2a

4 (
n,m

rnun2murm . ~62!

Because the kinetic termK(n2n8)ab is a function of the
difference ofn andn8 we can write the Hamiltonian in mo
mentum space as

H5E
2p/a

p/a dk

2p
ck

†$Zksz1Xksx%ck

1
e2a2

4 E
2p/a

p/a dk

2p

rkr2k

12cosak
. ~63!

Here we have rewritten the Fourier transform ofK(n
2n8)ab in terms of two functionsZk andXk , allowing for a
very general class of fermion derivatives. Note that in E
~63! and all the equations to follow we have adopted t
convention that all momentum space operators are norm
ized in a way that the continuum limit is reproduced
taking a→0 without any additional field renormalization
For example,

$~ck
†!a,~cq!b%52pd~k2q!dab . ~64!

Taking our clue from the discussion of the continuu
theory we now turn to the derivation of the Heisenberg eq
tions of motion for the currentrn . The first step, namely
computing

]0rn5
1

i
@rn ,H#, ~65!

leads us to identify the result of this computation with t
divergence of the spatial component of the vector current~or,
alternatively, the time component of the axial-vector curre!
j n . Since the discussion to follow is necessarily a bit detai
it is helpful to summarize what it will show us in advanc
First, we will see that unlike the charge density operator
4-7
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current j n is intrinsically point-split as a consequence of t
equations of motion. Second, as in the continuum, the imp
tant part of the computation of]0 j n , by taking its commu-
tator with H, involves commuting thej n andrn . This com-
putation will show that one cannot solve the latti
Schwinger model exactly for any finite value of the latti
spacinga because this lattice commutation relation is not
same as its continuum counterpart. Note that this featur
related to the properties of the free lattice Hamiltonian rat
than being a consequence of the interaction. The same c
putation will show that the continuum limit of the naiv
commutators does not approach the continuum values fo
Schwinger model; from this we will see why, on dynamic
grounds, one has to study what amounts to a point-split
sion of rn in order to get the correct physics.

For the purpose of illustration, let us consider expli
forms of Xk and Zk corresponding to a number of popul
fermion derivatives. In the case of thenaive fermion deriva-
tive Zk5sin(ka)/a, Xk50; in the case of the Wilson fermio
derivative Zk5sin(ka)/a, Xk5r/a@12cos(ak)#; and for the
SLAC derivative one hasZk5k, Xk50. Given any one of
these derivatives it is easy to find the one-particle ene
levels of the non-interacting HamiltonianH f by rotating the
fields:

xk5Ukck , ~66!

where

Uk5ei (u/2)sy5cosS u

2D1 isy sinS u

2D , ~67!

and

cosuk5
Zk

Ek
, sin~uk!5

Xk

Ek
, Ek5AXk

21Zk
2.

This unitary transformation diagonalizes the Hamiltonian

H f5E
2p/a

p/a dk

2p
Ekxk

†szxk , ~68!

and if we introduce creation and annihilation operators
the x-fields

xk5S uk

dk
D , ~69!

with $uk
† ,uq%52pd(k2q) and $dk

† ,dq%52pd(k2q), we
obtain

H f5E
2p/a

p/a dk

2p
Ek~uk

†uk2dk
†dk!. ~70!

Finally, the vacuum state of the free theory is obtained
filling the negative energy sea: i.e.,

uvac&5 )
2p/a,k,p/a

dk
†u0&. ~71!
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Given these equations it is a straightforward matter to co
pute the commutator ofH with rn to obtain]0rn :

]0rn5
1

i
@rn ,H#, ~72!

which in the continuum theory is equal to]xj (x) @where
j (x) is identified as the spatial component of the vector c
rent, or the time component of the axial-vector curren#.
Computing the commutator ofH with rn is straightforward
but we must say a few words about how we identifyj n .
Basically, in order to maintain the parallel to the continuu
discussion we define the quantity equal to]0rn as the lattice
derivative of j n ; i.e.,

]0rn5
1

a
~ j n112 j n!. ~73!

With this identification, the algebra ofg matrices in two
dimensions ensures that the spatial component of the ve
current coincides with the temporal component of the ax
current, and therefore all the currents we are going to w
with appear to be defined. Clearly, different lattice fermi
derivatives will produce different definitions of the spati
component of the vector current operator, an inescapa
consequence of the Heisenberg equations of motion.

To derive an explicit form forj n , we Fourier transform
Eq. ~73!. Defining

rk5(
n

rneikan, ~74!

we obtain

]0rk5
1

i
@rk ,H#. ~75!

Writing the right hand side of this equation as

1

a (
n

~ j n112 j n!eikan5
22i sin~ak/2!e2 ika/2

a
j k , ~76!

defines the Fourier transform of the spatial component of
vector current. Explicit computation ofrk yields

rk5E
2p/a

p/a dk1

2p

dk2

2p
ck1

† ck2
2pd lat~k11k2k2!, ~77!

whered lat(q) is the latticed-function which implies the mo-
mentum conservation modulo 2p/a. Focusing, for the sake
of definiteness, on momentak.0, one finds

rk5E
2p/a

p/a2k dk1

2p
ck1

† ck11k1E
p/a2k

p/a dk1

2p
ck1

† ck11k22p/a .

~78!

It is now a straightforward matter to compute the spa
component of the vector current using Eq.~75!:
4-8
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j k5
aeika/2

2 sin~ak/2! F E
2p/a

p/a2k dk1

2p
ck1

† M ~k1 ,k!ck11k .

1E
p/a2k

p/a dk1

2p
ck1

† M ~k1 ,k!ck11k22p/a .G , ~79!

where

M ~k1 ,k!5$~Zk1k1
2Zk1

!sz1~Xk1k1
2Xk1

!sx% ~80!

and we have used the fact thatZk andXk are periodic func-
tions with the period 2p/a.

From the continuum solution of the Schwinger model it
clear that we should focus on the Schwinger term appea
in the commutator@ j k

† ,rq#, since it is the source of the
anomalous Heisenberg equation of motion and the reaso
the mass of the photon being non-zero. As we saw in
previous section it suffices to take the vacuum expecta
value ^vacu@ j k

† ,rq#uvac& in order to compute the Schwinge
term. Direct computation yields the following result:

^vacu@ j k
† ,rq#uvac&52pd~k2q!W~k!, ~81!

where the functionW is

W5
ae2 ika/2

2 sin~ak/2! F E
2p/a

p/a dk1

2p
~2Zk1

2Zk12k2Zk11k!cosuk1

1~2Xk1
2Xk12k2Xk11k!sinuk1G . ~82!

To compare the result of this computation with the co
tinuum result we take the limita→0, in which case Eq.~82!
simplifies and one obtains

lim
ak→0

W5
k

p F E
0

p

djS d2Zj

dj2
cos~uj!1

d2Xj

dj2
sin~uj!D G .

This equation gives thea→0 limit of the anomalous com
mutator for a general lattice fermion Hamiltonian and
therefore useful for the analysis of the continuum limit of t
various choices for the fermion derivative. To get a feeli
for how things work let us consider several specific e
amples.

Let us begin with the case of thenaive lattice fermion
derivative, whereZj5sinj, Xj50, Ej5usinju. In this case
we obtain

lim
ak→0

W52
k

pE0

p

dj sinj52
2k

p
. ~83!

This shows that the anomalous commutator is two tim
larger than the continuum result, which implies that in t
a→0 limit the mass of the photon is two times larger than
the continuum theory. In principle, this result should ha
been expected since the lattice theory with the naive ferm
derivative has an exactSU(2) symmetry for all values ofa
and as a consequence of this symmetry the fermion spec
is doubled as is evident from the form ofEk . Thus, it fol-
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lows that the continuum limit of the naive theory is not th
original Schwinger model, but rather anSU(2)-Schwinger
model which is known to have a photon mass which
2e2/p.

In case of Wilson fermions we haveZj5sinj, Xj5r (1
2cosj) andEj5AZj

21Xj
2. By explicit calculation one finds

lim
ak→0

W52
2k

p
. ~84!

Once again the result is two times larger than the continu
one,2 but in this case the low energy spectrum is clearly
undoubled and the reason for the discrepancy between
lattice and continuum results must be different.

In order to clarify the underlying physics, it is instructiv
to consider somewhat unconventional fermion derivativ
Let us begin by considering a modified SLAC fermion d
rivative @11#. Consider the free fermion Hamiltonian define
by (k.0, Z2k52Zk):

Zk5kuS m
p

a
2kD1

m

m21 S p

a
2kD uS k2m

p

a D , Xk50,

~85!

and Ek is equal touZku. A plot of Ek is shown in Fig. 2.
Computing the second derivative ofZk one obtains

2The fact that the anomalous commutator for Wilson fermions
r-independent in thea→0 limit is a bit of a miracle and we do no
quite understand the reason for that. Note, however, that a sim
situation has been observed in earlier calculations of the ch
anomaly in the lattice Schwinger model with Wilson fermions@9#.
It is generally accepted that the continuum limit of the Schwing
model with Wilson fermions gives correct anomaly and correc
reproduces all other continuum results. However, there is no di
contradiction with our statement since, as we explained and as
result seem to illustrate, different currents lead to different resu

FIG. 2. The energies of one-particle states~in units of 1/a) for
modified SLAC derivative for two different values ofm.
4-9
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2
d2Zj

dj2
5dS m

p

a
2j D1

m

12m
dS j2m

p

a D , ~86!

and the anomalous commutator becomes

lim
ak→0

W5
2k

p S 11
m

12m D . ~87!

To understand the information encoded in this form of
anomalous commutator let us consider what happens in
continuum limit. It is clear from the plot ofEk for this modi-
fied SLAC derivative that two species of fermions survive
the limit a→0. Note however that dEk /dk is quite different
for the two linear regions of the spectrum, which means t
the two species propagate with very different speeds.
anomalous commutator is really the sum of two contrib
tions: one coming from 0,k,mp/a and the other from
mp/a,k,p/a and these contributions can be easily iden
fied with the different fermions. Since both fermions a
charged, they both contribute to the anomalous commut
and to the mass gap.

Given the simple nature of this fermion derivative it
clear how to separate the contributions of the two ferm
species to the total current. The easiest way to do this i
put a sharp momentum cut-off somewhere below and ab
the turning pointmp/a. With this prescription we write the
charge density operator as a sum of three contributions:

rk5rk
(1)1rk

(2)1rk
(3) , ~88!

where

rk
(1)5E

2m1p/a

m1p/a dk1

2p
ck1

† ck11k ,

rk
(3)5E

uk1u.m2p/a

dk1

2p
ck1

† ck11k

1E
p/a2k

p/a dk1

2p
ck1

† ck11k22p/a , ~89!

andm1,m,m2. Therk
(2) provides for the remaining contri

bution to the charge density and it is only sensitive to ferm
ons with momentam1p/a,uku,m2p/a. Now, following
our previous argument, we define the corresponding sp
components of the vector current by explicitly commuti
the above charge densities with the Hamiltonian.

A straightforward computation shows that in the limit
vanishingly small lattice spacing the anomalous commu
tors of the above currents are given by

@~ j k
(1)!†,rq

(1)#52
k

p
2pd~k2q!,

@~ j k
(2)!†,rq

(2)#50,

@~ j k
(3)!†,rq

(3)#52c
k

p
2pd~k2q!, ~90!
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where we introducedc5m/(12m), which is the velocity of
the fermions in the regionk;p. Note that in all of these
formulas there are also non-vanishing normal-ordered op
tors coming from large momentum excitations which w
have not displayed. These operators annihilate the vac
and one can argue that they are unimportant for smallk phys-
ics. This final point, which is intimately related to the sen
in which j k can be treated as a boson operator, merits ela
ration and we will return to it immediately after completin
our discussion of the equations of motion.

Proceeding with our computation of the equations of m
tion for rk

(1) andrk
(3) we obtain

2]0
2rk

(1)5k2rk
(1)1

e2

p
rk

tot ,

2]0
2rk

(3)5c2k2rk
(3)1c

e2

p
rk

tot , ~91!

where the total charge density operator appears on the
hand side of these equations and sork

(2) is still included.
Consistent with the point made above and subject to
discussion to follow we will set it to zero, since for sma
energies fermions with such high momenta are not excit

From the equations for the commutators we see that
field rk

(3) is not canonically normalized and so we introdu

the new fieldr̃k
351/Acrk

(3) and its commutation relation with
the corresponding current becomes canonical. The equa
of motion become

2]0
2rk

(1)5k2rk
(1)1

e2

p
~rk

(1)1Acr̃k
(3)!,

2]0
2r̃k

(3)5c2k2r̃k
(3)1

e2

p
~Acrk

(1)1cr̃k
(3)!. ~92!

The energies of elementary excitations can be determ
from the eigenvalues of the matrix

M5S k21e2/p Ace2/p

Ace2/p c2k21ce2/p
D . ~93!

The matrix is easily analyzed in the limit of largec which
corresponds to the large slope of the fermion derivative
the regionk;p. Note that the original SLAC fermion de
rivative corresponds toc→` limit.

It is then easy to see that there are two different limits
this equation. For small momentack2!e2/p, there are two
eigenvalues:

E15Ack, E25A11c
e

p
.

Hence there is a zero mass eigenstate which is the Golds
boson of the theory. The other excitation is the massive o
If we consider the limitc→`, the region of momenta sens
tive to the Goldstone mode shrinks to zero~see Fig. 3! and
the mass of the other excitation goes to infinity.
4-10
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For larger momenta,ck2@e2/p, the mixing of two states
becomes small, they propagate independently and their e
gies are given by

E15Ak21
e2

p
, E25Ac2k21c

e2

p
. ~94!

In this momentum region the energy of the lower excitat
approaches the result of the continuum theory of a boso
field with the masse2/p, the other excitation becomes infi
nitely heavy and decouples explicitly~see Ref.@11#!. Hence,
as we approach the limitc→` ~which is equivalent to the
orginal form of the SLAC derivative!, the continuum limit of
the theory has a massive boson of massm25e2/p and an
isolated state atk50 which can be identified with aseized
Goldstone mode@4#.

Since the main purpose of this paper is to provide
analytic framework for CORE computations to follow w
should point out that the fact that there is a Goldstone m
when e2/p@ck2 is quite significant since it relates to th
whole question of how the strong-coupling limit of th
model connects to the weak coupling theory and whether
can get the correct physics by projecting onto the se
spanned by thee→` eigenstates. We will have more to sa
about this point in the conclusions, but first we should co
plete our discussion of terms we ignored in the commuta
of @ j k ,rq#.

While this preceding argument leading to Eq.~92! makes
the lattice discussion look remarkably like the continuu
Schwinger model, we are not really finished. The iss
which still needs discussion relates to the interpretation ork
and j k as boson fields. This is more than an academic is
Although, as we have shown, the vacuum expectation va
of the commutator ofj k andrq gives the required Schwinge
term, computation of the full commutator contains an ex
piece which, if it has non-vanishing matrix elements betwe
states whose energy remains finite in thea→0 limit, ruins
the interpretation ofj k and rq as boson fields. This is th
issue which we will now address.

FIG. 3. The energy spectrum of the theory with modified SLA
derivative for several values ofc.
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The commutation relation forj k and rq , which is valid
for arbitrary lattice spacing, reads

@~ j k
(1)!†,rq

(1)#5
eika/2ak

2 sin~ka/2! S 22pd~k2q!
k

p
1O~q,k! D ,

~95!

where the normal ordered operatorO(k,q) has the form

O~k,q!5u~k2q!H E
m1p/a2k

m1p/a dk1

2p
:ck11k

† szck11q :

1E
2m1p/a2q

2m1p/a dk1

2p
:ck11k

† szck11q :J 1~k↔q!.

~96!

We will now argue that even though the termO(k,q) is
not explicitly suppressed by a power ofa, nevertheless this
operator does not contribute to the dynamics of any s
whose energy remains finite asa→0; in particular, any state
which can be created by applying arbitrary powers ofrk to
the groundstate of the theory. As we pointed out in the
troduction, the operatorrn cannot be considered a boso
operator sincern

35rn , thus arbitrary powers ofrn can pro-
duce at most three linearly independent states when they
applied to the groundstate. The situation is quite different
rk

(1) and rk
(3) which are sums ofrn’s and therefore, for an

infinite lattice, will not satisfy an identity of this type.
The argument begins by considering the non-interact

theory and thinking ofO(k,q) as acting on a Hilbert spac
constructed by applying polynomials in the current operat
to the ground state of the free theory. For values ofk andq
which are small compared top/a, the operatorO(k,q) can
only act on the part of a state which contains left and rig
moving fermions with momentak'6m1p/a since it has to
first absorb a high momentum fermion and create ano
one with a momentum which differs by a small amount. Th
means that in order to have a matrix element of this oper
between states generated by polynomials inrk

(1) and rk
(3)

these states have to have non-vanishing components ha
fermions with high momenta. Thus, we have to ask how s
components can be generated?

Both rk
(1) and rk

(3) are bilinears in fermion creation an
annihilation operators and, being normal ordered, can o
absorb a fermion at one momentum and create a replace
at another momentum. Generically these operators are o
general form

rk
( i )5E dk1

2p
~uk1

† uk11k1dk1

† dk11k! ~97!

and since for the modified SLAC derivativeXk50, the
vacuum, as in the continuum, is given by Eq.~25!. If we
now, for the sake of definiteness, consider

rk.0
(1) uvac&5rk

(1))
k,0

uk
†)

k.0
dk

†u0& ~98!
4-11
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we see that almost all terms inrk
( i ) annihilate the vacuum

state. The only terms which act non-trivially are ones w
either uk11k or dk11k can absorb a particle and then eith

uk1

† or dk1

† can create a particle. Clearly, for smallk.0 only

the dk1
terms can act, since ifk1,0 and k11k.0 then

dk11k can absorb ad from the vacuum state anddk1

† can

create ad. The uk terms cannot act non-trivially because
order foruk11k to absorb a particle,k11k has to be less than

zero, in which casek1,0 and thereforeuk1

† annihilates the

resulting state. If, however,k,0 then it is theuk1

† uk11k term

which acts non-trivially and the correspondingd term anni-
hilates the state. In either event the important point is that
rk

( i ) only creates and absorbs particles from the vacu
which are within a distanceuku of the top of the negative
energy sea~i.e., the Fermi surface! thus creating a particle
anti-particle pair.

The next step is to see what happens if we applyrk
( i ) to

the state we just generated. What we get is

rk
( i )2uvac&5

1

~2p!2E dk1dk2~uk2

† uk21k1dk2

† dk21k!

3~uk1

† uk11k1dk1

† dk11k!uvac&. ~99!

It should be clear that for almost allk1 andk2 in the allowed
regionrk

( i )2 creates two low momentum particle anti-partic
pairs and in fact for given allowedk1 and k2 there are 2!
ways of getting the same two-pair state; however, for a gi
k1 there is exactly one value ofk2 for which one can create
a higher energy one-pair state by absorbing one of the
ticles in the pair created by the first application ofrk

( i ) and
promoting it to higher momentum. From this it follows th
the factor needed to normalize this state is greater t
1/A2!. Similarly, if one hits this state with another power
rk

( i ) almost all of the terms would create three low ener
particle anti-particle pairs and each of these three pair st
would be created 3! times. As in the previous case howe
there would be a single term which could promote the p
vious single higher energy one-pair state to yet higher
ergy. Note, however, that since the normalization of t
state would have to be larger than 1/A3! ~which we are be-
ginning to recognize as the normalization factor which go
with a three boson state! the coefficient of this higher energ
single-pair state appearing in the normalized version of
state created byr ( i )

k
3 is getting smaller each time. If one no

imagines carrying out this processp-times the argument gen
eralizes in the obvious way. The state obtained by applyinp
powers ofrk

( i ) to uvac& is going to be mostly made ofp
different low-energy particle anti-particle states, each
which will be arrived at inp! ways. Furthermore, there wil
be a single particle anti-particle pair state with individu
momentap times larger thank. Since now the normalization
factor of this state is bigger thanp!, the coefficient of this
single higher energy pair state is getting very small relat
to the part of the wavefunction made ofp low energy pair
states. A more careful discussion of this point would a
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take into account the fact that the same procedure will g
erate two-pair, three-pair, etc., parts of the wave functi
However, the point is that if we keepk<L, whereL is a
maximal energy we wish to consider andLa→0 in the con-
tinuum limit, then in order to achieve the fermionic lev
with momentam1p/a, one should create a statej k

Nuvac& with

N;
m1p

ak
;

m1p

aL
→`. ~100!

The energy of this bosonic state is;Etyp;m1p/a→`; and
it is easy to see that the probability of finding a single hi
momentum pair state equals to 1/N!→0. The factors ofp!
which appear in the normalization of thej puvac& states thus
produce the explanation of both why we can think ofrk

( i ) as
a boson operator and whyO(k,q) has no significant matrix
elements between normalized states generated by app
arbitrary powers ofrk

( i ) to uvac&.
The main point of the above discussion is that as we

proach the continuum limit the essential physics of the mo
is taking place near the top of the negative energy sea an
it is useful to limit our attention to modified operatorsrk

( i )

that only have support in these regions. For the model ba
upon a modified SLAC derivative we saw that, since the l
energy spectrum of the theory was explicitly doubled, t
non-split fermion current really was made up of two par
the first, coming from states neark;0 and the other from
k;p. Leaving aside the complications related to the ex
tence of the Goldstone mode, we see that the dynamics o
theory tells us that the current constructed out of the fer
onic fields with small momenta is essentially the current w
the correct continuum limit. The large momentum part of t
current decouples from the continuum limit after the lim
c→` is taken. From this point of view, we see that th
dynamics of the lattice model tells us that in order to take
continuum limit of the theory we have to restrict attention
only a part of the unregulated lattice current. This is ess
tially equivalent to adopting a point-splitting procedure f
defining the current in the continuum theory.

Though these peculiarities have been made obvious
cause of the explicit doubling, our calculation of the anom
lous commutation relation shows that for the non-point-s
currents the large momentum modes do not decouple a
matically, even without fermion doubling. To have explic
decoupling one has to construct the currents by explic
cutting off the region of large momentum. If in the sma
momentum region the fermion derivative is sufficient
continuum-like~i.e., linear! then we are assured that: the cu
rent constructed in this way will have correct anomalo
commutation relations modulo corrections suppressed by
verse cut-off; the equations of motion for this current will b
free equations of motion with an additional source te
given by high momentum fermionic modes; if the cut-off
sufficiently large inphysicalenergy units~as opposed to lat-
tice units!, such a current operator will correspond to a co
tinuum bosonic degree of freedom for all low-energy pu
poses.
4-12
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To conclude this section let us consider a simple exam
of what we will refer to as aperfect Wilson modelfor the
fermion derivative. It is defined by

Zk5kuS p

2a
2kD1

p

2a
sin~p2ka!uS k2

p

2aD ,

Xk5
p

2a
cos~p2ka!uS k2

p

2aD ,

where we have definedZk andXk for k.0, and assumed tha
Z2k52Zk andX2k5Xk . The one-particle energy spectru
is shown in Fig. 4.

One may easily check~using our general result for th
anomalous commutator! that for this model, in the limita
→0, the commutator for the non-split currents@ j k ,rq# dif-
fers from the continuum limit, even though in this case th
is no doubling and the theory remainscontinuum-likeup to
momentak;p/(2a). Note, however, that if we construct
low energy current by restricting to the linear region of t
derivative function, as in the case of the modified SLA
derivative, we can guarantee that the high momenta mo
do not have an influence on the dynamics of the low ene
current and we can verify that this low-energy current and
time derivative satisfy the desired anomalous commuta
relations. Once we establish this fact we can proceed to
rive the Heisenberg equations of motion for this low-ene
~or regulated! version of the current and make the connect
to the continuum theory. Conceptually, our example of
perfect Wilsonfermion derivative is very close to Wilson’
original proposal. All we have done is to enlarge the reg
of momentum space in which the lattice derivative loo
identical to the continuum derivative so as to make it ea
to see why this type of fermion derivative works once t
proper current operators have been identified.

IV. CONCLUSIONS

As we have said in the Introduction our aim is to use
lattice Schwinger model to test the idea that one can

FIG. 4. The energies of one-particle states~in units of 1/a) for
modified Wilson derivative.
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CORE methods to map gauge theories into highly frustra
spin antiferromagnet and then use the same methods to s
these spin systems. The Schwinger model is a very g
place to test this notion since the continuum model exhibi
rich spectrum of physical phenomena, anomalous comm
tors, background electric fields, charge screening, etc., an
it is important that any numerical treatment of this model
able to see these effects. We had several major goals in
paper: first, to get some analytic control over the physics
the lattice Schwinger model in order to understand wh
features of the continuum theory we might expect to eme
easily from a numerical computation and which might
difficult to obtain; second, to gain a feeling for how much
this physics we might hope to see if we first use CORE
map the lattice Schwinger model into a highly-frustrat
generalized antiferromagnet and then to analyze the phy
of that spin system before carrying out detailed numeri
computations; third, to get a better understanding of how
low-energy physics of the lattice system depends upon
choice of fermion derivative and why, on dynamic
grounds, the lattice currents of interest are those which c
respond to continuum point-split currents.

To accomplish our goals we studied Hamiltonian form
lations of both the continuum and lattice Schwinger mo
and then, by paralleling the solution of the continuum v
sion of the theory in the lattice framework, identified tho
features of the lattice theory which differ from the continuu
theory and identified the operators of the lattice theory wh
go over smoothly to their continuum counterparts. It beca
apparent from the treatment of the equations of motion
the various forms of the charge density in the lattice the
that getting the right behavior involves showing that one
close enough to the continuum limit so that the appropriat
defined currents act as bosons; in other words, it is not
ficient to only show that there is a gap between the vacu
state and the first excited state and that it numerically
pears to be of the order ofe/Ap. At a minimum one should
be able to show that the operatorsO(k,q) have negligible
matrix elements between the computed low-lying states
the theory.

A surprising outcome of this work is the fact that almo
any fermion derivative works for the study of the Schwing
model. As we have seen, thec→` limit of the chirality
conserving modified SLAC derivative and the perfect Wils
derivative had essentially the same low-energy behavior.
interesting fact was that the dynamics of the system, wh
different for the two cases, managed to automatically elim
nate spurious degrees of freedom. Basically this says tha
can use any short-range derivative, either chirality preserv
or chirality violating, to carry out numerical studies of th
lattice Schwinger model and by comparing them get ad
tional control over how well the numerical methods can
expected to converge.

We wish to emphasize that our discussion of the modifi
SLAC derivative shows that it is a valid fermion derivativ
despite existing claims to the contrary@10#. To avoid poten-
tial confusion, we will list the main differences between t
analysis in this paper and the conventional studies ba
upon lattice perturbation theory@10#. First, we work in the
4-13
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Hamiltonian formalism, thereby reducing the number of do
blers by a factor of two as compared with Lagrangian f
malism. Second, the use of themodifiedSLAC derivative is
essential, since it permits a clear separation ofa→0, c→`
limits in our formalism. Third, it turns out that only a prope
combination of low momenta and large momenta modes
the fermion vector current exhibits a smooth continuum lim
and the limit of infinite slope of the SLAC derivative. Thes
three points of our analysis account for the difference
tween our study and the conventional discussions~see e.g.
@10#! and lead to a different physical picture.

Finally, and most pertinent to our eventual goal, is the f
that the discussion of the modified SLAC derivative sho
that the trick of using CORE to map the system into a fr
trated generalized antiferromagnet will preserve the relev
low energy physics. The reason for this is that the CO
method is based on defining the set ofretained statesto be
those states which have zero energy in the limite→`. This,
of course, requires that for these states the Coulomb t
vanishes. In other words, these are the states for which
normal ordered charge density operatorrn is zero identi-
cally. ~This set of states is generated by selecting from
four possible states per site, only the two states having z
-
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charge and then taking tensor products of all of these sta!
Note that for largee2 these states are all degenerate to or
e2 and this degeneracy is lifted by the kinetic term whi
acts on them by creating a pair of separated charges and
acting a second time to bring them back to a neutral state
second order degenerate perturbation theory calcula
shows that the low energy theory in the largee2 limit is that
of a Heisenberg anti-ferromagnet, which means that in
limit the theory is that of a massless particle. Going back
Eq. ~93! we see that perturbing in the kinetic term is th
same as takinge2/p to be much greater thank2 andck2. But
this is exactly the situation in which we have one mass
and one massless mode in the theory and the low en
physics is that of a massless boson. This matching of the
results at largee2 would imply that the space ofretained
statesmust have a non-vanishing overlap with the true lo
lying states of the theory for finite values ofe2 which is all
that is needed to show that the CORE method must wor
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