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Lattice Schwinger model: Confinement, anomalies, chiral fermions, and all that
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In order to better understand what to expect from numerical CORE computations for two-dimensional
massless QEDOthe Schwinger modglwe wish to obtain some analytic control over the approach to the
continuum limit for various choices of fermion derivative. To this end we study the Hamiltonian formulation
of the lattice Schwinger modéi.e., the theory defined on the spatial lattice with continuous )timeA\,=0
gauge. We begin with a discussion of the solution of the Hamilton equations of motion in the continuum; we
then parallel the derivation of the continuum solution within the lattice framework for a range of fermion
derivatives. The equations of motion for the Fourier transform of the lattice charge density operator show
explicitly why it is a regulated version of this operator which corresponds to the point-split operator of the
continuum theory and the sense in which the regulated lattice operator can be treated as a Bose field. The same
formulas explicitly exhibit operators whose matrix elements measure the lack of approach to the continuum
physics. We show that both chirality violating Wilson-type and chirality preserving SLAC-type derivatives
correctly reproduce the continuum theory and show that there is a clear connection between the strong and
weak coupling limits of a theory based upon a generalized SLAC-type derivative.

PACS numbd(s): 11.15.Ha

I. INTRODUCTION the vacuum states of the theoftheta parametersand the
ability to produce arbitrary fermionic polarization charge

It was argued in an earlier papgt] that the contractor yensities by applying an operator of the foamda™ig) to
renormalization groupCORE) method can be used to map a the vacuum statédue to the anomalous commutator of the
theory of lattice fermions and gauge fields into an equivalengectric and axial-charge density operajolsis important to
highly frustrated anti-ferromagnet. Although explicit compu- 45 which of these features can be understood in the lattice

tations were presented only for the free fermion theory, 'ttheory before taking the continuum limit and how compli-

was argued that a corresponding mappin_g must exist for tht‘?ated a CORE computation has to be in order to extract this
interacting theory because the spacaeiined statesised hysics. Although the literature contains discussions of vari-

for the free theory coincides with the set of Iovyest gnerg)}gus aspects of the model, such as confinement and the axial
states of the strongly coupled gauge theory. While this argus ol [8—11], we are not aware of any systematic discus-
ment is true, it is obviously important to have a better under-_. Y ’ y Sy

standing of the details of how the mapping works. In order tgSion of the theory which attempts to parallel the derivation of

get some experience with this process for a theory which ithe continuum sqlution within the lattice framework. This is
well understood we decided to study the lattice SchwingetVhat we do in this paper. _
model (i.e., two-dimensional QED since the exact con- In order to make_the _physms as transparent as possible we
tinuum solution of this model exists. Before diving into the formulate the Hamiltonian version of the theory Ay=0
CORE computation, however, we first needed to understangiauge and only then rewrite it within the super-selected sec-
the degree to which the lattice model exhibits the interestingor of gauge-invariant stateswe then study the Hamilton
features of the continuum theory. This paper is devoted to agquations of motion for the electric charge density operator,
analytical treatment of the lattice Schwinger model with anwhose form is completely determined by the way in which
eye to clarifying the physics which underlines the continuumlocal gauge invariance is introduced into the lattice theory.
solution and identifying those general features of the modeDbviously, the form of the operator equations of motion de-
which should provide an ultimate check of the correctness opends upon the specific lattice fermion derivative and so we
any numerical solution. study this problem for a wide class of different derivatives;
The continuum Schwinger mod¢2—7], in addition to in particular, generalizations of the so-called SLAC deriva-
being a non-trivial interacting theory of fermions and gaugetive [13], which explicitly maintain the lattice chiral symme-
fields, provides a laboratory for studying a wide range oftry and generalizations of the Wilson derivatip], which
interesting phenomena. It exhibits the confinement of the ferbreak the chiral symmetry for non-zero momenta. We find
mionic degrees of freedom and the concomitant appearandbat all of these approaches produce a satisfactory treatment
of a massive boson in the exact spectrum, breaking of chiradf the continuum theory, however the detailed physical pic-
symmetry through the axial anomaly, screening of externature of how things work varies greatly.
charges and background electric fields, infinite degeneracy of We show that a key issue for connecting the lattice theory
to the continuum theory is which lattice currents go over to
the continuum current operatoyg(x) andjg(x). Obviously
*Email address: melnikov@slac.stanford.edu the local lattice charge density operator, whose form is fixed
"Email address: niv@slac.stanford.edu by the way in which one introduces gauge invariance, cannot
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have this property because the normal ordered version of this In order to enable us to give the most physical treatment

operator satisfies the identify(i)®=j,(i) for all values of  of gauge invariance of the theory we choose to work in tem-

the lattice spacingsince only the charges 0;11 can exist poral, orAy(x) =0, gauge. Making this choice the Lagrang-

on a single lattice sije On the other hand, as we will show, ian density becomes

the Fourier transfornjiy(k) can be treated as a boson opera-

tor and the the dynamics of the theory tells us that the current

operators of the continuum theory are obtained by forming

an appropriately regulated version of these lattice operators.
In order to make our discussion essentially self-containediere, for convenience, we have denoted the spatial compo-

we begin by briefly reviewing thé,=0 gauge treatment of nent of the vector potential a&(x) and dropped its sub-

the Hamiltonian version of the continuum Schwinger model script. Equation(3) tells us that the electric field,

We discuss: the need for imposing a state condition, such as

restricting togauge-invariant stateswhy only the totalQ E(X)=doA(X), )

diffrent Soctors of gauge invarian states exit and are 14,1 canonical momentum conjugateA() and thas the

beled by a continuous parameterl/2 <e<1/2, which can sual equal-time commutation relations wAi(x):

be identified as @ackground electric fieldFinally, we re- [E(X),A(X')]=—i8(x—x"). (5)

view the Hamiltonian derivation of the fact that the electric

charge density is a free massive Bose field and the rolSimilarly, the fermion operators satisfy the anti-commutation

played by the anomalous commutator of the electric andelations

axial charge density operators in the derivation of this result.

After reviewing the continuum theory we set up and discuss {95, a(X )} = 8(X—X") 8- (6)

the physics of the lattice version of the Schwinger model in ) ) o

Ao(x)=0 gauge. We then parallel the continuum argumentdt follows immediately that the Hamiltonian iA,=0 gauge

as closely as possible for a variety of fermion derivatives. AlS

careful treatment of the Hamilton equations of motion for the

Fourier transform of the charge density operator leads to an = f dx

understanding of how regulated versions of these operators

go over to the point-split operators of the continuum theory . L , .

and the sense in which these regulated operators can be 1N€re is an essential piece of the physics of working in

treated as Bose fields. The difference between the way ifto=0 gauge which requires discussion. Since we begin by

which things work for generalized SLAC-type derivatives SEtiNgAq=0 in the Lagrangian, we cannot vagy with

and Wilson-type derivatives becomes clear due to this dis/®SPECt t0Ag Or doAg, and so we do not obtain Gauss’ law

cussion, as does the connection between the strong and weak

— 1
L=y(i0,7,~eAX) YDt 5(BAX)Z ()

ECO? Lo
5+ (01 +ieA) () | (7)

= —eut =
coupling theory for generalized SLAC-type derivatives. GX)=(EX) —ey () ¢(x))=0 ®)
as an operator equation of motion. In fact, using the canoni-
Il. THE CONTINUUM SCHWINGER MODEL cal commutation relation, Eq5), we see that
Hamiltonian formulations of the continuum Schwinger e—ifdya(y)A(y)G(X)eifdya(y)A(y)

model have been discussed in the literatl6g’]. Our dis-
cussion will parallel these discussions to a degree but will = (3, E(xX)+ a(x)]— ey (x) (X))
differ in important details. Our goal is to allow the reader to

=G(X)+ dya(X). 9

understand the important features of the Schwinger model
without unnecessary formalism. . . . .
As we have already noted, the Schwinger model is simpIyThIS means that even if we start with a st for which
QED in 1+1 dimensions, and has a Lagrangian density G(X)|$)=0, (10)
given by
we can generate states of the form

1
L=y(id,y, teAy,)— ZFMVF’”’- (1 |¢a>:eifd§a(§)A(§)|¢> (11

In 1+1 dimensions there are only three anti-commutingfor which
y matrices,vyg,¥1, Vs, and so they can be realized in terms

of the Paulic-matrices: G(X)| o) = dxa(X)|da)- (12)
Yo=—loy, Fortunately, the operatoG(x) (which we identify with the
generators of time-independent gauge transformatioms-
y1=—loy, mute with one another and witH, and so they can all be
simultaneously diagonalized. Thus we are free to impose Eq.
V5= YoY1=0- 2 (10) as a state condition because the Hamiltonian cannot take
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us out of this sector of the Hilbert space. Actually, we are (—se’+s(e—1)%) s(1—2e)

free to impose the more general condition of Ep) for any o6&= 5 = (14)
arbitrary functiona(x). What all this means is that the ca-

nonical quantization of the Schwinger modelAg=0 gauge here the term-se? occurs because in the region of length
produces not one, but rather an infinite number of theoneg we have replaced the original background fieltly — 1
distinguished from one another by the fact that they have, i'?ﬂrom Eq.(14) it follows that for e< 1/2 increasing the sepa-
addition to the dynamical fermion fields, different static clas-ration between the charges costs energy, whileeforl/2

sical background charge _distributions(x) iass= dxa(X). eparating the charges will gain energe., by moving the

This should not be a surprise because one should be able P, :
formulate QED in the presence of an arbitrary distribution of ?larges off to infinity one reduces the background field to

: . A €' =€e—1 and gains an infinite amount of enefgLlearly
static classical background charges. By quantizingA .with that kind of energy gain nothing can stop this process

;IOt gau?i:hall we a;_e doing is obtaining all of these POSSltrom happening and, since the only change in the problem is
fies at the same ime. that now there will be pairs of charges ate, it will con-

lSl?_ce,tcr)]n %hflqal groungs,l yvetr?re not mteresfted n for’[inue until the background field is reduced to the region
mufating the schwinger model In the présence of any non-_ 4 5 .1/ For historical reasons this reduced range of

dynamical charge dgnsity, itis custom_ary to limit attent!o_n tois usually parametrized by an angle- 27e and is one of the
the so-calledgauge—lnvarlan's_tates def,med_ by the condition two angles which label the exact solutions to the continuum
that p(X) qas= 0. Note that this doesn’t quite reduce us to aSchwinger model3,5].
single possibility since all it means is thage(x)=0 or, in If we work in thé sector of physical states for which
other words,x(x) can be an arbitrary constant. If we make
such a transformation we shift the operatBi(x) by a con- w0
stant, which means that we are free to formulate the theory in Quil )= ef dép(§)|¢)=0, (15
the presence of a constant background fieldf we worked —
in finite volume this would amount to allowing for the pos- ,
sibility that there are non-vanishing classical charges on thé/€ can solve folE(x) in terms ofp(x)
boundaries; i.e. the remaining sectors of the theory differ by y
a choice of boundary conditions. One key question associ- _ N _
ated with the Schwinger model is whether or not the physics E ef dep(£): Qui ef_wd§p(§) 0 (18
is different for different values of the background field. In
particular, does the ground-state energy density, which iSubstituting this into the Hamiltonian we obtain
certainly different for the free theory, depend upon the value
of e when interacting fermions are introduced into the game. ~ ~ e? ~ -

A simple argument given by Colemé&8] shows that val- H= J ax g (X)i dyor,g(X) — ZJ dxdyp(x)[x—y[p(y),
ues ofe which differ by an integer must be equivalent to one (17)
another. Before giving the details of the argument it is im-

gg{;:tr?(t)nto note that in one dimension the solution to theWhere @(X)Ze_if{mdgA(f)l/l(X). This field transformation

enables us to eliminate the tery{x) from the Hamiltonian

and simultaneously preserve the canonical commutation re-
HE(X)=2, €j3(x—X)) (13)  lations of operators/(x), ¢'(x). It is important to observe

! that even if we had not been able to elimingie) from the

Hamiltonian we could have still made this definition but it
would not have been particularly useful since in that case
E(x) would have non-trivial equal time commutators with
the fermion fields and we couldn’t use the canonical quanti-
zation rules to carry out computations. Note, in what follows
we will, by abuse of notation, drop the tilde and simply write

for a set of charges; located at positiong; only has a finite
energy solution when the total chargge;=0. This is so
because Eq.13) tells us that in the regions between the two
chargesE(x) is constant and it changes by an amoenat
each poink; . If the sum of theg;’s is not zero then, assum-
ing the field vanishes to the left of the first chargexatthe — ~
field must continue to infinity to the right of the last charge. #(X) asp(x). . . ] o
This means that in order to minimize the field energy 1he content of the exact solution ofzthls model is that it is
JE2(x)/2 one or more of the charges must move off to in-the theory of a free boson of masg =/ and, moreover,
finity leaving behind a totally neutral system. In particular, if the charge density operatp(x) can be used as an interpo-
we assume no background field then the energy of a pair d@ting field for this particle because it satisfies a free field
particles with charges: 1 separated by a distansés s/2. In ~ €quation with the same mass. To see how this happens all we
the presence of a background figlt-0 the situation is dif- need to do is derive the Heisenberg equations of motion for
ferent. When the field is present, there is a background err(X). ) o )

ergy density equal t&%2. If one now separates a pair of  |he time derivative op(x) is

charges oriented so as to reduce the field between the charges 1

to e—1, the total change in the energy of the system is given Jop(X) = i—[p(x),H]. (18)

by
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Since p(x) commutes with itself, we use canonical equallowed. Fork= —q, however, this is not the case, and that
time anti-commutation relations for the fermionic fields Eq.can be easily seen by considerirjg,p _]|vac. One finally
(6) and obtain obtains

dop(X) = dyj (X), (19

wherej (x) = ¢ (x) o,4(x). Equation(19) simply states that
divergence of the vector current vanishes; i.e., the vectopnich translates to
current is conserved.

The second derivative of the charge density operator is

k
[ix.pql= _2ma(kta), (26)

i

now given by [1(X),p(X")]= ;0x5(X—X')- (27)

8(2)p(x)= %[&Xj(x),H], (20) Consequently

1
which evaluates to [—idxi(x),p(X")]= ;&ib‘(x—x'), (28)
e? .
Fap(X)=dxp(x)— Zj dy,dy,|y1 =Yl (p(y1) and we obtain
e2

X[=10xj(X),p(Y2) ]+ [ =135 (X),p(Y1)Ip(Y2)). 5(2)P(X)=(9§p(x)—zj dy1dy|y:— Yol p(y1)926(y,—X).
(29

The key point in the solution of the Schwinger model is
the commutator ofj(x) and p(x’). It is known that this
commutator acquires a Schwinger term which we will com-
pute by considering Fourier components of the currents:

Integrating by parts twice and using|x—x'|=28(x—x"),
we obtain

eZ
dk . dk . 20— 92,
p00= [ 3o o 100= [ 5o @ K== (30

We see therefore, that the charge density operatbsx)
satisfies the equation for the free field with the mass
=e?/.
Let us take another look at the role of the anomalous
{Ul Ugh=278(k—q), {dT dgt=278(k—q), (22 comr_nutatlon relatlon_ and the gauge invariance in the exact
solution of the Schwinger model. First consider the case
one obtains =0. The equations of motion

[pk1H0]:kjkv [jkiHO]:kpkv (31)

allow us to write the free fermion Hamiltonian as a quadratic
polynomial inp, andj:

By introducing creation and annihilation operators for the
upperu, and lowerd, components of the fermion fields with
standard anticommutation relations:

dl
Copel= | 5l iq— Ui qi— (u—d)). (23

At first sight, this is zero, since the integration momdntan
be shiftedl —1—q in the first term of the integrand. This, 1 [
however, is not true. The problem is that the momenta shifts Ho:—f

can be safely done only in the operators that are normal 2

ordered with respect to the vacuum state, otherwise the dif-. bined with th | tator @6 it
ference of two infinitec-numbers appears. Since, in this ba- since, combined wi e anomalous commutator [24), i

sis, thee=0 HamiltonianH, reads pr_oduces exactly_ the same Heisenberg equations of mo_tio_n.
Since the gauge invariance of the theory allowed us to elimi-
dk nateA(x) from the Hamiltonian onc&(x) was replaced by
Ho= f ﬂk(uluk_dldk)y (24)  the Coulomb interaction written in terms of the operaiays
alone, the full Hamiltonian is obtained by adding the opera-

the vacuunthe lowest energy eigenstateldf) is obtained  ©F
by filling all negative energy states

. dk(pkp -kt ki k) (32

=»dk pyp—k
— a2
H|—e o E k2 (33)

vag =11 uill dijo), (29
k<0 K30

to Hy. Obviously,H, is also a quadratic polynomial ipy
where|0) is the state annihilated by thg’s andd,’s. One  and therefore, thanks to the equations of motion, the anoma-
may see, that fog# —k in Eq. (23), the right hand side lous commutator of the spatial and temporal components of
annihilates the vacuum and hence momenta shifts are athe vector current and the gauge invariance, the total Hamil-
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tonian is quadratic ip, andj, . This makes the theory com- dk cosk|x—xy|)

pletely solvable in the continuum. We will discuss just how  pi,g(X) = — u?€Quy | =— s —(X1—=Xa).
much of this picture survives when one moves from the con- 2T Kt p

tinuum to lattice version of the theory in the next section. (39

To complete the usuddosonizatiornof the theory we ob- ] ) ] )
serve thatp, and j, do not satisfy canonical commutation COmputing the integral, we obtain for the induced charge
relations, however a simple rescaling remedies this problerd€nsity
and at the same time casts the Hamiltonian into a more fa-

miliar form. To be precise, sincg, has nok=0 term! we o eQEXt'u(e*M|X*X1|_e*M|X*X2\) (40)
can define Pind 2 ,
V7 . hich, as advertised, screens the external charge densities.
=—py, = : 34 Whieh, : * et
k=T Px k \/;]k (34) One interesting feature of the screening is that two external

. charges get screened independently from each dthAer
Then, using Eq(26), we see that Note also that the screening occurs on the scAbes 1/u,
_ which for small coupling constant can be rather large. Nev-
[, 0q]=2md(k+0), (35 ertheless, if we now move the external charges off to infinity,
S0 as to go over to the sector which in the free theory would
have an external background field, we see that this field is
totally screened in the groundstate of the interacting theory.
Uka'—k>- (36)  Moreover, since all of the screening takes place within a
finite distance of the boundary, there is no contribution to the
groundstate energy density coming from the background
field.
We should point out that while the previous computation
érnakes it clear that there shouldn’t be a change in the energy
éjensity of the groundstate, it is not at all obvious that there is

general question of what happens in the Schwinger model #f°t @ finite change in the energy of the state due to the

we introduce static classical charges. The remarkable proﬁ?g'onS surrounding the screened external charge. In fact,

erty of the Schwinger model is that independent of theirthere clearly is such a change when the external charges are

magnitude these charges are screened completely. Ungdpcated at a finite distance from one another; however, the
standing how this occurs will fully answer the question ofguestion of what happens as one moves these charges to plus
how the theory depends upon a background electric fielg@nd minus infinity is a bit subtle. The crux of the issue has to
since we already noted that having a background field ofio with a <_jef|n|t|on of the limiting Process. As will become
magnitude — 1/2< e<1/2 corresponds to having classical apparent in a moment the conventional treatment of the

; ; : Schwinger model amounts to a prescription in which one
charges of magnitude € on the boundarie®r equivalently definesgthe Hamiltonian of the sysecem aspa limit

and the Hamiltonian takes the form

H Jw dk
B 0 2
Given the canonical commutation relations ids, and o
and this form of the Hamiltonian, it is obvious that we are
dealing with the theory of a free massive Bose field.

Let us now turn to the question of the dependence of th
theory on the background electric field, or rather to the mor

2
e
k2+ —
aa

01+

at =),
From the solution of the theory in terms (fx) it is easy
to understand the screening phenomena, since it follows im- H= lim Ho= lim f déH (&) (41)
mediately from Eq.(30). Let us consider the Schwinger Qoo Qoo
model with two external charges of the opposite sign:

_ VN where(} is the closed finite intervelll =[ — v, w]. With this
Pex(X) =€ Qex(8(X=X1) = 8(X=X2)). (37 definition in mind the usual prescription is to first take the
As we have seen already, EQ.0) gets modified to include classical backgrou_nd_ charges tp plus _and mings .infin.ity and
the external charge density. For this reason the part of thii€n t0 take the limit) —oo. Given this prescription it is
Hamiltonian corresponding to the Coulomb interaction ac_clear that the total Hamiltonian defined in this way never

quires an additional term and the new equation of motiorP€€S the classical screened charges and therefore there is no
becomes change in the vacuum energy. In order to see that this is the

usual prescription which follows fronbosonizationof the
92p=02p— 12 (p(X) + pex(X)), (38)  model let us go back to E¢36) and modify it to include the
possibility of having an arbitrary external classical charge
where u?=e€?/7. This equation implies that there is now a densitype,(X). In configuration space we obtain
classical, time-independent component of the charge density

operator induced by the external charge which satisfies 1 1 e’
Hzf dx EH(x)2+ E(<9Xa(x))2+ ;(o-(x)-i-e(x))z ,
(42)
1p0# 0 would imply that the system is not neutral and that would
violate the state conditio®(x)|#)=0. wheree(x) is the function which satisfies the equation
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1 charged regions
Pex(X) = —=dx€(X). (43)

NC

Now, if we sete(x) equal to a constart we see that all we

have to do is definer(x)=o(x)+ e and the Hamiltonian
becomes identical to the one without a background field:

2
H=J dx %ﬁ(x)2+%(&xc~r(x))2+ e;?r(x)Z . (49

This is the usual way of handling this issue and so we see
that this treatment says that the groundstate energy is inde x
pendent of the external constant background field, which cor-
responds to the prescription we gave above.

To complete our discussion of the continuum Schwinger
model we present another way of seeing the screening of the
classical background field which does not require working FIG. 1. The functiona(x). See text for the explanation.
with the exact solution to the problem, but only the anoma-
lous commutation relation gé(x) andj(x). The key to this 3 fact we will use in a moment.
discussion is the introduction of the conservgduge-
dependenturrent

To understand the significance of the fact théx) is
conserved imagine that we start in a sector of the theory
o whose lowest energy state satisfi@3G(x)|0)=0. Next
Tx)=j(x)+ ;A(x). (45)  consider the transformed state

U(a)|0)= e /da(© (@) +(e/m A)| ), (50)
Obviously, sinceA(x) does not commute with thgauge-

generators Gx) defined in Eq(8), this current mixes states \ye ajready saw in Eq11) and Eq.(12) that the effect of the
which satisfy different forms of the general state-c~ond|t|onterm proportional taA(£) in the exponent is to shift the field
defined in Eq(11). This means that we should think pfx) E(x) so that
as operating in the full Hilbert space of the theory obtained
by canonical quantization iA;=0 gauge without imposing : e
any gauge condition. To show th@(x) is conserved we (o|u (Q)G(X)U(“)|O>:;‘9xa(x)- (51)
commute it with the Hamiltonian to obtain
1 1 o This equation says thal («) takes us from a state with no
9] () ="=[7,H]==[j(x),H]+ —[A(x),H]. (46 background charge density to one with background charge
I I I density equal teed,a(x)/ 7. Similarly, it follows from the
commutations relations gf(x) andj(x) and an integration

Now, a slight rewrite of the derivation of E¢30) gives by parts, that
1 M1 g e
FLG0.HI=dol(x) (OIUT(@p(OU(@]0) =~ —dral(x). (52
e2
= dxp(X) — ;3;1900 Thus, the total effect of applying)(«) to the vacuum of

sector of the theory with no classical charges is to map this

e state into a sector which has a non-vanishing classical charge
= dxp(X) — ;E(X) (47) density and at the same time to produce a fermionic charge
polarization which cancels it exactly. Now imagine thdk)
and since by constructiof, A(x) =E(x), we obtain is chosen as in Fig. 1. Sinaga(x) vanishes except in the
two narrow regions aroung, andxg we see that the effect
Jol (X) = dxp(x) =0, (4g)  of this operator is to map the original state into one which

has equal and opposite classical charge densities anqund
which means the current is conserved. Integrating this equa&ndxg and induced cancelling fermionic polarization charge
tion over all space we obtain, under the usual assumptiondensities. As we movg_ andxg to minus and plus infinity
about surface terms, that respectively the function(x) becomes a constant and in the
limit, the fact thatU («) commutes withH implies that

f dXT(X),H}:O, (49 (0JUTHU|0)=(0[H|0). (53)
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Hence, the energy of the vacuum of the sector with an arbias a general state condition. Therefore we see that the lattice

trary background field is the same as the energy of th@nd continuum versions of the Schwinger model are essen-

vacuum of the sector with no background field, which agreesially the same, in that canonical quantization Ag=0

with the previous argument for the bosonized version of thegauge gives not one version of two-dimensional QED but

theory. rather an infinite number of versions of the theory corre-
sponding to quantizing in the presence of an arbitrary clas-

IIl. THE LATTICE SCHWINGER MODEL sical background charge distribution. Note that the form of

Gauss' law expressed in E@0) requires us to use the local

Let us now discuss the Hamiltonian version of thecharge density operatgr, as the lattice analog of the con-
Schwinger model on a lattice. In the Hamiltonian formalismyj,um charge density operator.

time is continuous and space is taken to be an infinite lattice parajleling the discussion of the continuum theory as

whose points are separated by a distaacés in the con-  ¢josely as possible, we focus attention on the zero charge

tinuum, we work inAQr=0 gauge. Furthermore, we introduce sector of the space of gauge-invariant states; i.e., the ones
fermionic variables/, and ¢, associated with each site on that satisfy the state condition

the spatial lattice and replace the continuous fiéi¢ts) and
E(x) by conjugate variables,, and E,, associated with the G(n)|¢)=0. (61)
link (n,n+1) joining the sitesn andn+ 1. This leads to a

lattice Hamiltonian of the form Once again, in this sector we can explicitly solve Ey in

terms ofp,, and eliminate the factors @&®"n by incorporat-

H=Hg+H;, (54) ing them in the definition off,,. In this way, in theQ=0
sector of gauge-invariant states, the lattice Hamiltonian can
where be written as
a e’a
He=5 2 Ep, H=Hi= == 2 poln—mlpy. (62
n n,m

- , s 1 5 Because the kinetic terf{(n—n’),z is a function of the
He= E (n)“K(n=n") 587 "%i=n Bi( )P, difference ofn andn’ we can write the Hamiltonian in mo-
nn (55) mentum space as

Here the kinetic ternK(n—n’) .4 is a two-by-two matrix for H= Jﬁ/a % ﬂ{zkaﬁ Xt thi
each value ofn—n’, the fermion fields satisfy the anti- 2m
commutation relations

—mla

e’a® (ma dk  pp
Pa ()P | 5T cosak (63
1) ()P =6nn Su s (56) 4 )_.a 27 1—cosak
and the link fields satisfy the usual harmonic oscillator com-Here we have rewritten the Fourier transform Kfn
mutation relations —n’"),p in terms of two function&, and Xy, allowing for a
. very general class of fermion derivatives. Note that in Eq.
[An.En/]1=i6nn - (570 (63) and all the equations to follow we have adopted the

convention that all momentum space operators are normal-
%ed in a way that the continuum limit is reproduced by
taking a—0 without any additional field renormalization.
For example,

Note that the fermion fields are dimensionless and in order t
make the connection to continuum fields we will have to
rescale them by a factor of J# to give them dimensions of

mas$’2 In direct analogy to the continuum theory, the eigen-

value of the operatdg,, is the electric flux carried bAy the link {(lpl)“,(lpq)ﬁ}: 278(K—Q)S,p. (64
(n,n+1). Since, as we have seen, the operafdf shifts ) . ) .
the flux on the link 6,n+1) by eit follows that if we define Taking our clue from the discussion of the continuum
the normal ordered charge density operator to be theory we now turn to the derivation of the Heisenberg equa-
tions of motion for the currenp,. The first step, namely
po=(Yhdhn):, (58)  computing

then the operators 1
p &Opn:i_[pan]! (65)

G(n)=Eni1—Ex—epy (59
leads us to identify the result of this computation with the
commute with the Hamiltonian. Hence, similar to the con-divergence of the spatial component of the vector curi@mnt
tinuum, we are free to impose the discrete version of Gaussilternatively, the time component of the axial-vector cuprent
law in- Since the discussion to follow is necessarily a bit detailed
clas it is helpful to summarize what it will show us in advance.
G(n)|$)=pn**1) (60 First, we will see that unlike the charge density operator the
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currentj, is intrinsically point-split as a consequence of the Given these equations it is a straightforward matter to com-
equations of motion. Second, as in the continuum, the imporpute the commutator dfl with p,, to obtaindyp,:

tant part of the computation of,j,,, by taking its commu-
tator with H, involves commuting thé,, and p,,. This com-
putation will show that one cannot solve the lattice
Schwinger model exactly for any finite value of the lattice
spacinga because this lattice commutation relation is not thewhich in the continuum theory is equal #j(x) [where
same as its continuum counterpart. Note that this feature igx) is identified as the spatial component of the vector cur-
related to the properties of the free lattice Hamiltonian ratherent, or the time component of the axial-vector curtent
than being a consequence of the interaction. The same conomputing the commutator df with p, is straightforward
putation will show that the continuum limit of the naive but we must say a few words about how we identjfy.
commutators does not approach the continuum values for thBasically, in order to maintain the parallel to the continuum
Schwinger model; from this we will see why, on dynamical discussion we define the quantity equabtp,, as the lattice
grounds, one has to study what amounts to a point-split verderivative ofj,; i.e.,

sion of p, in order to get the correct physics.

For the purpose of illustration, let us consider explicit 1 . i
forms of X, and Z, corresponding to a number of popular ‘90Pn:5(1n+1_1n)-
fermion derivatives. In the case of tinaivefermion deriva-
tive Z,=sin(ka)/a, X,=0; in the case of the Wilson fermion with this identification, the algebra of matrices in two
derivative Z,=sinka)/a, X=r/a[1—-cos@K)]; and for the dimensions ensures that the spatial component of the vector
SLAC derivative one ha&,=k, X,=0. Given any one of current coincides with the temporal component of the axial
these derivatives it is easy to find the one-particle energyurrent, and therefore all the currents we are going to work
levels of the non-interacting Hamiltonidt; by rotating the  with appear to be defined. Clearly, different lattice fermion

1
‘90Pn:i_[Pn'H]a (72)

(73

fields: derivatives will produce different definitions of the spatial

component of the vector current operator, an inescapable
Xk= Ui, (66) consequence of the Heisenberg equations of motion.
h To derive an explicit form forj,,, we Fourier transform
where Eq. (73). Defining
U=€"7y=co Y +io, sin 4 (67) ik
k 2 y>2) pk=§n: pn" e, (74)

and .

we obtain

Zi : Xk 2. 52
costy=—, siNb)=—=—, E=VXit+Z. 1
Ex Ex aopk:i_[Pk,H]- (79

This unitary transformation diagonalizes the Hamiltonian:
Writing the right hand side of this equation as

mla  dk
Hf:f >~ Exioaxi (68) 1 . —2i sin(ak/2)e k&2

—mla 27T S ; (ine1—inek@n= a jk, (76)
and if we introduce creation and annihilation operators for
the y-fields defines the Fourier transform of the spatial component of the

vector current. Explicit computation @i, yields
Uy
Xk= dk)’ (69) (i dky dky o
pr= Jfﬁ/a 5 27 P 2mot(kitk=ky),  (77)
with {uf,u}=2mw8(k—q) and {df,d}=2ms(k—q), we
obtain where §?(q) is the lattices-function which implies the mo-
ok mentum conservation modulonZa. Focusing, for the sake
mla _ X
= J_ . zEk(uluk_dldk)- (70) of definiteness, on momenka>0, one finds
mla—k dkl wla dkl
i is obtai = 5 VPt 5
Finally, the vacuum state of the free theory is obtained by Pk a2 kKPR | 24 T KTk ke 2mlar
filling the negative energy seae., (78)
lvac) = H dl|0>- 71) It is now a straightforward matter to compute the spatial
— ala<k<mla component of the vector current using E@5):
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aeika/Z mla—k dkl 3 . . , | i . i
ji=—— ——yt mu=0.5 =——
2 sin(ak/2) [ f, wla 2T VM (ke K) P MU=0.8 =weeemeere

25 IS A ]
wla dkl + .’5\\"\ ""."-.__‘
+ Tr/aikﬁwklM(klvk)'plirkuﬂ-/a- , (79 2 i N A
H ‘\\ ",0
where 15l \ ]

M(ky,K) ={(Zxsk,— Zk) o2+ (Xirk, — Xk ) oy} (80)

and we have used the fact that and X, are periodic func-
tions with the period z/a. 05 -
From the continuum solution of the Schwinger model it is ; !
clear that we should focus on the Schwinger term appearin¢  §
in the commutatorj},p,], since it is the source of the ' P p 0 , 5 3
anomalous Heisenberg equation of motion and the reason for
the mass of the photon being non-zero. As we saw in the FIG. 2. The energies of one-particle staf@sunits of 14) for
previous section it suffices to take the vacuum expectatiomodified SLAC derivative for two different values pf.
vaIue(vad[jE,pq]|vac> in order to compute the Schwinger

term. Direct computation yields the following result: lows that the continuum limit of the naive theory is not the
+ original Schwinger model, but rather &U(2)-Schwinger
(vad[jy.pqllvag=2ms(k—q)W(k), (81)  model which is known to have a photon mass which is
. . 2e?/ .
where the functioV is In case of Wilson fermions we haw=sin& X,=r(1
ae ka2 ma dk, —cos¢) andE;= \/Z§2+ ng. By explicit calculation one finds
W= 2sinak2) J, i 5 (22, ™ Zi -k~ Ziy +k)COS Oy, e
lim W=— —. (84)
+(2X, — Xie, —k— Xieg +1)SIN b |- (82) ak—0 &

Once again the result is two times larger than the continuum
one? but in this case the low energy spectrum is clearly
undoubled and the reason for the discrepancy between the
lattice and continuum results must be different.

To compare the result of this computation with the con-
tinuum result we take the lima— 0, in which case Eq82)
simplifies and one obtains

- 2 2 In order to clarify the underlying physics, it is instructive

_ k d°Z, X ; . . L

[im W= — f dé —Zcos{ 0§)+—25|n( ;) | |- to consider somewhat unconventional fermion derivatives.
ak-0  T[Jo "\ d¢§ dé Let us begin by considering a modified SLAC fermion de-

. . . . rivative [11]. Consider the free fermion Hamiltonian defined
This equation gives tha—0 limit of the anomalous com- by (k>0,Z_=—2)):

mutator for a general lattice fermion Hamiltonian and is

therefore useful for the analysis of the continuum limit of the

;/arlous chc_ches for the fermion de_rlvat|ve. To get a_fgelmg Zkzkﬁ(,uz—k " %(Z_k> 0( k—,uz), X, =0,

or how things work let us consider several specific ex- a u—1\a a

amples. (89
Let us begin with the case of thaaive lattice fermion

derivative, whereZ,=sin¢, X,=0, E,=|sin{. In this case and E, is equal to|Z,|. A plot of E, is shown in Fig. 2.

we obtain Computing the second derivative @f one obtains

] kK = ) 2k
lim W=—-—| désiné=——. (83
ak—0 mlo ™ The fact that the anomalous commutator for Wilson fermions is

This sh that th | tator is t fi r-independent in tha—0 limit is a bit of a miracle and we do not
IS shows that the anomalous commutator 1S two 'me%]uite understand the reason for that. Note, however, that a similar

larger than the continuum result, which implies that in thegj ation has been observed in earlier calculations of the chiral
a—0 limit the mass of the photon is two times larger than ingyomaly in the lattice Schwinger model with Wilson fermide

the continuum theory. In principle, this result should havey; is generally accepted that the continuum limit of the Schwinger
been expected since the lattice theory with the naive fermiofodel with Wilson fermions gives correct anomaly and correctly
derivative has an exaGU(2) symmetry for all values 0  reproduces all other continuum results. However, there is no direct
and as a consequence of this symmetry the fermion spectrugantradiction with our statement since, as we explained and as our

is doubled as is evident from the form Bf,. Thus, it fol-  result seem to illustrate, different currents lead to different results.
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W2z - “ . where we introduced= u/(1— ), which is the velocity of
- —jz Slu——€&|+ 1T5<§_’U“_ , (86)  the fermions in the regiok~ 7r. Note that in all of these
dé a M a formulas there are also non-vanishing normal-ordered opera-

tors coming from large momentum excitations which we

and the anomalous commutator becomes have not displayed. These operators annihilate the vacuum

_ P and one can argue that they are unimportant for skattlys-
lim W=— 1+ 1—) (87)  ics. This final point, which is intimately related to the sense
ak—0 m M in which j, can be treated as a boson operator, merits elabo-

) i o ration and we will return to it immediately after completing
To understand the information encoded in this form of theOur discussion of the equations of motion.

anomalous commutator let us consider what happens in the proceeding with our computation of the equations of mo-
continuum |Iml"[. |t.IS clear from the'plot lo; for this modr _ tion for p(kl) andp(k3) we obtain

fied SLAC derivative that two species of fermions survive in
the limit a—0. Note however thatkl /dk is quite different 2

e
for the two linear regions of the spectrum, which means that —dapV= kzp(kl)Jr;pff’t,

the two species propagate with very different speeds. The

anomalous commutator is really the sum of two contribu- o2

tions: one coming from &k<puw/a and the other from —5§p(k3)=C2k2pf<3)+C?pf<°t. (92)

pmla<k</a and these contributions can be easily identi-

fied with the different fermions. Since both fermions are . .
charged, they both contribute to the anomalous commutatdfN€e the total charge density operator appears on the right
and to the mass gap. and side of these equations and &9 is still included.

Given the simple nature of this fermion derivative it is Consistent with the point made above and subject to the
clear how to separate the contributions of the two fermiordiscussion to follow we will set it to zero, since for small
species to the total current. The easiest way to do this is t§N€rgies fermions with such high momenta are not excited.
put a sharp momentum cut-off somewhere below and above Fro(r?) the equations for the commutators we see that the
the turning pointwr/a. With this prescription we write the field p*’ is not canonically normalized and so we introduce
charge density operator as a sum of three contributions: the new fieldos = 1/\/cp{®) and its commutation relation with

the corresponding current becomes canonical. The equations

p=pB+pP+pP, (88)  of motion become
where e?
2 3
—3gpk=K2pi+—(pi+ epl?),
(1) J’””/a dky ot
Pk = 27 kg kg +ko
—wym/ad® e? ~
—agpd =K+ —(Vep(D+epl®). (92
dk
(3)_ f K
Pk ky| > pomia 27 Yiahark The energies of elementary excitations can be determined
n dk from the eigenvalues of the matrix
mla
1t
+
Jﬂ-/a—k 5 Vi Yy +k-2mlas (89 Ktedr o

M= 2 : (93)
' i - c?k?+ce?/

andu, <p<pp. Thep(kz) provides for the remaining contri- Vel ™
bution to the charge density and it is only sensitive to fermi-the matrix is easily analyzed in the limit of largewhich
ons with momenta, /a<|k|<u,m/a. Now, following  corresponds to the large slope of the fermion derivative in
our previous argument, we define the corr_e_spondlng span%e regionk~ 7. Note that the original SLAC fermion de-
components of the vector current by explicitly commuting i\ ative corresponds to—soo limit,
the above charge densities with the Hamiltonian. It is then easy to see that there are two different limits in

A straightforward computation shows that in the limit of ;¢ equation. For small momentk2<e?/ , there are two
vanishingly small lattice spacing the anomalous Commuméigenvalues: '

tors of the above currents are given by

e
E,=+ck E,=Vl+c —.

_ k
LG pg]= = —2mak—a),

20t (@) Hence there is a zero mass eigenstate which is the Goldstone
LK) 1Pq 1=0, boson of the theory. The other excitation is the massive one.
. If we consider the limitt— <, the region of momenta sensi-
TEN SN ()L PPN _ tive to the Goldstone mode shrinks to zésee Fig. 3 and
LG P ¢ ﬂ_2775(k a), (%0 the mass of the other excitation goes to infinity.
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25

The commutation relation foy, and p, which is valid
for arbitrary lattice spacing, reads

ika/2
[(jT p(l)]:i —27r5(k—q)5+0(q k)
k) Pa 1= 5 Sinkar2) w )

15 (95)

where the normal ordered operatofk,q) has the form

/"“177'/a dkl t
05 O(k,q)=0(k—q) fulﬂ-/akz:l//kl+ko-zwkl+q:
/ —uymla dk1 +
0 L L . +f ja—g z:¢kl+kaz¢kl+q: +(ke0).
—pymla—
0 0.5 1 15 2 !
(96)

FIG. 3. The energy spectrum of the theory with modified SLAC
derivative for several values af

(94)

theory and thinking ofO(k,q) as acting on a Hilbert space
constructed by applying polynomials in the current operators
to the ground state of the free theory. For valuek ahdq
which are small compared ta/a, the operatoO(k,q) can
only act on the part of a state which contains left and right

97

We will now argue that even though the tefd({k,q) is
not explicitly suppressed by a power af nevertheless this
For larger momenta; k?>e?/ 7, the mixing of two states operator does not contribute to the dynamics of any state
becomes small, they propagate independently and their eneihose energy remains finite as-0; in particular, any state
gies are given by which can be created by applying arbitrary powersppto
the groundstate of the theory. As we pointed out in the In-
&2 o2 troduction, the operatop,, cannot be considered a boson
E;=\/K+—, E,=1/c’k’+c—. operator sincg>=p,, thus arbitrary powers g, can pro-
™ ™ duce at most three linearly independent states when they are
applied to the groundstate. The situation is quite different for
In this momentum region the energy of the lower excitationp(kl) and p(kg) which are sums op,’s and therefore, for an
approaches the result of the continuum theory of a bosoniffinite lattice, will not satisfy an identity of this type.
field with the mas®?/, the other excitation becomes infi- The argument begins by considering the non-interacting
nitely heavy and decouples explicitifgee Ref[11]). Hence,
as we approach the limit—c (which is equivalent to the
orginal form of the SLAC derivative the continuum limit of
the theory has a massive boson of mags=e?/ 7 and an
isolated state at=0 which can be identified with aeized
Goldstone modé4]. moving fermions with momentk~ * u,7/a since it has to
Since the main purpose of this paper is to provide arfirst absorb a high momentum fermion and create another
analytic framework for CORE computations to follow we one with a momentum which differs by a small amount. This
should point out that the fact that there is a Goldstone modgneans that in order to have a matrix element of this operator
when e?/7>ck? is quite significant since it relates to the between states generated by po|ynom|a|$ih) and p(k3)
whole question of how the strong-coupling limit of the these states have to have non-vanishing components having
model connects to the weak coupling theory and whether ongsrmions with high momenta. Thus, we have to ask how such
can get the correct physics by projecting onto the sectogomponents can be generated?
spanned by the— eigenstates. We will have more to say  gpth pY and p® are bilinears in fermion creation and
about this point in the conclusions, but first we should com-yppihilation operators and, being normal ordered, can only
plete our discussion of terms we ignored in the commutatohpsorh a fermion at one momentum and create a replacement
of [j ',Pq]- i ) ) at another momentum. Generically these operators are of the
While this preceding argument leading to E§2) makes general form
the lattice discussion look remarkably like the continuum
Schwinger model, we are not really finished. The issue _ dk,
which still needs discussion relates to the interpretatiomof pi)= f 2—(ullukl+k+ di, dic, 1)
andj, as boson fields. This is more than an academic issue. ™
Although, as we have shown, the vacuum expectation value . - R
of the commutator of, andp, gives the required Schwinger and since fqr the mod_|f|ed SITAC. derivativé,=0, the
term, computation of the full commutator contains an extra/acuum, asin the continuum, Is given by H@S). If we
piece which, if it has non-vanishing matrix elements betweed'OW: for the sake of definiteness, consider
states whose energy remains finite in tie:0 limit, ruins
fche interpretation _oijk and p, as boson fields. This is the p(k1>)0|vac)=p(k1) UEH dl|0>
issue which we will now address. k<0 k30

(98)
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we see that almost all terms jsf) annihilate the vacuum take into account the fact that the same procedure will gen-
state. The only terms which act non-trivially are ones wereerate two-pair, three-pair, etc., parts of the wave function.
either U, .y or dy_y can absorb a particle and then either However, the point is that if we kedp<A, whereA is a
ul ord] can create a particle. Clearly, for smit-0 only ~ Maximal energy we wish to consider a@—0 in the con-

1 1 _ . tinuum limit, then in order to achieve the fermionic level
the dk1 terms can act, since k;<0 andk;+k>0 then

with momentau, 7r/a, one should create a stq’t’,ﬁ vac) with
+
dk1+k can absorb a from the vacuum state andlkl can

create ad. Theu, terms cannot act non-trivially because in

order foruy . to absorb a particle; +k has to be less than Bt N ot L (100
zero, in which cas&;<0 and thereforeul1 annihilates the
resulting state. If, howevek<0 then it is theul‘zlukfrk term
which acts non-trivially and the correspondidgerm anni- ~ The energy of this bosonic state-sE,~ u,7/a—; and
hilates the state. In either event the important point is that thé is easy to see that the probability of finding a single high
p(k') only creates and absorbs particles from the vacuunmomentum pair state equals to\1/~0. The factors ofp!

which are within a distancék| of the top of the negative which appear in the normalization of thgvac states thus
energy sedi.e., the Fermi surfagethus creating a particle produce the explanation of both why we can thinko{j’? as

anti-particle pair. . a boson operator and wh(k,q) has no significant matrix
The next step is to see what happens if we amﬁlilto elements between normalized states generated by applying
the state we just generated. What we get is arbitrary powers ob(k') to |vag.

The main point of the above discussion is that as we ap-

)2 1 . : proach the continuum limit the essential physics of the model
pi’lvag = 2 )zf dky dko(uy Ui,k + dy i+ k) is taking place near the top of the negative energy sea and so
. it is useful to limit our attention to modified operatopS)
x(u;lukl+k+ dlldk1+k)|VaC>- (99) that only have support in these regions. For the model based

upon a modified SLAC derivative we saw that, since the low
energy spectrum of the theory was explicitly doubled, the

. i . . . non-split fermion current really was made up of two parts:
regionp{’? creates two low momentum particle anti-particle the fith coming from states r)llekﬁo and thg other frgm

7 . . | '
pairs and n fact for given aHOWEHl an.d K, there are 2‘. k~ 7. Leaving aside the complications related to the exis-
ways of getting the same two-pair state; however, for a 9V€llence of the Goldstone mode, we see that the dynamics of the

Ky t_here is exactly one \{alue &, for WhICh.OI’le can create theory tells us that the current constructed out of the fermi-
a higher energy one-pair state by absorbing one of the par- -~ : . : .
. . . 4 .2 D onic fields with small momenta is essentially the current with
ticles in the pair created by the first appllcat|onp§<f and

ting it to hiah ¢ F this it foll th the correct continuum limit. The large momentum part of the
promoting it to higher momentum. From this it follows that o, et gecouples from the continuum limit after the limit
the factor needed to normalize this state is greater thae_)oo is taken. From this point of view, we see that the

1{:)/5 Similarly, if one hits this state with another power of 4ynamics of the lattice model tells us that in order to take the
pk’ almost all of the terms would create three low energycontinuum limit of the theory we have to restrict attention to
particle anti-particle pairs and each of these three pair statgshly a part of the unregulated lattice current. This is essen-
would be created 3_! times. As in the previous case howeve[rla”y equivalent to adopting a point-splitting procedure for
there would be a single term which could promote the Pregefining the current in the continuum theory.

vious single higher energy one-pair state to yet higher en- Thoygh these peculiarities have been made obvious be-
ergy. Note, however, that since the normalization of thiscayse of the explicit doubling, our calculation of the anoma-
state would have to be larger than/B! (which we are be- |ous commutation relation shows that for the non-point-split
ginning to recognize as the normalization factor which goegurrents the large momentum modes do not decouple auto-
with a three boson stat¢he coefficient of this higher energy matically, even without fermion doubling. To have explicit
single-pair state appearing in the normalized version of thelecoupling one has to construct the currents by explicitly
state created by(}, is getting smaller each time. If one now cutting off the region of large momentum. If in the small
imagines carrying out this procepdimes the argument gen- momentum region the fermion derivative is sufficiently
eralizes in the obvious way. The state obtained by applging continuum-like(i.e., lineaj then we are assured that: the cur-
powers ofp(k') to |[vag is going to be mostly made gf  rent constructed in this way will have correct anomalous
different low-energy particle anti-particle states, each ofcommutation relations modulo corrections suppressed by in-
which will be arrived at inp! ways. Furthermore, there will verse cut-off; the equations of motion for this current will be
be a single particle anti-particle pair state with individual free equations of motion with an additional source term
momentap times larger thark. Since now the normalization given by high momentum fermionic modes; if the cut-off is
factor of this state is bigger tham!, the coefficient of this sufficiently large inphysicalenergy unit§as opposed to lat-
single higher energy pair state is getting very small relativetice unit9, such a current operator will correspond to a con-
to the part of the wavefunction made pflow energy pair tinuum bosonic degree of freedom for all low-energy pur-
states. A more careful discussion of this point would alsgposes.

It should be clear that for almost &} andk, in the allowed
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2 . . - - - - CORE methods to map gauge theories into highly frustrated
spin antiferromagnet and then use the same methods to study
these spin systems. The Schwinger model is a very good
15[ ] place to test this notion since the continuum model exhibits a
rich spectrum of physical phenomena, anomalous commuta-
tors, background electric fields, charge screening, etc., and so
it is important that any numerical treatment of this model be
able to see these effects. We had several major goals in this
paper: first, to get some analytic control over the physics of
the lattice Schwinger model in order to understand which
05 b - features of the continuum theory we might expect to emerge
easily from a numerical computation and which might be
difficult to obtain; second, to gain a feeling for how much of
this physics we might hope to see if we first use CORE to
3 2 -1 0 1 > 3 map the lattice Schwinger model into a highly-frustrated
generalized antiferromagnet and then to analyze the physics
FIG. 4. The energies of one-particle statesunits of 14) for ~ of that spin system before carrying out detailed numerical
modified Wilson derivative. computations; third, to get a better understanding of how the
low-energy physics of the lattice system depends upon the
To conclude this section let us consider a simple examplehoice of fermion derivative and why, on dynamical
of what we will refer to as gerfect Wilson modefor the  grounds, the lattice currents of interest are those which cor-

fermion derivative. It is defined by respond to continuum point-split currents.
To accomplish our goals we studied Hamiltonian formu-
vol T T T lations of both the continuum and lattice Schwinger model
Zk=ko 2a k|+ 2a sin(—ka) 6| k 2 ) and then, by paralleling the solution of the continuum ver-

sion of the theory in the lattice framework, identified those

T features of the lattice theory which differ from the continuum

k— g) ' theory and identified the operators of the lattice theory which
go over smoothly to their continuum counterparts. It became

where we have definegy, andX, for k>0, and assumed that apparent from the treatment of the equations of motion for
Z_=—Z, andX_,=X,. The one-particle energy spectrum the various forms of the charge density in the lattice theory
is shown in Fig. 4. that getting the right behavior involves showing that one is

One may easily checkusing our general result for the close enough to the continuum Iir_nit so that the app_ropriately
anomalous commutatpthat for this model, in the limia d_e_flned currents act as bosons_; in other words, it is not suf-
—0, the commutator for the non-split currerfis , ] dif- ficient to only show tha}t there is a gap betyveen th<=T vacuum
fers from the continuum limit, even though in this case thereState and the first excited state and that it numerically ap-
is no doubling and the theory remaiosntinuum-likeup to ~ Pears to be of the order @f \/ar. At a minimum one should
momentak~ 7/(2a). Note, however, that if we construct a be able to show that the operatd®gk,q) have negligible
low energy current by restricting to the linear region of thematrix elements between the computed low-lying states of
derivative function, as in the case of the modified SLACthe theory. . _
derivative, we can guarantee that the high momenta modes A Surprising outcome of this work is the fact that almost
do not have an influence on the dynamics of the low energ@ny fermion derivative works for the study of the Schwinger
current and we can verify that this low-energy current and itgnodel. As we have seen, the—c limit of the chirality
time derivative satisfy the desired anomalous commutatioi¢onserving modified SLAC derivative and the perfect Wilson
relations. Once we establish this fact we can proceed to délerivative had essentially the same low-energy behavior. The
rive the Heisenberg equations of motion for this low-energyinteresting fact was that the dynamics of the system, while
(or regulatediversion of the current and make the connectiondifferent for the two cases, managed to automatically elimi-
to the continuum theory. Conceptually, our example of thenate spurious degrees of freedom. Basically this says that we
perfect Wilsorfermion derivative is very close to Wilson’s can use any short-range derivative, either chirality preserving
original proposal. All we have done is to enlarge the regiorPr chirality violating, to carry out numerical studies of the
of momentum space in which the lattice derivative lookslattice Schwinger model and by comparing them get addi-
identical to the continuum derivative so as to make it easiefional control over how well the numerical methods can be
to see why this type of fermion derivative works once the€xpected to converge.

v
szﬁcoirr— ka)o

proper current operators have been identified. We wish to emphaSize that our discussion of the modified
SLAC derivative shows that it is a valid fermion derivative
V. CONCLUSIONS despite existing claims to the contrdr0]. To avoid poten-

tial confusion, we will list the main differences between the
As we have said in the Introduction our aim is to use theanalysis in this paper and the conventional studies based
lattice Schwinger model to test the idea that one can usaepon lattice perturbation theofyl0]. First, we work in the
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Hamiltonian formalism, thereby reducing the number of dou-charge and then taking tensor products of all of these states.
blers by a factor of two as compared with Lagrangian for-Note that for largee? these states are all degenerate to order
malism. Second, the use of theodifiedSLAC derivative is e and this degeneracy is lifted by the kinetic term which
essential, since it permits a clear separatiom-ef0, c—© acts on them by creating a pair of separated charges and then
limits in our formalism. Third, it turns out that only a proper acting a second time to bring them back to a neutral state. A
combination of low momenta and large momenta modes ofecond order degenerate perturbation theory calculation
the fermion vector current exhibits a smooth continuum limitshows that the low energy theory in the lagfelimit is that
and the limit of infinite slope of the SLAC derivative. These of a Heisenberg anti-ferromagnet, which means that in this
three points of our analysis account for the difference belimit the theory is that of a massless particle. Going back to
tween our study and the conventional discussi@ee e.g. Eq. (93) we see that perturbing in the kinetic term is the
[10]) and lead to a different physical picture. same as taking?/ 7 to be much greater thakf andck?. But
Finally, and most pertinent to our eventual goal, is the facthis is exactly the situation in which we have one massive
that the discussion of the modified SLAC derivative showsand one massless mode in the theory and the low energy
that the trick of using CORE to map the system into a frusphysics is that of a massless boson. This matching of the two
trated generalized antiferromagnet will preserve the relevantesults at largee? would imply that the space afetained
low energy physics. The reason for this is that the COREstatesmust have a non-vanishing overlap with the true low
method is based on defining the setrefained stateso be  lying states of the theory for finite values ef which is all
those states which have zero energy in the lignitoe. This,  that is needed to show that the CORE method must work.
of course, requires that for these states the Coulomb term
vanishes. In other words, these are the states for which the
normal ordered charge density operatgr is zero identi-
cally. (This set of states is generated by selecting from the This work was supported by Department of Energy con-
four possible states per site, only the two states having zerwact DE-AC03-76SF00515.
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