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We calculate various properties of pseudoscalar mesons in partially quenched QCD using chiral perturbation
theory through next-to-leading order. Our results can be used to extrapolate to QCD from partially quenched
simulations, as long as the latter use three light dynamical quarks. In other words, one can use unphysical
simulations to extract physical quantities—in this case the quark masses, meson decay constants, and the
Gasser-Leutwyler parametels —Lg. Our proposal for determiningy; makes explicit use of an unphysical
(yet measurab)eeffect of partially quenched theories, namely the double-pole that appears in certain two-point
correlation functions. Most of our calculations are done for sea quarks having up to three different masses,
except for our result fok,, which is derived for degenerate sea quarks.

PACS numbd(s): 12.38.Gc, 11.15.Ha, 12.39.Fe

[. INTRODUCTION from which one might expect to obtain only qualitative in-
formation about QCD. It turns out, however, that, if all quark
A major obstacle to direct simulations of lattice QCD is massegvalence and seare small enough, one can use PQ
the difficulty in simulating with light dynamical quarks. In theories to obtain quantitative information about unquenched
particular, the up and down quarks must be reached by theories. Since it is computationally less demanding to re-
chiral extrapolation. In present simulations one must do thigluce valence quark masses, PQ simulations are often used to
extrapolation from roughlyns/2, wherems is the physical obtain approximate information on QCD. Our point here is
strange quark mass. This is far from the light quark massethat they can be used to obtaractinformation about QCD.
[m= (m,+my)/2~my/25]. This observation follows from the structure of chiral per-

The aim of this paper is to provide formulas which canturbation theory(ChPT) generalized to partially quenched
aid in this extrapolation. To do this we use chiral perturba-theories—PQChPT3]. The key point is that there is a sub-
tion theory(ChPT) at next-to-leading ordefNLO). The pa-  sPace of quark massésorresponding to the diagonal line in
rameters of the chiral Lagrangian that enter at this order arEig. 1) where PQChPT is completely equivalent to chiral
the Gasser-Leutwyle(GL) coefficients,L,;— L. An alter- pgrturbatlon theory for unquenchgd, QCD-Ilkg thec'm'es.
native way to view the extrapolation to QCD is that, by _Slnce the quark mass dependence in PQChPT is expllc_lt, as
fitting numerical results in a region where quark masses arldl ChPT, it follows that the parameters of the PQ chiral

. : . [ ith 3 light sea quarksare the same as those of
considerably larger than the physical light quarks, but Sma||_agrang|ar(W|
enough that NLO chiral perturbation theory is sufficiently QCD. These parameters do, however, depend on the number

accurate, one determines the relevant These are physical Ef:fel?‘ hquarksN. TT('S mﬁans thathP_Q 3|mL_JIat|ons wilth .
parameters of QCD, governing many different physical prop- Ight sea quarks, whatever their precise masses, give
erties(e.g. pion masseand scattering amplitudesWith the

L; in hand, one can then extrapolate to QCD, and, in particu- m,,. 14 ——
lar, determine the physical light quark masses. For example, m. Simulation
as has been stressed in Rdfs2], determining the combi- strange PQ Chiral

nation 2 g—Lg with only moderate accuracy might allow Pert.

one to rule out the interesting possibility thew,=0. The Theory

accuracy of extrapolation depends, of course, on the reliabil- )

ity of NLO chiral perturbation theory. This can be studied by
seeing how well the numerical data fit the expected forms,
including the curvature predicted by chiral logarithms.

An observation of practical importance is that one can
make use of partially quench€éBQ) simulations to aid in the r
extrapolation to QCO2,1]. In partially quenched simula- T I I >
tions, one changes the mass of the valence quaykgcally QCD 4 12 1
reducing thery while holding the dynamicalor “sea”) m /m
quark masses fixed. The situation is illustrated schematically e

in Fig. 1. This leads one into a space of unphysical theories, F|G, 1. Schematic representation of the space of PQ theories for
“light” quarks (defined as lighter than the physical strange quark
mas$. The approximate range of present simulations is shown. The
*Email address: sharpe@phys.washington.edu shape of this region is determined by the fact that critical slowing
TEmail address: shoresh@phys.washington.edu down is less severe for valence quarks than for sea quarks.
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information about the parameters of the chiral Lagrangiarunsatisfactory, since, as we know from QC#p, loops to all
of QCD. On the other hand PQ simulations wikh=2 orders give contributions of the same order in chiral pertur-
or N=4, the values used in most simulations to datebation theory. In other words, the’ must be integrated out
do not give direct information about QCD, even after non-perturbatively. We return to this issue in a companion
extrapolation. paper, where we demonstrate that the approach adopted here
These comments motivate the calculation of the NLO chids equivalent to integrating out the’ non-perturbatively in
ral corrections to physically interesting quantities in PQthe PQ theory9].
theories. Some results already exist in the literature: those for This paper is organized as follows. In the following sec-
charged pion masses and decay constants with degenergien we recall the formalism of PQ chiral perturbation
sea quarkg4,5], heavy-light meson propertig8], vector theory, and explain our calculational procedure. After pre-
and tensor meson propertigd), baryons masses at larje ~ senting a simple form for the neutral meson propagator in
[7], and electroweak amplitudd§]. We provide here two Sec. Ill, we give our results for charged pion properties in
new results. First, charged pion masses and decay constar@sc. IV. We analyze these results in Sec. V, paying particular
are considered for non-degenerate sea qudraging up to  attention to the convergence of the chiral expansion and the
three different massgsThis completes the calculations of importance of non-analytic terms. In Sec. VI we explain how
simple pion properties for any theory that is likely to be to extractL, using PQ theories. We end with some conclu-
simulated. It allows one to determihg_g andLg. Note that,  sions. Two appendices deal with technical issues in the cal-
although nondegenerate sea quarks are not necessary in ordgfation of the neutral meson propagator.
to extract these GL coefficients, as has been stressed in Refs. Some parts of this work have been reported previously in
[1,2], there is no drawback to using them. Indeed, someongef. [2].
might prefer to extrapolate using more “QCD-like” simula-
tions with two degenerate “light” dynamical quarks and one
dynamical quark with mass fixed close to the physical
strange quark mass. Our formulas apply for such a theory.
Our second new result concerns the GL coefficlentin . . . .
QCD, this contributes only to neutral meson masses, and We consider partially quenched theories with the follow-

. — . . i ;+Ny+Ny= -
does so proportional tonfs—m)2. To determinel, using Ing quark complementi + N, +N3=N sea quarks; each

. : . of massm;; two valence quarks with masses, and mg;
meson masses from ungquenched simulations thus requires | di host ks with
non-degenerate quarks. At first sight, PQ simulations do not" O corresponding ghost quarks with massgs=ma

ndmg=mg. The ghosts are needed to cancel the determi-

improve the situation: neutral meson masses are still inde? . . .
pendent of_, when the sea quarks are degenerate. We find}ant arising from the valence quark functional integt].
however, that one can determihe from the coefficient of !N the chiral limit, this theory has aBU(N+2|2), @ SU(N
the double-pole in the propagators of neutral valence me 2/2)r symmetry group[3]. If N;=N,=N3=1, andm,
sons, even for degenerate sea quarks. This is a nice exampfeMy, Mx=Mg and mz=ms, then the sea-quark sector is
of the utility of PQ theories. Although the double-pole is QCD. Generalizing to arbitrary numbefs; covers most
itself an indicator that these theories are unphysical, its efother theories that are likely to be simulated in an effort to
fects can nevertheless be measured in lattice simulations, aistied light on QCD.
its inferred coefficient turns out to be related to a physical An important property of PQ theories, which follows
guantity. trivially from their definition, is that the sea-quark sector
Throughout our calculations, we treat th¢ as a heavy decouples from the valence sector. To be precise, all corre-
particle, and integrate it out, following R¢#]. This greatly |ation functions composed of only sea-quark fields are iden-
simplifies the resulting expressions, since it removes the deical to those in the unquenched sea-quark theory. There is
pendence on additional’ coupling constants. It raises, how- no “back reaction” from the valence sector. The same result
ever, two important issues. First, is the heavy enough that  myst also hold for the low energy chiral Lagrangian describ-
removing it is appropriate? The answer depends on the numing the PQ theory: correlators of pseudo-Goldstone mesons
ber of light sea quarksy, and the number of colordlc. For  composed of sea quarks should be the same as in the chiral
the physical values of these parametérs;N.=3, we know | agrangian describing the unquenched theory. This was

from experiment thaM ,,~1GeV. Since this is the scale at gpqwn to be true in Ref3]. In practice, however, one might
which chiral perturbation theory breaks down, it is appropri-yje\y all correlation functions that are calculated as being

ate to integrate out thg' for these theories. We stress, how- y,n5e of valence quarks, and so it is more useful to reformu-
ever, that our formulas are only valid when the dynamicalzie this property as follows. When each of the valence
quarks are light enough that all pseudo-Goldstone bosong, arks is assigned a mass that is equal to one of the sea
|ncIu2d|ng those composed only of sea quarks, satidfs quark masses, sea and valence quarks become indistinguish-
<M, . For further discussion of this point, and of the limi- aple, and the cancellations of the “doubled” quark species
tations of the approach taken here, see R&f. against their ghost counterparts trivially render the theory the
The second issue is more technical. How does one intesame as an unquenched theory containing only the “origi-
grate out thep' in PQ theories? In this paper we follow Ref. nal” sea quarks. That this is so was also shown in Re.
[4] and do this by hand, working only at tree level. This isand it has important consequences in the following.

Il. THEORETICAL FRAMEWORK
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At low energies, the partially quenched chiral effective theory is expressed in terms of thd3iélds

S =exp2id/f), (2.7
1 ~ =
O=(D,p)=—=(mp), abe{AB,12...NAB}, (2.2
V2
®o=strd/ N, 2.3
and the quantity
X=2um=2pdiag(my ,mpg, My, ... My, Py, ...,My, M3, ..., 03, M, ,Mp). 2.4
Ny N2 N3

wherem is the quark mass matrix. In the following we use At this point we can make clear the relationship between
the notationy,=2um,, x1=2um;, etc. The constants the partially quenched chiral Lagrangian and that describing
and u are unknown parameters. The fieldg, describe the low energy QCD. The latter is obtained by settMg 3, and
pseudo-Goldstone particles of the theory—we refer to themiunquenching”—i.e. assigningm, and mg values from
generically as mesons even though some are fermionic. BéMz, Mz, mz}. It follows that the unknown coefficients i
cause of the anomaly, arbitrary functions of the fiélg (the ~ are, forN=3, identical to those in the QCD chiral Lagrang-

super#') can appear in the Lagrangian. ian. This shows that these constants also govern the chiral
The partially quenched chiral effective Lagrangian is ex-Pehavior of PQ extensions of QCD. _
panded in powers of2~ M2/ A%~ p2/A2, whereM is a typi- In QCD, one can take a further step and “integrate out”

cal pseudoscalar meson mapsthe momentum, ana ~ 1 the#’. This is azppropriate since it is not a pseudo-Goldstone
b . — 2 — .
GeV is the scale beyond which the theory breaks down. P0SON, having’, ~mg+O(m)~1 Gev?'. Technically, the
The parts of the Euclidean Lagrangian contributing to me matching between theories with and without the is non-

son masses and decay constants at one-loop order are perturbative, since loops invo]ving thg are not suppressed
by powers ofM? or p2. Thus in the standard approach one

£2 £2 simply writes down the Lagrangian without thg, and it
Lio=—5st(d,59,5T) — —st(x3T+3 x) has the same form as Eq8.5—(2.7), except thatb is trace-
4 4 less. It follows thata, my and thev; are irrelevant, and the
2 2 only NLO coefficients are the;. It is in fact in this theory
+ad,Pod, o+ mpPy (29 that theL;—the Gasser-Leutwyler coefficients—are conven-
tionally defined.
Lnioa=Last(d,%3d,3 st xS+ x) In previous work on PQQCD, the step of integrating out
bt the ' has been done by hand, i.e. at the level of individual
+Llsst]d,2d,2 " (x2"+2x)] diagrams rather than the Lagrangi@. We summarize the
rocedure here—details will become apparent in the follow-
—Lelstix2 "+ x)]? iFr)1g section. i
—Lgsti xS ST+ xS y) (2.6) Loop diagrams involving they’ are dropped, since these

lead to shifts in the parameteks which are automatically
, included if we use thé,; from the QCD Lagrangian without
Lyioz=—LIStxST =2 )P+ 0,03510,30,5)  the 57, |
2 + Couplings special to they’, such as the; in Eqg. (2.7),
FoPostix2 +2x). @7 are treated as small, @(e?), and thus appear only at tree
o level. The justification for this treatment is that these cou-
The coefficientse, mg, L; andv; are further unknqwn Pa- plings are suppressed by powers dfid/ in this case M2.
rameters of the low energy thedhyThe L; depend, in gen- ~ On the other hand, the paramelmf% is treated non-
eral, on the renormalization scale. The NLO Lagrangian igyerturbatively since it is known to be A2, despite the fact
broken into two parts because flavor off-diagonal mesongnat it is proportional to M. In particular, we treah2/m2
receive contributions only fronfy, o ;. as O(e€?) (with M, as above, a typical meson masEor
convenience, we also treat non-perturbatively.
While this procedure may be accurate enough for phe-
The normalization ofb, is different from that used in Ref4], ~ nomenological purposes, it is theoretically unsatisfactory be-

although it agrees wheN=3 as in QCD. cause thep’ should be integrated out non-perturbatively. As
2We revert to the notation of Ref.[11], rather than thex, used  noted in the introduction, we will address this concern in a
in Ref. [4]. separate papd®]. In particular, we will argue that the pro-
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cedure adopted here in fact leads to results that are equiva- ll. CALCULATION
lent to those obtained from integrating out thg non- . . .
perturbatively. ExpandingL, 5 to quadratic order, we obtain the meson

Cpropagators. For “charged” mesofis., flavor off-diagonal

We close this section by deriving a result needed in Sec.
State$ these are

VI. We claimed above that discarding/ loops allows us to
write our results in terms of the standard GL coefficients, i.e.

those in an effective Lagrangian without tl. This is not ng(p)zf d*xe P (1 a5(X) Tpa(0))

quite correct. Tree diagrams involving an intermedigte

which we keep, lead to a shift in; proportional toM 2/mg. €

Thus we are not using the conventional, but rather that =5 (a#b), 3.1

defined in the effective theory containing thé, which we P (Xat X0)/2

denoteL [e_ls anticipated in Eq_(.2.7)]. In order to express where the signature vector is

our results in terms of conventional parameters, we need to

relateL; to L7 Withi_n the gpproximations of_our procedure. 1 aelAB123...N!

To determine this relation we need consider only the sea- Ga_{

quark sector, and thus work with the conventiorfah-

quenched chiral Lagrangian. The;’ field in this theory is

the restriction to the sea sector of the “supgr: field ®,.  The propagators for “neutral’{flavor-diagonal mesons in-

To make then' dependence explicit, we decompdsento  clude the contributions of the super-interactions. A gen-

pseudo-Goldstone angl' parts: eral expression has been given in R, but we find it
convenient to use an alternative form. The propagator is a
matrix acting on the space of neutral meson fields,, a

2id .
S = Uexp( I—\/_O) : UeSUN), (2.9 =1N+4. In Appendix A we show that
fyN

“1 ac{RB). (3.2

N 4., —ip-
and substitute into the chiral Lagrangian. The result is the Gab:f d*xe™ P maa(X) mpp(0))
original form withY —U and®,—0, i.e. the standard QCD
chiral Lagrangian, plus the following terms: _ €a0ap (m§+ ap?)/N

P2+ xa  (P*+ xa)(P*+ xb)

L, =C1Po+ CoPG+C3(0P)*+0(DF), (2.9
(P?+ x1) (P*+ x2) (P*+ x3)

>
C1=iftr(U = xU)/(2yN) +0(x2), (L+a)(pP+MZ)(PP+MO) (PP M)
(2.10 (3.3
co=mg+0(x), (21D Here them,, 5 and 5’ are neutral mesons in the sea-quark
sector. FoN=3 they are the usual neutral mesons of QCD;
c3=1+a+0(y). (2.12  for N>3 they are the appropriate generalizations, as ex-

plained in the Appendix. Their masses are functions of the

Only the leading order terms in the chiral expansion of thes€a-quark masses, and of thg, as given explicitly in
coefficients are shown, since higher order terms give contriEds. (A19)—(A21). N _
butions to the conventional chiral Lagrangian of ordefs The neutral propagator shows explicitly the unphysical
and higher, too high to effect the matching of the GL coef-nature of the PQ theory. For exampleaib=A, the sec-
ficients which appear at ordef. For the same reason, the ond term has a double-pole@t=— x, . These double-poles
(dd,)2 term can be dropped. Keeping the in tree graphs ~are absent, however, in thg phys[cal, sea-quark, sector. This
amounts to doing the functional integral ovér, keeping ~Was shown in Ref[3], but is particularly transparent with
only linear and quadratic terms. The result is a contributiorPUr result. For example é=b=1 (or equivalently ifa=b

to the conventional chiral Lagrangian of ordet with the ~ =A and xa=x1), then the p*+x,) in the numerator re-
same form as the, term: duces the double-pole to a single-pole.
For calculations, it is preferable to rewrite the propagator
£2 as a sum ofsingle or doublgpoles. For simplicity, we dis-

— ——[tr(yU—xU") 1?21+ 0(x)). (2.13  cuss the case wheawb andy,# xp, for thenGY, has only
16Nm§ single poles. For uniformity of notation, we introduce the

definitions
Thus we find, within our approximations, the relation
— N2 2 2
e Xw_Mwo’ X,=M7, X,II—M”, (3.9
Ly=L)— ———. (2.19
T 16N in terms of which

094503-4



PHYSICAL RESULTS FROM UNPHYSICAL SIMULATIONS PHYSICAL REVIEW D362 094503

Vv VV, VS
AB AB AB AB AB AB
AB____AB AB—‘_AB A&B —— WA —.—.I\M Q’V‘l\l\
NLO LO LO, NLO NLO LO LO
FIG. 2. Diagrams contributing tM og. The letters next to the
lines denote the flavor indices of the propagating mesons. “VV” VV, VS
stands for valence-valence meson with=A,B. “LO” and
“NLO” describe the order of the vertex that makes the diagram i D
contribute at 1 loop. LO Lo
R FIG. 3. Diagrams contributing th,g . The wavy line represents
N _ X the insertion of the axial current operaidfz(p). “VS” stands for
Gab , pz—i—X (a#b), (39 valence-sea mesons with=A,B andS=1,2,3.
x=a,b,mq,7,7 X
M 1
(me—ax) IT ai—xx0 Sioop™ 16(27°N {Raxalogxa+Rgxslog xg+ R x 109 x -
i=1,3
R= , (3.6
@+ Oy=x0 FRX100 x5 “9
y#X

Here y is the average sea-quark mass,
wherex andy run overa,b,m,n,7’. The degenerate limit
Xa=Xp OF a=b, which, in general, has double poles is
straightforward to obtain.

At this point we are in a position to integrate out thé
by hand, bearing in mind that this propagator appears imnd the residues are defined in [8}7). For concreteness we
loops. First, as discussed above, we drop #figpole. Sec-  quote two explicit examples
ond, we expand the residues of the remaining poles in pow-
ers ofXx/mg, x# n', and drop all but the leading term. This (xa—x1)(xa—x2)(xa—x3)
is justified since we use the neutral propagator in one-loo AT — — — '
diajlgrams, which already give NLO cgntﬁbgtions. The onlyp (Xa= X XA~ Xw) XA~ X)
exception is in our discussion af; in Sec. VI, where the

neutral propagator appears at tree level. With these changes, R,= (X”: Xl)(X”: XZ)(X”:X3) .
the residues become (X7~ XA (Xz= XB) (X7 = X7)

— 1
=N 2, N (4.4

Rg is obtained fronR, by interchangingd andB, andR, is

IT i—xo obtained fromR . by interchangingr and 7.
i=13 The renormalization scale is implicit in the logarithms and
Ry= . 37 the L;. Using the result
I (xy—x0
y=a,b,m,7n
" R (at xe 00O (49
Note that bothmZ and a disappear from the neutral propa- o
gator. we see that a change in renormalization scale can be ab-
sorbed by shifting thé; . We have checketfor N= 3) that
IV. NLO RESULTS the scale dependence of the in QCD does rendeM,z_\B

) ) ) independent of the renormalization scale.
In this section we calculate the properties of a meson Tg getermine the meson decay constdpy, the axial

composed of two valence quarks to NLO. We use dimen¢rentj, . is calculated to NLO, and then we evaluate the
sional regularization, and subtract the poles following thematrix element

conventions of Ref{12].

Its massM »g, IS obtained from the diagrams of Fig. 2. . .
We find AB> | ! 'ag '9 (0]j£agl Tag(P)) =1V2f ag P¥, (4.6)
using the diagrams of Fig. 3. The result is
M2g= XATXE (14 g 1 g (4.1)
he 2 ree Ioop) . fAB: f(1+ 5tfree+ 5(/8 Ioop+ 5I/V Ioop) (47)
m SN — 4 ‘ AN_ 2
5tree: f_2(2L6_L4)X+E(ZLS_LS)(XA—FXB) (42) 5tree: f_ZXL4+f_2(XA+XB)L5 (48)
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X==X1=X2- The remaining neutral state has mass= x1

S oS Nt Xatxi e
VS loop + x3— x. In this limit, the residues simplify, e.g.

N_—
i13 '16m%f2 8
(xa—x1)(Xa—x3)

XAt Xi Ry— 4.1
X log 5 +(A<B) (4.9 A (xa—x8) (Xa—X») .12
RWHO (4.13
1 1 log(xa/xe)
Sf =— —{ - Dy,-Dgt —2
Wloop™ 4N 16772f2[ ATBT (xa—xB) R (X=X (X5~ X3) 4.14

7;_>( _ —
X»=XA) (X~ XB)
X[ xaDa+ xgDg+(xa—x8)°] 7 7

with a similar cancellation in th® 5 g. With these changes,

+| x=Rx(x8— xA) w the formulas given above still hold.
XA™ X We have checked our results in two ways. First, if we take
log(x./xs) all sea 4quarks to be degener.ate, we obtain the rgsglts of
_W} +(me 77))] (4.10  Ref.[4].* Second, we can consider the unquenched limit. By

choosingy, and g to be equal to combinations gf, 5 we
obtain the correct one-loop form for the masses of #tig
where K" andK®.

The residue®, andD, are singular when pairs of thgs
become degenerate, e)gy— xg and xao— x . As expected,

igg (Xi—xa) however, these singularities cancel in the full expressions for
A= ‘ , (4.1) Mpup and fag, which are analytic functions of the quark
(Xz=Xa) (X~ Xa) masses except in the massless limit.

In Ref. [4], it was emphasized that the one-loop correc-
and Dy obtained by A<~ B), are the coefficients of the tions can diverge when the valence-quark masses are sent to
double poles in the neutral propagators. It is straightforwardero at fixed sea-quark mass, leading to a breakdown of chi-
to see that the scale dependence can be absorbed by shifts@h perturbation theory. This discussion was based on the
L, andLs, and we have checked that these shifts are consigesults for degenerate sea quarks, and we can now generalize
tent with standard results fod=3. it to non-degenerate sea quarks. For the meson masses, the

As noted in the introduction, our formulas can be used tgossibly divergent contribution ié,"(’,'op, and we see that this
extract the GL coefficients by fitting to results from simula- only diverges if bothm, and mg vanish, in fixed ratio, but
tions. PQ simulations allow one to vary the valence and seanot if only one vanishes. For the decay constant the pattern is
quark masses independently, and thus to separately detejpposite:s\y q,, diverges if one of the valence masses van-
mine L,_¢ andLg. In fact, since the NLO analytic terms, ishes, but not if both do in fixed ratio. This is the same
Egs. (4.2) and (4.9, depend on the quark masses onlypattern of divergences as for degenerate sea quarks; the sea
through the combinationg,+ xg andy, one need only con- quark masses only influence the coefficients of the divergent
sider degenerate sea quarksdeed, to extract Rg—Ls, the  log xa and logyg terms. In the following section we discuss
combination which determines whethey,=0, it is suffi-  the practical implications of these divergences.
cient to use a single sea quark maas long as it is light It was also noted in Ref4] that one can form combina-
enough that the formulas appyand vary the valence quark tions of the squared meson masses and decay constants from
masses. By contrast, with unguenched simulations, onhich the analytic correction termsjf.g cancel. One thus
would have to use non-degenerate sea quarks to separatgigedicts these combinations in terms of the quark masses and
determine all fourL’s. the leading order chiral coefficienfs andf, up to NNLO

The most likely practical applications of these results arecorrections. Studying these combinations in simulations al-
for simulations done with 2 rather than 3 types of nondegenlows one to test the applicability of NLO chiral perturbation
erate sea quarks. For QCD this would correspond to the limitheory. What we want to point out here is that exactly the
of exact isospin symmetry. The results for this case can beame quantities can be used for non-degenerate sea quarks:
obtained from those given above by carefully taking the limitthe L; still cancel. We do not, however, give the explicit
Xx2— x1- When two types of quark are degenerate, one of thexpressions since they are lengthy and unilluminating.
neutral sea-quark eigenstates becomes an exact flavor non-Finally, we discuss to what extent our formulas can be
singlet, and we choose this to be the pion. Thus we havepplied to lattice results obtained at non-zero lattice spacing.

For definiteness, we first consider a calculation using Wilson

3Note that the NLO analytic dependenceMf, is not the most
general quadratic term, symmetric und&rB, and vanishing “4Except for the following typos in Ref4], pointed out by Jochen
when y,= xg=0. Such a form would contain a term proportional Heitger, Rainer Sommer and Hartmut Wittig: in E¢ES), (19) and
to (xa— xg)% which is in fact forbidden by chiral symmetry. (20) a4 should be replaced by,/2.
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fermions, in which we work at a fixed bare coupling andtheory are determinefe.g. by experiment, or by fitting to
vary the bare valence and sea quark masses. Meson propéattice data the consistency of the computation can be
ties are of course calculated in lattice units, i.e. we obtairchecked numerically. This is the main purpose of the current
M ,a andf _a. section.

There are two effects of working at a non-zero lattice We can make this check because, using experimental
spacing. The first is that chiral symmetry, upon which ourdata, we have reasonable estimates for the actual values of
calculation is based, is broken explicitly. This symmetrysome of the Gasser-Leutwyler coefficients. Thus we can use
breaking can, however, be incorporated into the chiral Laour results to predict the meson masses and decay constants
grangian framework, as shown in REE3]. The resultis that in PQ simulations. Of course, these predictions are approxi-
all effects of the explicit symmetry breaking are 0fa), mate because we only know tthe approximately—this is
except for the additive renormalization of the quark masseswhere the lattice results themselves come in—but they give
Because of this, our formulas are valid, up to corrections ofis a reasonable idea of how the chiral expansion behaves.
O(a), as long as one uses so-called vector or axial Ward We consider QCD with exact isospin symmetry, N,
identity quark masses. =N,=N3=1 andm;=m,=m, and mg;=m,. The meson

Note that the corrections @(a) cannot be incorporated masses and decay constants then depend on the seven param-
into our formulas by simply introducing dependence into etersf, x,, xs, Ls_g and Lg. We want to choose these
the parameters of the chiral Lagrangian paramefegs,and  parameters so that the four charged meson quantilies
theL,. There are additional unknown constants which enterMy, f_ and fx take their experimental values. In order

The second effect is that the lattice spacing itself depend® match the number of parameters and observables, we
on the quark masses, at fixed bare coupling. This introducetake as starting values the GL coefficients quoted in
an additional mass dependence into quantities expressed Ref. [12]. These are based on experimental results
lattice units. We note, however, that the mass dependence Pl 5(M ) ~2.3X 1073, Lg(M 2 ~1.2X 10 3] and the large
ais a discretization effect dd(am) induced by the explicit N limit [L,(M,)~Lg(M,)~0]. We then take our four free
chiral symmetry breaking [14]. Indeed, for non- parameters to b& x,, xs and the scale), at whichL;
perturbatively on-shell-improved Wilson fermions one cantake the values just quoted. In effect, this moves us through
calculate this dependence, with the result the space ofL; on a particular path, which, when

~M,, is consistent with our knowledge about the. We
g by(9) claim no fundamental basis for this path—we use it for
- 2B.at(9)’ simplicity. It allows us to determine the dimensionless quan-
4 tities f/A., x./f? and xc/f? by fitting the ratios
o M, /T, Mglfx andfg/f ., and then to determind, by
wherem is the average sea-quark mab@(g)ocgz+ 0o(g% requiring, say, M,=140 MeV. We find A =M,(1
is an improvement coefficient introduced in Rgf4], and  —0.0021)(usingM ,, =547 MeV), so that the fitted.;’s are,
BuLar=—dg/d Inaxg®+0(g’) is the lattice function. Note in fact, close to the inputs. The other outputs Bre85 MeV,
that thisO(a) effect can be absorbed by shifting the GL x,/xs=0.044 andys=(673 MeVy.

a(my=a(m=0)[1-cam+---],

coefficients as follows: We stress that we are not claiming that we have found a
unique set of parameters. There is a region in the space of the

caf? L; which can describe the experimental observables, and for

Lag—Las— 8Ny’ (4.1 \hich it turns out that the chiral expansion is under reason-

able control. We have picked, somewhat arbitrarily, one

Alternatively, one could adjust the bare coupling as thepoint in this region. . _ _
quark masses are varied so as to keep the lattice spacing We can now explore the behavior of the chiral expansion

fixed. as a function of the four quantities

In summary, our formulas are approximately valid for
meson properties expressed in lattice units, with the errors ( XA XB X1 ﬁ) 5.1)
being of O(a). Some, but not all, of these discretization Xs Xs Xs Xs| '

errors can be absorbed indodependence of the parameters

of the chiral Lagrangian. With staggered or overlap fermiond/Ve have chosen to normalize the various quark masses rela-
the errors would instead be @(a?). Since discretization tive to the physical strange quark mass, so that a ratio of
errors can still be substantial at present lattice spacings, Hnity represents the outer limit of where one would expect

may be better to extrapolate first&=0, and then fit to the chiral perturbation theory to be reliable. We consider two
predicted forms. types of two-dimensional cross section of the parameter

space: ¥,Y,x,1) and {,1x,1). In both casey corresponds
to a valence mass whibeis proportional to a sea quark mass.
We name these cross sections ther-plane” and the

In the framework of chiral perturbation theofyegardless “ K-plane” because the unquenched liype x in the former
of quenching one assumes that for any quantity calculated tadescribes a pion-like meson made up of two identical light
a given order in the chiral expansion, higher order terms arguarks, whereas, in the lattey=x corresponds to a kaon-
smaller. Once the unknown couplings and parameters of thike meson.

V. BEHAVIOR OF THE CHIRAL EXPANSION
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s 0.6 ; J . .- 0.4
}: / // e -7
/ s e o
noo.af ;S L 0.3 *
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FIG. 4. The dashed lines are rays in theplane orK-plane
along whichs' and 6™ are plotted in Figs. 5-8. = X
We examine the relative size of the NLO contributions by Xs
plotting FIG. 5. 6" in the -plane, §,y,x,1), is plotted along rays of
2 5 M M M angled with respect to the-axis (see Fig. 4. The values of theta in
(Mag)no/(Mag)Lo= (Seet 5|oop)55 (5.2 degrees are indicated next to the corresponding curves. The point
that corresponds to the “physical” pionx(, xu,xu»Xs) IS labeled

and “QCD.”

(fap)nio! (FaB)Lo= Oheet OYs oont O ioop=0" (5.3 o S
ABTNLOTRTABTLO™ Tree ” WS loop ™ "WV loop tributions alone would have produced only straight lines in

[see Eqs(4.1), (4.7)]. In each plane, these functions are plot- Figs. 5-8. The curvature seen in the graphs is due to the
ted along rays emerging from the origin at angleslogarithms originating in loop diagrams. An attempt to
15°, 30°, 45°, 60° and 75° with respect to thaxis, con- model data collected in the heavy quark mass region with
fined to the unit squaréFig. 4). The 45° line corresponds to only the tree level terms will clearly lead to a significant
unquenched theories, the other lines to PQ theories. Thgystematic errors in the extrapolations to QCD values.
plots are shown in Figs. 5—8. We also show a contour plot of
5" in the K-plane in Fig. 9.

The first conclusion that can be drawn from these figures f
is that chiral perturbation theory for QCD to one-loop order 81{ (y = xtan 9, x)
is reasonably convergent throughout the PQ region defined
by xy<xs, X=A,B,1,3. With our parameters, the least con- 0.5 75°
vergent quantity iy . We also note that, generally speak-
ing, the expansion is better behaved when one increases the 60°
masses along the lines at small angles. In other words, the
expansion may be more reliable when valence masses are

o
1.y

smaller than sea-quark masses, & versa This is good 0.3 gg:
news for simulations, since pushing to small valence quark i5e
masses is relatively cheap. 0.2 QCD

Of course, as noted in the previous section, the valence
guark masses cannot be pushed too low at fixed sea masses.
At some point the corrections" (in the -plana and &' (in
the K-plane diverge. This is not apparent, however, from
Fig. 9. To observe the divergence we show in Fig. 10 the
region close to the-axis, which does reveal the expected 0.2 0.4 0.6 0.8 1
features. Though of theoretical interest, it seems that the ) ’ ’ ’
breakdown of the chiral expansion due to enhanced chiral

o
=

logarithms occurs only in a tiny region of parameter space x=£
and is therefore of little or no practical significance. o
Our final comment concerns the importance of including
the non-analytic terms in fits to PQ data. The tree level con- FIG. 6. Plots of6" in the K-plane.
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M. _ 4mz —m?2—3m?
8Y (y = xtan®, x) e
8 4(mg—m?2)?
0.2 75° = FZ(KT(LS—BLS—lzLﬂ
°0 [3m’log(m?) — mlog(m?) — 4m&log(m?)]
- " 167212 ‘
0.1 (6.2)

Here we have given the result in the isospin-symmetric limit,

i.e. with two degenerate quarks of mass=(m,+my)/2,
and a single strange quatk.

Thus one method for determinirg; is to calculatem, ,
my andm_. in unquenched simulations with non-degenerate
sea quarks and fit to the result in E§.1). In this section we
show how one can obtain, using degenerate sea quarks by

-0.1 QCD taking advantage of PQ simulations.
A clue on how to proceed is provided by the fact that the
xX= % 7 propagator contains contractions in which the quark propa-
Xs gators are disconnectgdhairpin” contractions. Close to

the degenerate limit, these contractions are proportional to

(ms—m)2, due to cancellations between light and strange
VI. DETERMINING L, quark propagators. Comparing to E.1), and noting that
m&—mZocmg—m, it is plausible that the., contribution is
lated to the disconnected contraction, and that by studying
lis contraction in the PQ theory one can deterniipeThis
S indeed what we find.

First, we recall the general form of the tree level propa-

FIG. 7. Plots ofsM in the -plane.

As noted above, the GL coefficients,, L, Lg andLg
can be obtained using PQ simulations with degenerate s€;
quarks. Simulations with non-degenerate sea quarks are us]
ful but not essential. In this section we consider the othet
coefficient which enters into the NLO expressions for the
physical meson masses, hamely This contributes only to gato.rs. In Sec. Il we schowed that the propaggtors for flavor
flavor-diagonal mesons, i.e. thgandy in QCD. Since the off-diagonal mesonsG,, have. an c'>\lrd|nary single pole at
contribution is proportional to quark mass differences, theéhe meson masBEqg. (3.1)], while G}, the “neutral” or
largest effect is on they mass. This is conveniently isolated flavor-diagonal propagators, have a double pole at the same

using the violation of the mesonic Gell-Mann—Okubo rela-Mass ifa=b or my=mj [Eq. (3.3]]. As we show below,
tion [12] these general forms prevail also at NLO:

¥ (y=xtan®,x)

GC _ ZA n | 6.2
AB(p)|mA=mB—pz+T non-pole, (6.2

0.2 750 AA
60 N 2D _
Gas(P)lmy-m,= ECITVERE +single-pole
45° p AA
0.1
+non-pole, (6.3
N N c
30° Gpa(P)=Gag(P)|m,=mg + GAglm,=mg
+5 Z\D
0.2 0.4 0.6 0.8 1 - aud ~ +single-pole
(p™+M3za)
QCD +non-pole. (6.4
-0.1
x= X SNote that the one-loop expressions for the dependenog @nd
xLs m_. on quark masses can be obtained from the general results above
by settingN;=N,=N3;=1, m,=m,, and choosing the valence
FIG. 8. Plots ofsM in the K-plane. masses to be equal to the appropriate sea quark masses.
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f f
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0.8
Vo
“ §
R 0.6 <
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x=x/x, x= 10/
FIG. 9. Contours ob} . The values o} range from<0.275 in FIG. 10. Breakdown of the chiral expansion for small values of

the black region on the right up to value<0.5 in the white region.  valence quark mass and a fixed sea quark mass. In the white region,
There is a difference of 0.025 between the valuesfobn adjacent  the expansion breaks down as the NLO term in the expression for
contours. fx becomes greater than the LO teer(> 1). The following con-
tours mark changes of 0.1 mL so that the darkest region corre-
HereM a4 is a shorthand foM g (Ma=mg), and its NLO  sponds tos}<0.4.
expression is given in E@4.1). Note that these equations are ) ) ) o
valid only if A andB are partially quenched rather than un-  We claim thatD is a “physical” quantity in the PQ
quenchedi.e. my#m;), and apply only close to the poles at theory, on a par with the valence meson masses such as
p2=M2,. In particular, the neutral propagators have addi-Maa- In support of this claim, we note th@ is determined
tional poles, at the masses of the neutral sea-quark mesorf&2m the long distance properties of correlators, and is inde-
These are not of interest here. pendent of the choice of interpolating fieldsecause it is
The quantity we propose to use to determineis D, the determined b)_/ aratjoIn par'qcular, we claim thaD can be
(suitably normalizeyl coefficient of the double pole in the calculated using the effective low-energy theory with the

neutral propagators. An equivalent definition in terms of lat-S@me level of reliability as the meson masS@ée stress that
tice observables is the coefficients of the single poles, unlike the double pole, do

depend on the choice of interpolating fields and are not quan-

3 . tities which can be predicted using chiral perturbation theory.
f d*x(maa(t,X) m5(0))

N Dt In PQChPT, we obtairD by calculating the propagators
- tooe 2Man GS, and G}, at NLO and using Eqs(6.2—(6.4). The tree
f d3x( 7 ag(t,X) mga(0)) level result forD can be read off from Eq¢3.1) and (3.3
MA=Mg
(6.5 1 O xa)(xe—xa) (X = xa)

D:

N Ot ) xa) ©0
Here the flavor indices are chosen to select the “discon- X = XAJ X XA
nected” (numeratoy and “connected” (denominator con-  Note that the residue of the double-pole vanishes whenever
tractions contributing to ther,, propagatof. At large times,  the valence quark mass equals any of the sea quark masses.
the denominator is dominated by the single-pole contributionThis must be the case since one is then considering a cor-
of the pseudo-Goldstone boson of maég,. Only double-  relator which could be constructed entirely from sea quarks,
pole contributions to the numerator lead to the ratio growingand thus is physical, and cannot contain double poles.
linearly with t, andD measures their size. We note also that The dependence @ on L, begins at one-loop order. We
our ratio is the standard one used in studies of artifacts in thaave calculated to this order only for the case of degener-
quenched theory. ate sea quarksnf;=m,=mj). Details are given in Appen-

dix B. The result is

5This choice simplifies the numerical calculation, but is not nec-
essary. It follows from Eq(6.4) that the numerator could be re-  7proying this claim rigorously seems difficult, given the lack of a
placed by(wAA(t,f):O)wAA(O)), i.e. the temporal Fourier trans- Hamiltonian formulation of the PQ theory. Our point, however, is
form of G),. This changes theindependent part of the ratio but that the calculation ofD is as well controlled as that of meson
leavesD unchanged. masses.
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1, ) 6 f2 Lsg error in the determination of physical parameters. This is
D=—(Mss~Mjan) — 72| L~ TeNmE +oN most clearly illustrated by Fig. 6.

All the formulas we present are for infinite volume, and
1 1 thus apply for box sizes such thikL>1. As pion masses
X (M5s—MZ)2+ W(E[XS_ xal?10g xsa decrease, this requires working in boxes of increasing size.
This should not, however, be necessary. Chiral perturbation
theory remains valid for finitéV L, as long as\ gcpl>1,
' (6.7 and can be used to calculate the volume dependence of
physical quantities. It would be interesting to do this for the
where we useS to denote the sea quark, ang,=(ys duantities we consider here.
+ xa)/2. The first term is the same as the tree-level result Another interesting extension of our calculations is to in-
with 0ne-|oop corrected meson mass-squareds rep|acir@Ude the effect of discretization errors within the chiral La-
quark masses. The second term is the analytic term contai@angian itself, i.e. to use the appropriate Lagrangian for the
ing the L, dependence. As advertisdd, andm2 appear in  lattice theory at non-zero lattice spacing. This would aid in
the appropriate combination to be combined into the stanth® extrapolation to the continuum limit.
dardL; [Eq. (2.14]. The logarithmic terms, from wave func-  Finally, we comment on the theoretical status of our
tion renormalization and from loop diagrams, combine into anéthods. We use a Lagrangian containing ifie(or more
fairly simple form. One check on the result is that the Precisely the “super’,” @), and our calculations rely on
anomalous dimension dfs is such that it cancels the depen- @ssumptions about the size of its couplings. One can show,
dence on the choice of the scale in the logarittion N=3, however, that there is a limit in WhICh our calculation is
where the anomalous dimension is kngwAnother is that it ~ €quivalent to that with thes’ integrated out non-
vanishes whem,=m,_. perturbatively[9]. In that limit (essentiallymj— =) the as-
Thus, from the coefficient of the double pole, one cansumptions that we have made are valid. One might also be
extract the combination mL7+ |_5_ Combined with the re- concerned about the theoretical foundation of the whole cal-
sults of the previous sections this allows a determination ofulation: Is it justified to use chiral perturbation theory for
L. the unphysical PQ theory? We have also made some
progress on this issue. One can show that, in certain cases,
derivatives of partially quenched quantities with respect to
valence quark masses can be exactly related to derivatives of
Partially quenched theories can play an important role irinquenched quantities with respect to sea quark maSges
determining physical parameters of QCD. Our results shovPur NLO results are consistent with these exact relations.
how one can use them to simplify the extrapolation to QCD
and the determination of the GL parametejs g. In particu- ACKNOWLEDGMENTS

lar, it is sufficient, though not necessary, to use degenerate hank id | q | ; ul
sea quarks. One must, however, use three sea quarks. We thank David Kaplan and Ann Nelson for useful con-

Our approach relies on chiral perturbation theory at nextVersations. This work was supported in part by U.S. Depart-
to-leading order. An important issue is how light the seament of Energy Grant No. DE-FG03-96ER40956/A006.
quarks need to be for our formulas to be sufficiently accu-
rate. A conservative approach is to work down to masses APPENDIX A: NEUTRAL MESON PROPAGATOR
where the NLO corrections themselves are 10% of the lead- AT TREE LEVEL
Isnmgacljlr[dleSr] rﬁ]li{cl,t,r tasgu}:]east \t\t]c:erkri?\l;stljrl)%vrl:llzl;o Lerrnmlz aprg_very Here we calculate the neutral meson propagator. From

' : 3 sea~ 1's' O L, o we find
other approach is to look at our figures and see what mass

+ xalog(xa/xsa) + x&00(xs/ xsn)

VII. CONCLUSIONS

range is required to observe the predicted curvature. To do so Gﬁlz G51+V (A1)
appears to require working down to at leasf,~mg/4. In
the end, this issue can be resolved using simulations them- (GoYab=(P?+ Xa) Sab€a (A2)
selves, including partially quenched simulations, to check the
reliability of the NLO predictions. ma+ ap?

This exercise will also shed light on the question of Vap=—— €a¢b- (A3)
whether the physical strange quark mass is light enough that
NLO chiral perturbation theory is applicable for QCD. Even e fy|| propagator is thus
if the strange quark turns out to be too heavy, the results
presented here still apply to the light-quark sector, if we set Gn=(Gy 1+ V) 1=(1+GyV) 1Go. (A4)

N=2.
It is often observed that linear fits are adequate for théBecauseV is an outer product, the combinati@yV is pro-

mass dependence of physical quantities in the ramgg  portional to a projection operator

=m¢/2—mg. Our results make clear, however, that extend-

ing such linear fits to the chiral limit, i.e. leaving out the _ GV

curvature due to chiral logarithms, can lead to a significant T tr(GyV)’

A=A, (A5)
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Thus for any functiorf,
f(A)=f(0)=A[f(1)-f(0)], (AB)

and so

(1+GoV) 1=(1+tr(GeV)A) 1=1+A

1+1tr(GgV) _4

1oV A7
T 14t(GVY) (A7)
Inserting this in Eq(A4), we find
GoVG
Gyn= — (A8)

Go~ 1+tr(GyV)’

which reproduces the result of R¢8].

PHYSICAL REVIEW B2 094503

Thus the factor multiplying the double pole in E&8) can
be rewritten as

[1+1r(GoV)] t=defG, 1]/defGy1].  (Al4)
The determinant in the numerator is simple
def G 1= (p°+ x1)"1(p*+ x2)M2(p*+ x3) .
(A15)

Our final task is to evaluate the determinant in the denomi-
nator.

To do this, we note thaGy*=G! is block diagonal.
The exactSU(N;) X SU(N,) X SU(N3) flavor symmetry im-
plies that there are, for each sea-quark typl;—1 ﬂ_avor

The analytic structure of the propagator is not clear fromnon-singlet neutral pions which are eigenvectorsGyf* .
this result. In particular, its diagonal elemef@y],, appear  SinceV projects onto flavor singlet states, the corresponding
to contain double polefrom the two factors oG, in the  gjgenvalues are those &, ', namely p?+ ;). The non-
second term We know, however, that if we restrict our- . . 1 . . .

. trivial part of Gy ~, to which V does contribute, is thus a
selves to the physical sea-quark sector tlgncannot con- %3 block. In QCD, withN:= 1, this is the entire matrix
tain double poles. Thus there are cancellations hidden iﬁ’ o ' L . ’

and describes thery, » and »’. For convenience, we use

Eq. (A hich k licit. -
a. (A8) which we want to make explicit these names for genefd| as well. We denote the restriction

To do so we need to introduce the restriction of the vari- ) . X .
ous matrices to the sea-sea sector. We denote these restr?é-mamceS to this subspace with double bars. A straightfor-

tions by overbars. We first observe that the previous steps gv(s{ard exercise shows that
through identically for the restricted matrices

R -1_ 1)
——, —  G,VG, Gy'=SRDRS (A16)
(GnY) ZGo—m- (A9)
0 S=diag 1,11+ a), (A17)
Comparing this with the restriction of E¢A8),
_ D=diag p?+ x, P>+ X, P>+ X)), A18
. A o) AP+ X7 P+ X5 P X ) (A18)
NTTO 14r(GeV) with R a rotation matrixSrescales the singlet field so that it
) has a canonical kinetic term. The meson mass-squareds are
and using the result given, up to corrections of size?/m2, by
tr(GoV) =tr(GoV) (A11) o
. o Xzt Xp=Xx1t X2+ X3~ X (A19)
(which follows because the valence and ghost contributions
cance), we find .
o XaXn=X1X2X3X (A20)
Gn=(GyH) (A12)
X =(mMg+x)/(1+a) (A21)

In other words, restriction to the sea-quark sector commutes
with inversion. This result is non-trivial becau€g,* is not h
block diagonal—it encapsulates the lack of feedback from/"er€
the valence to the sea-quark sector.
Returning to the simplification of the propagator, we note — 1 N
that TN X
i=1,3

1
X tEg 2 Nt (A22)
i=1,3

a1 Ell_defe. 11— FRAVIYN
defGy 1/def G, "]=de{Go Gy "] =def 1+1(GoV)A] are averages over the sea sector.
—exp trlr[1+tr(6OV)K] Using these results we find that

=explf1+1r(GoV)] def Gy 1= (p2+ x)M~ H(p2+ )V H(p?+ xo)Mo X (p?

=1+1r(GoV). (A13) + X2 PP+ X ) (P24 X ) (14 ). (A23)
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Inserting this and EqA15) into Eqgs.(A14) and (A8) gives

VAY
the result quoted in the main text, E®.3). It is straightfor-
ward to generalize this result to an arbitrary number of dif- AA ® AA AA AA
NLO LO

ferent sea-quark masses.

APPENDIX B: ONE-LOOP CALCULATION OF D FIG. 11. Diagrams contributing tEN . The letters next to the
lines denote the flavor indices of the propagating mesons. “LO”

To extractD using Egs(6.4) and(6.2) we need the NLO and “NLO” describe the order of the vertex that makes the dia-
results for the charged and neutral propagators. We do thgram contribute at NLO.
calculation only forN degenerate sea quarks, which we de-
note using the labées rather than 1,2,3. responding wave function renormalization. Their expressions
The NLO calculation of the charged propagator was de<an be obtained from those b3, and Z, by the substitu-
scribed in Sec. IV, and the expression Mr;’;A can be ob- tion ypo— xs-
tained using Eq(4.1). Here we also need the wave function ~ We now turn toX . Because of the graded symmetry, it

renormalization factor, for which we find shares a particular matrix structure wkh and it is conve-
nient to make this explicit by the following definitions:
8
Zp= 1_f_Z(L4NXS+L5XA) X Ny —x
V+sy=| Wy Nz —\Ny|.  (B?

(B1) -x Ny x

For the neutral propagator we need to generalize the calctFhe contributions to this matrix fror’ are

lation of Appendix A to NLO. The inverse propagator be- 5 5
comes Xy=Yv=2Zy=Xo= (My+ ap)/N. (B8)

N1 Xstxa  [XstXa
3 167%f2 2 2 '

Gpyl=Gy1+V+3, (B2)  Thus we writex=Xy+ X, y=Xo+ 8y andz=xq+ 6z.

The diagrams contributing t&  are of the general form
where3, contains the NLO tree and one-loop contributions.shown in Fig. 11. The tree level contributions come from the
The structure o is such that the method used to calculatetwo-meson vertices included ifiy, o, [EQ. (2.7)]. Thev,
G~ ! in Sec. Il does not apply, and we simply invert the term acts as a subleading correction rtté Since at LO

matrix by brute force. [Eq.(6.6)], D is independent a3, it follows that at NLOD
For our purposes, it is sufficient to consider the restrictioncan at most depend on its leading value. Thusontributes
of Gy to the three-dimensional basis only at NNLO. The other tree level diagram comes from the

L, term which gives the following contributions:

( ' ) =2 % (B3)
TAAT S TAA) = = 24 Tij - 8 8
N =2 sWx= f_22|—7)(/2x, sy = f_22L7XAX51

This is because, first, we want only theg 5 propagator and
so do not need to introduce an additional valence quark; and,
second, because we use degenerate sea quarks so that there is

no mixing of maa with flavor non-singlet neutral sea-quark o re 12 shows the quark line structure of the only one-

MESonSs. The generahzatlo_n to non-degenerat_e sea quaﬂfﬁop graph involving the lowest order vertices which corre-
which involves a larger basis of neutral states, is straightfor-

ward in principle, but tedious in practice, and we have not
carried it out.

The contributions t&, fall into two classes: those that are
common to the charged mesobs , and those that are spe-
cial to the neutral mesonsy . The former can be obtained
from the results of Sec. IV, and we find

8
sMNz= f—22L7X§. (B9)

Go 1+ 3 c=diagv,w,—v), (B4)
v=(p*+ M3/ Za, (B5)
w=(p?+M39/Zs. (B6) » -

5 ) FIG. 12. Each line in the diagram represents a single quark field.
Here Mggis the squared mass of flavor non-singlet mesonshis is the only loop diagram of the type that appears in Fig. 11 in
composed of sea quarks evaluated at NLO, &gdhe cor-  which the quark lines are disconnected.
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sponds to disconnected quark lines, and so does not contrib- 1 1 xw+N(xz—y?)

ute toS . The contribution taS  is Can= 2 TN (B14)

1 1
ﬁz)XZW §(p2— 2xn) xalog xa, (B10)  The first term is the one-loop corrected single pole, while the
second contains the expected double pole. Inserting this re-
sult into the definitions Eqs(6.2) and (6.4), and using

s@y= 16272 %(p2_XA Eqs.(_B_l) and(B5), we can read off the required double-pole
a coefficient
XatXs [XaTXs 2
- lo , B11 Xw+ N(xz—
Xs)™ 109 — (B11) D=-2, #) (B15)
w+ Nz o a2
Pe=—Mua
1 1,
6P z=——— —(p?-2 log xs.
167t 3(p Xs)Xslogxs Expanding in powers of we find
(B12)
Collecting these contributions we end up with D~ _ZA[g( 1— o +(Sx+ 52—2&/)]
_ 0 p2=—MZ,
v+x Ny X (B16
G l=| yNy w+Nz —{Ny|. (B13)
—x  — Ny —uv+x Note that &z, —y2)=0, so that a possible contribution pro-
portional to mé cancels. Substituting and rearranging, we
The relevant part of the inverse is find the answer Eq6.7).
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