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Physical results from unphysical simulations
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We calculate various properties of pseudoscalar mesons in partially quenched QCD using chiral perturbation
theory through next-to-leading order. Our results can be used to extrapolate to QCD from partially quenched
simulations, as long as the latter use three light dynamical quarks. In other words, one can use unphysical
simulations to extract physical quantities—in this case the quark masses, meson decay constants, and the
Gasser-Leutwyler parametersL42L8. Our proposal for determiningL7 makes explicit use of an unphysical
~yet measurable! effect of partially quenched theories, namely the double-pole that appears in certain two-point
correlation functions. Most of our calculations are done for sea quarks having up to three different masses,
except for our result forL7, which is derived for degenerate sea quarks.

PACS number~s!: 12.38.Gc, 11.15.Ha, 12.39.Fe
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I. INTRODUCTION

A major obstacle to direct simulations of lattice QCD
the difficulty in simulating with light dynamical quarks. I
particular, the up and down quarks must be reached b
chiral extrapolation. In present simulations one must do
extrapolation from roughlyms/2, wherems is the physical
strange quark mass. This is far from the light quark mas

@m̄5(mu1md)/2'ms/25#.
The aim of this paper is to provide formulas which c

aid in this extrapolation. To do this we use chiral perturb
tion theory~ChPT! at next-to-leading order~NLO!. The pa-
rameters of the chiral Lagrangian that enter at this order
the Gasser-Leutwyler~GL! coefficients,L12L10. An alter-
native way to view the extrapolation to QCD is that, b
fitting numerical results in a region where quark masses
considerably larger than the physical light quarks, but sm
enough that NLO chiral perturbation theory is sufficien
accurate, one determines the relevantLi . These are physica
parameters of QCD, governing many different physical pr
erties~e.g. pion massesand scattering amplitudes!. With the
Li in hand, one can then extrapolate to QCD, and, in part
lar, determine the physical light quark masses. For exam
as has been stressed in Refs.@1,2#, determining the combi-
nation 2L82L5 with only moderate accuracy might allow
one to rule out the interesting possibility thatmu50. The
accuracy of extrapolation depends, of course, on the relia
ity of NLO chiral perturbation theory. This can be studied
seeing how well the numerical data fit the expected form
including the curvature predicted by chiral logarithms.

An observation of practical importance is that one c
make use of partially quenched~PQ! simulations to aid in the
extrapolation to QCD@2,1#. In partially quenched simula
tions, one changes the mass of the valence quarks~typically
reducing them!, while holding the dynamical~or ‘‘sea’’!
quark masses fixed. The situation is illustrated schematic
in Fig. 1. This leads one into a space of unphysical theor
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from which one might expect to obtain only qualitative i
formation about QCD. It turns out, however, that, if all qua
masses~valence and sea! are small enough, one can use P
theories to obtain quantitative information about unquenc
theories. Since it is computationally less demanding to
duce valence quark masses, PQ simulations are often us
obtain approximate information on QCD. Our point here
that they can be used to obtainexactinformation about QCD.

This observation follows from the structure of chiral pe
turbation theory~ChPT! generalized to partially quenche
theories—PQChPT@3#. The key point is that there is a sub
space of quark masses~corresponding to the diagonal line i
Fig. 1! where PQChPT is completely equivalent to chir
perturbation theory for unquenched, QCD-like theori
Since the quark mass dependence in PQChPT is explici
in ChPT, it follows that the parameters of the PQ chi
Lagrangian~with 3 light sea quarks! are the same as those o
QCD. These parameters do, however, depend on the num
of sea quarks,N. This means that PQ simulations withN
53 light sea quarks, whatever their precise masses,

FIG. 1. Schematic representation of the space of PQ theorie
‘‘light’’ quarks ~defined as lighter than the physical strange qu
mass!. The approximate range of present simulations is shown.
shape of this region is determined by the fact that critical slow
down is less severe for valence quarks than for sea quarks.
©2000 The American Physical Society03-1
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information about the parameters of the chiral Lagrang
of QCD. On the other hand PQ simulations withN52
or N54, the values used in most simulations to da
do not give direct information about QCD, even afte
extrapolation.

These comments motivate the calculation of the NLO c
ral corrections to physically interesting quantities in P
theories. Some results already exist in the literature: those
charged pion masses and decay constants with degen
sea quarks@4,5#, heavy-light meson properties@8#, vector
and tensor meson properties@6#, baryons masses at largeNc

@7#, and electroweak amplitudes@5#. We provide here two
new results. First, charged pion masses and decay cons
are considered for non-degenerate sea quarks~having up to
three different masses!. This completes the calculations o
simple pion properties for any theory that is likely to b
simulated. It allows one to determineL426 andL8. Note that,
although nondegenerate sea quarks are not necessary in
to extract these GL coefficients, as has been stressed in
@1,2#, there is no drawback to using them. Indeed, some
might prefer to extrapolate using more ‘‘QCD-like’’ simula
tions with two degenerate ‘‘light’’ dynamical quarks and o
dynamical quark with mass fixed close to the physi
strange quark mass. Our formulas apply for such a theo

Our second new result concerns the GL coefficientL7. In
QCD, this contributes only to neutral meson masses,
does so proportional to (ms2m̄)2. To determineL7 using
meson masses from unquenched simulations thus req
non-degenerate quarks. At first sight, PQ simulations do
improve the situation: neutral meson masses are still in
pendent ofL7 when the sea quarks are degenerate. We fi
however, that one can determineL7 from the coefficient of
the double-pole in the propagators of neutral valence
sons, even for degenerate sea quarks. This is a nice exa
of the utility of PQ theories. Although the double-pole
itself an indicator that these theories are unphysical, its
fects can nevertheless be measured in lattice simulations
its inferred coefficient turns out to be related to a physi
quantity.

Throughout our calculations, we treat theh8 as a heavy
particle, and integrate it out, following Ref.@4#. This greatly
simplifies the resulting expressions, since it removes the
pendence on additionalh8 coupling constants. It raises, how
ever, two important issues. First, is theh8 heavy enough tha
removing it is appropriate? The answer depends on the n
ber of light sea quarks,N, and the number of colors,Nc . For
the physical values of these parameters,N5Nc53, we know
from experiment thatMh8'1GeV. Since this is the scale a
which chiral perturbation theory breaks down, it is approp
ate to integrate out theh8 for these theories. We stress, how
ever, that our formulas are only valid when the dynami
quarks are light enough that all pseudo-Goldstone bos
including those composed only of sea quarks, satisfyM PGB

2

!Mh8
2 . For further discussion of this point, and of the lim

tations of the approach taken here, see Ref.@5#.
The second issue is more technical. How does one i

grate out theh8 in PQ theories? In this paper we follow Re
@4# and do this by hand, working only at tree level. This
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unsatisfactory, since, as we know from QCD,h8 loops to all
orders give contributions of the same order in chiral pert
bation theory. In other words, theh8 must be integrated ou
non-perturbatively. We return to this issue in a compan
paper, where we demonstrate that the approach adopted
is equivalent to integrating out theh8 non-perturbatively in
the PQ theory@9#.

This paper is organized as follows. In the following se
tion we recall the formalism of PQ chiral perturbatio
theory, and explain our calculational procedure. After p
senting a simple form for the neutral meson propagator
Sec. III, we give our results for charged pion properties
Sec. IV. We analyze these results in Sec. V, paying partic
attention to the convergence of the chiral expansion and
importance of non-analytic terms. In Sec. VI we explain ho
to extractL7 using PQ theories. We end with some conc
sions. Two appendices deal with technical issues in the
culation of the neutral meson propagator.

Some parts of this work have been reported previously
Ref. @2#.

II. THEORETICAL FRAMEWORK

We consider partially quenched theories with the follo
ing quark complement:N11N21N35N sea quarks,Ni each
of massmi ; two valence quarks with massesmA and mB ;
and two corresponding ghost quarks with massesmÃ5mA

andmB̃5mB . The ghosts are needed to cancel the deter
nant arising from the valence quark functional integral@10#.
In the chiral limit, this theory has anSU(N12u2)L ^ SU(N
12u2)R symmetry group@3#. If N15N25N351, and m1

5mu , m25md and m35ms , then the sea-quark sector
QCD. Generalizing to arbitrary numbersNi covers most
other theories that are likely to be simulated in an effort
shed light on QCD.

An important property of PQ theories, which follow
trivially from their definition, is that the sea-quark sect
decouples from the valence sector. To be precise, all co
lation functions composed of only sea-quark fields are id
tical to those in the unquenched sea-quark theory. Ther
no ‘‘back reaction’’ from the valence sector. The same res
must also hold for the low energy chiral Lagrangian descr
ing the PQ theory: correlators of pseudo-Goldstone mes
composed of sea quarks should be the same as in the c
Lagrangian describing the unquenched theory. This w
shown to be true in Ref.@3#. In practice, however, one migh
view all correlation functions that are calculated as be
those of valence quarks, and so it is more useful to reform
late this property as follows. When each of the valen
quarks is assigned a mass that is equal to one of the
quark masses, sea and valence quarks become indisting
able, and the cancellations of the ‘‘doubled’’ quark spec
against their ghost counterparts trivially render the theory
same as an unquenched theory containing only the ‘‘or
nal’’ sea quarks. That this is so was also shown in Ref.@3#,
and it has important consequences in the following.
3-2
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At low energies, the partially quenched chiral effective theory is expressed in terms of the fields@3#1

S5exp~2iF/ f !, ~2.1!

F5~Fab!5
1

A2
~pab!, a,bP$A,B,1,2, . . . ,N,Ã,B̃%, ~2.2!

F05strF/AN, ~2.3!

and the quantity

~2.4!
e

e
B

x

e

-

i
on

en
ing

-
hiral

t’’
ne

d
e

n-

ut
al

w-

e

t

e
u-

he-
be-
s
a

-

wherem is the quark mass matrix. In the following we us
the notationxA52mmA , x152mm1, etc. The constantsf
andm are unknown parameters. The fieldspab describe the
pseudo-Goldstone particles of the theory—we refer to th
generically as mesons even though some are fermionic.
cause of the anomaly, arbitrary functions of the fieldF0 ~the
super-h8) can appear in the Lagrangian.

The partially quenched chiral effective Lagrangian is e
panded in powers ofe2;M2/L2;p2/L2, whereM is a typi-
cal pseudoscalar meson mass,p the momentum, andL;1
GeV is the scale beyond which the theory breaks down.

The parts of the Euclidean Lagrangian contributing to m
son masses and decay constants at one-loop order are

LLO5
f 2

4
str~]mS]mS†!2

f 2

4
str~xS†1Sx!

1a]mF0]mF01m0
2F0

2 ~2.5!

LNLO,15L4 str~]mS]mS†!str~xS†1Sx!

1L5 str@]mS]mS†~xS†1Sx!#

2L6@str~xS†1Sx!#2

2L8 str~xS†xS†1SxSx! ~2.6!

LNLO,252L78@str~xS†2Sx!#21v1F0
2str~]mS]mS†!

1v2F0
2str~xS†1Sx!. ~2.7!

The coefficientsa, m0 , Li and v i are further unknown pa
rameters of the low energy theory.2 The Li depend, in gen-
eral, on the renormalization scale. The NLO Lagrangian
broken into two parts because flavor off-diagonal mes
receive contributions only fromLNL0,1.

1The normalization ofF0 is different from that used in Ref.@4#,
although it agrees whenN53 as in QCD.

2We revert to the notationa of Ref. @11#, rather than theaF used
in Ref. @4#.
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At this point we can make clear the relationship betwe
the partially quenched chiral Lagrangian and that describ
low energy QCD. The latter is obtained by settingN53, and
‘‘unquenching’’—i.e. assigningmA and mB values from
$m1 ,m2 ,m3%. It follows that the unknown coefficients inL
are, forN53, identical to those in the QCD chiral Lagrang
ian. This shows that these constants also govern the c
behavior of PQ extensions of QCD.

In QCD, one can take a further step and ‘‘integrate ou
theh8. This is appropriate since it is not a pseudo-Goldsto
boson, havingMh8

2 'm0
21O(m)'1 GeV2. Technically, the

matching between theories with and without theh8 is non-
perturbative, since loops involving theh8 are not suppresse
by powers ofM2 or p2. Thus in the standard approach on
simply writes down the Lagrangian without theh8, and it
has the same form as Eqs.~2.5!–~2.7!, except thatF is trace-
less. It follows thata, m0 and thev i are irrelevant, and the
only NLO coefficients are theLi . It is in fact in this theory
that theLi—the Gasser-Leutwyler coefficients—are conve
tionally defined.

In previous work on PQQCD, the step of integrating o
the h8 has been done by hand, i.e. at the level of individu
diagrams rather than the Lagrangian@4#. We summarize the
procedure here—details will become apparent in the follo
ing section.

Loop diagrams involving theh8 are dropped, since thes
lead to shifts in the parametersLi which are automatically
included if we use theLi from the QCD Lagrangian withou
the h8.

Couplings special to theh8, such as thev i in Eq. ~2.7!,
are treated as small, ofO(e2), and thus appear only at tre
level. The justification for this treatment is that these co
plings are suppressed by powers of 1/Nc , in this case 1/Nc

2 .
On the other hand, the parameterm0

2 is treated non-
perturbatively since it is known to be;L2, despite the fact
that it is proportional to 1/Nc . In particular, we treatM2/m0

2

as O(e2) ~with M, as above, a typical meson mass!. For
convenience, we also treata non-perturbatively.

While this procedure may be accurate enough for p
nomenological purposes, it is theoretically unsatisfactory
cause theh8 should be integrated out non-perturbatively. A
noted in the introduction, we will address this concern in
separate paper@9#. In particular, we will argue that the pro
3-3
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STEPHEN SHARPE AND NOAM SHORESH PHYSICAL REVIEW D62 094503
cedure adopted here in fact leads to results that are equ
lent to those obtained from integrating out theh8 non-
perturbatively.

We close this section by deriving a result needed in S
VI. We claimed above that discardingh8 loops allows us to
write our results in terms of the standard GL coefficients,
those in an effective Lagrangian without theh8. This is not
quite correct. Tree diagrams involving an intermediateh8,
which we keep, lead to a shift inL7 proportional toM2/m0

2.
Thus we are not using the conventionalL7, but rather that
defined in the effective theory containing theh8, which we
denoteL78 @as anticipated in Eq.~2.7!#. In order to express
our results in terms of conventional parameters, we nee
relateL78 to L7 within the approximations of our procedure

To determine this relation we need consider only the s
quark sector, and thus work with the conventional~un-
quenched! chiral Lagrangian. Theh8 field in this theory is
the restriction to the sea sector of the ‘‘super-h8’’ field F0.
To make theh8 dependence explicit, we decomposeS into
pseudo-Goldstone andh8 parts:

S5UexpS 2iF0

fAN
D ; UPSU~N!, ~2.8!

and substitute into the chiral Lagrangian. The result is
original form withS→U andF0→0, i.e. the standard QCD
chiral Lagrangian, plus the following terms:

LF0
5c1F01c2F0

21c3~]F0!21O~F0
3!, ~2.9!

c15 i f tr~xU†2xU !/~2AN!1O~x2!,
~2.10!

c25m0
21O~x!, ~2.11!

c3511a1O~x!. ~2.12!

Only the leading order terms in the chiral expansion of
coefficients are shown, since higher order terms give con
butions to the conventional chiral Lagrangian of orderse6

and higher, too high to effect the matching of the GL co
ficients which appear at ordere4. For the same reason, th
(]F0)2 term can be dropped. Keeping theh8 in tree graphs
amounts to doing the functional integral overF0 keeping
only linear and quadratic terms. The result is a contribut
to the conventional chiral Lagrangian of ordere4 with the
same form as theL7 term:

2
f 2

16Nm0
2 @ tr~xU2xU†!#2

„11O~x!…. ~2.13!

Thus we find, within our approximations, the relation

L75L782
f 2

16Nm0
2 . ~2.14!
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III. CALCULATION

ExpandingLLO to quadratic order, we obtain the meso
propagators. For ‘‘charged’’ mesons~i.e., flavor off-diagonal
states! these are

Gab
C ~p![E d4xe2 ip•x^pab~x!pba~0!&

5
eb

p21~xa1xb!/2
~aÞb!, ~3.1!

where the signature vector is

ea5H 1 aP$A,B,1,2,3, . . . ,N%

21 aP$Ã,B̃%.
~3.2!

The propagators for ‘‘neutral’’~flavor-diagonal! mesons in-
clude the contributions of the super-h8 interactions. A gen-
eral expression has been given in Ref.@3#, but we find it
convenient to use an alternative form. The propagator
matrix acting on the space of neutral meson fields,paa , a
51,N14. In Appendix A we show that

Gab
N [E d4xe2 ip•x^paa~x!pbb~0!&

5
eadab

p21xa

2
~m0

21ap2!/N

~p21xa!~p21xb!

3
~p21x1!~p21x2!~p21x3!

~11a!~p21Mp0

2 !~p21Mh
2 !~p21Mh8

2
!
.

~3.3!

Here thep0 , h andh8 are neutral mesons in the sea-qua
sector. ForN53 they are the usual neutral mesons of QC
for N.3 they are the appropriate generalizations, as
plained in the Appendix. Their masses are functions of
sea-quark masses, and of theNi , as given explicitly in
Eqs.~A19!–~A21!.

The neutral propagator shows explicitly the unphysi
nature of the PQ theory. For example, ifa5b5A, the sec-
ond term has a double-pole atp252xA . These double-poles
are absent, however, in the physical, sea-quark, sector.
was shown in Ref.@3#, but is particularly transparent with
our result. For example ifa5b51 ~or equivalently ifa5b
5A and xA5x1), then the (p21x1) in the numerator re-
duces the double-pole to a single-pole.

For calculations, it is preferable to rewrite the propaga
as a sum of~single or double! poles. For simplicity, we dis-
cuss the case whenaÞb andxaÞxb , for thenGab

N has only
single poles. For uniformity of notation, we introduce th
definitions

xp5Mp0

2 , xh5Mh
2 , xh85Mh8

2 ~3.4!

in terms of which
3-4
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Gab
N 52

1

N (
x5a,b,p0 ,h,h8

Rx

p21xx
~aÞb!, ~3.5!

Rx5

~m0
22axx! )

i 51,3
~x i2xx!

~11a!)
yÞx

~xy2xx!

, ~3.6!

wherex and y run overa,b,p,h,h8. The degenerate limi
xa5xb or a5b, which, in general, has double poles
straightforward to obtain.

At this point we are in a position to integrate out theh8
by hand, bearing in mind that this propagator appears
loops. First, as discussed above, we drop theh8 pole. Sec-
ond, we expand the residues of the remaining poles in p
ers ofxx /m0

2, xÞh8, and drop all but the leading term. Th
is justified since we use the neutral propagator in one-l
diagrams, which already give NLO contributions. The on
exception is in our discussion ofL7 in Sec. VI, where the
neutral propagator appears at tree level. With these chan
the residues become

Rx5

)
i 51,3

~x i2xx!

)
y5a,b,p,h

yÞx

~xy2xx!

. ~3.7!

Note that bothm0
2 and a disappear from the neutral propa

gator.

IV. NLO RESULTS

In this section we calculate the properties of a mes
composed of two valence quarks to NLO. We use dim
sional regularization, and subtract the poles following
conventions of Ref.@12#.

Its mass,MAB , is obtained from the diagrams of Fig. 2
We find

MAB
2 5

xA1xB

2
~11d tree

M 1d loop
M ! ~4.1!

d tree
M 5

8N

f 2
~2L62L4!x̄1

4

f 2
~2L82L5!~xA1xB! ~4.2!

FIG. 2. Diagrams contributing toMAB . The letters next to the
lines denote the flavor indices of the propagating mesons. ‘‘V
stands for valence-valence meson withV5A,B. ‘‘LO’’ and
‘‘NLO’’ describe the order of the vertex that makes the diagra
contribute at 1 loop.
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d loop
M 5

1

16f 2p2N
$RAxAlogxA1RBxBlogxB1Rpxplogxp

1Rhxhlogxh%. ~4.3!

Here x̄ is the average sea-quark mass,

x̄5
1

N (
i 51,3

Nix i , ~4.4!

and the residues are defined in Eq.~3.7!. For concreteness we
quote two explicit examples

RA5
~xA2x1!~xA2x2!~xA2x3!

~xA2xB!~xA2xp!~xA2xh!
,

Rp5
~xp2x1!~xp2x2!~xp2x3!

~xp2xA!~xp2xB!~xp2xh!
.

RB is obtained fromRA by interchangingA andB, andRh is
obtained fromRp by interchangingp andh.

The renormalization scale is implicit in the logarithms a
the Li . Using the result

(
x5A,B,p,h

xxRx5~xA1xB2x̄ !1O~x2/m0
2! ~4.5!

we see that a change in renormalization scale can be
sorbed by shifting theLi . We have checked~for N53! that
the scale dependence of theLi in QCD does renderMAB

2

independent of the renormalization scale.
To determine the meson decay constant,f AB , the axial

current j 5AB
m is calculated to NLO, and then we evaluate t

matrix element

^0u j 5AB
m upAB~p!&5 iA2 f AB pm, ~4.6!

using the diagrams of Fig. 3. The result is

f AB5 f ~11d tree
f 1dVS loop

f 1dVV loop
f ! ~4.7!

d tree
f 5

4N

f 2
x̄L41

2

f 2
~xA1xB!L5 ~4.8!

’

FIG. 3. Diagrams contributing tof AB . The wavy line represents
the insertion of the axial current operatorj 5AB

m (p). ‘‘VS’’ stands for
valence-sea mesons withV5A,B andS51,2,3.
3-5
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dVS loop
f 52 (

i 51,3
Ni

1

16p2f 2

xA1x i

8

3 logS xA1x i

2 D1~A↔B! ~4.9!

dVV loop
f 5

1

4N

1

16p2f 2 H 2DA2DB1
log~xA /xB!

~xA2xB!

3@xADA1xBDB1~xA2xB!2#

1S xpRp~xB2xA!F log~xp /xA!

xA2xp

2
log~xp /xB!

xB2xp
G1~p↔h! D J ~4.10!

where

DA5

)
i 51,3

~x i2xA!

~xp2xA!~xh2xA!
, ~4.11!

and DB obtained by (A↔B), are the coefficients of the
double poles in the neutral propagators. It is straightforw
to see that the scale dependence can be absorbed by sh
L4 andL5, and we have checked that these shifts are con
tent with standard results forN53.

As noted in the introduction, our formulas can be used
extract the GL coefficients by fitting to results from simul
tions. PQ simulations allow one to vary the valence and s
quark masses independently, and thus to separately d
mine L426 and L8. In fact, since the NLO analytic terms
Eqs. ~4.2! and ~4.8!, depend on the quark masses on
through the combinationsxA1xB andx̄, one need only con-
sider degenerate sea quarks.3 Indeed, to extract 2L82L5, the
combination which determines whethermu50, it is suffi-
cient to use a single sea quark mass~as long as it is light
enough that the formulas apply!, and vary the valence quar
masses. By contrast, with unquenched simulations,
would have to use non-degenerate sea quarks to separ
determine all fourL ’s.

The most likely practical applications of these results
for simulations done with 2 rather than 3 types of nondeg
erate sea quarks. For QCD this would correspond to the l
of exact isospin symmetry. The results for this case can
obtained from those given above by carefully taking the lim
x2→x1. When two types of quark are degenerate, one of
neutral sea-quark eigenstates becomes an exact flavor
singlet, and we choose this to be the pion. Thus we h

3Note that the NLO analytic dependence ofMAB
2 is not the most

general quadratic term, symmetric underA↔B, and vanishing
whenxA5xB50. Such a form would contain a term proportion
to (xA2xB)2, which is in fact forbidden by chiral symmetry.
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xp5x15x2. The remaining neutral state has massxh5x1

1x32x̄. In this limit, the residues simplify, e.g.

RA→ ~xA2x1!~xA2x3!

~xA2xB!~xA2xh!
~4.12!

Rp→0 ~4.13!

Rh→ ~xh2x1!~xh2x3!

~xh2xA!~xh2xB!
~4.14!

with a similar cancellation in theDA,B . With these changes
the formulas given above still hold.

We have checked our results in two ways. First, if we ta
all sea quarks to be degenerate, we obtain the result
Ref. @4#.4 Second, we can consider the unquenched limit.
choosingxA andxB to be equal to combinations ofx123 we
obtain the correct one-loop form for the masses of thep1,
K1 andK0.

The residuesRx andDx are singular when pairs of thex ’s
become degenerate, e.g.xA→xB andxA→xp . As expected,
however, these singularities cancel in the full expressions
MAB and f AB , which are analytic functions of the quar
masses except in the massless limit.

In Ref. @4#, it was emphasized that the one-loop corre
tions can diverge when the valence-quark masses are se
zero at fixed sea-quark mass, leading to a breakdown of
ral perturbation theory. This discussion was based on
results for degenerate sea quarks, and we can now gener
it to non-degenerate sea quarks. For the meson masses
possibly divergent contribution isd loop

M , and we see that this
only diverges if bothmA and mB vanish, in fixed ratio, but
not if only one vanishes. For the decay constant the patte
opposite:dVV loop

f diverges if one of the valence masses va
ishes, but not if both do in fixed ratio. This is the sam
pattern of divergences as for degenerate sea quarks; th
quark masses only influence the coefficients of the diverg
logxA and logxB terms. In the following section we discus
the practical implications of these divergences.

It was also noted in Ref.@4# that one can form combina
tions of the squared meson masses and decay constants
which the analytic correction terms (d tree) cancel. One thus
predicts these combinations in terms of the quark masses
the leading order chiral coefficientsm and f, up to NNLO
corrections. Studying these combinations in simulations
lows one to test the applicability of NLO chiral perturbatio
theory. What we want to point out here is that exactly t
same quantities can be used for non-degenerate sea qu
the Li still cancel. We do not, however, give the explic
expressions since they are lengthy and unilluminating.

Finally, we discuss to what extent our formulas can
applied to lattice results obtained at non-zero lattice spac
For definiteness, we first consider a calculation using Wils

4Except for the following typos in Ref.@4#, pointed out by Jochen
Heitger, Rainer Sommer and Hartmut Wittig: in Eqs.~18!, ~19! and
~20! a4 should be replaced bya4/2.
3-6
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PHYSICAL RESULTS FROM UNPHYSICAL SIMULATIONS PHYSICAL REVIEW D62 094503
fermions, in which we work at a fixed bare coupling a
vary the bare valence and sea quark masses. Meson pr
ties are of course calculated in lattice units, i.e. we obt
Mpa and f pa.

There are two effects of working at a non-zero latti
spacing. The first is that chiral symmetry, upon which o
calculation is based, is broken explicitly. This symme
breaking can, however, be incorporated into the chiral
grangian framework, as shown in Ref.@13#. The result is that
all effects of the explicit symmetry breaking are ofO(a),
except for the additive renormalization of the quark mass
Because of this, our formulas are valid, up to corrections
O(a), as long as one uses so-called vector or axial W
identity quark masses.

Note that the corrections ofO(a) cannot be incorporated
into our formulas by simply introducinga dependence into
the parameters of the chiral Lagrangian parameters,f, m and
theLi . There are additional unknown constants which en

The second effect is that the lattice spacing itself depe
on the quark masses, at fixed bare coupling. This introdu
an additional mass dependence into quantities expresse
lattice units. We note, however, that the mass dependenc
a is a discretization effect ofO(am) induced by the explicit
chiral symmetry breaking @14#. Indeed, for non-
perturbatively on-shell-improved Wilson fermions one c
calculate this dependence, with the result

a~m!5a~m50!@12c am̄1•••#, c5
g bg~g!

2bLAT~g!
,

~4.15!

wherem̄ is the average sea-quark mass,bg(g)}g21O(g4)
is an improvement coefficient introduced in Ref.@14#, and
bLAT52dg/d ln a}g31O(g5) is the latticeb function. Note
that this O(a) effect can be absorbed by shifting the G
coefficients as follows:

L4,6→L4,62
ca f2

8Nm
. ~4.16!

Alternatively, one could adjust the bare coupling as
quark masses are varied so as to keep the lattice spa
fixed.

In summary, our formulas are approximately valid f
meson properties expressed in lattice units, with the er
being of O(a). Some, but not all, of these discretizatio
errors can be absorbed intoa dependence of the paramete
of the chiral Lagrangian. With staggered or overlap fermio
the errors would instead be ofO(a2). Since discretization
errors can still be substantial at present lattice spacing
may be better to extrapolate first toa50, and then fit to the
predicted forms.

V. BEHAVIOR OF THE CHIRAL EXPANSION

In the framework of chiral perturbation theory~regardless
of quenching! one assumes that for any quantity calculated
a given order in the chiral expansion, higher order terms
smaller. Once the unknown couplings and parameters of
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theory are determined~e.g. by experiment, or by fitting to
lattice data! the consistency of the computation can
checked numerically. This is the main purpose of the curr
section.

We can make this check because, using experime
data, we have reasonable estimates for the actual value
some of the Gasser-Leutwyler coefficients. Thus we can
our results to predict the meson masses and decay cons
in PQ simulations. Of course, these predictions are appr
mate because we only know theLi approximately—this is
where the lattice results themselves come in—but they g
us a reasonable idea of how the chiral expansion behav

We consider QCD with exact isospin symmetry, i.e.N1
5N25N351 and m15m25mu and m35ms . The meson
masses and decay constants then depend on the seven p
eters f, xu , xs , L426 and L8. We want to choose thes
parameters so that the four charged meson quantitiesMp ,
MK , f p and f K take their experimental values. In orde
to match the number of parameters and observables,
take as starting values the GL coefficients quoted
Ref. @12#. These are based on experimental resu
@L5(Mh)'2.331023, L8(Mh)'1.231023# and the large
Nc limit @L4(Mh)'L6(Mh)'0#. We then take our four free
parameters to bef, xu , xs and the scale,LL , at which Li
take the values just quoted. In effect, this moves us thro
the space ofLi on a particular path, which, whenLL
'Mh , is consistent with our knowledge about theLi . We
claim no fundamental basis for this path—we use it
simplicity. It allows us to determine the dimensionless qua
tities f /LL , xu / f 2 and xs / f 2 by fitting the ratios
Mp / f K , MK / f K and f K / f p , and then to determineLL by
requiring, say, Mp5140 MeV. We find LL5Mh(1
20.0021)~usingMh5547 MeV!, so that the fittedLi ’s are,
in fact, close to the inputs. The other outputs aref 585 MeV,
xu /xs50.044 andxs5(673 MeV)2.

We stress that we are not claiming that we have foun
unique set of parameters. There is a region in the space o
Li which can describe the experimental observables, and
which it turns out that the chiral expansion is under reas
able control. We have picked, somewhat arbitrarily, o
point in this region.

We can now explore the behavior of the chiral expans
as a function of the four quantities

S xA

xs
,
xB

xs
,
x1

xs
,
x3

xs
D . ~5.1!

We have chosen to normalize the various quark masses
tive to the physical strange quark mass, so that a ratio
unity represents the outer limit of where one would exp
chiral perturbation theory to be reliable. We consider tw
types of two-dimensional cross section of the parame
space: (y,y,x,1) and (y,1,x,1). In both casesy corresponds
to a valence mass whilex is proportional to a sea quark mas
We name these cross sections the ‘‘p-plane’’ and the
‘‘ K-plane’’ because the unquenched liney5x in the former
describes a pion-like meson made up of two identical lig
quarks, whereas, in the latter,y5x corresponds to a kaon
like meson.
3-7
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We examine the relative size of the NLO contributions
plotting

~MAB
2 !NLO /~MAB

2 !LO5~d tree
M 1d loop

M ![dM ~5.2!

and

~ f AB!NLO /~ f AB!LO5d tree
f 1dVS loop

f 1dVV loop
f [d f ~5.3!

@see Eqs.~4.1!, ~4.7!#. In each plane, these functions are plo
ted along rays emerging from the origin at ang
15°, 30°, 45°, 60° and 75° with respect to thex-axis, con-
fined to the unit square~Fig. 4!. The 45° line corresponds t
unquenched theories, the other lines to PQ theories.
plots are shown in Figs. 5–8. We also show a contour plo
d f in the K-plane in Fig. 9.

The first conclusion that can be drawn from these figu
is that chiral perturbation theory for QCD to one-loop ord
is reasonably convergent throughout the PQ region defi
by xx,xs , x5A,B,1,3. With our parameters, the least co
vergent quantity isf K . We also note that, generally spea
ing, the expansion is better behaved when one increase
masses along the lines at small angles. In other words,
expansion may be more reliable when valence masses
smaller than sea-quark masses, andvice versa. This is good
news for simulations, since pushing to small valence qu
masses is relatively cheap.

Of course, as noted in the previous section, the vale
quark masses cannot be pushed too low at fixed sea ma
At some point the correctionsdM ~in thep-plane! andd f ~in
the K-plane! diverge. This is not apparent, however, fro
Fig. 9. To observe the divergence we show in Fig. 10
region close to thex-axis, which does reveal the expecte
features. Though of theoretical interest, it seems that
breakdown of the chiral expansion due to enhanced ch
logarithms occurs only in a tiny region of parameter spa
and is therefore of little or no practical significance.

Our final comment concerns the importance of includ
the non-analytic terms in fits to PQ data. The tree level c

FIG. 4. The dashed lines are rays in thep-plane orK-plane
along whichd f anddM are plotted in Figs. 5–8.
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tributions alone would have produced only straight lines
Figs. 5–8. The curvature seen in the graphs is due to
logarithms originating in loop diagrams. An attempt
model data collected in the heavy quark mass region w
only the tree level terms will clearly lead to a significa
systematic errors in the extrapolations to QCD values.

FIG. 5. d f in the p-plane, (y,y,x,1), is plotted along rays of
angleu with respect to thex-axis~see Fig. 4!. The values of theta in
degrees are indicated next to the corresponding curves. The p
that corresponds to the ‘‘physical’’ pion (xu ,xu ,xu ,xs) is labeled
‘‘QCD.’’

FIG. 6. Plots ofd f in the K-plane.
3-8
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VI. DETERMINING L 7

As noted above, the GL coefficientsL4 , L5 , L6 and L8
can be obtained using PQ simulations with degenerate
quarks. Simulations with non-degenerate sea quarks are
ful but not essential. In this section we consider the ot
coefficient which enters into the NLO expressions for t
physical meson masses, namelyL7. This contributes only to
flavor-diagonal mesons, i.e. theh andp0 in QCD. Since the
contribution is proportional to quark mass differences,
largest effect is on theh mass. This is conveniently isolate
using the violation of the mesonic Gell-Mann–Okubo re
tion @12#

FIG. 8. Plots ofdM in the K-plane.

FIG. 7. Plots ofdM in the p-plane.
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4mK
2 2mp

2 23mh
2

5
8

f 2

4~mK
2 2mp

2 !2

3
~L526L8212L7!

1
@3mh

4 log~mh
2 !2mp

4 log~mp
2 !24mK

4 log~mK
2 !#

16p2f 2 .

~6.1!

Here we have given the result in the isospin-symmetric lim
i.e. with two degenerate quarks of massm̄5(mu1md)/2,
and a single strange quark.5

Thus one method for determiningL7 is to calculatemh ,
mK andmp in unquenched simulations with non-degener
sea quarks and fit to the result in Eq.~6.1!. In this section we
show how one can obtainL7 using degenerate sea quarks
taking advantage of PQ simulations.

A clue on how to proceed is provided by the fact that t
h propagator contains contractions in which the quark pro
gators are disconnected~‘‘hairpin’’ contractions!. Close to
the degenerate limit, these contractions are proportiona
(ms2m̄)2, due to cancellations between light and stran
quark propagators. Comparing to Eq.~6.1!, and noting that
mK

2 2mp
2 }ms2m̄, it is plausible that theL7 contribution is

related to the disconnected contraction, and that by study
this contraction in the PQ theory one can determineL7. This
is indeed what we find.

First, we recall the general form of the tree level prop
gators. In Sec. III we showed that the propagators for fla
off-diagonal mesons,Gab

C , have an ordinary single pole a
the meson mass@Eq. ~3.1!#, while Gab

N , the ‘‘neutral’’ or
flavor-diagonal propagators, have a double pole at the s
mass if a5b or ma5mb @Eq. ~3.3!#. As we show below,
these general forms prevail also at NLO:

GAB
C ~p!umA5mB

5
Z A

p21MAA
2

1non-pole, ~6.2!

GAB
N ~p!umA5mB

5
ZAD

~p21MAA
2 !2

1single-pole

1non-pole, ~6.3!

GAA
N ~p!5GAB

N ~p!umA5mB
1GAB

C umA5mB

5
ZAD

~p21MAA
2 !2

1single-pole

1non-pole. ~6.4!

5Note that the one-loop expressions for the dependence ofmK and
mp on quark masses can be obtained from the general results a
by setting N15N25N351, m25m1, and choosing the valenc
masses to be equal to the appropriate sea quark masses.
3-9
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STEPHEN SHARPE AND NOAM SHORESH PHYSICAL REVIEW D62 094503
HereMAA is a shorthand forMAB (mA5mB), and its NLO
expression is given in Eq.~4.1!. Note that these equations a
valid only if A andB are partially quenched rather than u
quenched~i.e. mAÞmi), and apply only close to the poles
p25MAA

2 . In particular, the neutral propagators have ad
tional poles, at the masses of the neutral sea-quark mes
These are not of interest here.

The quantity we propose to use to determineL7 is D, the
~suitably normalized! coefficient of the double pole in th
neutral propagators. An equivalent definition in terms of l
tice observables is

E d3x^pAA~ t,xW !pBB~0!&

E d3x^pAB~ t,xW !pBA~0!&
U

mA5mB

→
t→ `

Dt

2MAA
.

~6.5!

Here the flavor indices are chosen to select the ‘‘disc
nected’’ ~numerator! and ‘‘connected’’ ~denominator! con-
tractions contributing to thepAA propagator.6 At large times,
the denominator is dominated by the single-pole contribut
of the pseudo-Goldstone boson of massMAA . Only double-
pole contributions to the numerator lead to the ratio grow
linearly with t, andD measures their size. We note also th
our ratio is the standard one used in studies of artifacts in
quenched theory.

6This choice simplifies the numerical calculation, but is not n
essary. It follows from Eq.~6.4! that the numerator could be re

placed by^pAA(t,pW 50)pAA(0)&, i.e. the temporal Fourier trans
form of GAA

N . This changes thet-independent part of the ratio bu
leavesD unchanged.

FIG. 9. Contours ofdK
f . The values ofdK

f range from,0.275 in
the black region on the right up to values.0.5 in the white region.
There is a difference of 0.025 between the values ofdK

f on adjacent
contours.
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We claim thatD is a ‘‘physical’’ quantity in the PQ
theory, on a par with the valence meson masses suc
MAA . In support of this claim, we note thatD is determined
from the long distance properties of correlators, and is in
pendent of the choice of interpolating fields~because it is
determined by a ratio!. In particular, we claim thatD can be
calculated using the effective low-energy theory with t
same level of reliability as the meson masses.7 We stress that
the coefficients of the single poles, unlike the double pole,
depend on the choice of interpolating fields and are not qu
tities which can be predicted using chiral perturbation theo

In PQChPT, we obtainD by calculating the propagator
Gab

C and Gab
N at NLO and using Eqs.~6.2!–~6.4!. The tree

level result forD can be read off from Eqs.~3.1! and ~3.3!

D52
1

N

~x12xA!~x22xA!~x32xA!

~xp2xA!~xh2xA!
. ~6.6!

Note that the residue of the double-pole vanishes whene
the valence quark mass equals any of the sea quark ma
This must be the case since one is then considering a
relator which could be constructed entirely from sea quar
and thus is physical, and cannot contain double poles.

The dependence ofD on L7 begins at one-loop order. W
have calculatedD to this order only for the case of degene
ate sea quarks (m15m25m3). Details are given in Appen-
dix B. The result is

-
7Proving this claim rigorously seems difficult, given the lack of

Hamiltonian formulation of the PQ theory. Our point, however,
that the calculation ofD is as well controlled as that of meso
masses.

FIG. 10. Breakdown of the chiral expansion for small values
valence quark mass and a fixed sea quark mass. In the white re
the expansion breaks down as the NLO term in the expression
f K becomes greater than the LO term (dK

f .1). The following con-
tours mark changes of 0.1 indK

f , so that the darkest region corre
sponds todK

f ,0.4.
3-10
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D52
1

N
~MSS

2 2MAA
2 !2

16

f 2 S L782
f 2

16Nm0
2 1

L5

2ND
3~MSS

2 2MAA
2 !21

1

16p2f 2 S 1

2
@xS2xA#2logxSA

1xA
2 log~xA /xSA!1xS

2log~xS /xSA! D , ~6.7!

where we useS to denote the sea quark, andxSA5(xS
1xA)/2. The first term is the same as the tree-level res
with one-loop corrected meson mass-squareds repla
quark masses. The second term is the analytic term con
ing theL78 dependence. As advertised,L78 andm0

2 appear in
the appropriate combination to be combined into the st
dardL7 @Eq. ~2.14!#. The logarithmic terms, from wave func
tion renormalization and from loop diagrams, combine int
fairly simple form. One check on the result is that t
anomalous dimension ofL5 is such that it cancels the depe
dence on the choice of the scale in the logarithm~for N53,
where the anomalous dimension is known!. Another is that it
vanishes whenm15mA .

Thus, from the coefficient of the double pole, one c
extract the combination 2NL71L5. Combined with the re-
sults of the previous sections this allows a determination
L7.

VII. CONCLUSIONS

Partially quenched theories can play an important role
determining physical parameters of QCD. Our results sh
how one can use them to simplify the extrapolation to QC
and the determination of the GL parametersL428. In particu-
lar, it is sufficient, though not necessary, to use degene
sea quarks. One must, however, use three sea quarks.

Our approach relies on chiral perturbation theory at ne
to-leading order. An important issue is how light the s
quarks need to be for our formulas to be sufficiently ac
rate. A conservative approach is to work down to mas
where the NLO corrections themselves are 10% of the le
ing order result, so that the missing NNLO terms are v
small @15#. This requires working down tomsea'ms/8. An-
other approach is to look at our figures and see what m
range is required to observe the predicted curvature. To d
appears to require working down to at leastmsea'ms/4. In
the end, this issue can be resolved using simulations th
selves, including partially quenched simulations, to check
reliability of the NLO predictions.

This exercise will also shed light on the question
whether the physical strange quark mass is light enough
NLO chiral perturbation theory is applicable for QCD. Eve
if the strange quark turns out to be too heavy, the res
presented here still apply to the light-quark sector, if we
N52.

It is often observed that linear fits are adequate for
mass dependence of physical quantities in the rangemsea
5ms/22ms . Our results make clear, however, that exten
ing such linear fits to the chiral limit, i.e. leaving out th
curvature due to chiral logarithms, can lead to a signific
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error in the determination of physical parameters. This
most clearly illustrated by Fig. 6.

All the formulas we present are for infinite volume, an
thus apply for box sizes such thatMpL@1. As pion masses
decrease, this requires working in boxes of increasing s
This should not, however, be necessary. Chiral perturba
theory remains valid for finiteMpL, as long asLQCDL@1,
and can be used to calculate the volume dependenc
physical quantities. It would be interesting to do this for t
quantities we consider here.

Another interesting extension of our calculations is to
clude the effect of discretization errors within the chiral L
grangian itself, i.e. to use the appropriate Lagrangian for
lattice theory at non-zero lattice spacing. This would aid
the extrapolation to the continuum limit.

Finally, we comment on the theoretical status of o
methods. We use a Lagrangian containing theh8 ~or more
precisely the ‘‘super-h8,’’ F0), and our calculations rely on
assumptions about the size of its couplings. One can sh
however, that there is a limit in which our calculation
equivalent to that with theh8 integrated out non-
perturbatively@9#. In that limit ~essentiallym0

2→`) the as-
sumptions that we have made are valid. One might also
concerned about the theoretical foundation of the whole
culation: Is it justified to use chiral perturbation theory f
the unphysical PQ theory? We have also made so
progress on this issue. One can show that, in certain ca
derivatives of partially quenched quantities with respect
valence quark masses can be exactly related to derivative
unquenched quantities with respect to sea quark masses@9#.
Our NLO results are consistent with these exact relation
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APPENDIX A: NEUTRAL MESON PROPAGATOR
AT TREE LEVEL

Here we calculate the neutral meson propagator. Fr
LLO we find

GN
215G0

211V ~A1!

~G0
21!ab5~p21xa!dabea ~A2!

Vab5
m0

21ap2

N
eaeb . ~A3!

The full propagator is thus

GN5~G0
211V!215~11G0V!21G0 . ~A4!

BecauseV is an outer product, the combinationG0V is pro-
portional to a projection operator

A[
G0V

tr~G0V!
, A25A. ~A5!
3-11
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Thus for any functionf,

f ~A!2 f ~0!5A@ f ~1!2 f ~0!#, ~A6!

and so

~11G0V!215„11tr~G0V!A…21511AF 1

11tr~G0V!
21G

512
G0V

11tr~G0V!
. ~A7!

Inserting this in Eq.~A4!, we find

GN5G02
G0VG0

11tr~G0V!
, ~A8!

which reproduces the result of Ref.@3#.
The analytic structure of the propagator is not clear fr

this result. In particular, its diagonal elements@GN#aa appear
to contain double poles~from the two factors ofG0 in the
second term!. We know, however, that if we restrict our
selves to the physical sea-quark sector thenGN cannot con-
tain double poles. Thus there are cancellations hidden
Eq. ~A8! which we want to make explicit.

To do so we need to introduce the restriction of the va
ous matrices to the sea-sea sector. We denote these re
tions by overbars. We first observe that the previous step
through identically for the restricted matrices

~GN
21̄!215Ḡ02

Ḡ0 V̄Ḡ0

11tr~Ḡ0V̄!
. ~A9!

Comparing this with the restriction of Eq.~A8!,

ḠN5Ḡ02
Ḡ0 V̄ Ḡ0

11tr~G0V!
; ~A10!

and using the result

tr~G0V!5tr~Ḡ0V̄! ~A11!

~which follows because the valence and ghost contributi
cancel!, we find

ḠN5~GN
21̄!21. ~A12!

In other words, restriction to the sea-quark sector commu
with inversion. This result is non-trivial becauseGN

21 is not
block diagonal—it encapsulates the lack of feedback fr
the valence to the sea-quark sector.

Returning to the simplification of the propagator, we no
that

det@ḠN
21#/det@Ḡ0

21#5det@Ḡ0 ḠN
21#5det@11tr~Ḡ0V̄!Ā#

5exp trln@11tr~Ḡ0V̄!Ā#

5exp ln@11tr~Ḡ0V̄!#

511tr~Ḡ0V̄!. ~A13!
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Thus the factor multiplying the double pole in Eq.~A8! can
be rewritten as

@11tr~G0V!#215det@Ḡ0
21#/det@ḠN

21#. ~A14!

The determinant in the numerator is simple

det@Ḡ0
21#5~p21x1!N1~p21x2!N2~p21x3!N3.

~A15!

Our final task is to evaluate the determinant in the deno
nator.

To do this, we note thatḠN
215GN

21̄ is block diagonal.
The exactSU(N1)3SU(N2)3SU(N3) flavor symmetry im-
plies that there are, for each sea-quark typei, Ni21 flavor
non-singlet neutral pions which are eigenvectors ofḠN

21 .

SinceV̄ projects onto flavor singlet states, the correspond
eigenvalues are those ofḠ0

21, namely (p21x i). The non-

trivial part of ḠN
21 , to which V does contribute, is thus a

333 block. In QCD, withNi51, this is the entire matrix,
and describes thep0 , h and h8. For convenience, we us
these names for generalNi as well. We denote the restrictio
of matrices to this subspace with double bars. A straightf
ward exercise shows that

GN
2 1̄̄5SRTDRS, ~A16!

S5diag~1,1,A11a!, ~A17!

D5diag~p21xp ,p21xh ,p21xh8!, ~A18!

with R a rotation matrix.S rescales the singlet field so that
has a canonical kinetic term. The meson mass-squared
given, up to corrections of sizex2/m0

2, by

xp1xh5x11x21x32x̄ ~A19!

xpxh5x1x2x3x21̄ ~A20!

xh85~m0
21x̄ !/~11a! ~A21!

where

x̄5
1

N (
i 51,3

Nix i , x21̄5
1

N (
i 51,3

Nix i
21 , ~A22!

are averages over the sea sector.
Using these results we find that

det@ḠN
21#5~p21x1!N121~p21x2!N221~p21x3!N321~p2

1xp!~p21xh!~p21xh8!~11a!. ~A23!
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Inserting this and Eq.~A15! into Eqs.~A14! and ~A8! gives
the result quoted in the main text, Eq.~3.3!. It is straightfor-
ward to generalize this result to an arbitrary number of d
ferent sea-quark masses.

APPENDIX B: ONE-LOOP CALCULATION OF D
To extractD using Eqs.~6.4! and~6.2! we need the NLO

results for the charged and neutral propagators. We do
calculation only forN degenerate sea quarks, which we d
note using the labelS rather than 1,2,3.

The NLO calculation of the charged propagator was
scribed in Sec. IV, and the expression forMAA

2 can be ob-
tained using Eq.~4.1!. Here we also need the wave functio
renormalization factor, for which we find

ZA5F12
8

f 2 ~L4NxS1L5xA!

2
N

3

1

16p2f 2

xS1xA

2
logS xS1xA

2 D G . ~B1!

For the neutral propagator we need to generalize the ca
lation of Appendix A to NLO. The inverse propagator b
comes

GN
215G0

211V1S, ~B2!

whereS contains the NLO tree and one-loop contribution
The structure ofS is such that the method used to calcula
G21 in Sec. II does not apply, and we simply invert th
matrix by brute force.

For our purposes, it is sufficient to consider the restrict
of GN to the three-dimensional basis

~pAA ,h8,p ÃÃ!, h85
1

AN
(
i 51

N

p i i . ~B3!

This is because, first, we want only thepAA propagator and
so do not need to introduce an additional valence quark; a
second, because we use degenerate sea quarks so that t
no mixing of pAA with flavor non-singlet neutral sea-qua
mesons. The generalization to non-degenerate sea qu
which involves a larger basis of neutral states, is straight
ward in principle, but tedious in practice, and we have
carried it out.

The contributions toS fall into two classes: those that ar
common to the charged mesonsSC , and those that are spe
cial to the neutral mesonsSN . The former can be obtaine
from the results of Sec. IV, and we find

G0
211SC5diag~v,w,2v !, ~B4!

v5~p21MAA
2 !/ZA , ~B5!

w5~p21MSS
2 !/ZS . ~B6!

Here MSS
2 is the squared mass of flavor non-singlet mes

composed of sea quarks evaluated at NLO, andZS the cor-
09450
-

he
-

-

u-
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n
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re is

rks,
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s

responding wave function renormalization. Their expressi
can be obtained from those forMAA

2 andZA by the substitu-
tion xA→xS .

We now turn toSN . Because of the graded symmetry,
shares a particular matrix structure withV, and it is conve-
nient to make this explicit by the following definitions:

V1SN5S x ANy 2x

ANy Nz 2ANy

2x 2ANy x
D . ~B7!

The contributions to this matrix fromV are

xV5yV5zV5x05~m0
21ap2!/N. ~B8!

Thus we writex5x01dx, y5x01dy andz5x01dz.
The diagrams contributing toSN are of the general form

shown in Fig. 11. The tree level contributions come from t
two-meson vertices included inLNLO,2 @Eq. ~2.7!#. The v2

term acts as a subleading correction tom0
2. Since at LO

@Eq. ~6.6!#, D is independent ofm0
2, it follows that at NLOD

can at most depend on its leading value. Thusv2 contributes
only at NNLO. The other tree level diagram comes from t
L7 term which gives the following contributions:

d (1)x5
8

f 22L7xA
2 , d (1)y5

8

f 22L7xAxS ,

d (1)z5
8

f 22L7xS
2 . ~B9!

Figure 12 shows the quark line structure of the only on
loop graph involving the lowest order vertices which corr

FIG. 11. Diagrams contributing toSN . The letters next to the
lines denote the flavor indices of the propagating mesons. ‘‘L
and ‘‘NLO’’ describe the order of the vertex that makes the d
gram contribute at NLO.

FIG. 12. Each line in the diagram represents a single quark fi
This is the only loop diagram of the type that appears in Fig. 11
which the quark lines are disconnected.
3-13
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sponds to disconnected quark lines, and so does not con
ute toSC . The contribution toSN is

d (2)x5
1

16p2f 2

1

3
~p222xA!xAlogxA , ~B10!

d (2)y5
1

16p2f 2

1

3
~p22xA

2xS!
xA1xS

2
logS xA1xS

2 D , ~B11!

d (2)z5
1

16p2f 2

1

3
~p222xS!xSlogxS .

~B12!

Collecting these contributions we end up with

G215S v1x ANy 2x

ANy w1Nz 2ANy

2x 2ANy 2v1x
D . ~B13!

The relevant part of the inverse is
gy

09450
ib-
GAA5

1

v
2

1

v2

xw1N~xz2y2!

w1Nz
. ~B14!

The first term is the one-loop corrected single pole, while
second contains the expected double pole. Inserting this
sult into the definitions Eqs.~6.2! and ~6.4!, and using
Eqs.~B1! and~B5!, we can read off the required double-po
coefficient

D52ZAS xw1N~xz2y2!

w1Nz D U
p252M

AA
2

. ~B15!

Expanding in powers ofx we find

D'2ZAH w

N S 12
w

Nx0
D1~dx1dz22dy!J U

p252M
AA
2

.

~B16!

Note that (xVzV2yV
2)50, so that a possible contribution pro

portional to m0
2 cancels. Substituting and rearranging, w

find the answer Eq.~6.7!.
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