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Strong coupling constant from bottomonium fine structure
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From a fit to the experimental data on thé fine structure, the two-loop strong coupling constant is
extracted. For the B state the fitted value isvg(uq)=0.33+0.01 (exp):0.02 (th) at the scalg.;=1.8
+0.1 GeV, which corresponds to the QCD constarif) (2-loop)=338+30 MeV (n;=4) and ay(M>)
=0.119+0.002. For the P state the valuewg(u,)=0.40+0.02 (exp):-0.02 (th) at the scaleu,=1.02
+0.02 GeV is extracted, which is significantly larger than in the previous analysis, but about 30% smaller than
the value given by the standard perturbation theory. This val&.0)~0.40 can be obtained in the frame-
work of the background perturbation theory and appears to be compatible with the freezigfudf The
relativistic corrections tayg are found to be about 15%.

PACS numbss): 12.38.Lg, 11.10.Jj, 11.15.Bt

I INTRODUCTION In the present study of thePLand 2P bb states we shall
try to answer the following questions: What are the values of
The bottomonium spectrum is one of the richest amongy () for the 2P and the P states? Do the extracted values
all known mesons and its IeveIE were measured with highyf o (u) correspond to the existing experimental data on
precision[1]. These data abouib states have been inten- ay(M;) and A(")? How doesa(u) depend on the relativ-
sively studied in different theoretical approaches, in particuistic corrections to the wave functions in bottomonium? How
lar, to determine the QCD strong coupling constag(te) at  sensitive are the extracted values @f{ ) to the b quark
different energy scaleg from the level differencef2—10. pole mass and the parameters of the static interaction?
At present, however, there is no clear picture of which are
the exact values at¢(w) for thebb levels and how they are Il. PERTURBATIVE RADIATIVE CORRECTIONS
changing from the ground state to the excited ones. There are
several reasons for this.
First of all, there is no experimental information on the
7,(NS) masses and therefore,(x) cannot be directly de-

termined from thebb hyperfine splittings inSwave states.
Second, to describe the fine structure splittings inRhveave

It is well known that one cannot describe the fine structure
splittings in heavy quarkonia without taking into account the
second order radiative correctiofi$—7,10. In coordinate
space, perturbative static and spin-dependent potentials in
the modified minimal subtractionMS) renormalization

tates. diff " | din diff tth scheme were obtained in RefR,3]. From the potentials
states, diiferent energy scalaswere used in ditterent theo- given there one can immediately find the matrix elements of

retical analyseg4—7]. In Ref. [4] ay(u)=0.33 ('“:3_'25_ the spin-orbit and the tensor potentiats=(V «(r)), ¢
GeV) was taken for albb S and P-wave states, while in = (v_(r)). Below we give their expressions for a humber of

Ref. [5] u was chosen to be equal to thequark massu _ : . .
=m with either m=4.6 GeV orm=5.2 GeV. The fitted flavorsn;=4, valid for thebb system:

values ofa () were found to ber(m)=0.22-0.275] and ap= a(P1)+ a(PZ) , (1)
for the 2P stateag(n) appeared to be smaller than for the
1P state.

An important step to clarify this problem was taken in
Refs.[6,7] where the low-lying bottomonium states$,12S,
and 1P were investigated. It was observed there that the
scale u is a decreasing function of the principal quantum 2a§(,u) 25
numbern,u=2(na) ! wherea is a Coulomb-type radius. ag):—[<r3>(€|n
Therefore,u is found to be equal for theRand 1P states @)
and the valueg.=1.7 GeV,a4(1.7)=0.29, were determined
from the fine structure splittings ofy(1P). AlSO, as(1) IS 4ng for the perturbative part of the the tensor splitting
larger for excited states with a larger radius of the system,
thus indicating that for a bound state the characteristic scale co=cP+c?, 3)
w is determined by the size, but not by the momentum of the
system. One of our main goals here is to check this important 4 aln)
statement for the R state,y,(2P), which cannot be studied cf}):— G\t (r=3y,
in the framework of the approach developed in Rg8s7]. 3 m?

(rs),

)_ 2as(m)
ap = 2
m

Lad
m

+A +13 -3
— E(r nmr)|,
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Each of these potentials can be expressed through two gauge

4 25 7
Cg):§ 5 [<r3><glnﬁ+8) + E(r*”ln mr)} invariant vacuum correlatorsD(x) and Dq(x) (x
7m m W - WNZF07) [12-16;
de o r
Here the constam =3 y+ 5 =1.44508 anB={ yg+ 5 EZZJ de dx D(VA*+ )
— 0 0
=3.42342.
For our analysis it is convenient to introduce a linear com- o
bination of the matrix elements andc as was done in Ref. +ff dv Dy(Vro+v), 9
[10]: »=3c—a. Its perturbative parip is 0
242 dVNP
B el go 29 5 =—2f dVJ 1—— D(VA?+v?),
7p=5Cpmap=5Cp T A = T )
(10)
The factorf, in Eq. (5) can be found from Eq<2) and(4), dVNp
2
1 f dvf AN D(VN%+1P)
f4(nP)= 5[1.97834 (r 3= ({r2Inmr,pel. (6
+rf dv Dy({r?+v?), (11)
For the fine structure analysis it turns out to be very impor- 0
tant that the combination of matrix elements does not so that
depend on the energy scale Later, it will be also shown
that f, has the largest relativistic correctidabout 35% . ] 8\
compared to other matrix elements and depends weakly on yNP— { f dvj d)\[ —2+4 —| D(\\Z+1?)
the parameters of the static interaction and on the mass of the 2m?r | Jo 0 r
b quark. B
Here we give also the ratio of the perturbative matrix +3rJ dv Dy( JrZE4) b (12)
elementsap/cp=¢&p. In the Coulomb casé€one-gluon ex- 0

change &5 is equal to 3/2, but in the one-loop approximation
this ratio has a small negative correction:

Note that in the potentidll2) the interference of perturbative

and nonperturbative effects was not taken into account. From

Eqg. (12) one can find the general form of the asymptotic

&p(nP)= M: E —aS('u) a(r,m) . (7) behavior of the spin-orbit potential at large and small dis-
cp(nP) 2 T e tances
The functionf,(r,m) in Eq. (7) is defined by the expression NP 3
(6). We shall see later that the one-loop correctiogd P) Vis(r—0)= e Jot+51 ], (13
turns out to be very small£3%) and with the use of the
exp_ression(?) it is not possible to expla_in th(_e existing ex- whereJ, andJ; are the following constants:
perimental valuest.,(nP) (they are given in Sec. IV
Therefore it is of great importance to take into account the o %
nonperturbative contributions to the splittingsind c which Jo:fo dv D(v), J1= fo dv Dy(v). (14

are considered in the next section. We would like to note

here that significant corrections of higher orderé&g Eq.
(7), cannot be excluded, still, these corrections have not be
calculated until now.

IIl. NONPERTURBATIVE CONTRIBUTIONS

In addition to the perturbative terms, Eq®), (4), the
tensor and spin orbit splittings have in general nonperturba
tive contributionsa=ap+ayp, C=Cp+Cyp. The nonpertur-
bative part of the spin-orbit potenti®f{'s(r) can be defined

with the use of three potentials: the nonperturbative static

potentiale(r) and the so-called/; andV, potentials[11]

1

1 de
Vis(r) = —

dviP
= —+
2 dr

dr

dVvyP

~ar (8)

At large distances the main part of the spin-orbit potential
& bincides with the Thomas potential

[‘g(r—wo):— dv Ad)\ D(JAZ+1P),
2m? r
(15
with the string tensiorr defined as
o—zzf dvf dh D(YAZ+172). (16)
0 0

In the asymptotics of the potenti&l5) the contribution of

the correlatoD can be neglected becaudg(x), as well as

D(x), is exponentially decreasing at large distances.
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From Egs.(13) and(15) one can see that'5(r), defined m2
by Eg. (12), has differentr dependence at small and large Aas=ap(d) —as(q)~—as(d) — BZ - (q>mg),
distances: it is approaching the Thomas potential at large q°In(q*/A%)
distances and equal to a positive constant at small distances. (21)

The spin-orbit potential turns out to be constant at small

because in this region the nonperturbative static potentia‘iVQICh Is proportional thS.(q) and.to the backgrognd mass
. ; mg . It can be shown that in coordinate space the interference
£(r), given by the expressiof 3,14

potential, Vierr= — 2 [Aag(r)/r], is behaving almost lin-
; N e early.
e(r)zer d)\( 1——>f dv D(\,v) Also in lattice calculations of the potentiads(r), Vi(r),

0 r/Jo andV,(r) in the region 0.2 fmsr=1.0 fm[22,23 it was

r E found that the nonperturbative part of the potentig(r) is

+j Kd?\f dv Di(\,v), (17)  small(compatible with zerpwhile &’ andV;(r) turn out to

0 0 be practically constant beginning already at distancgs
~0.2 fm. (This valuer is close to the vacuum correlation
length T, determining the exponential behavior of the corr-
elatorsD andD, atr=T, [24,25). From these data one can
conclude that the nonperturbative spin-orbit potential coin-
cides with the Thomas interaction in the regioe 0.2 fm
and the same behavior can occur due to interference effects

The constants, andJ; were defined in Eq(14). Note that ~ at smaller distances.

such a behavior of the nonperturba‘[ive static potem(ab Therefore we adopt here the Thomas interaction at all
NCOI’]SITZ, was obtained in an approxima’[ion where the in_distances and the nonperturbative contribution to the Spin—
terference of the perturbative and nonperturbative contribuorbit splitting becomes

tions was neglected. However, as was shown in [REJ],

due to the interference the static potential has a universal
linear term

is proportional tor?

Ji
e(r)=r? Jot+ = . (18)

anp=— rh. (22)

om?
3 The nonperturbative contribution to the tensor splitting can

AViner=r Ag, Ag=—Ncay(r) o. (19 pe found from the vacuum field correlat@r,(x) [10,21]

which was measured in lattice QdR4,25 and was found

to be of exponential form. Then, as was shown in Refs.

Note that this potential is proportional to the strong coupling[lO 26,27

constantag and it is not small:Ao~0.60 already at the
point r=0.25 GeV 1=0.05 fm[at r=0.25 GeV ! ag(r) D.(0 D.(0

~0.22 because the QCD constany in coordinate space is Cnp= 1(0) <r2KO(r/Tg)>E LJ (Ty),
rather large Ag~0.6 GeV[17]]. This interference potential 3m2Tg 3m?

cannot be deduced from the expressi@) for (r).

A large nonperturbative contribution to the static potential
at small distances was also found in lattice calculatid’§
where an essential difference between the static potential on
the lattice and the three-loop perturbative potentet r whereT is the vacuum correlation length. Lattice QCD cal-
=0.2 fm) was found. The author suggested to parametrize itulations without dynamical fermions give,~0.2 fm and
as a linear termg™r, with very largec* ~(0.8—1.0 Ge\2. T4=~0.3 fm in the presence of dynamical fermions with four
The theoretical explanation of the appearance of such a lardtavors[24]; in Ref.[25] T, was found to be 40% smaller.
linear (or approximately linearpotential is still not given. In Refs.[24] the correlatoD,(0) in Eq. (23) was shown

The possibility of a correction of linear type to the static to be small: lattice calculations in quenched (SJUtheory
potential at short distances was also discussed in [R8f. give D,(0)/D(0)~% and in full QCD with four staggered
where it was noticed that due to the saturationfreezing  fermionsD,(0)/D(0)~0.1, whereD(x) is another vacuum
of the QCD coupling at small momen{d 9,20 (see also field correlator which mostly determines the confining poten-

1
J(Tg)ET—g<r2Ko(r/Tg)>, (23

Sec. V). tial. These two correlators at the poit= 0 can be expressed
through the vacuum gluonic condensétg (here the vacuum
@ 4 1 0 correlators are normalized as in Ref$2,14):
o 0= A~
B a0 g (2 m2)/A?] 2
D(O)+D1(0)=l—8 G,. (24

(mg is the background ma$21]) there is a correction to the
perturbative coupling constant(q) at relatively largeg (or ~ Therefore, the lattice estimate f@,(0)/D(0) is 0.1-0.3
smallr): and from the relatior{24) one obtains

094031-3



A. M. BADALIAN AND B. L. G. BAKKER PHYSICAL REVIEW D 62094031

2 w2 TMA
TS()GZSDl(O)Sﬁ G,. (25 ag(pu)= 2_f4 (32

Our calculations give the following typical values for the For a chosen interaction and quark mamssA(nP) and
matrix elements)(T,): for the 1P stateJ(T;)~0.17 GeV'!  f,(nP) are known numbers and one can immediately deter-
and for the P stateJ(T,)~0.20 GeV !, iftheb quark mass mine a(x). In generalA(nP)= NexpT anp Will be larger
m~4.8 GeV andly~0.2-0.3 fm is taken. Then, if the value than for the static linear potentiaé( may be even positive
of the gluonic condensat®,=0.05+0.02 GeVf [7] is used, and therefore for the static linear potential the difference

one finds the estimate in quenched QCD A(nP), as well as the extracted value of the strong coupling
constant, has a minimal value.
Cnp=0.03:0.01 MeV. (26) The extraction ofeg(u) from the condition(32), in gen-

) . eral, extremely simplifies the fit and also puts strong restric-
In full QCD an even smaller value is found. This value of ;s on the possible choice of the normalization sqale

Cnp is much less than boffayg|, Eq.(7), and the experimen-  j,5t this condition was exploited in RéfL0] to determine
tal errors. Therefore it can be neglected in the tensor sphttmgys(’u) for the 1P state in charmonium. In charmonium
i _3c i ) : \
© and also in7yp=3Cnp—ayp, i€, We take herenye Nexp™ 24 MeV and the typical value ck~7-8 MeV is not
=anp- small, so the uncertainty in the extracted valueagfu) is
about 10%.

IV. FITTING CONDITIONS In bottomonium the typical values ¢&yp| are found to
be smaller:|ayp(1P)|=2.6+0.2 MeV (see Table V¥ and
|anp(2P)|=1.95+0.10 MeV (see Table IV. As a result, the
Bexd 1P)=14.23-0.53 MeV, numltlarical values oA (nP) to be substituted in Eq32) are

small:

To fit the experimental data

Aexl 2P)=9.39:0.18 MeV, A(1P)=1.05+0.9exp = 0.15th) MeV,

Cexf1P)=11.92£0.25 MeV, A(2P)=2.4+0.4exp+0.10th) MeV. (33

Cex2P)=9.14£0.25 MeV, The theoretical uncertainties in this equation are caused by
the uncertainty of the value @iyp in the Thomas interaction.
Still, for the 2P state the total error iA(2P) is not large,
about 20%, and thereforey(), proportional toJA, can be
determined from the conditiot32) with an accuracy of
about 10%. Our calculations show also that the matrix ele-
atot(nP)=a§>1)+a§>2)—i2(f_l>=aex;(n P) mentf, in EqQ. (32) is practically constant and therefore the
2m theoretical error in Eq(33) coming fromf, is small.
For the IP state the experimental error i, Eq.(30),
Co(NP) =i+ =ce,(NP). (28)  as well as inA, Eq. (33), is large: it comes mostly from the
experimental uncertainty in thgbo(lP) mass. Therefore
As seen from Eqs2) and(4), the left-hand side of these A(1P) can vary in a wide range: ©A<2.0 MeV and the
expressions strongly depend on the normalization spale g|ation (32) cannot give an accurate value fet(u). In-
but the combinatiory does not. The fitting condition foy is stead, for the P state one needs to use the conditi¢2®)

which areu-dependent and less restrictive.

Eexd(IP)=1.19+0.06, £e(2P)=1.03£0.05, (27)

the following conditions have to be satisfied:

20(pn), o
n(nP)= — fat —(r D= Dexps (29
2m V. DEPENDENCE ON SCALE
where the experimental values fQ@FF)’) are The second-order perturbative corrections to the spin-

orbit and tensor splittings, which are not small, explicitly
Nexg 1P)=3.65£0.9 MeV, 7 2P)=4.32-0.4 MeVv.  depend on the scale. In Egs.(2), (4) In(u/m) enters with
(30) the large coefficient 25/6 and therefore the chojcem
(causing this logarithm to vanigitan give rise to inconsis-
The condition(29) does not depend explicitly om and can  tent results. Just this choice was taken in R&f.where two

be rewritten as b-quark massesn=4.6 GeV andm=5.2 GeV were ana-
lyzed. We shall discuss here some results of R&f.
2a§(,u) o From the fit in Ref.[5] it was obtained that the value

— e\ ~
m Fa(NP)= 7exp 2m2<r )=A(nP), (31 ag(m) extracted from the tensor and the spin-orbit splittings
is slightly different and for the P state this difference is

hence the strong coupling constant can be expressed as increasing.[Here ag(u) or ag(u) denotes the fittedex-
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tracted value of the strong coupling constant. VI. STATIC POTENTIAL

AIEO’ for the 2P stateay(5.2)=0.26-0.01 Is a bit Iarggr In heavyQQ systems the spin-dependent interaction con-
than a4(4.6)=0.25-0.01 for the smalleb-quark mass, in  tains the factom~2 and therefore it is small and can be
contradiction with the standard behavior of the running coutonsidered as a perturbation. For the unperturbed Hamil-
pling constanix(q). In all the cases considered in RES]  tonian we considered two cases, relativistic and nonrelativis-
the extracted valuegg(m)~0.25-0.27, turned out to be tic,
about 20% larger than the valua§(4.6(2)andas(5.2) calcu-
lated with the conventional value &t'* Eq. (34): a(4.6) R_o /22, m2
=0.22+0.01, a4(5.2)=0.21+0.01. Ho=2Vp "+ m™+ V(1) @9

In the calculations that follow, it will be easy to compare
our results with those from Rdf5] because in both cases the
same perturbative interaction and linear potenatal were
used. However, the calculations of REF] were done in the
nonrelativistic caséfor fixed o=0.2 GeV* and twob-quark
massep Here both relativistic and nonrelativistic cases will
be considered and, m, and a4 of the Coulomb potential Here the use of a static potentiah/st(r)=vspt(r)

will be varied in a wide range. FrorP our analysis it will be +VP(r), needs some remarks. The perturbative static po-
clear that the inconsistencies in the(u) behavior men-  tential is now known in two-loop approximatid@g], but for
tioned above, are related to thepriori choicex=m made oy discussion it is enough to take it in one-loop approxima-
in Ref.[5]. _ tion from [3]

At this point it is worthwhile to note that at present the
QCD constantA(™) is well known for n;=5, because 4 ay(r)
ag(M,)=0.119+0.002 is established from different experi- Vspt: ~3 v
ments: A ®)(two-loop)=237"35 MeV and A ®)(three-loop) r
=219"33MeV are given in Ref[1]. Then from the matching
of ag(w) at the scalew=m, (m, is the running mass in the
MS schemgand takingm,=4.3=0.2 GeV[1] one can find
A®(three-loop)=296" 3 MeV or in the two-loop approxi-
mation A4 is

-2
HQR=%+V5t(r). (36)

(37

Here the vector coupling constanty(r) is expressed
throughag(u) in the MS scheme in the following walg]:
(as(u)<1)

as(pm) B
ay(n)=ag(p)| 1+ ——| ar+ 5 [ln(m)+75])
A@(two-loop) =338"33 MeV. (34) g )
~ 1-[as(w)mH{ar+(Bo/2[IN(r) + yel}
It is of interest to compare(u) for A4 given by Eq.(34) A
with the fitted valuesas(z) used in different theoretical H—ﬁoln[(/\ e (38)
R

analyses:a (3.25)=0.251*+0.009 whereas in Ref4] the
fitted valueag(3.25)=0.33; a(4.60)=0.221+0.007 while
in Ref. [5] a¢(4.6)~0.27. In both fits the extracted values
appeared to be about 20% larger.

This 20% difference implies either very large values of
A®™ or an significantly smaller scale qi. For example, 7 NSO o
as(mo) =0.33 with the conventionah®), Eq. (34), corre- :O_f%r?,?égd" Bo=25/3; 3, =31/12-5n/18, so forn;=4,

— 0.18 ; ~ ; 1 :
sponds touo=1.80+g7¢ GeV instead ofu=3.25 GeV in This expression is valid only for small radiative correc-
Ref. [4] and thisuy would be in good agreement with the tions or small distancese”eA®<1 orr<2 GeV 1=0.4

one cited in Refs[6,7] and with our resulfsee Sec. IX < (4) _ . .
In our present analysis when different sets of parameterd! (A *~0.3 GeV). However, in bottomonium the sizes of
are taken, we shall impose two additional restrictions the different states are varying in a wide range, e.g., typical

(1) For the givenP-state the extracted value af(u) values of the root-mean-square radR@1L) = v(r)n., are
must be the same for the tensor and the spin-orbit splitting
because both interactions have the sam@ behavior and
they also have the same characteristic $imementun).

(2) Only those sets of parameters for which the fitted two-R(2S)=0.5 fm, R(2P)=0.65 fm,
loop value ofa(u) corresponds to the conventional value of
A™ in two-loop approximation, Eq34), are deemed appro- R(3S)=0.7 fm, R(3P)=0.85 fm, R(4S)=0.9 fm.
priate. (39

In Eg. (38) we have usedyS(M)=47r/[ﬁoln(M2/AfA— 1, and

the conventional QCD constant in coordinate spadg:
= Awsexplye+a) wherea=2a,/B,. We see that the depen-
dence onu disappears. The constants afiy=11—2n;/3,

S
R(1S)=0.2 fm, R(1P)=0.4 fm,
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These numbers are practically independent of the choice dflere the functiony= y(r) is

the static potential parameters and the confining potential,
provided the chosen potential reproduces the bottomonium

spectrum with good accuracy.
From Eq.(39) one can see that the sizes of the states

run from 0.2 to 0.9 fm. Therefore the perturbative potential,

Eq. (38), valid for r<0.4 fm, can be used only for low-lying
states. For the §, 2S, and 1P states this perturbative inter-
action (also with two-loop correctionswas analyzed in de-
tail in Refs.[6,7] and there it was found thdt) for the 1S
and 2S states the values oft are different and(ii) w is

smaller in the & state. Therefore, one can expect that for

every level a specific consideration is needed to determine

or as(M)-
To describe the P state, the size of which is about 0.65

fm, or the bEspectrum as a whole, a different approach is
needed. Here we suggest instead of the perturbative potential

Eq. (37) to use the perturbative potential in background
vacuum field,Vg(r):

4 ag(r)
3

Ve(r)=-— (40)

3

in momentum space

4 47 .

VB(q2)=—§ ? ag(q?), ¢?

q2. (41)

In this potential@g(q?) is a vector coupling constant in
vacuum background field which was introduced in R&8]
and applied tee™e”™ — hadrons processes in RE21]:

- ﬁllntB(q>l

Bata(q)
with B,=25/3. For the vector coupling constamt,(q?), A

differs from A in the MS scheme:A=A{) e?=481"%

MeV, a=5/6—4/B,=0.35333, and\% was taken from Eq.

(34). (In the MS schemeA g and Ays coincide forn;=4,5
because of their identical behavior at largé [10].) The
background maseg was found from the fit to the charmo-
nium fine structure in Ref{10] wheremg=1.1 GeV was
obtained.

In coordinate spacerg(r) can be calculated from the
Fourier transform of the potential Eq41) with ag(g?)
given by Eq.(42). Then

[1

92 +mj

, tB(q):InT

4
Bots

ag(g?) =

(42

singr
qts(q)

B1 Intg(q)

g5 te(q)

8 o0
asn)= 5 fo dq 43

The strong coupling constant in vacuum background field

maintains the property of asymptotic freedom at smal
<A tandr<mg?,

2

—-0)=——.
(! ) BolIn(Aer)

(44)

_ _ _ = (_mBr)k
y=y(r)=yg+3, 2—; Tk

=1

(45)

or at smallr

Y= 7Ye— Mgrl, (46)
whereas in standard perturbative theoy§=yg=0.5772.
Due to the dependence on the distamcan Eq. (46) the
expression Eq(44) is always bounded.

For larger?, r>>mg?, the limit of ag(r) in Eq. (43
tends to a constant, denotedas(e) and called the freezing
value

(47)

From the integral Eq(43) it can be shown that the freezing
value is the same in coordinate and in momentum space,
ag(r—=)=ag(q?=0). The properties ofrz(r) were dis-
cussed in Refd.10,18,19 and a detailed analysis @fg(r)
will be published elsewhere. In the intermediate region, 0.2
fm=r=<0.9 fm, ag(r) approaches rapidly the valug(=).
Therefore, to study the bottomonium spectrum as a whole
it is convenient to introduce an effective constant;:

ap(r)=aest Sag(r), agr=const, |Sag(r)|<aes,

(48)
and to consider the contribution from the ted¥(r),
4 Sag(r
V(N =— 75 'ra( ), (49)

as a perturbation. Then in the Hamiltoni§22) the static
interaction

Aeff

4
Vo(r)=— 3 (50)
will be taken into account as an unperturbed interaction.

For the nonperturbative interaction a linear foom will
be taken and therefore the static potential in the unperturbed
HamiltonianV(r),

4 X off

Vo(n)=—3

+0'I‘+Co (51)

coincides with the well known Cornell potential. Later, the
values of the string tension will be varied in the range
0.17-0.20 Ge¥. We shall present a detailed analysis of the

bb spectrum in a separate paper.

VIl. RELATIVISTIC CORRECTIONS

There exists the point of view that in bottomonium the
relativistic corrections are small because of the heavy
quark mass. Indeed, the comparison of levels and mass dif-
ferences for the Schdinger equation and the Salpeter equa-
tion, Eqs.(35),(36), in general, confirms this statemehtre
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TABLE I. Bottomonium level differenceéMeV) for the Schrdinger and the Salpeter equations.

Set |, a.3=0.3545 Set Il,a.4=0.36
m=4.737 GeV m=4.81 GeV
0=0.20 GeVf 2 0=0.18 GeV
Exp. val.
Mass differences Rel. Nonrel. Rel. Nonrel. (MeV)
M(2S)—M(19) 554.34 551.97 556.55 550.03 562.0.5
M(3S)—M(2S) 350.43 354.78 335.62 338.49 332.0.8
M(4S)—M(39)° 285.93 291.83 270.63 275.30 224.2.0
M(1P)—-M(1S) 458.04 439.66 473.49 450.15 439.8.9
M(2P)—M(1P) 359.67 366.75 342.55 348.70 359.8.2
M(2S)—M(1P) 96.31 112.31 83.07 99.88 12%1.0
M(3S)—M(2P) 87.06 100.34 72.82 89.67 95:3.0

8This set was taken from Ref29].
bThe 4S level lies above th@&B threshold.

the static potential is supposed to be the same in both case3he theoretical error in Eq(52) (~10%) mostly comes
In Table | thebb mass differences are given for two typical from the variation of théd quark massin the range 4.6-5.0
sets of parameters. From Table | one can see the following>eV)-
(i) Relativistic corrections are small for large mass differ-  The increasing of 4,(nP) in the relativistic case directly
ences likeM(n,L)—M(n—1,L) or M(nL)—M(n,L—1). affects the values af(u) extracted from the fine structure
(ii) For close lying levels, like\;=M(2S)—M(1P) and  data because according to E§2)
A,=M(3S)—M(2P), the corrections are essential, about NG
15%, and to gef\; andA, close to the experimental data it mmMA(nP
is necessary to take into account the contribution from the @s(#) ="\ 2f,(nP) A(NP) = el NP) —[anp(nP)),
perturbationsVg(r) Eg. (49). In the relativistic case the in- (53
fluence of the phenomenon of asymptotic freedom appears to
be more essental than in the nonrelativightR) case. is proportional to and a() is about 15%smallerin
The relativistic corrections are becoming essential forh |ativisti Thi S’LILt btains both f&? &and P
some matrix elements, which determine the fine structuré € relativistic case. This result obtains bo n
splittings (see Table Ii. To calculate them in the relativistic states. .
case(for the Salpeter equatigrihe expansion of the wave Therefore, below we shall use or!Iy matrlx eleme_nts .cal-
function in a series over Coulomb-type functions was used agulated for the Salpeter equation, in this way taking into

it was suggested if29]. The numbers obtained have a com. account the relativistic corrections. A last remark concerns

putational errors 10 * (the dimension of the matrices D was the choice of the guark pole mass,qe=m which enters the
varied from D=20 to D—=40). Salpeter equatiof6]. Here we study the spin structure of the

From the numbers given in Tables Il and Il one canX® mesons determined by the spin-dependent potentials now
conclude that for P and 2P states the root-mean-square known only in one-loop approximation. Therefore the pole

radii practically coincide in the relativistic and the NR cases,mas.S of th_d) quark will be taken also in one-loop approxi-
for the matrix element{r 1) the difference between both mation[30]:

cases is small, about 3% for thé>Istate and about 5% for

the 2P state; in the relativistic casér %) and therefore M= Mpge=m(m?)
|anp(NP)| is slightly larger, in the relativistic case the values

of (r3Inmr) are about 7%4(10%) larger for the P(2P)

state for given set of chosen parameters, for the Salpeter TABLE Il. 1P-state matrix elements for the Schinger and
equation the matrix elemext ~3) is larger by about 14% the Salpeter equations.

(22%) for the 1P(2P) state, and the largest relativistic cor-

—1/2
fs

1+ (54)

3

f ag( mpoIQ
E—

rection was found for the factof, given in Eq.(6). This _ Set |12 Set 112
difference is about 30% for thePLstate and 36% for theR ~ Matrix element Rel. ~ Nonrel. ~ Rel.  Nonrel.
state. The numbers given do practically not change for dif}<r2> (Gev1) 1.994 2039 2008 2054

ferent sets of parameters. So our averaged valuig (ofP) (-1 (GeV)

0.633 0.614 0.631 0.612
(ae=0.35) are

(r 3Inmr) (GeV®) 0.675 0.631 0.681 0.636

_ (r3) (GeVv®) 0.551 0.483 0.556 0.485
f4(1P)=0.085:0.010 GeV, f,(1P) (GeV?) 0.0876  0.0685 0.0871  0.0673
f4(2P)=0.106+0.008 Ge’. (52 8For the parameters see Table I.
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TABLE IIl. 2 P-state matrix elements for the ScHinger and
the Salpeter equations.

Set |12 Set 112
Matrix element Rel. Nonrel. Rel. Nonrel.
«r?y (Gevh) 3.177 3.263 3.235 3.320
(r'1 (Gev) 0.477 0.455 0.469 0.448
(r3Inmr) (GeV®) 0.495 0.448 0.489 0.443
(r=3) (GeVv® 0.504 0.414 0.496 0.406
f4(1P) (GeV?) 0.1060 0.0783  0.1025  0.0748

8 or the parameters see Table I.

In Eq. (54) m(m?) is a running quark mass in théS renor-

malization scheme, its value from Réfl] is m=4.3+0.2
GeV. Then takingA® from Eq. (34) one findsm in the
range

45 Ge\=m=5.0 GeV. (55)

Only values of the mass in this range will be used later in our

calculations.

VIII. a¢(n) FOR THE 2P STATE

PHYSICAL REVIEW D 62094031

that obtained in Refl4] where a4(3.25)=0.33 and in Ref.
[5] whereag(4.6)=0.26. In our calculations large values of
Zzs(,u) are extracted irrespectively to the value of the scale
m, which is still not fixed.

However, ag(x) in Eqg. (59) is varying in a rather wide
range and its value is sensitive to small variations of the
factors entering the conditio(82). The value ofag(u) is
decreasingif the constanta.s of the static interaction is
growing. In our numerical calculations the value ®f; is
supposed to be in the range

0.35< aro< ap(q?=0)~0.48 (60)

with a b quark mass from the conditiai®5).

With the restriction(60) the fitted values ofxy(u) ap-
peared to lie in the narrower range

ag(w)=0.40+0.02th) = 0.04exp (bb).  (61)
Here the experimental error comes fropg,,, Eq.(33), and

the theoretical error is due to the variationaf;, m, ando-.

In the extracted value4(u), Eq. (61), the scaleu is still

not specified. To findu, it is better to use the condition
C(2P)=Cexp, EQ.(28), for the tensor splitting, because the
theoretical uncertainty connected with the nonperturbative

For the 2P stateas(x) can be immediately found from contribution toc(2P) is negligible, cyp<<0.05 Mev. This
the relation(32) for the chosen static potential with fixed condition(28) turns out to be satisfied for the scale

parametersy, o, andm. At first, we shall give an estimate

of ag(u) using the following results.
(1) The nonperturbative spin-orbit splittingys(2P)| de-

w=p,=1.02+0.02 GeV, (62)

which has a small theoretical error, 2%, while the extracted

pends weakly on the choice of the parameters, provided thgg e ofa(w), Eq.(61), was determined with an accuracy of

bHspectrum is described with good accuracy

layp(2P)|=1.95-0.15 MeV. (56)

(2) In Eq. (30) the experimental error ofiex, (2P) is not
large and therefore the differendg2P) Eq. (32) is known
with an accuracy of about 20%:

A(2P) = 7exf 2P) —|anp(2P)]

=2.40+0.04 exp £0.15th) MeV. (57)

(3) In our calculations the matrix elemeri,(2P) is
changing in the narrow range

f,(2P)=0.106-0.008 Ge\}. (58

Then, from the fitting conditiori32) and the numbers given

in Egs.(56)—(58) the lower and upper bounds af(u) can
be determined:

\/ —0.37 \/—=—0.46
J— < < —0. .
0 ag(p) S 4

Here a normalization massg,=3sM[Y(1S)]=4.73 GeV,

(59

was introduced for convenience. Here and below all number

15%.

It is of interest to comparex(1.0)~0.40 with the value
found in perturbation theory. The scaje,~1.0 GeV is
small, less than the running mass of theuark, m;=1.3
+0.2 GeV[1], thereforeag(1.0) should be calculated with
A=A® (two-loop), n;=3. The value ofA®) can be found
using the matching condition at=m, and the value of\ ()
(two-loop), Eq. (34). Then

A®)(two-loop) = 384735 MeV (63)

and correspondingly the two-loop strong coupling constant is

ag(1.0=0.53"3%, (64)

which is 30% larger than our fitted value given by E1).

It was suggested in Reff10] that this decreasing af() at
the scaleu,=1 GeV can be explained by the behavior of
ag(u) EQ. (42) in the vacuum background field, thus dem-
onstrating the phenomenon of freezing @f(w) . In Ref.
[10], from a fit to the charmonium fine structure, the back-
ground massng in Eq. (42) was found to bein the MS
rsenormalization scheme

were calculated in the relativistic case, i.e., for the Salpeter my=1.1 GeV, A§)(two-loop)=400'23 MeV (cc).

equation.
From the estimate¢s9) it is clear that for the P state

(65

ag(u)~0.40 turns out to be large for any set of the param-Our extracted value ak(1.0) in Eq.(61) corresponds to the
eters of the static interaction. It is significantly larger thanclose value ofAff),
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TABLE IV. Fine-structure parameters for thé®2bb state. TABLE V. Fine-structure parameters for thé@1bb state.
Setl®  Setll®  Setll®  Exp.val Setl®  setll*  setll® Exp. val.
(o) 0.392 0.429 0.386 (o) 0.335  0.340 0.32
o (GeV) 1.03 1.02 1.03 uy (GeV) 1.80 1.85 1.90
c?) (MeV) -262  —3.14 -3.35 c? (MeV) 0.96 1.03 0.90
Ceot (MeV) 9.12 9.11 9.17 940.2 Ceot (MEV) 11.93 11.92 11.91 11.920.20
ayp (MeV) -2.12 -1.83 —-1.80 ayp (MeV) -2.82  —245 —2.44
a$" (MeVv) 17.61 18.33 18.77 at) (Mev) 16.46 16.34 16.52
al?) (MeV) -6.12  —7.19 —-7.52 al?) (MeV) 0.12 0.21 0.05
A (MeV) 9.37 9.32 9.45 9.40.2 a (MeV) 13.76 14.09 14.12 14.230.57
& or the parameters see Table I. % or the parameters see Table I.
Pooq=0.386,0=0.185 Ge\, m=5.0 GeV. Paq=0.386,0=0.185 Ge\?, m=5.0 GeV.
_ . . 4
A (two-loop =420'%2 MeV (bb). (66)  additional requirement2l) that A (two-loop) should have

a value in the range 307 Me¥VA (4)<371 MeV, is neces-

Note also that for the B state in charmonium the value sary. If this restriction is put, then in our calculations the
extracted scale., appears to lie in the narrow range

@(1.0)=0.38+0.03 th) = 0.04 exp) (67)
u1=1.80+0.10 GeV (69)
practically coincides withw(1.0) in bottomonium, d
an
(1.0)=0.40+0.02th) = 0.04 exp), -
P a(pq)=0.33+0.01(exp) + 0.0 th). (70)

uo=1.02-0.02 GeV. (68)
. - . . . ) _ Our value for the scalg; turned out to be very close to
This coincidence is not, in our opinion, accidental: bothia¢ determined in Ref7], but our fitted value ofrg(u1) is
states, theec 1P state and théb 2P state, have the same about 15% larger than the one found in RET] where

size: R=/(r?),p=0.62-0.65 fm. This coincidence of the a(three-loop=0.29 and A ¥(three-loop=230 MeV [or
values ofag(u) and of the sizes indicates that for the bound 4 (4) (two-loop)= 250i28 MeV] is smaller than in our fit.

states the scalg is characterized by the size, but not the = £qr the 1P state it was also observed that if a large value
momentum, of the system. This result is in agreement with, _ 5 5 Ge\2 is taken, then it is difficult to reach a consistent
the predictions of Refg6,7]. B description of the tensor and the spin-orbit splittings simul-
With the use of the fitted valuesg(u,), EQ. (68), the  taneously. Therefore here, as well as in the charmonium case
theoretical number obtained for the spin-orbit splittiag;  [10], the valuesr=0.17—0.185 Ge¥are considered as pref-

automatically satisfies the third fitting condition E@®8). erable. Also the choice of a relatively larbequark mass,
Calculated numbers cd and ¢ are given in Table IV for
m,=4.75-4.9 GeV, (77)

three different sets of parameters. From these numbers one
can see that the second order radiative correctisand
¢ are negative and rather large: about 25% for the tens
and 40% for the spin-orbit splittings.

Note that we have met here no difficulty to get a precis

g?ives rise to a better fit.

OF The results of our calculations for théPlstate are given

in Table V from which one can see that the second order
< . eHy €correctionsc® anda® are relatively small, 8% and 1.5%,
description of the tensor and spin-orbit splittings for the 2y .+ i remain important for a fit to the experimental data.

state smultango.uslyl, in contrast to the .results Of FR@I Also in all good fits the effective Coulumb constani; lies
where some difficulties have occurred, in our opinion, be-

cause of the choicg=m (see the discussion in Sec).V betweena(uy) anda(u):
a(pq) <aefsa(us). (72
IX. as(n) FOR THE 1P STATE
In our analysisu,(2P) is less thanu,(1P) and their

For the IP state the scale-independent conditiB®) can-  ratjo is almost inversely proportional to the ratio of the radii
not be used directly, because the important fadt@tP) in 5 these states

Eqg. (32 has a large experimental error. So in this case one

needs to use the twa-dependent conditions, E¢28), on H1(1P) V(r?)zp
L ~1.7-1.8; =1.6—1.65. (73
the splittingsa andc. wo(2P) /—<r2>1P

There exist a lot of variants where these two conditions

can be satisfied. However, in many cases the two-loop valueghis result is in full agreement with the prediction of Refs.
ag(umq) and wq, extracted from those fits, correspond to a[6,7] about the decrease of the scale with increasing principal
very large value of the QCD constant®). Therefore, the quantum number.
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X. CONCLUSION

The precise experimental data on the masseg,gflP)

and x,(2P) give a unigue opportunity to determine the
QCD strong coupling constant at low-energy scales. In ou

PHYSICAL REVIEW D 62094031

background perturbation theory and is compatible with the
freezing of the coupling constant.

(4) The scaleu;~1.8 GeV for the P bb state obtained
pere agrees with the prediction in RET] but corresponds to

_ 33 H :
analysis of fine structure splittings we found the following. the larger value\*)(two-loop)=338"3; MeV, which gives
(1) The relativistic corrections which are small for such fise toas(M;)=0.119+0.002.

characteristics as theb levels, radii, and matrix element

factor f,(nP), which is inversely proportional to the ex-

tracted value ofr2(u).
(2) From a u-independent analysis of theP2state, the

value ag(u,)~0.40 was extracted. The scalg,=1.0

(5) The preferred values of the pole mass of thguark
gre found to ban=4.7-4.9 GeV but from the fine structure
analysis we could not narrow their range.

Our results have confirmed the important observation of
Yndurainet al. [6,7] that the strong coupling constant is in-
creasing for states with a larger size or larger principal quan-
tum number and this fact is essential in many aspects of

+0.02 GeV, determined from the tensor splitting, appearegjuarkonium physics.
to be practically unchanged for any chosen set of parameters.

(3) The extracted value(1.0)~0.40 is about 30% lower

than the one found in perturbation theory Af®)=384"32
MeV was used. This value agrees with the fitteg1.0cc)
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