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Strong coupling constant from bottomonium fine structure
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From a fit to the experimental data on thebb̄ fine structure, the two-loop strong coupling constant is
extracted. For the 1P state the fitted value isas(m1)50.3360.01 (exp)60.02 (th) at the scalem151.8
60.1 GeV, which corresponds to the QCD constantL (4) (2-loop)5338630 MeV (nf54) and as(MZ)
50.11960.002. For the 2P state the valueas(m2)50.4060.02 (exp)60.02 (th) at the scalem251.02
60.02 GeV is extracted, which is significantly larger than in the previous analysis, but about 30% smaller than
the value given by the standard perturbation theory. This valueas(1.0)'0.40 can be obtained in the frame-
work of the background perturbation theory and appears to be compatible with the freezing ofas(m). The
relativistic corrections toas are found to be about 15%.

PACS number~s!: 12.38.Lg, 11.10.Jj, 11.15.Bt
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I. INTRODUCTION

The bottomonium spectrum is one of the richest amo
all known mesons and its levels were measured with h
precision@1#. These data aboutbb̄ states have been inten
sively studied in different theoretical approaches, in parti
lar, to determine the QCD strong coupling constantas(m) at
different energy scalesm from the level differences@2–10#.
At present, however, there is no clear picture of which
the exact values ofas(m) for thebb̄ levels and how they are
changing from the ground state to the excited ones. There
several reasons for this.

First of all, there is no experimental information on th
hb(nS) masses and thereforeas(m) cannot be directly de-
termined from thebb̄ hyperfine splittings inS-wave states.
Second, to describe the fine structure splittings in theP-wave
states, different energy scalesm were used in different theo
retical analyses@4–7#. In Ref. @4# as(m)50.33 (m53.25
GeV! was taken for allbb̄ S- and P-wave states, while in
Ref. @5# m was chosen to be equal to theb quark mass,m
5m with either m54.6 GeV or m55.2 GeV. The fitted
values ofas(m) were found to beas(m)50.22–0.27@5# and
for the 2P stateas(m) appeared to be smaller than for th
1P state.

An important step to clarify this problem was taken
Refs.@6,7# where the low-lying bottomonium states, 1S, 2S,
and 1P were investigated. It was observed there that
scalem is a decreasing function of the principal quantu
numbern,m52(na)21 where a is a Coulomb-type radius
Therefore,m is found to be equal for the 2S and 1P states
and the valuesm51.7 GeV,as(1.7)50.29, were determined
from the fine structure splittings ofxb(1P). Also, as(m) is
larger for excited states with a larger radius of the syste
thus indicating that for a bound state the characteristic s
m is determined by the size, but not by the momentum of
system. One of our main goals here is to check this impor
statement for the 2P state,xb(2P), which cannot be studied
in the framework of the approach developed in Refs.@6,7#.
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In the present study of the 1P and 2P bb̄ states we shall
try to answer the following questions: What are the values
as(m) for the 2P and the 1P states? Do the extracted value
of as(m) correspond to the existing experimental data
as(MZ) andL (nf )? How doesas(m) depend on the relativ-
istic corrections to the wave functions in bottomonium? Ho
sensitive are the extracted values ofas(m) to the b quark
pole mass and the parameters of the static interaction?

II. PERTURBATIVE RADIATIVE CORRECTIONS

It is well known that one cannot describe the fine struct
splittings in heavy quarkonia without taking into account t
second order radiative corrections@4–7,10#. In coordinate
space, perturbative static and spin-dependent potential
the modified minimal subtraction (MS) renormalization
scheme were obtained in Refs.@2,3#. From the potentials
given there one can immediately find the matrix elements
the spin-orbit and the tensor potentialsa5^VLS(r )&, c
5^VT(r )&. Below we give their expressions for a number
flavorsnf54, valid for thebb̄ system:

aP5aP
(1)1aP

(2) , ~1!

aP
(1)5

2as~m!

m2
^r 23&,

aP
(2)5

2as
2~m!

pm2 F ^r 23&S 25

6
lnS m

mD1AD1
13

6
^r 23 ln mr&G ,

~2!

and for the perturbative part of the the tensor splittingcP,

cP5cP
(1)1cP

(2) , ~3!

cP
(1)5

4

3

as~m!

m2
^r 23&,
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cP
(2)5

4

3

as
2~m!

pm2 F ^r 23&S 25

6
ln

m

m
1BD1

7

6
^r 23 ln mr&G .

~4!

Here the constantA5 13
6 gE1 7

36 51.44508 andB5 7
6 gE1 33

12

53.42342.
For our analysis it is convenient to introduce a linear co

bination of the matrix elementsa andc as was done in Ref
@10#: h5 3

2 c2a. Its perturbative parthP is

hP5
3

2
cP2aP5

3

2
cP

(2)2aP
(2)5

2as
2~m!

pm
f 4 . ~5!

The factorf 4 in Eq. ~5! can be found from Eqs.~2! and~4!,

f 4~nP!5
1

m
@1.97834 ^r 23&nP2^r 23 ln mr&nP#. ~6!

For the fine structure analysis it turns out to be very imp
tant that the combination of matrix elementsf 4 does not
depend on the energy scalem. Later, it will be also shown
that f 4 has the largest relativistic correction~about 35%!
compared to other matrix elements and depends weakly
the parameters of the static interaction and on the mass o
b quark.

Here we give also the ratio of the perturbative mat
elementsaP/cP[jP. In the Coulomb case~one-gluon ex-
change! jP is equal to 3/2, but in the one-loop approximatio
this ratio has a small negative correction:

jP~nP!5
aP~nP!

cP~nP!
5

3

2 F12
as~m!

p

f 4~r ,m!

^r 23&nP
G . ~7!

The functionf 4(r ,m) in Eq. ~7! is defined by the expressio
~6!. We shall see later that the one-loop correction tojP(nP)
turns out to be very small (&3%) and with the use of the
expression~7! it is not possible to explain the existing ex
perimental valuesjexp(nP) ~they are given in Sec. IV!.
Therefore it is of great importance to take into account
nonperturbative contributions to the splittingsa andc which
are considered in the next section. We would like to n
here that significant corrections of higher order tojP, Eq.
~7!, cannot be excluded, still, these corrections have not b
calculated until now.

III. NONPERTURBATIVE CONTRIBUTIONS

In addition to the perturbative terms, Eqs.~2!, ~4!, the
tensor and spin orbit splittings have in general nonpertur
tive contributions:a5aP1aNP, c5cP1cNP. The nonpertur-
bative part of the spin-orbit potentialVLS

NP(r ) can be defined
with the use of three potentials: the nonperturbative st
potential«(r ) and the so-calledV1 andV2 potentials@11#

VLS
NP~r !5

1

m2r
S 1

2

de

dr
1

dV1
NP

dr
1

dV2
NP

dr D . ~8!
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Each of these potentials can be expressed through two g
invariant vacuum correlatorsD(x) and D1(x) (x
5Al21n2) @12–16#:

de

dr
52E

0

`

dnE
0

r

dl D~Al21n2!

1r E
0

`

dn D1~Ar 21n2!, ~9!

dV1
NP

dr
522E

0

`

dnE
0

r S 12
l

r DD~Al21n2!,

~10!

dV2
NP

dr
5

2

r E0

`

dnE
0

r

ldl D~Al21n2!

1r E
0

`

dn D1~Ar 21n2!, ~11!

so that

VLS
NP5

1

2m2r
H E

0

`

dnE
0

r

dlF221
8l

r G D~Al21n2!

13r E
0

`

dn D1~Ar 21n2!J . ~12!

Note that in the potential~12! the interference of perturbativ
and nonperturbative effects was not taken into account. F
Eq. ~12! one can find the general form of the asympto
behavior of the spin-orbit potential at large and small d
tances

VLS
NP~r→0!5

1

m2 S J01
3

2
J1D , ~13!

whereJ0 andJ1 are the following constants:

J05E
0

`

dn D~n!, J15E
0

`

dn D1~n!. ~14!

At large distances the main part of the spin-orbit poten
coincides with the Thomas potential

VLS
NP~r→`!52

s

2m2r
1

4

m2r 2E0

`

dnE
0

`

ldl D~Al21n2!,

~15!

with the string tensions defined as

s52E
0

`

dnE
0

`

dl D~Al21n2!. ~16!

In the asymptotics of the potential~15! the contribution of
the correlatorD1 can be neglected becauseD1(x), as well as
D(x), is exponentially decreasing at large distances.
1-2
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From Eqs.~13! and~15! one can see thatVLS
NP(r ), defined

by Eq. ~12!, has differentr dependence at small and larg
distances: it is approaching the Thomas potential at la
distances and equal to a positive constant at small distan
The spin-orbit potential turns out to be constant at smar
because in this region the nonperturbative static poten
«(r ), given by the expression@13,14#

«~r !52r E
0

r

dlS 12
l

r D E
0

`

dn D~l,n!

1E
0

r

ldlE
0

`

dn D1~l,n!, ~17!

is proportional tor 2

«~r !5r 2S J01
J1

2 D . ~18!

The constantsJ0 andJ1 were defined in Eq.~14!. Note that
such a behavior of the nonperturbative static potential«(r )
;constr 2, was obtained in an approximation where the
terference of the perturbative and nonperturbative contr
tions was neglected. However, as was shown in Ref.@19#,
due to the interference the static potential has a unive
linear term

DVinterf5r Ds, Ds5
3

p
Ncas~r ! s. ~19!

Note that this potential is proportional to the strong coupl
constantas and it is not small:Ds'0.6s already at the
point r 50.25 GeV2150.05 fm @at r 50.25 GeV21 as(r )
'0.22 because the QCD constantLR in coordinate space is
rather large,LR'0.6 GeV@17##. This interference potentia
cannot be deduced from the expression~15! for «(r ).

A large nonperturbative contribution to the static poten
at small distances was also found in lattice calculations@17#
where an essential difference between the static potentia
the lattice and the three-loop perturbative potential~at r
&0.2 fm! was found. The author suggested to parametriz
as a linear term,s* r , with very larges* '(0.8–1.0! GeV2.
The theoretical explanation of the appearance of such a l
linear ~or approximately linear! potential is still not given.

The possibility of a correction of linear type to the sta
potential at short distances was also discussed in Ref.@18#
where it was noticed that due to the saturation~or freezing!
of the QCD coupling at small momenta@19,20# ~see also
Sec. VI!.

aB~q!q→05
4p

b0

1

ln@~q21mB
2 !/L2#

~20!

(mB is the background mass@21#! there is a correction to the
perturbative coupling constantas(q) at relatively largeq ~or
small r ):
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Das5aB~q!2as~q!'2as~q!
mB

2

q2 ln ~q2/L2!
~q.mB!,

~21!

which is proportional toas(q) and to the background mas
mB

2 . It can be shown that in coordinate space the interfere

potential, Ṽinterf52 4
3 @Das(r )/r #, is behaving almost lin-

early.
Also in lattice calculations of the potentials«8(r ), V18(r ),

and V28(r ) in the region 0.2 fm&r &1.0 fm @22,23# it was
found that the nonperturbative part of the potentialV28(r ) is
small ~compatible with zero! while «8 andV18(r ) turn out to
be practically constant beginning already at distancesr 0
'0.2 fm. ~This valuer 0 is close to the vacuum correlatio
lengthTg determining the exponential behavior of the co
elatorsD andD1 at r *Tg @24,25#!. From these data one ca
conclude that the nonperturbative spin-orbit potential co
cides with the Thomas interaction in the regionr>0.2 fm
and the same behavior can occur due to interference eff
at smaller distances.

Therefore we adopt here the Thomas interaction at
distances and the nonperturbative contribution to the s
orbit splitting becomes

aNP52
s

2m2
^r 21&. ~22!

The nonperturbative contribution to the tensor splitting c
be found from the vacuum field correlatorD1(x) @10,21#
which was measured in lattice QCD@24,25# and was found
to be of exponential form. Then, as was shown in Re
@10,26,27#,

cNP5
D1~0!

3m2Tg

^r 2K0~r /Tg!&[
D1~0!

3m2
J ~Tg!,

J~Tg![
1

Tg
^r 2K0~r /Tg!&, ~23!

whereTg is the vacuum correlation length. Lattice QCD ca
culations without dynamical fermions giveTg'0.2 fm and
Tg'0.3 fm in the presence of dynamical fermions with fo
flavors @24#; in Ref. @25# Tg was found to be 40% smaller.

In Refs.@24# the correlatorD1(0) in Eq. ~23! was shown
to be small: lattice calculations in quenched SU~3! theory
give D1(0)/D(0)' 1

3 and in full QCD with four staggered
fermionsD1(0)/D(0)'0.1, whereD(x) is another vacuum
field correlator which mostly determines the confining pote
tial. These two correlators at the pointx50 can be expresse
through the vacuum gluonic condensateG2 ~here the vacuum
correlators are normalized as in Refs.@12,14#!:

D~0!1D1~0!5
p2

18
G2 . ~24!

Therefore, the lattice estimate forD1(0)/D(0) is 0.1–0.3
and from the relation~24! one obtains
1-3
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p2

180
G2&D1~0!&

p2

72
G2 . ~25!

Our calculations give the following typical values for th
matrix elementsJ(Tg): for the 1P stateJ(Tg)'0.17 GeV21

and for the 2P stateJ(Tg)'0.20 GeV21, if the b quark mass
m'4.8 GeV andTg'0.2–0.3 fm is taken. Then, if the valu
of the gluonic condensateG250.0560.02 GeV4 @7# is used,
one finds the estimate in quenched QCD

cNP&0.0360.01 MeV. ~26!

In full QCD an even smaller value is found. This value
cNP is much less than bothuaNPu, Eq. ~7!, and the experimen
tal errors. Therefore it can be neglected in the tensor split
c and also in hNP5 3

2 cNP2aNP, i.e., we take herehNP
5aNP.

IV. FITTING CONDITIONS

To fit the experimental data

aexp~1P!514.2360.53 MeV,

aexp~2P!59.3960.18 MeV,

cexp~1P!511.9260.25 MeV,

cexp~2P!59.1460.25 MeV,

jexp~ IP !51.1960.06, jexp~2P!51.0360.05, ~27!

the following conditions have to be satisfied:

atot~nP!5aP
(1)1aP

(2)2
s

2m2
^r 21&5aexp~nP!

ctot~nP!5cP
(1)1cP

(2)5cexp~nP!. ~28!

As seen from Eqs.~2! and~4!, the left-hand side of thes
expressions strongly depend on the normalization scalem,
but the combinationh does not. The fitting condition forh is

h~nP!5
2as

2~m!

pm
f 41

s

2m2
^r 21&5hexp, ~29!

where the experimental values forhexp
(nP) are

hexp~1P!53.6560.9 MeV, hexp~2P!54.3260.4 MeV.
~30!

The condition~29! does not depend explicitly onm and can
be rewritten as

2as
2~m!

pm
f 4~nP!5hexp2

s

2m2
^r 21&[D~nP!, ~31!

hence the strong coupling constant can be expressed as
09403
g

as~m!5ApmD

2 f 4
. ~32!

For a chosen interaction and quark massm, D(nP) and
f 4(nP) are known numbers and one can immediately de
mine as(m). In generalD(nP)5hexp1aNP will be larger
than for the static linear potential (aNP may be even positive!
and therefore for the static linear potential the differen
D(nP), as well as the extracted value of the strong coupl
constant, has a minimal value.

The extraction ofas(m) from the condition~32!, in gen-
eral, extremely simplifies the fit and also puts strong rest
tions on the possible choice of the normalization scalem.
Just this condition was exploited in Ref.@10# to determine
as(m) for the 1P state in charmonium. In charmonium
hexp'24 MeV and the typical value ofD'7 –8 MeV is not
small, so the uncertainty in the extracted value ofas(m) is
about 10%.

In bottomonium the typical values ofuaNPu are found to
be smaller:uaNP(1P)u52.660.2 MeV ~see Table V! and
uaNP(2P)u51.9560.10 MeV~see Table IV!. As a result, the
numerical values ofD(nP) to be substituted in Eq.~32! are
small:

D~1P!51.0560.9~exp!60.15~ th! MeV,

D~2P!52.460.4~exp!60.10~ th! MeV. ~33!

The theoretical uncertainties in this equation are caused
the uncertainty of the value ofaNP in the Thomas interaction
Still, for the 2P state the total error inD(2P) is not large,
about 20%, and thereforeas(m), proportional toAD, can be
determined from the condition~32! with an accuracy of
about 10%. Our calculations show also that the matrix e
ment f 4 in Eq. ~32! is practically constant and therefore th
theoretical error in Eq.~33! coming from f 4 is small.

For the 1P state the experimental error inhexp, Eq. ~30!,
as well as inD, Eq. ~33!, is large: it comes mostly from the
experimental uncertainty in thexb0

(1P) mass. Therefore

D(1P) can vary in a wide range: 0<D<2.0 MeV and the
relation ~32! cannot give an accurate value foras(m). In-
stead, for the 1P state one needs to use the conditions~28!
which arem-dependent and less restrictive.

V. DEPENDENCE ON SCALE

The second-order perturbative corrections to the sp
orbit and tensor splittings, which are not small, explicit
depend on the scalem. In Eqs.~2!, ~4! ln(m/m) enters with
the large coefficient 25/6 and therefore the choicem5m
~causing this logarithm to vanish! can give rise to inconsis
tent results. Just this choice was taken in Ref.@5# where two
b-quark massesm54.6 GeV andm55.2 GeV were ana-
lyzed. We shall discuss here some results of Ref.@5#.

From the fit in Ref.@5# it was obtained that the valu
ãs(m) extracted from the tensor and the spin-orbit splittin
is slightly different and for the 2P state this difference is
increasing.@Here ãs(m) or ãs(m̃) denotes the fitted~ex-
1-4
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tracted! value of the strong coupling constant.#

Also, for the 2P stateãs(5.2)50.2660.01 is a bit larger

than ãs(4.6)50.2560.01 for the smallerb-quark mass, in
contradiction with the standard behavior of the running c
pling constantas(q

2). In all the cases considered in Ref.@5#

the extracted value,ãs(m)'0.25–0.27, turned out to b
about 20% larger than the valuesas(4.6) andas(5.2) calcu-
lated with the conventional value ofL (4) Eq. ~34!: as(4.6)
50.2260.01, as(5.2)50.2160.01.

In the calculations that follow, it will be easy to compa
our results with those from Ref.@5# because in both cases th
same perturbative interaction and linear potentialsr were
used. However, the calculations of Ref.@5# were done in the
nonrelativistic case~for fixed s50.2 GeV2 and twob-quark
masses!. Here both relativistic and nonrelativistic cases w
be considered ands, m, andaeff of the Coulomb potentia
will be varied in a wide range. From our analysis it will b
clear that the inconsistencies in theãs(m) behavior men-
tioned above, are related to thea priori choicem5m made
in Ref. @5#.

At this point it is worthwhile to note that at present th
QCD constantL (nf ) is well known for nf55, because
as(Mz)50.11960.002 is established from different exper
ments:L (5)(two-loop)5237224

126 MeV and L (5)(three-loop)
5219223

125 MeV are given in Ref.@1#. Then from the matching

of as(m) at the scalem5m̄b (m̄b is the running mass in the
MS scheme! and takingm̄b54.360.2 GeV@1# one can find
L (4)(three-loop)5296229

131 MeV or in the two-loop approxi-
mationL (4) is

L (4)~ two-loop!5338231
133 MeV. ~34!

It is of interest to compareas(m) for L (4) given by Eq.~34!

with the fitted valuesãs(m̃) used in different theoretica
analyses:as(3.25)50.25160.009 whereas in Ref.@4# the
fitted valueãs(3.25)50.33; as(4.60)50.22160.007 while
in Ref. @5# ãs(4.6)'0.27. In both fits the extracted value
appeared to be about 20% larger.

This 20% difference implies either very large values
L (4) or an significantly smaller scale ofm. For example,
as(m0)50.33 with the conventionalL (4), Eq. ~34!, corre-
sponds tom051.8060.16

0.18 GeV instead ofm̃53.25 GeV in
Ref. @4# and thism0 would be in good agreement with th
one cited in Refs.@6,7# and with our result~see Sec. IX!.

In our present analysis when different sets of parame
are taken, we shall impose two additional restrictions

~1! For the givenP-state the extracted value ofãs(m)
must be the same for the tensor and the spin-orbit splittin
because both interactions have the samer 23 behavior and
they also have the same characteristic size~momentum!.

~2! Only those sets of parameters for which the fitted tw
loop value ofã(m) corresponds to the conventional value
L (4) in two-loop approximation, Eq.~34!, are deemed appro
priate.
09403
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VI. STATIC POTENTIAL

In heavyQQ̄ systems the spin-dependent interaction co
tains the factorm22 and therefore it is small and can b
considered as a perturbation. For the unperturbed Ha
tonian we considered two cases,relativistic and nonrelati
tic,

H0
R52ApW 21m21Vst~r ! ~35!

or

H0
NR5

pW 2

m
1Vst~r !. ~36!

Here the use of a static potential,Vst(r )5Vst
P(r )

1Vst
NP(r ), needs some remarks. The perturbative static

tential is now known in two-loop approximation@28#, but for
our discussion it is enough to take it in one-loop approxim
tion from @3#

Vst
P52

4

3

aV~r !

r
. ~37!

Here the vector coupling constantaV(r ) is expressed
throughas(m) in the MS scheme in the following way@3#:
(as(m)!1)

aV~r !5as~m!F11
as~m!

p S a11
b0

2
@ ln~mr !1gE# D G

5
as~m!

12@as~m!/p#$a11~b0/2!@ ln~mr !1gE#%

→ 4p

b0 ln@~LRr !22#
. ~38!

In Eq. ~38! we have usedas(m)54p/@b0 ln(m2/LMS
2 )#, and

the conventional QCD constant in coordinate space:LR
5LMSexp(gE1a) wherea52a1 /b0. We see that the depen
dence onm disappears. The constants are:b051122nf /3,
so for nf54, b0525/3; a1531/1225nf /18, so fornf54,
a1553/36.

This expression is valid only for small radiative corre
tions or small distances:regEL̃ (4)!1 or r !2 GeV2150.4
fm (L̃ (4)'0.3 GeV!. However, in bottomonium the sizes o
the different states are varying in a wide range, e.g., typ
values of the root-mean-square radiusR(nL)5A^r 2&nL, are

R~1S!50.2 fm, R~1P!50.4 fm,

R~2S!50.5 fm, R~2P!50.65 fm,

R~3S!50.7 fm, R~3P!50.85 fm, R~4S!50.9 fm.
~39!
1-5
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These numbers are practically independent of the choic
the static potential parameters and the confining poten
provided the chosen potential reproduces the bottomon
spectrum with good accuracy.

From Eq.~39! one can see that the sizes of thenL states
run from 0.2 to 0.9 fm. Therefore the perturbative potent
Eq. ~38!, valid for r !0.4 fm, can be used only for low-lying
states. For the 1S, 2S, and 1P states this perturbative inter
action ~also with two-loop corrections! was analyzed in de
tail in Refs. @6,7# and there it was found that~i! for the 1S
and 2S states the values ofm are different and~ii ! m is
smaller in the 2S state. Therefore, one can expect that
every level a specific consideration is needed to determinm
or as(m).

To describe the 2P state, the size of which is about 0.6
fm, or thebb̄ spectrum as a whole, a different approach
needed. Here we suggest instead of the perturbative pote
Eq. ~37! to use the perturbative potential in backgrou
vacuum field,VB(r ):

VB~r !52
4

3

aB~r !

r
, ~40!

in momentum space

VB~q2!52
4

3

4p

qW 2
ãB~q2!, q2[qW 2. ~41!

In this potential ãB(q2) is a vector coupling constant i
vacuum background field which was introduced in Ref.@19#
and applied toe1e2→ hadrons processes in Ref.@21#:

ãB~q2!5
4p

b0tB
F12

b1 ln tB~q!

b0
2tB~q!

G , tB~q!5 ln
q21mB

2

L̃2
,

~42!

with b0525/3. For the vector coupling constant,aV(q2), L̃

differs from L in the MS scheme:L̃5LMS
(4) ea5481241

147

MeV, a55/624/b050.35333, andLMS
(4) was taken from Eq.

~34!. ~In the MS schemeLB and LMS coincide fornf54,5
because of their identical behavior at largeq2 @10#.! The
background massmB was found from the fit to the charmo
nium fine structure in Ref.@10# where mB51.1 GeV was
obtained.

In coordinate spaceaB(r ) can be calculated from th
Fourier transform of the potential Eq.~41! with aB(q2)
given by Eq.~42!. Then

aB~r !5
8

b0
E

0

`

dq
sinqr

qtB~q! F12
b1

b0
2

ln tB~q!

tB~q! G . ~43!

The strong coupling constant in vacuum background fi
maintains the property of asymptotic freedom at smallr, r

!L̃21 and r !mB
21 ,

aB~r→0!52
2p

b0 ln~L̃egr !
. ~44!
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Here the functiong5g(r ) is

g5g~r !5gE1S, S5 (
k51

`
~2mBr !k

k!k
, ~45!

or at smallr

g5gE2mBr , ~46!

whereas in standard perturbative theorygP5gE50.5772.
Due to the dependence on the distancer in Eq. ~46! the
expression Eq.~44! is always bounded.

For large r 2, r 2@mB
22 , the limit of aB(r ) in Eq. ~43!

tends to a constant, denoted asaB(`) and called the freezing
value

aB~`!5
4p

b0t0
F12

b1 ln t0

b0
2t0

G , t05 ln
mB

2

L̃2
. ~47!

From the integral Eq.~43! it can be shown that the freezin
value is the same in coordinate and in momentum spa
aB(r→`)5ãB(q250). The properties ofaB(r ) were dis-
cussed in Refs.@10,18,19# and a detailed analysis ofaB(r )
will be published elsewhere. In the intermediate region,
fm<r<0.9 fm, aB(r ) approaches rapidly the valueaB(`).

Therefore, to study the bottomonium spectrum as a wh
it is convenient to introduce an effective constantaeff :

aB~r !5aeff1daB~r !, aeff5const, udaB~r !u!aeff ,
~48!

and to consider the contribution from the termdVB(r ),

dVB~r !52
4

3

daB~r !

r
, ~49!

as a perturbation. Then in the Hamiltonian~22! the static
interaction

V0~r !52
4

3

aeff

r
~50!

will be taken into account as an unperturbed interaction.
For the nonperturbative interaction a linear formsr will

be taken and therefore the static potential in the unpertur
HamiltonianV0(r ),

V0~r !52
4

3

aeff

r
1sr 1C0 ~51!

coincides with the well known Cornell potential. Later, th
values of the string tensions will be varied in the range
0.17–0.20 GeV2. We shall present a detailed analysis of t
bb̄ spectrum in a separate paper.

VII. RELATIVISTIC CORRECTIONS

There exists the point of view that in bottomonium th
relativistic corrections are small because of the heavyb
quark mass. Indeed, the comparison of levels and mass
ferences for the Schro¨dinger equation and the Salpeter equ
tion, Eqs.~35!,~36!, in general, confirms this statement~here
1-6
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TABLE I. Bottomonium level differences~MeV! for the Schro¨dinger and the Salpeter equations.

Set I,aeff50.3545 Set II,aeff50.36
m54.737 GeV m54.81 GeV
s50.20 GeV2 a s50.18 GeV2

Mass differences Rel. Nonrel. Rel. Nonrel.
Exp. val.
~MeV!

M (2S)2M (1S) 554.34 551.97 556.55 550.03 562.960.5
M (3S)2M (2S) 350.43 354.78 335.62 338.49 332.060.8
M (4S)2M (3S)b 285.93 291.83 270.63 275.30 224.764.0
M (1P)2M (1S) 458.04 439.66 473.49 450.15 439.860.9
M (2P)2M (1P) 359.67 366.75 342.55 348.70 359.861.2
M (2S)2M (1P) 96.31 112.31 83.07 99.88 123.161.0
M (3S)2M (2P) 87.06 100.34 72.82 89.67 95.361.0

aThis set was taken from Ref.@29#.
bThe 4S level lies above theBB̄ threshold.
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the static potential is supposed to be the same in both ca!.
In Table I thebb̄ mass differences are given for two typic
sets of parameters. From Table I one can see the follow

~i! Relativistic corrections are small for large mass diffe
ences likeM (n,L)2M (n21,L) or M (nL)2M (n,L21).

~ii ! For close lying levels, likeD15M (2S)2M (1P) and
D25M (3S)2M (2P), the corrections are essential, abo
15%, and to getD1 andD2 close to the experimental data
is necessary to take into account the contribution from
perturbationdVB(r ) Eq. ~49!. In the relativistic case the in
fluence of the phenomenon of asymptotic freedom appea
be more essental than in the nonrelativistic~NR! case.

The relativistic corrections are becoming essential
some matrix elements, which determine the fine struct
splittings ~see Table II!. To calculate them in the relativisti
case~for the Salpeter equation! the expansion of the wav
function in a series over Coulomb-type functions was used
it was suggested in@29#. The numbers obtained have a com
putational error&1024 ~the dimension of the matrices D wa
varied from D520 to D540!.

From the numbers given in Tables II and III one c
conclude that for 1P and 2P states the root-mean-squa
radii practically coincide in the relativistic and the NR cas
for the matrix element̂ r 21& the difference between bot
cases is small, about 3% for the 1P state and about 5% fo
the 2P state; in the relativistic casêr 21& and therefore
uaNP(nP)u is slightly larger, in the relativistic case the valu
of ^r 23ln mr& are about 7%~10%! larger for the 1P(2P)
state for given set of chosen parameters, for the Salp
equation the matrix element^r 23& is larger by about 14%
~22%! for the 1P(2P) state, and the largest relativistic co
rection was found for the factorf 4 given in Eq. ~6!. This
difference is about 30% for the 1P state and 36% for the 2P
state. The numbers given do practically not change for
ferent sets of parameters. So our averaged value off 4(nP)
(aeff>0.35) are

f 4~1P!50.08560.010 GeV2,

f 4~2P!50.10660.008 GeV2. ~52!
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The theoretical error in Eq.~52! ('10%) mostly comes
from the variation of theb quark mass~in the range 4.6–5.0
GeV!.

The increasing off 4(nP) in the relativistic case directly
affects the values ofas(m) extracted from the fine structur
data because according to Eq.~32!

as~m!5ApmD~nP!

2 f 4~nP!
, D~nP!5hexp~nP!2uaNP~nP!u,

~53!

is proportional tof 4
21/2 and as(m) is about 15%smaller in

the relativistic case. This result obtains both for 1P and 2P
states.

Therefore, below we shall use only matrix elements c
culated for the Salpeter equation, in this way taking in
account the relativistic corrections. A last remark conce
the choice of the quark pole mass,mpole5m which enters the
Salpeter equation@6#. Here we study the spin structure of th
xb mesons determined by the spin-dependent potentials
known only in one-loop approximation. Therefore the po
mass of theb quark will be taken also in one-loop approx
mation @30#:

m5mpole5m̄~m̄2!H 11
4

3

as~mpole!

p J . ~54!

TABLE II. 1 P-state matrix elements for the Schro¨dinger and
the Salpeter equations.

Set I a Set II a

Matrix element Rel. Nonrel. Rel. Nonrel.

A^r 2& (GeV21) 1.994 2.039 2.008 2.054
^r 21& ~GeV! 0.633 0.614 0.631 0.612
^r 23 ln mr& (GeV3) 0.675 0.631 0.681 0.636
^r 23& (GeV3) 0.551 0.483 0.556 0.485
f 4(1P) (GeV2) 0.0876 0.0685 0.0871 0.0673

aFor the parameters see Table I.
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In Eq. ~54! m̄(m̄2) is a running quark mass in theMS renor-
malization scheme, its value from Ref.@1# is m̄54.360.2
GeV. Then takingL (4) from Eq. ~34! one findsm in the
range

4.5 GeV<m<5.0 GeV. ~55!

Only values of the mass in this range will be used later in
calculations.

VIII. as„µ… FOR THE 2P STATE

For the 2P stateas(m) can be immediately found from
the relation~32! for the chosen static potential with fixe
parametersaeff , s, andm. At first, we shall give an estimat
of as(m) using the following results.

~1! The nonperturbative spin-orbit splittinguaNP(2P)u de-
pends weakly on the choice of the parameters, provided
bb̄ spectrum is described with good accuracy

uaNP~2P!u51.9560.15 MeV. ~56!

~2! In Eq. ~30! the experimental error ofhexp (2P) is not
large and therefore the differenceD(2P) Eq. ~32! is known
with an accuracy of about 20%:

D~2P!5hexp~2P!2uaNP~2P!u

52.4060.04~exp!60.15~ th! MeV. ~57!

~3! In our calculations the matrix elementf 4(2P) is
changing in the narrow range

f 4~2P!50.10660.008 GeV2. ~58!

Then, from the fitting condition~32! and the numbers given
in Eqs.~56!–~58! the lower and upper bounds ofãs(m) can
be determined:

Am

m0
0.37<ãs~m!<Am

m0
0.46. ~59!

Here a normalization mass,m05 1
2 M @Y(1S)#54.73 GeV,

was introduced for convenience. Here and below all numb
were calculated in the relativistic case, i.e., for the Salpe
equation.

From the estimates~59! it is clear that for the 2P state
as(m)'0.40 turns out to be large for any set of the para
eters of the static interaction. It is significantly larger th

TABLE III. 2 P-state matrix elements for the Schro¨dinger and
the Salpeter equations.

Set I a Set II a

Matrix element Rel. Nonrel. Rel. Nonrel.

A^r 2& (GeV21) 3.177 3.263 3.235 3.320
^r 21& ~GeV! 0.477 0.455 0.469 0.448
^r 23ln mr& (GeV3) 0.495 0.448 0.489 0.443
^r 23& (GeV3) 0.504 0.414 0.496 0.406
f 4(1P) (GeV2) 0.1060 0.0783 0.1025 0.0748

aFor the parameters see Table I.
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that obtained in Ref.@4# whereas(3.25)50.33 and in Ref.
@5# whereas(4.6)50.26. In our calculations large values o
ãs(m) are extracted irrespectively to the value of the sc
m, which is still not fixed.

However,as(m) in Eq. ~59! is varying in a rather wide
range and its value is sensitive to small variations of
factors entering the condition~32!. The value ofas(m) is
decreasingif the constantaeff of the static interaction is
growing. In our numerical calculations the value ofaeff is
supposed to be in the range

0.35<aeff,aB~q250!'0.48 ~60!

with a b quark mass from the condition~55!.
With the restriction~60! the fitted values ofãs(m) ap-

peared to lie in the narrower range

ãs~m!50.4060.02~ th!60.04~exp! ~bb̄!. ~61!

Here the experimental error comes fromhexp, Eq. ~33!, and
the theoretical error is due to the variation ofaeff , m, ands.

In the extracted valueãs(m), Eq. ~61!, the scalem is still
not specified. To findm2 it is better to use the condition
c(2P)5cexp, Eq. ~28!, for the tensor splitting, because th
theoretical uncertainty connected with the nonperturba
contribution to c(2P) is negligible, cNP,0.05 Mev. This
condition ~28! turns out to be satisfied for the scale

m5m251.0260.02 GeV, ~62!

which has a small theoretical error, 2%, while the extrac
value ofã(m), Eq.~61!, was determined with an accuracy o
15%.

It is of interest to compareã(1.0)'0.40 with the value
found in perturbation theory. The scalem2'1.0 GeV is
small, less than the running mass of thec quark, m̄c51.3
60.2 GeV @1#, thereforeas(1.0) should be calculated with
L5L (3) ~two-loop!, nf53. The value ofL (3) can be found
using the matching condition atm5m̄c and the value ofL (4)

~two-loop!, Eq. ~34!. Then

L (3)~ two-loop!5384230
132 MeV ~63!

and correspondingly the two-loop strong coupling constan

as~1.0!50.5320.05
10.06, ~64!

which is 30% larger than our fitted value given by Eq.~61!.
It was suggested in Ref.@10# that this decreasing ofã(m̃) at
the scalem251 GeV can be explained by the behavior
aB(m) Eq. ~42! in the vacuum background field, thus dem
onstrating the phenomenon of freezing ofas(m) . In Ref.
@10#, from a fit to the charmonium fine structure, the bac
ground massmB in Eq. ~42! was found to be~in the MS
renormalization scheme!

mB51.1 GeV, LB
(3)~ two-loop!5400250

140 MeV ~cc̄!.
~65!

Our extracted value ofã(1.0) in Eq.~61! corresponds to the
close value ofLB

(3) ,
1-8
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LB
(3)~ two-loop!5420230

140 MeV ~bb̄!. ~66!

Note also that for the 1P state in charmonium the value

ã~1.0!50.3860.03~ th!60.04~exp! ~67!

practically coincides withã(1.0) in bottomonium,

ã~1.0!50.4060.02~ th!60.04~exp!,

m251.0260.02 GeV. ~68!

This coincidence is not, in our opinion, accidental: bo
states, thecc̄ 1P state and thebb̄ 2P state, have the sam
size: R5A^r 2&nP50.62–0.65 fm. This coincidence of th
values ofas(m) and of the sizes indicates that for the bou
states the scalem is characterized by the size, but not th
momentum, of the system. This result is in agreement w
the predictions of Refs.@6,7#.

With the use of the fitted valuesãs(m2), Eq. ~68!, the
theoretical number obtained for the spin-orbit splittingatot
automatically satisfies the third fitting condition Eq.~28!.
Calculated numbers ofa and c are given in Table IV for
three different sets of parameters. From these numbers
can see that the second order radiative correctionsaP

(2) and
cP

(2) are negative and rather large: about 25% for the ten
and 40% for the spin-orbit splittings.

Note that we have met here no difficulty to get a prec
description of the tensor and spin-orbit splittings for the 2P
state simultaneously, in contrast to the results of Ref.@5#,
where some difficulties have occurred, in our opinion, b
cause of the choicem̃5m ~see the discussion in Sec. V!.

IX. as„µ… FOR THE 1P STATE

For the 1P state the scale-independent condition~32! can-
not be used directly, because the important factorD(1P) in
Eq. ~32! has a large experimental error. So in this case
needs to use the twom-dependent conditions, Eq.~28!, on
the splittingsa andc.

There exist a lot of variants where these two conditio
can be satisfied. However, in many cases the two-loop va
ãs(m1) and m1, extracted from those fits, correspond to
very large value of the QCD constantL (4). Therefore, the

TABLE IV. Fine-structure parameters for the 2P bb̄ state.

Set I a Set II a Set III b Exp. val.

ã(m2) 0.392 0.429 0.386

m2 ~GeV! 1.03 1.02 1.03
cP

(2) ~MeV! 22.62 23.14 23.35
ctot ~MeV! 9.12 9.11 9.17 9.160.2
aNP ~MeV! 22.12 21.83 21.80
aP

(1) ~MeV! 17.61 18.33 18.77
aP

(2) ~MeV! 26.12 27.19 27.52
atot ~MeV! 9.37 9.32 9.45 9.460.2

aFor the parameters see Table I.
baeff50.386,s50.185 GeV2, m55.0 GeV.
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additional requirement~21! thatL (4) ~two-loop! should have
a value in the range 307 MeV<L(4)<371 MeV, is neces-
sary. If this restriction is put, then in our calculations t
extracted scalem1 appears to lie in the narrow range

m151.8060.10 GeV ~69!

and

ã~m1!50.3360.01~exp!60.02~ th!. ~70!

Our value for the scalem1 turned out to be very close to
that determined in Ref.@7#, but our fitted value ofas(m1) is
about 15% larger than the one found in Ref.@7# where
ãs~three-loop!50.29 and L (4)~three-loop!5230 MeV @or
L (4) (two-loop)5250260

190 MeV# is smaller than in our fit.
For the 1P state it was also observed that if a large val

s50.2 GeV2 is taken, then it is difficult to reach a consiste
description of the tensor and the spin-orbit splittings sim
taneously. Therefore here, as well as in the charmonium c
@10#, the valuess50.17–0.185 GeV2 are considered as pref
erable. Also the choice of a relatively largeb quark mass,

mb54.7524.9 GeV, ~71!

gives rise to a better fit.
The results of our calculations for the 1P state are given

in Table V from which one can see that the second or
correctionscP

(2) andaP
(2) are relatively small, 8% and 1.5%

but still remain important for a fit to the experimental da
Also in all good fits the effective Coulumb constantaeff lies
betweenã(m1) and ãs(m2):

ã~m1!,aeff<ã~m2!. ~72!

In our analysism2(2P) is less thanm1(1P) and their
ratio is almost inversely proportional to the ratio of the ra
of these states

m1~1P!

m2~2P!
'1.721.8;

A^r 2&2P

A^r 2&1P

51.621.65. ~73!

This result is in full agreement with the prediction of Ref
@6,7# about the decrease of the scale with increasing princ
quantum number.

TABLE V. Fine-structure parameters for the 1P bb̄ state.

Set I a Set II a Set III b Exp. val.

ã(m2) 0.335 0.340 0.32

m1 ~GeV! 1.80 1.85 1.90
cP

(2) ~MeV! 0.96 1.03 0.90
ctot ~MeV! 11.93 11.92 11.91 11.9260.20
aNP ~MeV! 22.82 22.45 22.44
aP

(1) ~MeV! 16.46 16.34 16.52
aP

(2) ~MeV! 0.12 0.21 0.05
atot ~MeV! 13.76 14.09 14.12 14.2360.57

aFor the parameters see Table I.
baeff50.386,s50.185 GeV2, m55.0 GeV.
1-9
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X. CONCLUSION

The precise experimental data on the masses ofxbJ(1P)
and xbJ(2P) give a unique opportunity to determine th
QCD strong coupling constant at low-energy scales. In
analysis of fine structure splittings we found the following

~1! The relativistic corrections which are small for su
characteristics as thebb̄ levels, radii, and matrix elemen
^r 21&, are nevertheless essential for the determination of
factor f 4(nP), which is inversely proportional to the ex
tracted value ofãs

2(m).
~2! From a m-independent analysis of the 2P state, the

value ãs(m2)'0.40 was extracted. The scalem251.0
60.02 GeV, determined from the tensor splitting, appea
to be practically unchanged for any chosen set of parame

~3! The extracted valueã(1.0)'0.40 is about 30% lower
than the one found in perturbation theory ifL (3)5384230

132

MeV was used. This value agrees with the fittedas(1.0,cc̄)
extracted from the analysis of the charmonium fine structu
This result can be naturally explained in the framework
ev
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background perturbation theory and is compatible with
freezing of the coupling constant.

~4! The scalem1'1.8 GeV for the 1P bb̄ state obtained
here agrees with the prediction in Ref.@7# but corresponds to
the larger valueL (4)(two-loop)5338231

133 MeV, which gives
rise toas(Mz)50.11960.002.

~5! The preferred values of the pole mass of theb quark
are found to bem54.7–4.9 GeV but from the fine structur
analysis we could not narrow their range.

Our results have confirmed the important observation
Yndurainet al. @6,7# that the strong coupling constant is in
creasing for states with a larger size or larger principal qu
tum number and this fact is essential in many aspects
quarkonium physics.
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