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Quark-antiquark potential in the analytic approach to QCD
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Physical Department, Moscow State University, Moscow, 119899, Russia
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The quark-antiquark potential is constructed by making use of a new analytic running coupling in QCD.
This running coupling arises under ‘‘analytization’’ of the renormalization group equation. The rising behavior
of the quark-antiquark potential at large distances, which provides the quark confinement, is shown explicitly.
At small distances, the standard behavior of this potential originating in the QCD asymptotic freedom is
revealed. The higher loop corrections and the scheme dependence of the approach are briefly discussed.

PACS number~s!: 12.38.Aw, 24.85.1p
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I. INTRODUCTION

The description of quark dynamics inside hadrons
mains an actual problem of elementary particle theory. T
asymptotic freedom in quantum chromodynamics~QCD! en-
ables one to investigate the quark interactions at small
tances by making use of standard perturbation theory.
quark dynamics at large distances~the confinement region!
lies beyond such calculations. For this purpose other
proaches are used: phenomenological potential models@1#,
string models@2#, bags models@3#, lattice calculations@4#,
the explicit account of nontrivial QCD vacuum structure@5#,
and variational perturbation theory@6#.

Recently Shirkov and Solovtsov proposed a new anal
approach to QCD@7#. Its basic idea is the explicit impositio
of the causality condition, which implies the requirement
the analyticity in theQ2 variable for the relevant physica
quantities. The essential merits of this approach are the
lowing: absence of unphysical singularities at any loop lev
stability in the infrared~IR! region, stability with respect to
loop corrections, and extremely weak scheme depende
The analytic approach has been applied successfully to
problems as thet lepton decays,e1e2-annihilation into had-
rons, sum rules~see@8# and references therein!.

In Refs. @9,10# the analytic approach has been employ
to the solution of the renormalization group~RG! equation.
The analyticity requirement was imposed on the RG eq
tion itself, before deriving its solution. Solving the RG equ
tion, ‘‘analytized’’ ~i.e., requiring analyticity! in the above-
mentioned way, one gets, at one-loop level, a new anal
running coupling, which possesses practically the same
pealing features as the Shirkov-Solovtsov running coup
@7# does. An essential distinction, that will play a crucial ro
in the present paper, is the IR singularity of the new analy
running coupling at the pointq250. It should be stresse
here that such a behavior of the invariant charge is in co
plete agreement with the Schwinger-Dyson equations, a
as it will be demonstrated in Sec. III, provides the qua
confinement~see Sec. II for the details!.

In this paper we shall adhere to the model@5,11# of ob-
taining the quark-antiquark (qq̄) potential by the Fourier
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transformation of the running coupling. However, the pert
bative running couplingas(q

2) does not enable one to obta
the risingqq̄ potential without invoking additional assump
tions @11#.

The objective of this paper is to construct the qua
antiquark potential by making use of the new analytic ru
ning coupling. This potential proves to be rising at lar
distances~i.e., providing the quark confinement! and, at the
same time, it incorporates the asymptotic freedom at sm
distances. It is essential that for obtaining this potentialno
additional assumptions, lying beyond the standard RG
method in the quantum field theory and the analyticity
quirement, will be used.

The layout of the paper is as follows. In Sec. II the de
vation of the new analytic running coupling is presented a
its properties are briefly discussed. In Sec. III the qua
antiquark potential, generated by the new analytic runn
coupling, is derived by making use of the Fourier transf
mation. Further, the asymptotic behavior of the potentia
large and small distances is investigated. In Sec. IV
higher loop corrections and the scheme dependence of
potential are discussed briefly. For practical purposes
simple approximate formula for the potential is propos
which interpolates its infrared and ultraviolet asymptotic
This formula is compared with the phenomenological C
nell potential. Proceeding from this, an estimation of t
QCD parameterL is obtained. In the Conclusion~Sec. V!
the obtained results are formulated in a compact way, and
further studies in this approach are outlined.

II. A NEW MODEL FOR THE QCD ANALYTIC RUNNING
COUPLING

In the analytic approach to QCD, proposed by Shirk
and Solovtsov@7#, the basic idea is the explicit imposing o
the causality condition, which implies the requirement of t
analyticity in theQ2 variable for the relevant physical quan
tities. Later this idea was applied to the ‘‘analytization’’~i.e.,
the procedure of analyticity requirement! of the perturbative
series when calculating the QCD observables@8#. The results
turned out to be quite encouraging. As was mentioned in
Introduction, the analytization of the perturbative series le
to the elimination of the unphysical singularities, to th
higher loop correction stability and to a weak scheme dep
dence. However, theQ2-evolution of some QCD observable
©2000 The American Physical Society28-1
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A. V. NESTERENKO PHYSICAL REVIEW D 62 094028
~for instance, the structure function moments! is intimately
tied with the solution of the RG equation. Our task here is
involve the analytization procedure into the RG formalis
more profoundly.

Let us consider the RG equation of a quite general fo
for a quantity A(Q2) ~it may be, for example, the gluo
propagator, or the structure function moment!. At the one-
loop level this equation reads

d ln A~Q2!

d ln Q2
5g ãs

(1)~Q2!, ~1!

where g is the corresponding anomalous dimension~the
negative noninteger number in the general case!, ãs

(1)(Q2)
51/ln(Q2/L2) is the one-loop perturbative running couplin
The solution of Eq.~1! can be written in the form

A~Q2!5A~Q0
2!F ãs

(1)~Q0
2!

ãs
(1)~Q2!

G g

. ~2!

From here it follows immediately, that this solution has u
physical singularities in the physical regionQ2.0. How-
ever, in many interesting cases mentioned above, the q
tity A(Q2) must have correct analytic properties in theQ2

variable~namely, there is the only cutoffQ2<0). One can
demonstrate this proceeding from the first principles. So,
the gluon propagator this assertion follows from the cau
Källén-Lehmann representation~see, e.g.,@12#!, and for the
structure function moments this is a consequence of
Deser-Gilbert-Sudarshan integral representation1 ~see, e.g.,
@13#!. Thus, we come to a contradiction.

The point, which is crucial to our consideration, is t
following. The RG equation in the form~1! involves, in fact,
a contradiction. The left-hand side of this equation has
unphysical singularities in theQ2.0 region, while its right-
hand side has pole-type singularity at the pointQ25L2. The
account of the higher loop contributions just introduces
additional unphysical singularities of the cut type in t
physical regionQ2.0 and hence does not solve the pro
lem.

In order to avoid this contradiction, we propose to use
following method@9,10#. Before solving the RG equation~1!
one should analytize its right-hand side as a whole. T
prescription leads to the analytized RG equation, which
the one-loop level, takes the form

d ln A~Q2!

d ln Q2
5g ãan

(1)~Q2!, ~3!

1In the most general case this follows from the Jost-Lehma
Dyson integral representation for the structure function,
the detailed discussion of this point is beyond the scope of
paper.

2It is worth noting here that there is no consistent way for ana
tizing the RG equation with theb-function for the invariant charge
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where ãan
(1)(Q2)51/ln(Q2/L2)11/(12Q2/L2) is the pertur-

bative running coupling analytized by making use of t
Shirkov-Solovtsov prescription@7#.2 The solution of Eq.~3!
can be presented in the form

A~Q2!5A~Q0
2!F Nãan

(1)~Q0
2!

Nãan
(1)~Q2!

G g

, ~4!

where

Nãan
(1)~Q2!5

z21

z ln z
, z5

Q2

L2
. ~5!

Comparing the solution~4! with Eq. ~2! one infers that
Naan

(1)(Q2) should be treated as a new one-loop analytic r
ning coupling. Really, it possesses the same properties a
one-loop running coupling analytized through the Shirko
Solovtsov procedure. Namely, the new running coupling
the standard asymptotic behavior atz→` and it has no un-
physical singularities in theQ2.0 region. The latter follows
directly from the causal representation of the Ka¨llén-
Lehmann type, that holds forNãan

(1)(Q2):

Nãan
(1)~Q2!5E

0

` Nr~s!

s1z
ds, Nr~s!5S 11

1

s D 1

ln2s1p2
.

~6!

The distinctive feature of the new running couplin
which will play the crucial role in the framework of ou
consideration, is its singularity at the pointQ250. It is worth
noting that such a behavior of the invariant charge is in co
plete agreement with the Schwinger-Dyson equations~see
discussion in Ref.@14#!, and, as it will be demonstrated i
the next section, provides the quark confinement.

Summarizing all stated above, we propose the follow
model for the analytic running coupling. We define the ne
analytic running couplingNaan(Q

2) as the solution of the
analytized RG equation at the respective loop level. Here
has to choose the anomalous dimensions in such a way
the solution of the standard RG equation is the perturba
running coupling at the loop level considered.3 Thus, at the
one-loop level, the new analytic running coupling has t
form @9,10#

Naan
(1)~Q2!5

4p

b0

z21

z ln z
, z5

Q2

L2
, ~7!

where b051122 nf /3 is the first coefficient of the
b-function. At the higher loop levels there is only the int
gral representation forNaan(Q

2). So, at thei-loop level we
have

-
t
is

-

3This choice is the following:g5g0521; g i50, i>1, whereg i

is the coefficient by the (i 11)th power of the perturbative runnin
coupling on the right-hand side of Eq.~1!.
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QUARK-ANTIQUARK POTENTIAL IN THE ANALYTIC . . . PHYSICAL REVIEW D 62 094028
Naan
( i )~Q2!5 Naan

( i )~Q0
2!

z0

z
expF E

0

`r ( i )~s!

s
lnS s1z

s1z0
DdsG ,

~8!

where r ( i )(s)5@ãs
( i )(2s2 i«)2ãs

( i )(2s1 i«)#/(2p i ) is
the spectral density, andz05Q0

2/L2 is the normalization
point.

Figure 1 shows the new analytic running coupling co
puted at the one-, two-, and three-loop levels. It is clear fr
this figure that our analytic running coupling possesses
higher loop stability. Moreover, it can be shown that t
singularity of the new analytic running coupling at the po
Q250 is of the universal type at any loop level. This is cle
from the following simple consideration. Whenz→0 the ba-
sic contribution into Eq.~8! affords the integration over th
smalls region. The spectral densityr ( i )(s) at any loop level
has the same limit whens→0: r ( i )(s)→r (1)(s)5(ln2 s
1p2)21 @8#. Hence the new analytic running coupling~8! has
the unique behavior whenz→0.

III. QUARK-ANTIQUARK POTENTIAL GENERATED BY
THE NEW ANALYTIC RUNNING COUPLING

Here we are going to use the new analytic running c
pling for obtaining the interquark potential. We proceed fro
the standard expression@5,11# for the qq̄ potential in terms
of the running couplinga(q2),

V~r !52
16p

3 E
0

`a~q2!

q2

eiqr

~2p!3
dq. ~9!

For the construction of the new interquark potent
NV(r ) we shall use the new analytic running coupling~7!

Naan~Q2!5
4p

b0

z21

z ln z
, z5

Q2

L2
. ~10!

Upon the integration over the angular variables and the s
stitution q/L→q, rL→R in Eq. ~9!, one gets

FIG. 1. The normalized new analytic running couplingR(z)

5 Nãan(Q
2)/ Nãan(Q0

2) at the one-, two-, and three-loop level
The normalization point isQ0

2510L2, z5Q2/L2.
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NV~r !52
32

3b0
L•Ṽ~R!, R5Lr , ~11!

where

Ṽ~R!5E
0

` q221

q2 ln q2

sin~qR!

qR
dq ~12!

is the dimensionless potential.
In order to perform the integration in Eq.~12! we consider

the auxiliary function

I ~n,R!5 lim
a→01

E
0

` qn21

ln~a1q2!
sin~qR! dq. ~13!

Here the parametera is introduced for shifting the origin of
the cut along the imaginary axis Imq. It is obvious that

Ṽ~R!5
1

R
@ I ~0,R!2I ~22,R!#. ~14!

For evenn the integrand in Eq.~13! is an even function ofq.
Therefore

I ~n,R!5
1

2
Im lim

a→01

J~n,a,R!, ~15!

where

J~n,a,R!5PE
2`

`

F~q! dq, F~q!5
qn21eiqR

ln~a1q2!
. ~16!

The signP means the principal value of the integral.
The function F(q) in Eq. ~16! has the cuts (2 i`,

2 iAa#, @ iAa, i`) and simple poles at the pointsq
57A12a. Let us consider the integral of the functionF
along the contourG shown in Fig. 2. The functionF(q) has
no singularities inside the contourG, thereforerGF dq50.
Contribution to this integral of the semicircle of infinitel
large radius in upper half-plane~see Fig. 2! vanishes. Per-

FIG. 2. The integration contour in the complexq-plane. The
notations arep152A12a, p25A12a, G5 iAa.
8-3
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A. V. NESTERENKO PHYSICAL REVIEW D 62 094028
forming the integration along the two semicirclesc2 andc1

of the vanishing radius and along the cutC on the imaginary
axis, we obtain

J~n,a,R!5 ipH 1

2 F ~A12a!n22eiRA12a

1~2A12a!n22e2 iRA12a G
12i n22E

Aa

` xn21e2Rx

ln2~x22a!1p2
dxJ . ~17!

Hence, for evenn the functionI (n,R) in Eq. ~13! takes the
form

I ~n,R!5pF1

2
cosR2~21!n/2N~R,n!G , ~18!

where

N~R,n!5E
0

` xn21e2Rx

ln2~x2!1p2
dx. ~19!

It is rather complicated to perform the integration in E
~19! explicitly. Therefore we address the study of the asym
totics. First of all, we would like to know whether theqq̄
potential NV(r ) in Eq. ~11! provides the quark confinemen
For the investigation of the potential behavior at large d
tances it is enough to consider the asymptotic of the func
N(R,n) in Eq. ~19! whenR→`. This function can be rep
resented in the following way:

N~R,n!5~21!n
]n

]RnE0

` e2Rx

x@ ln2~x2!1p2#
dx. ~20!

At large R the basic contribution into Eq.~20! gives the
integration over the smallx region. Let us transformN(R,n)
identically:

N~R,n!5
]n

]RnE0

` ~21!ne2Rx

4x~ ln2 x1p2!
F11

3L

11LGdx, ~21!

where L5p2/(4 ln2 x). Neglecting the second term in th
square brackets in Eq.~21!, we use the formula~4.361.2!
from Ref. @15#:

E
0

` e2mx

x~ ln2x1p2!
dx5em2n~m!, Rem.0, ~22!

wheren(m) is the so-called transcendentaln-function @16#:

n~m!5E
0

` m tdt

G~ t11!
. ~23!

Eventually, we obtain forR→`,
09402
.
-

-
n

N~R,n!.
~21!n

4 FeR2n~R!1E
0

2n Rtdt

G~ t11!G . ~24!

Taking into account Eqs.~14!, ~18!, and ~24! one can
present the quark-antiquark potential~11! at largeR in the
following way:

NV~r !.
8p

3b0

L

R F2~eR2n~R!!1E
0

2 Rtdt

G~ t11!G . ~25!

The behavior of the potentialNV(r ) at r→` is determined
by the last term in Eq.~25!.4 Integration of this term by parts
gives

E
0

2 Rtdt

G~ t11!
5

R2

2 lnRF112(
k51

`
f k~2!

lnk R
G

2
1

ln RF11(
j 51

`
f j~0!

lnj R
G , ~26!

where

f n~ t !5
dn

dsn

~21!n

G~s11! U
s5t

. ~27!

In the limit R→`, Eq. ~26! takes the form

E
0

2 Rtdt

G~ t11!
5

R2

2 lnR
. ~28!

Therefore the quark-antiquark potentialNV(r ) proves to be
rising at large distances

NV~r !.
8p

3b0
L•

1

2

Lr

ln~Lr !
, r→`. ~29!

Thus the new analytic running couplingNaan(q
2) @see

Eq. ~7!# leads to the rising quark-antiquark potentialNV(r )
which can, in principle, describe the quark confinement.

It is important to point out that the behavior of the pote
tial NV(r ) when r→0 has the standard form determined
the asymptotic freedom~see, e.g., Ref.@11#!,

NV~r !.
8p

3b0
L•

1

Lr ln~Lr !
, r→0. ~30!

Unfortunately, it is impossible to obtain the explicit depe
denceNV(r ) for the whole region 0,r ,`. A simple inter-
polating formula, which can be applied for practical use, w
be given in the next section.

4It follows directly from the asymptotic ofn(R) ~see Ref.@16#!,
and from a simple reasoning. Really, ifR.0 the termf (R)5eR

2n(R) is non-negative andf 8(R)<0. Hence,f (R)→const when
R→`, and its contribution toNV(r ) at largeR is of 1/R-order.
8-4
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IV. DISCUSSION

Let us discuss briefly the higher loop contribution. As w
mentioned in the Sec. II, the singularity ofi-loop analytic
running couplingNaan

( i )(q2) at the pointq50 is of the uni-
versal type at any loop level. Therefore, whenq→0 we have
Naan

( i )(q2);Naan
(1)(q2) Ci , where Ci are constants. Taking

into account that the maximal difference betweenNaan
( i )(q2)

and Naan
(1)(q2) is in the small q2 region, we arrive at

the following conclusion. The account of the high
loop corrections leads to changing the slope of theqq̄
potential NV(r ) when r→`. This corresponds to a simpl
redefinition of the parameterL in Eq. ~29! at the higher loop
levels.

As far as the scheme dependence of this approach
have to point out the following. It was shown in@9# that the
solutions of the analytized RG equation at the higher lo
level have extremely weak scheme dependence. In partic
the solutions of the RG equation withMS and MS schemes
are practically coinciding. Hence, at the higher loop le
~there is no scheme dependence at the one-loop level!, the
use of different subtraction schemes leads to the slight va
tion of theqq̄ potential.

Thus, neither higher loop corrections, nor scheme dep
dence, can affect qualitatively the result obtained in the p
vious section.

For the practical use of the new potential it is worth o
taining a simple explicit expression that approximates it s
ficiently well. For this purpose one can use, for instance,
approximating function

U~r !5
8p

3b0
LF 1

ln R S 1

R
1

R

2 D1
1

12R S 3

2
1R f1~2! D

1R f1~2!S 1

ln2 R
2

1

~R21!2
1

11

12D G , ~31!

which has no any unphysical singularities and possesse
asymptotics~29! and ~30!. This function is obtained by
smooth sewing the asymptotics

NV~r !.
8p

3b0
L•F R

2 ln~R!
1

R f1~2!

ln2~R!
G , R→`, ~32!

NV~r !.
8p

3b0
L•

1

R ln~R!
, R→0, R5Lr . ~33!

The formula~32! keeps explicitly the second leading ter
of the expansion~26!, f 1(2)50.461. Some terms have bee
introduced into Eq.~31! only for eliminating the singularity
at the pointR51. It should be mentioned here that the ne
terms in the expansion~26! practically do not affect the
shape ofU(r ). Of course, the function~31! is not the unique
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interpolating function between asymptotics~32! and ~33!.
Nevertheless, the comparison ofU(r ) with the phenomeno-
logical potential

CV~r !52
4

3

a

r
1sr 1const ~34!

~the so-called Cornell potential@1#! shows their almost com
plete coincidence~see Fig. 3!. The fit has been performe
with the use of the least square method in the physical me
ing region 0.1<r<1.0 fm @5#. The varied parameter in Eq
~31! is L. The possibility of shifting the potentialCV(r ) in
Eq. ~34! by a constant was also used. A rough estimation
L in the course of this fitting givesL.500 MeV. This is in
agreement with the values obtained earlier in the framew
of the analytic approach to QCD@8#.

V. CONCLUSION

In the paper the quark-antiquark potential is construc
by making use of the new analytic running coupling in QC
This running coupling arises under analytization of t
renormalization group equation before its solving. The ris
behavior of the quark-antiquark potential at large distanc
which provides the quark confinement, is shown explicit
The key property of the new analytic running couplin
leading to the confining potential, is its infrared singular
at the pointq250. At small distances, the standard behav
of the potential, originating in the QCD asymptotic freedo
is revealed. It is also demonstrated that neither hig
loop corrections, nor scheme dependence, can af

FIG. 3. Comparison of the potentialU(r ) given by Eq.~31!
~solid curve! with the phenomenological Cornell potential (L), Eq.
~34!. The values of the parameters area50.39,s50.182 GeV2 @5#,
L5530 MeV,nf55.
8-5
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qualitatively the obtained result. The estimation of t
parameterL in this approach gives a reasonable valu
L.500 MeV.

In further studies it would undoubtedly be interesting
consider in this approach the dependence of theqq̄ potential
on the quark masses.
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