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Quark-antiquark potential in the analytic approach to QCD
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The quark-antiquark potential is constructed by making use of a new analytic running coupling in QCD.
This running coupling arises under “analytization” of the renormalization group equation. The rising behavior
of the quark-antiquark potential at large distances, which provides the quark confinement, is shown explicitly.
At small distances, the standard behavior of this potential originating in the QCD asymptotic freedom is
revealed. The higher loop corrections and the scheme dependence of the approach are briefly discussed.

PACS numbeps): 12.38.Aw, 24.85+p

[. INTRODUCTION transformation of the running coupling. However, the pertur-
bative running couplingr{(g?) does not enable one to obtain
The description of quark dynamics inside hadrons rethe risingqq potential without invoking additional assump-
mains an actual problem of elementary particle theory. Theions[11].
asymptotic freedom in quantum chromodynamiQ€D) en- The objective of this paper is to construct the quark-
ables one to investigate the quark interactions at small disantiquark potential by making use of the new analytic run-
tances by making use of standard perturbation theory. Theing coupling. This potential proves to be rising at large
quark dynamics at large distancébe confinement region distancegi.e., providing the quark confinemerand, at the
lies beyond such calculations. For this purpose other apsame time, it incorporates the asymptotic freedom at small
proaches are used: phenomenological potential mddéls distances. It is essential that for obtaining this potentil
string models[2], bags model§3], lattice calculationg4],  additional assumptionslying beyond the standard RG
the explicit account of nontrivial QCD vacuum structigd, ~ Method in the quantum field theory and the analyticity re-
and variational perturbation theofg]. quirement, will be used. ,
Recently Shirkov and Solovtsov proposed a new analytic | N€ layout of the paper is as follows. In Sec. Il the deri-
approach to QCIN7]. Its basic idea is the explicit imposition vation of the new analytic running coupling is presented and

of the causality condition, which implies the requirement ofitS _properties are briefly discussed. In Sec. Il the qua_rk-
the analyticity in theQ? variable for the relevant physical antiquark potential, generated by the new analytic running

uantities. The essential merits of this approach are the folgoupling, is derived by making use of the Fourier transfor-
qua ' . : anp mation. Further, the asymptotic behavior of the potential at
lowing: absence of unphysical singularities at any loop level

I . . " ) large and small distances is investigated. In Sec. IV the
stability in the infraredIR) region, stability with respect to higher loop corrections and the scheme dependence of the
loop corrections, and extremely weak scheme dependenc

X ! fotential are discussed briefly. For practical purposes, a
The analytic approach has been applied successfully to Sug?mple approximate formula for the potential is proposed

problems as the lepton decayse™ e -annihilation into had-  \yhich interpolates its infrared and ultraviolet asymptotics.
rons, sum rulegsee[8] and references thergin This formula is compared with the phenomenological Cor-

In Refs.[9,10] the analytic approach has been employedyg|| potential. Proceeding from this, an estimation of the
to the solution of the renormalization groURG) equation. QCD parameter\ is obtained. In the ConclusiofSec. \j

The analyticity requirement was imposed on the RG equage obtained results are formulated in a compact way, and the
tion itself, before deriving its solution. Solving the RG equa-fther studies in this approach are outlined.

tion, “analytized” (i.e., requiring analyticity in the above-
mentioned way, one gets, at one-loop level, a new analytic
running coupling, which possesses practically the same adl' A NEW MODEL FOR THE QCD ANALYTIC RUNNING

pealing features as the Shirkov-Solovtsov running coupling COUPLING

[7] does. An essential distinction, that will play a crucial role  |n the analytic approach to QCD, proposed by Shirkov
in the present paper, is the IR singularity of the new analyticand Solovtso 7], the basic idea is the explicit imposing of
running coupling at the poing*=0. It should be stressed the causality condition, which implies the requirement of the
here that such a behavior of the invariant Charge is in Comana|yticity in theQz variable for the relevant physica| guan-
plete agreement with the Schwinger-Dyson equations, andities. Later this idea was applied to the “analytizatiofie.,
as it will be demonstrated in Sec. Ill, provides the quarkthe procedure of analyticity requirememf the perturbative
confinementsee Sec. Il for the detajls series when calculating the QCD observalj@s The results
In this paper we shall adhere to the mof/11] of ob-  turned out to be quite encouraging. As was mentioned in the
taining the quark-antiquarkq@) potential by the Fourier Introduction, the analytization of the perturbative series leads
to the elimination of the unphysical singularities, to the
higher loop correction stability and to a weak scheme depen-
*Electronic address: nesterav@thsundl.jinr.ru dence. However, th®2-evolution of some QCD observables
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(for instance, the structure function momenits intimately where a{)(Q?) = 1/In(QYA?) +1/(1— Q%/A?) is the pertur-
involve the analytization procedure into the RG formalismshirkov-Solovtsov prescriptiof7].2 The solution of Eq(3)

more profoundly. . ' can be presented in the form
Let us consider the RG equation of a quite general form N= (1)) 22T 7
for a quantity A(Q?) (it may be, for example, the gluon AQ?)=A(Q2) @z, (Qp) @
propagator, or the structure function momemt the one- 0 N’&gﬁ)(Qz) '
loop level this equation reads
where
dInA(Q?) ~
FTY ya{(Q?), (1) iy 21 Q2
aan(Q ):mi Z:P- (5)

Wherg VIS the correspondlng anomalous dlnlens(cbhe Comparing the solution4) with Eq. (2) one infers that
negative noninteger number in the general "*?‘&él)(Qz). N (H(Q?) should be treated as a new one-loop analytic run-
= 1/In(Q*/A?) is the one-loop perturbative running coupling. ping'coupling. Really, it possesses the same properties as the
The solution of Eq(1) can be written in the form one-loop running coupling analytized through the Shirkov-

~ (1) ~20]7 Solovtsov procedure. Namely, the new running coupling has
as”(Qp) the standard asymptotic behaviorzat-oc and it has no un-
ngl)(Qz) ' physical singularities in th&2>0 region. The latter fpl[ows
directly from the causal representation of the ll&a

Lehmann type, that holds fd¥a{}(Q?):

A(Q?)=A(Q}) 2)

From here it follows immediately, that this solution has un-
physical singularities in the physical regid@?>0. How- N
ever, in many interesting cases mentioned above, the quanNa(l)(Qz):J plo) do, Np(o)= - -
tity A(Q?) must have correct analytic properties in Q8 an otz In2g+ 72
variable (namely, there is the only cutofp?<0). One can 6)
demonstrate this proceeding from the first principles. So, for
th.(.a gluon propagator this as_sertion follows from the causal The distinctive feature of the new running coupling,
Kallen-Lehmann representatidsee, .9.[12]), and for the  \yhich will play the crucial role in the framework of our
structure function moments this is a consequence of th@qngideration, is its singularity at the po@#=0. It is worth
Deser-Gilbert-Sudarshan integral .representéu@ee, €.9.  noting that such a behavior of the invariant charge is in com-
[13)). Thus, we come to a contradiction. o plete agreement with the Schwinger-Dyson equatitsee

Thg point, which is qruc!al to our cqn5|derathn, is the giscussion in Ref[14]), and, as it will be demonstrated in
following. The RG equation in the forifl) involves, in fact, the next section, provides the quark confinement.
a contradiction. The left-hand side of this equation has no Summarizing all stated above, we propose the following
unphysical singularities i”_th@2>_0 region, while iti right- model for the analytic running coupling. We define the new
hand side has pole-type singularity at the_p@%_t=A - The  analytic running coupling¥a,{(Q?) as the solution of the
account of the higher loop contributions just introduces theanalytized RG equation at the respective loop level. Here one
additional unphyzsical singularities of the cut type in thepaq 1o choose the anomalous dimensions in such a way that
physical regionQ“>0 and hence does not solve the prob-ihe golution of the standard RG equation is the perturbative

lem. running coupling at the loop level considered@hus, at the

In order to avoid this contradiction, we propose to use theone-loop level, the new analytic running coupling has the
following method[9,10]. Before solving the RG equatidd)  orm [9,10]

one should analytize its right-hand side as a whole. This

1+=
g

prescription leads to the analytized RG equation, which, at A 7—1 Q2
the one-loop level, takes the form NeBD(Q)=— ——, z=—, 7)
an Bo zInz A2
2
dinA(Q) _ 73(1)@2) 3) where Bo=11-2n¢/3 is the first coefficient of the
dInQ? an ’ B-function. At the higher loop levels there is only the inte-

gral representation fota,{Q?). So, at thei-loop level we
have

YIn the most general case this follows from the Jost-Lehmann-
Dyson integral representation for the structure function, but
the detailed discussion of this point is beyond the scope of this
paper. 3This choice is the followingy= y,=—1; y;=0, i=1, wherey,
2lt is worth noting here that there is no consistent way for analy-is the coefficient by thei+ 1)th power of the perturbative running
tizing the RG equation with thg-function for the invariant charge. coupling on the right-hand side of E().
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FIG. 1. The normalized new analytic running couplifR§z)
Naa( Q%) Near{Q3) at the one-, two-, and three-loop levels.
The normalization point i3=10A2, z=Q?/A2.
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where pM(ag)=[a{)(—o—ie)—al)(—o+ie)]/(2m) is
the spectral density, amzlo=Q§/A2 is the normalization
point.

% ()
Nal(Q?)= NaS%(Q%)?ex;{ K ),

U'+Zo
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FIG. 2. The integration contour in the complepplane. The

notations arg,=—+1-a, p,=\1—a, G=ia.

NV(r) 32 A-V(R), R=A (12)
r = — — . s = r,
3Bo
where
- » ?—1 sin(qR)
VIR)=| —— d 12
(R= | Zng? ar 9 (12)

Figure 1 shows the new analytic running coupling com-is the dimensionless potential.

puted at the one-, two-, and three-loop levels. It is clear from

In order to perform the integration in E(L2) we consider

this figure that our analytic running coupling possesses thene auxiliary function

higher loop stability. Moreover, it can be shown that the
singularity of the new analytic running coupling at the point
Q?=0 is of the universal type at any loop level. This is clear

from the following simple consideration. Wher-0 the ba-
sic contribution into Eq(8) affords the integration over the
small o region. The spectral densipf (o) at any loop level
has the same limit wheor—0: p((0)—pM(0)=(In’o
+7%)~1[8]. Hence the new analytic running couplit®) has
the unique behavior when—0.

I1l. QUARK-ANTIQUARK POTENTIAL GENERATED BY
THE NEW ANALYTIC RUNNING COUPLING

Here we are going to use the new analytic running cou-
pling for obtaining the interquark potential. We proceed from

the standard expressi¢h,11] for the qa potential in terms
of the running couplingr(g?),

16w »a(g?) e
V()=-—3- o P (2m) a. 9

n—1
I(n,R)= lim

a—0+

sin(gR) dg. (13

fo In(a+q?)

Here the parametex is introduced for shifting the origin of
the cut along the imaginary axis lm It is obvious that

~ 1
V(R)=§[I(O,R)—I(—2,R)]. (14)

For evenn the integrand in Eq13) is an even function ofj.
Therefore

I(n,R)z% Im air&J(n,a,R), (15
where
. q"- teitR
J(n,a,R)=Pf_wF(q)dq, F(q)=m. (16)

For the construction of the new interquark potentialThe sign means the principal value of the integral.

NV(r) we shall use the new analytic running couplifTy

4 z—1
Bo zInz’

Q2

= P (10)

Na'ar(Qz) =

The function F(q) in Eq. (16) has the cuts {io~,
—iya], [iva,i®) and simple poles at the pointg
=F1—a. Let us consider the integral of the functién
along the contouF’ shown in Fig. 2. The functiof (q) has
no singularities inside the contodiy, thereforef-F dg=0.

Upon the integration over the angular variables and the subContribution to this integral of the semicircle of infinitely

stitutiong/A—¢, rA—R in Eq. (9), one gets

large radius in upper half-plan@ee Fig. 2 vanishes. Per-
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forming the integration along the two semicircles andc
of the vanishing radius and along the €libn the imaginary
axis, we obtain

%[( ll_a)nfzeimﬁ

J(n,a,R)=i7r[

(- /_1_a)n2€iR\ﬁ}

n—1,—Rx

+2i”‘2jm —ZX 5 ° 5
Valnf(xc—a)+

dx] . (17

Hence, for evem the functionl (n,R) in Eq. (13) takes the
form

1
I(n,R)=1 EcosR—(—l)”’zj\/’(R,n) , (18
where
» yn—lg—Rx
MR,n)= dx. (19)

0 In?(x?) + m?

It is rather complicated to perform the integration in Eq.
(19) explicitly. Therefore we address the study of the asymp-

totics. First of all, we would like to know whether thgg
potential NV(r) in Eq. (11) provides the quark confinement.

For the investigation of the potential behavior at large dis-
tances it is enough to consider the asymptotic of the function

MR,n) in Eq. (19) whenR— . This function can be rep-
resented in the following way:

—Rx

d e
MR,n)=(—-1)" dx.

IR" fo X[ In?(x?) + 2]

(20

At large R the basic contribution into Eq20) gives the
integration over the smaX region. Let us transformV(R,n)
identically:

(9“

MR,n)=
(R,n) g

dx,

o (_ nap—Rx
f (=D (21

0 4x(In? x+ 72)

+
1+L

where L=7?/(4 In’X). Neglecting the second term in the
square brackets in Ed21), we use the formuld4.361.2
from Ref.[15]:

e Mx

dx=e*—v(u), Reu>0, (22

fo x(In?x+ 72)

wherev(u) is the so-called transcendentafunction[16]:
t
*  uidt
V(M)—fo T+ (23

Eventually, we obtain foR— oo,
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n

4

0 Rt

eR—y(R)+f0 =)

Taking into account Eqgs(14), (18), and (24) one can
present the quark-antiquark potent{all) at largeR in the
following way:

A/(R,n)z( . (29

2 R'dt
Z(QR_ v(R))+ jom

The behavior of the potentidlV(r) atr—o is determined
by the last term in Eq25).# Integration of this term by parts
gives

87 A
V(=

3—[30 R . (295

2 Rt R? Zf(2

f—:_ 22 k( )

ol'(t+1) 2InR =1 InkR

1 o f,(0)
~inR 1+JZ1 Rl (26)

where
f(t)= @ (-1° 2
sS=

In the limit R—o, Eq. (26) takes the form
fz Rdt R -
ol(t+1) 2InR’ (28)

Therefore the quark-antiquark potentf&V(r) proves to be
rising at large distances

8 1 Ar

NV(r)zs_/aoA'Em(Ar)’

(29

Thus the new analytic running couplinte,{q?) [see
Eq. (7)] leads to the rising quark-antiquark potentf(r)
which can, in principle, describe the quark confinement.

It is important to point out that the behavior of the poten-
tial NV(r) whenr—0 has the standard form determined by
the asymptotic freedor(see, e.g., Ref.11]),

8 1

Nv(r)zs_/soA' ArIn(Ar)’

r—0. (30

Unfortunately, it is impossible to obtain the explicit depen-
denceNV(r) for the whole region &r <. A simple inter-
polating formula, which can be applied for practical use, will
be given in the next section.

41t follows directly from the asymptotic of(R) (see Ref[16]),
and from a simple reasoning. Really, >0 the termf(R)=eR
—v(R) is non-negative and’(R)<0. Hence,f(R)— const when
R—oc, and its contribution td"V(r) at largeR is of 1/R-order.
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IV. DISCUSSION I V(r), GeV

Let us discuss briefly the higher loop contribution. As was

mentioned in the Sec. Il, the singularity 6foop analytic
running couplingNa{)(g?) at the pointq=0 is of the uni- W
versal type at any loop level. Therefore, whegr0 we have 0.0 ) ‘ ‘ .

Na()(g?)~Nall(g?) C', where C' are constants. Taking 0 1
into account that the maximal difference betwe&#)(q?) A r, GeV !
and Na()(g?) is in the smallg? region, we arrive at

the following conclusion. The account of the higher

loop corrections leads to changing the slope of the —Z5¢
potential NV(r) whenr—. This corresponds to a simple
redefinition of the parametet in Eq. (29) at the higher loop
levels.

As far as the scheme dependence of this approach, w
have to point out the following. It was shown [il] that the ~ =50~
solutions of the analytized RG equation at the higher loop
level have extremely weak scheme dependence. In particular, FIG. 3. Comparison of the potential(r) given by Eq.(31)
the solutions of the RG equation witiS and MS schemes, (solid curve with the phenomenological Cornell potentiab (), Eq.
are practically coinciding. Hence, at the higher loop level(3%- The values of the parameters are 0.39, 0 =0.182 GeV[5],
(there is no scheme dependence at the one-loop)]ethel A=530 MeV,n;=5.
use of different subtraction schemes leads to the slight varia-
tion of theqq potential.

Thus, neither higher loop corrections, nor scheme deperibterpolating function between asymptoti¢32) and (33).
dence, can affect qualitatively the result obtained in the preNevertheless, the comparisond{r) with the phenomeno-
vious section. logical potential

For the practical use of the new potential it is worth ob-
taining a simple explicit expression that approximates it suf-
ficiently well. For this purpose one can use, for instance, the

approximating function CV(r)=— g a + ot + const (34)
:
877 1 /1 R
u(r)=44 33 nRIRT2/ 1R §+Rf1(2) (the so-called Cornell potentifil]) shows their almost com-

plete coincidencdsee Fig. 3. The fit has been performed

with the use of the least square method in the physical mean-
(31)  ing region 0.k r=<1.0 fm[5]. The varied parameter in Eq.

(31) is A. The possibility of shifting the potentidf\V/(r) in

Eq. (34) by a constant was also used. A rough estimation of
which has no any unphysical singularities and possesses thein the course of this fitting giveA =500 MeV. This is in
asymptotics(29) and (30). This function is obtained by agreement with the values obtained earlier in the framework

1 11

+Rf(2)| —— - +=
12 2R (R-1)2 12

smooth sewing the asymptotics of the analytic approach to QC[3].
N R Rfy(2) . V. CONCLUSION

V(r)= 3,80 21n(R) + 2R | R—o, (32

In the paper the quark-antiquark potential is constructed

by making use of the new analytic running coupling in QCD.

87 1 This running coupling arises under analytization of the

NV(r)==——A-=————, R—0, R=Ar. (33 renormalization group equation before its solving. The rising

360 RIN(R) behavior of the quark-antiquark potential at large distances,

which provides the quark confinement, is shown explicitly.

The formula(32) keeps explicitly the second leading term The key property of the new analytic running coupling,

of the expansiori26), f,(2)=0.461. Some terms have been leading to the confining potential, is its infrared singularity

introduced into Eq(31) only for eliminating the singularity at the pointg?=0. At small distances, the standard behavior

at the pointR=1. It should be mentioned here that the nextof the potential, originating in the QCD asymptotic freedom,
terms in the expansioli26) practically do not affect the is revealed. It is also demonstrated that neither higher
shape olJ(r). Of course, the functiofB1) is not the unique loop corrections, nor scheme dependence, can affect
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