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From scalar to string confinement
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We outline a connection between scalar quark confinement, a phenomenologically successful concept here-
tofore lacking fundamental justification, and QCD. Although scalar confinement does not follow from QCD,
there is an interesting and close relationship between them. We develop a simple model intermediate between
scalar confinement and the QCD string for illustrative purposes. Finally, we find analytically the bound state
spectrum of the light degrees of freedom for a spinless, massless quark in scalar, time-component vector, and
string confinement through semi-classical quantization.

PACS number~s!: 12.38.Aw
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I. INTRODUCTION

Going beyond the non-relativistic potential model
quark confinement means that more than the static inte
tion energy must be specified. In the language of poten
models the Lorentz nature of the interaction is needed.
agree with the observed spin-orbit splitting it was propos
long ago@1# that the large distance~confining! potential is a
Lorentz scalar. In this case there is no magnetic field to
fluence the quarks’ spins and the only spin-orbit interact
is the kinematic ‘‘Thomas term.’’ The Thomas type spi
orbit interaction partially cancels that of the short range o
gluon exchange, in agreement with the observed spect
@2#.

Some insight into the use of the scalar potential was gi
by Buchmüller @3#. His argument is that at large distanc
one expects the QCD field of the quarks to become string
flux-tube-like. The QCD flux tube is purely chromoelectr
in its rest frame, and hence in the rest frame of each qu
there is no chromomagnetic field to provide a spin-orbit
teraction. The scalar interaction yields this same result
fiat; there is no magnetic field anywhere because it is no
vector-type interaction. This provides some justification
using the scalar potential but does not establish a direct
nection. It agrees only in having the same spin-orbit inter
tion at long range as QCD.

Subsequently it was shown that for slowly moving qua
QCD predicts both spin-dependent@4# and spin-independen
@5# relativistic corrections. The long-range spin depende
is just the Thomas type spin-orbit interaction@6#.

The spin-independent QCD corrections differ from tho
of scalar confinement@7,8#. It also has been established th
the QCD predictions at long distance are the same as tho
a string or flux tube interaction@8#. Lattice simulations also
favor the Thomas interaction@9#. The current state of lattice
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simulations is reviewed in Ref.@10#.
Since spin-independent effects are difficult to ident

from the experimental data, scalar confinement remains p
nomenologically successful. As scalar confinement is a
relatively simple computationally, it continues to be a pop
lar and useful tool in hadron physics. It should be pointed
that its use in the Salpeter equation leads to cancellat
@11# in the ultra-relativistic limit, resulting in a very non
linear Regge trajectory@11–13#.

Although scalar confinement has been used for a lo
time in hadron physics, its relation to QCD has never be
clarified. It is the purpose of this paper to place scalar c
finement in relation to QCD and in particular to the QC
string. In Sec. II we point out that there is a certain fou
vector potential that is isomorphic to a scalar potential.
Sec. III we compare this four-vector potential to the QC
string. Noting certain similarities and differences, we pr
pose a model intermediate between the string and scalar
finement. The semi-relativistic reductions for scalar, tim
component vector, intermediate, and string confinements
compared in Sec. IV. Although by construction, all the
confinement models have the same non-relativistic lim
their relativistic reductions differ. In Sec. V we explore th
‘‘ultra-relativistic’’ Regge sector with a massless quark v
semi-classical quantization. The Regge behavior of the
ferent confinement models show some remarkable simil
ties and differences. Finally, in Sec. VI we present our co
clusions and summarize our work.

II. THE FOUR-VECTOR POTENTIAL ISOMORPHIC TO
THE SCALAR POTENTIAL

The action for a scalar~spinless! quark moving in Lorentz
scalar and four-vector potentials,f(x), and Am(x) respec-
tively, is

S52E dt @m1f~x!2umAm~x!#, ~2.1!
m
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where m is the rest-mass of the quark,um is the quark’s
four-velocity, anddt is the proper time elementdt/g. The
quark four-velocity,um5(g,gv), with g5(12v2)21/2, sat-
isfies2umum51.

When Am(x)[0, the action~2.1! reduces to the usua
scalar potential action. On the other hand, whenf(x)50,
the action~2.1! describes a quark moving in an ‘‘electroma
netic’’ @U(1),SU(3)color# color field. It was pointed out by
Buchmüller @3# that in the rest frame of the QCD flux tub
there is no color magnetism so that the only spin orbit int
action is Thomas precession. If we want to implement Bu
müller’s criterion we may assume@14# that in the quark res
frame

Am8~x!5„f~r !,0…, ~2.2!

where f(r )[A08(x) is the time component ofAm8(x). In
the laboratory frame, where the quark velocity isv, the four-
vector potential is

Am5umf~r !5~g,gv!f~r !. ~2.3!

We note that the components depend on both position
velocity. The vector potential contributes to the action~2.1!
as

umAm52f~r !. ~2.4!

The resulting contribution is exactly the same as the sc
potential in Eq.~2.1!. The four-vector potential correspond
ing to f(r )5ar was discussed by us earlier in Ref.@14#.

By this simple demonstration we have shown that th
are two Lorentz type potentials that have identical con
quences. The four-vector version is apparently more clos
related to gauge theories like QCD. As we will see, we c
quite closely draw similarities and differences.

III. COMPARING SCALAR AND STRING
CONFINEMENT—AN INTERMEDIATE MODEL

EMERGES

For a spinless quark moving relative to a heavy quark
the origin, the action can be written as the time integral o
function of the light quark’s position and velocity,

S5E dt L~r ,v!. ~3.1!

If we consider the quark as a particle of massm moving in
a linear scalar confining potentialf(r )5ar, its Lagrangian
is

Lscalar52g21
„m1f~r !…52mA12v22arA12v2.

~3.2!

At large distances, QCD is thought to resemble a Nam
Goto string or flux tube model. For a scalar quark at the e
of a straight flux tube, the corresponding Lagrangian is@15#

Lstring52mA12v22arE
0

1

dsA12s2v'
2 , ~3.3!
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wherev' is the quark velocity transverse to the string. Co
paring the scalar and string interactions, we see there are
evident differences. The first is that the string energy
spread along the length of the string whereas in the sc
potential case the energy may be thought of as being con
trated at the quark coordinate. The second is that becaus
the reparametrization invariance of the Nambu-Goto act
~which physically is the invariance of an electric field
boosts along its direction!, from which Eq. ~3.3! follows,
only the transverse velocity of the string may appear in
interaction energy.

The first distinction can be considered as a quantita
one which leaves the basic structure unchanged. This dif
ence changes the velocity dependence of the additio
three-momentum due to the interaction fromp5arv in the
scalar case top5(ar/2v')@arcsinv' /v'2A12v'

2 # v̂' for
the string.

The second distinction has far-reaching consequence
a non-rotating (s-wave! system, the scalar interaction con
tributes to the momentum whereas the string does not.
string Hamiltonian contributes only as the time compon
of a vector potential~vector-like! while the scalar Hamil-
tonian remains scalar.

It is instructive to construct a confinement model in whi
one of the above distinctions is removed. We will briefl
consider the intermediate model having Lagrangian

L int52mA12v22arA12v'
2 . ~3.4!

We note that although the interaction is concentrated at
quark position, it depends only on the transverse velocity

This Lagrangian will lead to a Hamiltonian having cha
acteristics of the string while remaining algebraically tra
table.

In the usual way, the Hamiltonian corresponding to E
~3.4! is found to be

H int5mg1arg' , ~3.5!

and the angular momentum,J5]L int /]v, with v'5vr , is

J5mgv'r 1ar2g'v' . ~3.6!

Unlike in the string system, the velocities here can
eliminated in favor of the momenta, making this model mu
more tractable. From the definition of radial momentum

pr5
]L int

] ṙ
5mg ṙ , ~3.7!

the useful identity

mg5Wrg' , ~3.8!

with

Wr[Apr
21m2, ~3.9!

follows.
1-2
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FROM SCALAR TO STRING CONFINEMENT PHYSICAL REVIEW D62 094021
Using the identity~3.8!, we find thatH int and J of Eqs.
~3.5!, ~3.6! become

H int5~Wr1ar !g' , ~3.10!

J5rv'g'~Wr1ar !. ~3.11!

We can solve Eq.~3.11! for g' using v'
2 512g'

22 , and
substituting into Eq.~3.10! to obtain

H int5AJ2

r 2 1~Wr1ar !2. ~3.12!

IV. COMPARING RELATIVISTIC CORRECTIONS OF
SPINLESS CONFINEMENT MODELS

As we have seen, there are several types of confinem
models, even for spinless quarks. In this section we will e
merate and compare the relativistic reductions of vari
models. We first consider the relativistic reductions of t
classic static potential models.

A. Scalar confinement

From the scalar interaction Lagrangian~3.2! with f
5ar, we find the canonical three-momentum to be

p5~m1ar !gv, ~4.1!

which results in the Hamiltonian

H5Ap21~m1ar !2. ~4.2!

For m@ar and m@p, we expand to obtain the relativisti
corrections

H.Ap21m21ar2
a

2m2 p2r 1•••

5Ap21m21ar2
apr

2r

2m2 2
aJ2

2m2r
1•••. ~4.3!

Even though scalar confinement will yield, for spin-1
quarks, the spin-orbit interaction consistent with experime
lattice QCD simulations@9#, and QCD in the low velocity
Wilson loop approach@5#, the spin-independent terms in E
~4.3! are inconsistent with QCD@5,7,8#.

B. Time component vector confinement

In time component vector confinement models, the pot
tial ar is taken to be the~laboratory frame! time component
of a vector potentialAm; Am5(ar,0). The quark Lagrangian
then is

Lvector52mA12v22ar. ~4.4!

The canonical three-momentum following from this L
grangian,

p5“vL5mgv, ~4.5!
09402
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leads to the Hamiltonian

H5Am21p21ar. ~4.6!

There are no relativistic corrections other than kinetic ene
corrections. Vector confinement is disfavored since the as
ciated spin-orbit interaction adds to the short range spin-o
interaction giving spin-orbit splittings that are too large wh
compared to experimental values@1,2# or lattice simulations
@10#.

The lack of spin-independent relativistic corrections
also inconsistent with the low velocity Wilson loop expa
sion of QCD@5#.

C. Intermediate model

The Hamiltonian for this model was given in Eq.~3.12!.
The relativistic reduction form@ar andm@p is

H int.Ap21m21ar2
aJ2

2m2r
1•••. ~4.7!

Comparing toHscalarin Eq. ~4.3!, we see the same reductio
except for the missingpr term. This might be expected sinc
the interaction does not contribute to the radial momentu
We discuss this result further in the following subsection

D. String confinement

The reduction of the string is discussed in Ref.@8#, where
it was shown that the string contributes a rotational ene
equal to that of a uniform rod of lengthr and massar. This
energy is

ER5
1

2
Iv25

1

2
k~ar !r 2S J

mr2D 2

5
kaJ2

2m2r
, ~4.8!

where the geometrical factork5 1
3 for a uniform rod. If all of

the ‘‘mass’’ of the string is concentrated at the position
the moving quark end, thenk51.

The ‘‘kinetic’’ energy term, when expanded, yields

Ap21m2.m1
p2

2m
2

p4

8m3 1••• . ~4.9!

In the semi-relativistic regime the momentum is mostly th
of the quark with a small contribution from the ‘‘interac
tion:’’

p25pr
21

1

r 2 ~Jq1Jin!2

.S pr
21

Jq
2

r 2D 1
2JqJin

r 2
.pq

21
2Jq

r 2 S Jq

mr2D ~kar3!,

~4.10!

p2.pq
214mER , ~4.11!

and hence
1-3
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THEODORE J. ALLEN, M. G. OLSSON, AND SINISˇA VESELI PHYSICAL REVIEW D 62 094021
Ap21m2.Apq
21m212ER . ~4.12!

So, if one separates the Hamiltonian into the quark’s ene
plus an interaction energyar1ER , then

H.Ap21m21ar2ER . ~4.13!

This is exactly what one finds in the intermediate mod
wherek51. The string Hamiltonian is then the same, on
with k5 1

3 :

H.Ap21m21ar2
aJ2

6m2r
. ~4.14!

This result follows systematically from the string invarian
~5.18! and ~5.19! in the large mass expansion@8#.

V. COMPARING REGGE STRUCTURES OF SPINLESS
CONFINEMENT MODELS

In this section we explore both the analytic and the n
merical solutions for the Regge spectroscopy expected f
the previously considered models. In particular, we inve
gate the ultra-relativistic limit when the ‘‘light’’ quark ha
zero mass. The extension to two light quarks is straight
ward. It is in this ‘‘massless’’ limit where straight Regg
trajectories with evenly spaced daughter trajectories are
tained in many confinement models and a close corresp
dence to observed light and heavy-light mesons is expec
In our analytical work we will usually assume that the orbi
excitations are large compared to the radial excitation.
may consequently expect the semi-classical quantiza
scheme to be quite accurate. Quantization is carried ou
performing the phase-space integral,

2p~n1G!5 R pr dr52E
r 2

r 1

pr dr, ~5.1!

wherer 6 are the classical turning points andG is a constant
that depends upon the problem.1 As shown by Langer@16#,
the classical angular momentumJ must be replaced byJ
1 1

2 in the expression for the radial momentumpr .
In all cases considered here, the quantization integral

be written, or accurately approximated by

E
r 2

r 1

pr dr5CE
y2

y1dy

y
A~y12y!~y2y2!, ~5.2!

wherey is eitherr or r 2 andC is a constant. This integral ca
be carried out to yield the the semi-classical quantizat
relation

n1G5
C

2
@y11y222Ay1y2#. ~5.3!

1Roughly,G depends on the nature of the potential at the turn
point. For two smooth turning pointsG5

1
2 , and for two rigid walls

G51. For the mixed case of one of each,G5
3
4 .
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A. Scalar confinement

We first consider the scalar case because of its simpli
and its central role in this paper. The square scalar Ham
tonian, Eq.~4.3!, with the light quark massless is

H25p21a2r 2. ~5.4!

This is equivalent to the three-dimensional harmonic osci
tor and its eigenvalues are well known to be

M252aS J12n1
3

2D , J,n50,1,2,3, . . . , ~5.5!

whereJ is now the angular momentum quantum number.
connect with the analytic solutions to the remaining confin
ment models we compute the semi-classical solution for
interaction.

Semi-classical quantization starts with the separation
the momentum into angular and radial pieces,p25pr

2

1J2/r 2, and hence

pr
25M22

J2

r 2 2a2r 2. ~5.6!

The classical turning points (pr50) satisfy

r 1
2 1r 2

2 5S M

a D 2

,

r 1r 25
J

a
, ~5.7!

a

r
A~r 1

2 2r 2!~r 22r 2
2 !5pr .

Comparing this last relation to Eq.~5.2!, we read off C
5a/2, and y5r 2, and by Eq.~5.3! with G5 1

2 and J→J
1 1

2 , we find

n1
1

2
5

a

4 FM2

a2 2
2

a S J1
1

2D G , ~5.8!

which yields

M252aFJ12n1
3

2G , ~5.9!

identical to the exact solution~5.5!.
In Fig. 1 we show the Regge plot for pure scalar confin

ment. The dots represent the exact numerical solution by
variational method, for instance see the appendix in R
@11#. The numerical solutions correspond to the unsqua
Hamiltonian~4.2! with m50. The lines are the analytic so
lution, Eq.~5.5! or ~5.9!. We note that states of even~or odd!
J are degenerate. This is unique among combinations of
lar and time-component vector potential confinement@17#.

It is important to note that the ‘‘ultra-relativistic’’ limit
where the quark mass vanishes is in fact not ultra-relativi

g

1-4
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FROM SCALAR TO STRING CONFINEMENT PHYSICAL REVIEW D62 094021
for scalar confinement. From the Hamiltonian~5.4! with p2

5pr
21J2/r 2, the circular orbit condition is

]H2

]r U
J

50, ~5.10!

which implies a circular orbit radius of

r 0
25

J

a
. ~5.11!

The circular velocity is then given by

v'05r 0

]H

]J U
r 5r 0

5
1

A2
. ~5.12!

The massless quark moves at a velocity less than unity
cause the scalar interaction contributes an effective mas
ar0.

B. Time-component vector confinement

The Hamiltonian~4.6!, with m50 and the replacemen
p25pr

21J2/r 2, becomes

pr
25~M2ar !22

J2

r 25S M2ar2
J

r D S M2ar1
J

r D .

~5.13!

The first factor contains the classical turning points a
the second has only distant zeros. To good approximat
we may use the zero conditionM2ar5J/r from the first
term in the second, and obtain

pr
2.

2Ja

r 2 S 2r 21
M

a
r 2

J

aD . ~5.14!

This is of the form of our general phase-space integrand
Eq. ~5.2! with C5A2Ja, y5r , where the turning points sat
isfy

FIG. 1. Regge structure and states in pure linear scalar con
ment from numerical diagonalization of the Hamiltonian~4.2! with
m50. Solid lines are the semi-classical result, which is exact
the squared Hamiltonian~5.4!.
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r 11r 25
M

a
,

r 1r 25
J

a
. ~5.15!

The quantization condition, Eq.~5.3!, becomes

n1
1

2
5

A2Ja

2 FM

a
22AJ

aG . ~5.16!

Solving forM2, dropping the small squared radial excitatio
energy and making Langer’s replacement ofJ by J1 1

2 , we
find

M254aS J1A2n1
1

2
1

1

A2
D . ~5.17!

Figure 2 shows the Regge spectrum of time compon
vector confinement. The semi-classical quantization met
yields the correct slope, radial excitation energy, and e
nearly the correctJ50 intercept.

C. Intermediate model

From the intermediate model Hamiltonian, Eq.~3.12!, the
Regge spectrum can be exactly computed numerica
which we show in Fig. 3. The Regge trajectories are neit
straight, nor equally spaced. The radial excitation energ
several times larger than the scalar confinement potentia
comparison of the intermediate and scalar Hamiltonians
veals that they coincide in the classical circular orbit limit.
is in radial excitation that the two models differ qualitativel
Of course, even the quantizedn50 radial state has som
radial excitation. A semi-classical quantization can also
done in this case and yields a complicated transcende
relationship betweenM2 andJ.

e-

r

FIG. 2. Regge structure and states in pure linear tim
component vector confinement from numerical diagonalization
the Hamiltonian in Eq.~4.6! with m50. Solid lines are the approxi
mate semi-classical result of Eq.~5.17!.
1-5
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D. String confinement

In this subsection we find that the Regge structure of
confining string, with a massless quark at its end, resem
almost exactly scalar confinement once the energy is
caled. This, despite the anomalous Regge trajectories o
‘‘intermediate’’ model which was supposed to mimic th
string. We will later discuss the reason for the occurren
We begin with the string Lagrangian~3.3!. The conserved
quantitiesH andJ5]L/]v are @18#

J

r
5Wrg'v'1

ar

2v'
S arcsinv'

v'

2A12v'
2 D , ~5.18!

H5Wrg'1ar
arcsinv'

v'

, ~5.19!

where the ‘‘radial energy’’Wr5Apr
21m2 was defined in

Eq. ~3.9! and v'5vr . For circular orbits in the massles
quark limit the end of the string approaches the speed of l
(v'→1). Since this is the limit we are interested in for th
Regge structure we setv'51 in the string quantities in Eq
~5.18! and ~5.19! to obtain

J

r
5Wrg'v'1

apr

4
, ~5.20!

H5Wrg'1
apr

2
. ~5.21!

We do not setv'51 in the quark terms since a delica
limiting process occurs. In this limit, all of the angular m
mentum and energy resides in the string and all of the ra
momentum is carried by the quark.

Next, we consider the difference of the squares ofH and
J/r

H22
J2

r 2 5Wr
21

apr

2
Wrg'1

3

4 S apr

4 D 2

. ~5.22!

FIG. 3. States in pure intermediate model linear confinem
from numerical diagonalization of the Hamiltonian~3.12! with m
50.
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Using Eq.~5.20! to eliminateWrg' , after a little simplifica-
tion we find

H25pr
21

J2

r 2 1
apJ

2
1S apr

4 D 2

, ~5.23!

whereWr
25pr

2 in the massless limit.
If we define

H0
25H22

apJ

2
, ~5.24!

a05
pa

4
, ~5.25!

the square of the string Hamiltonian appears to be a h
monic oscillator

H0
25pr

21
J2

r 2 1a0
2r 2, ~5.26!

which is very similar in form to the squared scalar confin
ment Hamiltonian~5.4!.

The squared string Hamiltonian in Eq.~5.23! has a critical
difference from the harmonic oscillator, as we now demo
strate. The circular orbit occurs where

]H2

]r U
J

50, ~5.27!

which implies that the circular orbit radius is

r 0
25

4J

ap
. ~5.28!

The associated circular orbit velocity is

v'05r 0 v5r 0

]H

]J U
r 5r 0

51. ~5.29!

Thus, as we mentioned previously, the massless qu
moves at the speed of light in a circular orbit. For rad
excitation the quark moves in the effective potential of E
~5.23!.

From the limiting form~5.20! of the angular momentum
~5.18!, we see that for radial motion the radius cannot exce
r 0 becauseWrg'v' cannot be negative. Ther 5r 0 coordi-
nate represents a horizon or ‘‘impenetrable barrier’’ and
quark moves in the ‘‘half harmonic oscillator’’ potentia
shown in Fig. 4.

The semi-classical quantization of the string motion
equivalent to a half harmonic oscillator shifted by an amo
apJ/252a0J. The half harmonic quantization condition i

pS n1
3

4D5
a0

2 E
y2

y0 dy

y
A~y12y!~y2y2!, ~5.30!

where y5r 2, y05r 0
2, and G5 3

4 , corresponding to one
smooth turning point. The integral is not precisely one-h

t

1-6
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FROM SCALAR TO STRING CONFINEMENT PHYSICAL REVIEW D62 094021
of the full harmonic oscillator integral but the difference va
ishes for largeJ. The result is

pS n1
3

4D5
p

8a0
FM0

222a0S J1
1

2D G , ~5.31!

or

M0
252a0S J14n1

3

4
1

1

2D . ~5.32!

Finally, we rewrite Eq. ~5.32! in terms of M25M0
2

1apJ/2 anda54a0 /p to obtain

M25apS J12n1
7

4D . ~5.33!

We observe that the combination of the shift and the h
oscillator reproduces theJ12n pattern of excitation seen in
the harmonic oscillator, and hence in scalar confinement

We can check the intercept (J50) by directly quantizing
the s-wave states. From Eq.~5.19! with g'51, we have

H5pr1ar[M . ~5.34!

The quantization integral,

pS n1
1

2D5E
0

M /a

dr~M2ar !5
M2

a
2

M2

2a
, ~5.35!

directly yields

M25paS 2n111
1

2D , ~5.36!

where the1
2 is the Langer correction for the radial equatio

The result indicates the 3D harmonic oscillator. We conclu
that the true intercept that should appear in Eq.~5.33! ought
to lie between3

2 and 7
4 . In Fig. 5 we show the exact numer

cal string Regge excitations with quark massm50. The nu-

FIG. 4. Potential for the half-harmonic oscillator seen by
massless quark on string, Eq.~5.26!. The horizon is at the minimum
of the potential. The classical turning points arer 2 and r 0.
09402
lf

.
e

merical solutions of Eqs.~5.18! and ~5.19! have been dis-
cussed earlier@18#. The lines are the analytic solution~5.33!
but with intercept3

2 from Eq. ~5.36!. Similar solutions ob-
tained from different points of view have been obtained p
viously @19#.

VI. CONCLUSIONS AND SUMMARY

The concept of scalar confinement has been an impor
ingredient in hadron model building for over two decades.
primary motivation was the resulting pure Thomas type sp
orbit interaction which partially cancels the vector type sh
range spin-orbit contributions. Despite its phenomenolog
success, scalar confinement has always had an uncerta
lationship with fundamental theory. As pointed out by Buc
müller @3#, the desired spin terms follow if the color mag
netic field vanishes in the quark rest frame. This situat
assumes no interaction with the quark color magnetic m
ment and occurs naturally in the usual color electric flux tu
expected from QCD. This observation originally was pr
posed to justify the use of scalar confinement@3#. We em-
phasize here that this does not imply that the scalar pote
follows from QCD, only that they share a common spin-or
interaction.

In this paper we have demonstrated that a four-vec
confinement interaction we found previously@14# is equiva-
lent to scalar confinement. This vector type interaction be
a close resemblance to the QCD string, although there
significant differences. We have primarily considered her
class of confinement models that share the same Tho
spin dependence. Our comparison of scalar and string–
tube confinement has shown some interesting differences
similarities even with spinless quarks. We introduced an
termediate model that has aspects of both scalar confinem
and the QCD string. In this intermediate model the ene
depends only on the transverse quark velocity as expecte
a straight string model. The interaction energy is effectiv
concentrated at the quark as in scalar potential interactio

The spin independent relativistic corrections of scalar a

FIG. 5. Regge structure and states in string confinement f
numerical quantization of Eqs.~5.18! and~5.19!. Solid lines are the
approximate semi-classical result of Eq.~5.33! with intercept 3

2 as
given in Eq.~5.36!.
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string confinement differ, as has been known for some t
@7,8#. The relativistic corrections of the intermediate mod
are as if an extra transverse massar were concentrated at th
quarks position. In the string case this same mass is dis
uted along the string.

It is in the massless limit where interesting distinctio
arise. For pure linear scalar confinement the energy of
light degrees of freedom is exactly given byM252a(J
12n13/2), whereJ and n are the rotational and radia
quantum numbers. The result, shown on the Regge plo
Fig. 1, is a series of straight lines with an excitation patt
J12n. That is, there are degenerate mass towers of state
even or odd parities.

The ~laboratory frame! time-component vector confine
ment again produces linear Regge trajectories, shown in
2, but with no tower structure, owing to the excitation patte
J1A2n with incommensurate contributions from the rot
tional and radial quantum numbers. Although one might
pect that QCD, being a vector interaction like QED, wou
have a time-component interaction, it is evidently not tim
component in the laboratory frame. This is precisely beca
the QCD field in which the quark moves is not chromoele
trostatic~purely chromoelectric and time-independent in t
laboratory frame!. Instead, the QCD field is dynamical be
cause the quark drags a chromoelectric flux tube along w
it as it moves. In this respect there are no ‘‘test charges’
QCD. The QCD field is purely chromoelectric in its re
frame, leading to time-component vector interaction in
quark’s rest frame, which we have shown is mathematic
equivalent to a scalar interaction. Neglect of the spatial d
tribution of the QCD field energy thus leads directly to sca
confinement. The string–flux tube picture is the result
taking into account the distribution of the field energy a
momentum.

The intermediate model has a Regge structure very dif
ent from any of the other models studied here, with som
what curved trajectories and an uneven pattern of radial
citation, as shown in Fig. 3. Evidently, the modification
the interaction that removes interaction contributions to
radial momentum but leaves all the interaction energy
momentum at the quark’s position makes the intermed
model less, rather than more, string-like in its consequen

The string Regge spectroscopy, Fig. 5, again is simila
s

s.
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that of scalar confinement, except with a different Reg
slope. Due to the distribution of energy along the string,
quark now moves at the speed of light in the massless lim
This creates a horizon barrier so the quark appears to m
in a half oscillator. The net effect is to give an energy sp
trum M25pa(J12n13/2) with the same tower of state
structure as in the scalar case. Though the primary differe
between the two theories is the manner in which the ene
and momentum of the QCD field are distributed, the clo
relationship between their Regge structures appears to b
cidental.

We have pointed out a close, but not exact, relations
between scalar confinement and the QCD string. One m
wonder whether one could change the string tension
make the two even more similar. The answer lies in
expectation that the same string tension applies to the Re
slope and to the dynamics of low-lying heavy quark stat
i.e., the static potential energy. Both string confinement a
scalar confinement reduce to the same linear confinem
potential energy for slowly moving heavy quarks. Starti
from the universal light hadron Regge slope

a8.0.9 GeV22, ~6.1!

for mesons consisting of two light quarks the ‘‘slope’’ of th
static long distance interaction is

astring5
1

2pa8
50.18 GeV2,

ascalar5
1

4a8
50.28 GeV2. ~6.2!

Since these slopes differ by a large ratio, experiment sho
be able to decide the issue. Heavy quarkonia analyses@20#
favor the string tension value over the scalar value in E
~6.2!.
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