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From scalar to string confinement
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We outline a connection between scalar quark confinement, a phenomenologically successful concept here-
tofore lacking fundamental justification, and QCD. Although scalar confinement does not follow from QCD,
there is an interesting and close relationship between them. We develop a simple model intermediate between
scalar confinement and the QCD string for illustrative purposes. Finally, we find analytically the bound state
spectrum of the light degrees of freedom for a spinless, massless quark in scalar, time-component vector, and
string confinement through semi-classical quantization.

PACS numbd(s): 12.38.Aw

I. INTRODUCTION simulations is reviewed in Ref10].

Going beyond the non-relativistic potential model of Since spin-independent effects are difficult to identify
quark confinement means that more than the static interadrom the experimental data, scalar confinement remains phe-
tion energy must be specified. In the language of potentiahomenologically successful. As scalar confinement is also
models the Lorentz nature of the interaction is needed. Téelatively simple computationally, it continues to be a popu-
agree with the observed spin-orbit splitting it was proposedar and useful tool in hadron physics. It should be pointed out
long ago[1] that the large distandeonfining potential is a  that its use in the Salpeter equation leads to cancellations
Lorentz scalar. In this case there is no magnetic field to inl11] in the ultra-relativistic limit, resulting in a very non-
fluence the quarks’ spins and the only spin-orbit interactiorlinear Regge trajectorj11-13.
is the kinematic “Thomas term.” The Thomas type spin- = Although scalar confinement has been used for a long
orbit interaction partially cancels that of the short range onelime in hadron physics, its relation to QCD has never been
gluon exchange, in agreement with the observed spectruffarified. It is the purpose of this paper to place scalar con-
[2]. finement in relation to QCD and in particular to the QCD

Some insight into the use of the scalar potential was give$tring. In Sec. Il we point out that there is a certain four-
by Buchmidler [3]. His argument is that at large distances Vector potential that is '|somorph|c to a sca!ar potential. In
one expects the QCD field of the quarks to become string- op€C- Ill we compare this four-vector potential to the QCD
flux-tube-like. The QCD flux tube is purely chromoelectric String. Noting certain similarities and differences, we pro-
in its rest frame, and hence in the rest frame of each quarR0S€ & model intermediate between the string and scalar con-
there is no chromomagnetic field to provide a spin-orbit in-finement. The sem.|—relat|V|s.t|c reducuons for spalar, time-
teraction. The scalar interaction yields this same result byomponent vector, intermediate, and string confinements are
fiat; there is no magnetic field anywhere because it is not §ompared in Sec. IV. Although by construction, all these
vector-type interaction. This provides some justification forconfinement models have the same non-relativistic limit,
using the scalar potential but does not establish a direct cobeir relativistic reductions differ. In Sec. V we explore the
nection. It agrees only in having the same spin-orbit interac- ultra-relativistic” Regge sector with a massless quark via
tion at long range as QCD. semi-classical quantization. The Regge behavior of the dif-

Subsequently it was shown that for slowly moving quarksf.erent conflnement quels show some remarkable similari-
QCD predicts both spin-dependd#i and spin-independent ties _and differences. I_:|nally, in Sec. VI we present our con-
[5] relativistic corrections. The long-range spin dependencélusions and summarize our work.
is just the Thomas type spin-orbit interactifi.

The spin-independent QCD corrections differ from those ||. THE FOUR-VECTOR POTENTIAL ISOMORPHIC TO
of scalar confinemenif7,8]. It also has been established that THE SCALAR POTENTIAL
the QCD predictions at long distance are the same as those of ) _ o
a string or flux tube interactiof8]. Lattice simulations also The action for a scalaspinles$ quark moving in Lorentz

favor the Thomas interactidi®]. The current state of lattice spa:ar and four-vector potentialgy(x), andA,(x) respec-
tively, is
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where m is the rest-mass of the quark® is the quark’s wherev, is the quark velocity transverse to the string. Com-
four-velocity, anddr is the proper time elememntt/y. The  paring the scalar and string interactions, we see there are two
quark four-velocity,u*=(y,yv), with y=(1—v?) Y2 sat- evident differences. The first is that the string energy is
isfies —u*u,=1. spread along the length of the string whereas in the scalar
When A ,(x)=0, the action(2.1) reduces to the usual potential case the energy may be thought of as being concen-
scalar potential action. On the other hand, whiix)=0, trated at the quark coordinate. The second is that because of
the action(2.1) describes a quark moving in an “electromag- the reparametrization invariance of the Nambu-Goto action
netic” [U(1)CSU(3)..0] color field. It was pointed out by (which physically is the invariance of an electric field to
Buchmidler [3] that in the rest frame of the QCD flux tube boosts along its direction from which Eq.(3.3) follows,
there is no color magnetism so that the only spin orbit interonly the transverse velocity of the string may appear in the
action is Thomas precession. If we want to implement Buchinteraction energy.
muller's criterion we may assumd4] that in the quark rest The first distinction can be considered as a quantitative
frame one which leaves the basic structure unchanged. This differ-
ence changes the velocity dependence of the additional
A"'(x)z(q&(r),O), (2.2 three-momentum due to the interaction frgrsarv in the

, , scalar case top=(ar/2v,)[arcsinv, fv, —\1-v?]v, for
where ¢(r)=A%(x) is the time component oA (X). In  the string. - o e

the laboratory frame, where the quark velocityjsthe four- The second distinction has far-reaching consequences. In
vector potential is a non-rotating $-wave) system, the scalar interaction con-
tributes to the momentum whereas the string does not. The
AE=UEp(r) = (7, V) h(r). (2.3 J

string Hamiltonian contributes only as the time component

We note that the components depend on both position an@f @ vector potentialvector-like) while the scalar Hamil-

velocity. The vector potential contributes to the acti@rl) ~ fonian remains scalar. _ _ _
as It is instructive to construct a confinement model in which

one of the above distinctions is removed. We will briefly
U*A,=—¢(r). (2.9 consider the intermediate model having Lagrangian

The resulting contribution is exactly the same as the scalar Lin=—my1—vZ—ary1-v2. (3.9)
potential in Eq.(2.1). The four-vector potential correspond-

ing to ¢(r)=ar was discussed by us earlier in REE4]. We note that although the interaction is concentrated at the
By this simple demonstration we have shown that thergyuark position, it depends only on the transverse velocity.

are two Lorentz type potentials that have identical conse- This Lagrangian will lead to a Hamiltonian having char-
quences. The four-vector version is apparently more closelycteristics of the string while remaining algebraically trac-
related to gauge theories like QCD. As we will see, we canable.

quite closely draw similarities and differences. In the usual way, the Hamiltonian corresponding to Eq.

(3.4) is found to be
IIl. COMPARING SCALAR AND STRING
CONFINEMENT—AN INTERMEDIATE MODEL Hin=my+ary,, (3.9

EMERGES . .
. _ _ and the angular momenturd=dL;,;/dw, with v, = wr, is
For a spinless quark moving relative to a heavy quark at

the origin, the action can be written as the time integral of a J=myv, r+ar’y v, . (3.6
function of the light quark’s position and velocity,
Unlike in the string system, the velocities here can be
S:j dtL(r.v). 3.1) eliminated in favor of the mome_qta, making this model much
' more tractable. From the definition of radial momentum

If we consider the quark as a particle of masmoving in

. - . _ . . ﬁl—int :
a linear scalar confining potentig(r)=ar, its Lagrangian p,=——=mvyr, (3.7
is ar
Lscaia™ — ¥ MM+ ¢(r))=—myl—v’—ary1-v?. the useful identity
(3.2
my=W,vy,, (3.9

At large distances, QCD is thought to resemble a Nambu-
Goto string or flux tube model. For a scalar quark at the endvith
of a straight flux tube, the corresponding Lagrangiafls

1 W, =\/pZ+m?, (3.9
Lsmng=—m\/1—v2—arfo doyi-o%?, (3.3

follows.
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Using the identity(3.8), we find thatH,,, and J of Eqs.
(3.5), (3.6) become
Hine= (W, +ar)y, , (3.10

(3.1)

We can solve Eq(3.11) for y, usingv?=1-1y,?, and
substituting into Eq(3.10 to obtain

J 2
Hin= r—2+(Wr+ar) .

IV. COMPARING RELATIVISTIC CORRECTIONS OF
SPINLESS CONFINEMENT MODELS

J=rv,y (W, +ar).

(3.12

As we have seen, there are several types of confineme
models, even for spinless quarks. In this section we will enu
merate and compare the relativistic reductions of various
models. We first consider the relativistic reductions of the

classic static potential models.

A. Scalar confinement

From the scalar interaction LagrangidB.2) with ¢
=ar, we find the canonical three-momentum to be

p=(m+ar)yv, (4.2
which results in the Hamiltonian
H=p?+(m+ar)Z. (4.2

For m>ar andm>p, we expand to obtain the relativistic
corrections

a
H= p2+m2+ar——2m2p2r+ e

apr alk

2 2
= JpZrmitar— -y — 5+
P 2m?  2mér

4.3

Even though scalar confinement will yield, for spin-1/2
quarks, the spin-orbit interaction consistent with experiment,

lattice QCD simulationg9], and QCD in the low velocity

Wilson loop approach5], the spin-independent terms in Eq.

(4.3) are inconsistent with QCIDb,7,8].

B. Time component vector confinement

In time component vector confinement models, the poten-

tial ar is taken to be thélaboratory framgtime component
of a vector potentiah*; A*=(ar,0). The quark Lagrangian
then is

—myl—v?-—ar.

(4.9

Lvector=

The canonical three-momentum following from this La-

grangian,

p=V ,L=myv, (4.5

PHYSICAL REVIEW 52 094021

leads to the Hamiltonian

H=m?+p?+ar. (4.6)
There are no relativistic corrections other than kinetic energy
corrections. Vector confinement is disfavored since the asso-
ciated spin-orbit interaction adds to the short range spin-orbit
interaction giving spin-orbit splittings that are too large when
compared to experimental valugk2] or lattice simulations
[10].

The lack of spin-independent relativistic corrections is
also inconsistent with the low velocity Wilson loop expan-
sion of QCD[5].

C. Intermediate model

The Hamiltonian for this model was given in E@.12.
[Fhe relativistic reduction fom>ar andm>p is

S aJ?
Hin=Vp“+m +ar—m+-~-.

(4.7
Comparing toH g45in EQ. (4.3), we see the same reduction
except for the missing, term. This might be expected since

the interaction does not contribute to the radial momentum.
We discuss this result further in the following subsection.

D. String confinement

The reduction of the string is discussed in R&f, where
it was shown that the string contributes a rotational energy
equal to that of a uniform rod of lengthand massr. This
energy is

2_ kaJ
T omér’

J

2 4.9

1 1
ER=§Iw2=§k(ar)r2

where the geometrical factére= 3 for a uniform rod. If all of
the “mass” of the string is concentrated at the position of
the moving quark end, thek=1.

The “kinetic” energy term, when expanded, yields

2 4

\/p2+m2:m+p——%+-~- :

om 4.9

In the semi-relativistic regime the momentum is mostly that
of the quark with a small contribution from the “interac-
tion:”

1
p2: pr2+ r_Z(Jq+‘]in)2

32\ 233 2J3,( J
| 2 ¢l qvin__ 2 q q 3
~ pr+r_2- + =Pq TT<W (kar ),
(4.10
p?=pi+4mEg, (4.11)

and hence
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\/p2+m22 \/p§+m2+2ER. (4.12 A. Scalar confinement
) S We first consider the scalar case because of its simplicity
So, if one separates the Hamiltonian into the quark’s energynd its central role in this paper. The square scalar Hamil-
plus an interaction energyr + Eg, then tonian, Eq.(4.3), with the light quark massless is

H=p?+m?+ar—Eg. (4.13 H2=p2+a?r?. (5.9

This is exactly what one finds in the intermediate modelsThis is equivalent to the three-dimensional harmonic oscilla-
wherek=1. The string Hamiltonian is then the same, only tor and its eigenvalues are well known to be

with k=1:

3
aJ? M?2=2a J+an+z), In=0123..., (5.5

m. (4.14)

H={p“+m“+ar—

) . o ) whereJ is now the angular momentum quantum number. To
This result follows systematically from the string invariants connect with the analytic solutions to the remaining confine-

(5.18 and(5.19 in the large mass expansi¢8]. ment models we compute the semi-classical solution for this
interaction.
V. COMPARING REGGE STRUCTURES OF SPINLESS Semi-classical quantization starts with the separation of
CONFINEMENT MODELS the momentum into angular and radial pieceg=p?

2)2
In this section we explore both the analytic and the nu-+‘] fr%, and hence

merical solutions for the Regge spectroscopy expected from 72

the previously considered models. In particular, we investi- pf:MZ_ — —a’r?. (5.6)
gate the ultra-relativistic limit when the “light” quark has

zero mass. The extension to two light quarks is straightfor- ) i i )

ward. It is in this “massless” limit where straight Regge 1€ classical turning pointsp(=0) satisfy

trajectories with evenly spaced daughter trajectories are ob- M2

tained in many confinement models and a close correspon- fiﬂz_:(—) ,

dence to observed light and heavy-light mesons is expected. a

In our analytical work we will usually assume that the orbital

excitations are large compared to the radial excitation. We J

may consequently expect the semi-classical quantization Fer-= a’ 5.7
scheme to be quite accurate. Quantization is carried out by
performing the phase-space integral,

GT=A =) =p, .

s
2a(n+1)= 35 prdr=2f p, dr, (5.9
r- Comparing this last relation to Ed5.2), we read offC
: . . . =al2, andy=r?, and by Eq.(5.9 with '=3 andJ—J
wherer . are the classical turning points afdis a constant +? wea?in?j/ %, and by Eq.(5.3) wi z an
that depends upon the problémis shown by Langef16], 2
the classical angular momentudnmust be replaced by 1 a[mM2 2 1
+ 3 in the expression for the radial momentym. n+ 5=72a% " a J+ 5| (5.8
In all cases considered here, the quantization integral can a a
be written, or accurately approximated by which yields
fu q _thdy 52 3
. prdr= v y VY + Y)(y Y—), . M2=2a J+2n+§, (59)

wherey is eitherr or r? andC is a constant. This integral can
be carried out to yield the the semi-classical quantizatio
relation

r{'dentical to the exact solutiofb.5).
In Fig. 1 we show the Regge plot for pure scalar confine-
ment. The dots represent the exact numerical solution by the
C variational method, for instance see the appendix in Ref.
n+I'= [y, +y_—2Vy,y_l. (5.3 [11]. The numerical solutions correspond to the unsquared
2 Hamiltonian(4.2) with m=0. The lines are the analytic so-
lution, Eq.(5.5) or (5.9). We note that states of evéor odd
J are degenerate. This is unique among combinations of sca-
'Roughly,T" depends on the nature of the potential at the turninglar and time-component vector potential confinenidr.
point. For two smooth turning pointé= 3, and for two rigid walls It is important to note that the “ultra-relativistic” limit
I'=1. For the mixed case of one of eadh= 2. where the quark mass vanishes is in fact not ultra-relativistic
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Scalar Confinement
20 T

15 -
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0 5 10 15 20
m?
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20 Time-Component Vector Confinement

15

M?
4a

FIG. 1. Regge structure and states in pure linear scalar confine- FIG. 2. Regge structure and states in pure linear time-

ment from numerical diagonalization of the Hamiltoni@n2) with

component vector confinement from numerical diagonalization of

m=0. Solid lines are the semi-classical result, which is exact forthe Hamiltonian in Eq(4.6) with m=0. Solid lines are the approxi-

the squared Hamiltonia(b.4).

for scalar confinement. From the Hamiltoniéh4) with p?

=p?+J?/r?, the circular orbit condition is

i =0 (5.10
or 3 ' )

which implies a circular orbit radius of

, J
rozg- (5.11)
The circular velocity is then given by
vm=l’0ﬁ zi. (5.12
al._. 2

"o

The massless quark moves at a velocity less than unity be-
cause the scalar interaction contributes an effective mass of

ar.

B. Time-component vector confinement

mate semi-classical result of E(.17).

M
ry+r_= a’
J
r.r_= 3 (5.1
The quantization condition, E@5.3), becomes
1 J2Ja[Mm \F
n+§— 5 E_Z g (5.16

Solving forM?, dropping the small squared radial excitation
energy and making Langer’s replacementidiy J+ 3, we
find

. (5.17

101
M2=4a(J+ V2n+ >+ —

2"

Figure 2 shows the Regge spectrum of time component

The Hamiltonian(4.6), with m=0 and the replacement Vector confinement. The semi-classical quantization method

p?=p?+J%r?, becomes
) , ¥ J J
py=(M-—ar) iz M—ar—F M—ar+F

(5.13

yields the correct slope, radial excitation energy, and even
nearly the correcf=0 intercept.

C. Intermediate model

From the intermediate model Hamiltonian, £§.12), the

The first factor contains the classical turning points andReégge spectrum can be exactly computed numerically,
the second has only distant zeros. To good approximationvhich we show in Fig. 3. The Regge trajectories are neither

we may use the zero conditiad —ar=J/r from the first
term in the second, and obtain

, M J)
—r’+—r——J.
a a

2Ja
pf:r—z

(5.19

straight, nor equally spaced. The radial excitation energy is
several times larger than the scalar confinement potential. A
comparison of the intermediate and scalar Hamiltonians re-
veals that they coincide in the classical circular orbit limit. It
is in radial excitation that the two models differ qualitatively.
Of course, even the quantized=0 radial state has some

This is of the form of our general phase-space integrand imadial excitation. A semi-classical quantization can also be
Eq. (5.2 with C=+2Ja, y=r, where the turning points sat- done in this case and yields a complicated transcendental

isfy

relationship betweeM? andJ.
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20 Intermediate Model Confinement Using Eq.(5.20 to eliminateW, y, , after a little simplifica-
' ' ' tion we find
J2 amd [amr)\?
15t . o o, ¥ amd (amr
e Ho=pit 2+ —+| 4| (5.23
=10 Lt ) Lt E whereW?=p? in the massless limit.
.t . " . If we define
> . : . ) . * . * ] 2 2 amd
. L L H3=H2- 222, (5.24
0 . . . . . . .
0 5 10 15 20 ra
M Q= ——, (5.25
2a 4

FIG. 3. States in pure intermediate model linear confinementhe square of the string Hamiltonian appears to be a har-
from numerical diagonalization of the Hamiltoni&8.12 with m monic oscillator
=0.
2

. ) H2— 2+‘J_+ 2,2 5.2
D. String confinement o= Pr r2 aor, (5.26

In this subsection we find that the Regge structure of the = | o ,
confining string, with a massless quark at its end, resemble¥nich is very similar in form to the squared scalar confine-
almost exactly scalar confinement once the energy is redhent Hamiltonian5.4. L
caled. This, despite the anomalous Regge trajectories of the 1€ squared string Hamiltonian in E&.23 has a critical
“intermediate” model which was supposed to mimic the difference from the harmonic oscillator, as we now demon-

string. We will later discuss the reason for the occurrenceStrate. The circular orbit occurs where

We begin with the string Lagrangia8.3). The conserved JH2
guantitiesH andJ=dL/dw are[18] o =0, (5.27)
J
J ar [arcsinv |
FWevo o T Vi=ul|, (518 which implies that the circular orbit radius is
. , 4
arcsinv | ro=—. (5.28
H=Wryi+arT, (5.19 am
The associated circular orbit velocity is
where the “radial energy”W,=\pf+m? was defined in
Eqg. (3.9 andv, =wr. For circular orbits in the massless Din=Tam=r ﬁ -1 (5.29
quark limit the end of the string approaches the speed of light oo %93 _ '
(v, —1). Since this is the limit we are interested in for the 0
Regge structure we set =1 in the string quantities in Eq.  Thus, as we mentioned previously, the massless quark
(5.18 and(5.19 to obtain moves at the speed of light in a circular orbit. For radial
excitation the quark moves in the effective potential of Eq.
J amr (5.23.
= Weyio (5.20 From the limiting form(5.20 of the angular momentum

(5.18), we see that for radial motion the radius cannot exceed
anr ro becauséV,y, v, cannot be negative. The=r, coordi-
H=W,y, + - (5.21)  nate represents a horizon or “impenetrable barrier” and the
quark moves in the “half harmonic oscillator’ potential
) _ ) shown in Fig. 4.
~ We do not seb, =1 in the quark terms since a delicate  The semi-classical quantization of the string motion is
limiting process occurs. In this limit, all of the angular mo- equivalent to a half harmonic oscillator shifted by an amount

mentum and energy resides in the string and all of the radia} ;3/2=2a,J. The half harmonic quantization condition is
momentum is carried by the quark.

Next, we consider the difference of the square$iaind 3\ ag (Yo dy
JIr mnt == —(y+=Y)(y-y-), (530
4 2)y_ Yy
J? amr 3/amnr\? 2, .2 _3 .
2_ Y e 2 where y=r<, yo=rg, and I'=3, corresponding to one
H r? Wet 2 Wr7i+4< 4 ) ' (6.22 smooth turning point. The integral is not precisely one-half
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2 Z String / Flux Tube Confinement
Hy 'Z 20 . £ T :
_
E / 15
_
7~ = 10
/
_ .
_ K :
.VJ_<1 / Forbidden Re.gion ‘ R 11;/[_3
r T T FIG. 5. Regge structure and states in string confinement from

numerical quantization of Eq$5.18 and(5.19. Solid lines are the

FIG. 4. Potential for the half-harmonic oscillator seen by aapproximate semi-classical result of H633 with intercept% as
massless quark on string, £§.26. The horizon is at the minimum  given in Eq.(5.36).

of the potential. The classical turning points areandr.

merical solutions of Eqs(5.18 and (5.19 have been dis-
cussed earligf18]. The lines are the analytic soluti¢b.33
but with interceptd from Eq. (5.36. Similar solutions ob-

of the full harmonic oscillator integral but the difference van-
ishes for largel. The result is

3 Tl 1 tained from different points of view have been obtained pre-
ol n+ il 8_ao M§—2ag| I+ 5| (5.3)  viously[19].
or VI. CONCLUSIONS AND SUMMARY
3 1 ; i
M2=2a-| J+4n+ >+ =|. 5.3 _ Thg con_cept of scalar conﬂne_ment has been an important
0 0 4 2) (532 ingredient in hadron model building for over two decades. Its

) ) _ ) ) primary motivation was the resulting pure Thomas type spin-
Finally, we rewrite Eq.(5.32 in terms of M°=Mg  orpit interaction which partially cancels the vector type short
+amJ/2 anda=4a,/m to obtain range spin-orbit contributions. Despite its phenomenological

success, scalar confinement has always had an uncertain re-
_ (5.33 Ia;lionship with fundamental theory. As pointed out by Buch-
muller [3], the desired spin terms follow if the color mag-

. . etic field vanishes in the quark rest frame. This situation
We observe that the combination of the shift and the haI{1 d

illat d ¢ 5 tt f i . “assumes no interaction with the quark color magnetic mo-
oscillator reproduces thé+ 2n pattern of excitation seen in o0t ang occurs naturally in the usual color electric flux tube
the harmonic oscillator, and hence in scalar confinement.

. . . expected from QCD. This observation originally was pro-
We can check the intercepd £0) by directly quantizing  poseq to justify the use of scalar confinemglk We em-
the swave states. From E@5.19 with y, =1, we have phasize here that this does not imply that the scalar potential

M?=am

J+2 +7
T2

_ follows from QCD, only that they share a common spin-orbit
H=p +ar=M. (5.39 interaction ° g g P
The quantization integral, In. this paper we_have demonstratgd that.a fou_r—vector
confinement interaction we found previou$li4] is equiva-
1) (wa _ M2 M? lent to scalar confinement. This vector type interaction bears
mnt 5= driM—an=—-5—, (539 3 close resemblance to the QCD string, although there are

significant differences. We have primarily considered here a
directly yields class of confinement models that share the same Thomas
spin dependence. Our comparison of scalar and string—flux
tube confinement has shown some interesting differences and
similarities even with spinless quarks. We introduced an in-
termediate model that has aspects of both scalar confinement
where thej is the Langer correction for the radial equation. and the QCD string. In this intermediate model the energy
The result indicates the 3D harmonic oscillator. We concludelepends only on the transverse quark velocity as expected in
that the true intercept that should appear in &q33 ought  a straight string model. The interaction energy is effectively
to lie betweerg andZ. In Fig. 5 we show the exact numeri- concentrated at the quark as in scalar potential interaction.
cal string Regge excitations with quark mass-0. The nu- The spin independent relativistic corrections of scalar and

M?2=ra

1
2n+1+ 5), (5.36
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string confinement differ, as has been known for some timéhat of scalar confinement, except with a different Regge
[7,8]. The relativistic corrections of the intermediate modelslope. Due to the distribution of energy along the string, the
are as if an extra transverse masswvere concentrated at the quark now moves at the speed of light in the massless limit.
quarks position. In the string case this same mass is distribFhis creates a horizon barrier so the quark appears to move
uted along the string. in a half oscillator. The net effect is to give an energy spec-
It is in the massless limit where interesting distinctionstrum M?= 7a(J+2n+3/2) with the same tower of states
arise. For pure linear scalar confinement the energy of thstructure as in the scalar case. Though the primary difference
light degrees of freedom is exactly given By?=2a(J between the two theories is the manner in which the energy
+2n+3/2), whereJ and n are the rotational and radial and momentum of the QCD field are distributed, the close
guantum numbers. The result, shown on the Regge plot irelationship between their Regge structures appears to be ac-
Fig. 1, is a series of straight lines with an excitation patterncidental.
J+2n. That is, there are degenerate mass towers of states of We have pointed out a close, but not exact, relationship
even or odd parities. between scalar confinement and the QCD string. One might
The (laboratory framg time-component vector confine- wonder whether one could change the string tension and
ment again produces linear Regge trajectories, shown in Fignake the two even more similar. The answer lies in the
2, but with no tower structure, owing to the excitation patternexpectation that the same string tension applies to the Regge
J+2n with incommensurate contributions from the rota- slope and to the dynamics of low-lying heavy quark states,
tional and radial quantum numbers. Although one might exi.e., the static potential energy. Both string confinement and
pect that QCD, being a vector interaction like QED, wouldscalar confinement reduce to the same linear confinement
have a time-component interaction, it is evidently not time-potential energy for slowly moving heavy quarks. Starting
component in the laboratory frame. This is precisely becaus#om the universal light hadron Regge slope
the QCD field in which the quark moves is not chromoelec-
trostatic(purely chromoelectric and time-independent in the a’'=0.9 GeV? (6.1)
laboratory framg Instead, the QCD field is dynamical be- o )
cause the quark drags a chromoelectric flux tube along witfor mesons consisting of two light quarks the “slope” of the
it as it moves. In this respect there are no “test charges” irstatic long distance interaction is
QCD. The QCD field is purely chromoelectric in its rest
frame, leading to time-component vector interaction in the
quark’s rest frame, which we have shown is mathematically
equivalent to a scalar interaction. Neglect of the spatial dis-
tribution of the QCD field energy thus leads directly to scalar

1
Astring™ T =0.18 Ge\?,

T

confinement. The string—flux tube picture is the result of Aeea =i=0.28 Ge\?. 6.2)
taking into account the distribution of the field energy and S48 Aa
momentum.

The intermediate model has a Regge structure very differSince these slopes differ by a large ratio, experiment should
ent from any of the other models studied here, with somebe able to decide the issue. Heavy quarkonia analy2@s
what curved trajectories and an uneven pattern of radial exfavor the string tension value over the scalar value in Eq.
citation, as shown in Fig. 3. Evidently, the modification of (6.2).
the interaction that removes interaction contributions to the
radial momentum but leaves all the interaction energy and
momentum at the quark’s position makes the intermediate
model less, rather than more, string-like in its consequences. This work was supported in part by the US Department of

The string Regge spectroscopy, Fig. 5, again is similar t&Energy under Contract No. DE-FG02-95ER40896.
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