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Quasirotational motions and stability problem in the dynamics of string hadron models

G. S. Sharov
Tver State University, Sadovyj per., 35, 170002, Tver, Russia

~Received 3 April 2000; published 3 October 2000!

For the relativistic string with massive ends~the meson model! and four various string baryon models
(q-qq, q-q-q, Y andD) we consider the classical quasirotational motions, which are small disturbances of the
planar uniform rotations of these systems. For the string meson model two types of these solutions are
obtained. They describe oscillatory motions in the form of stationary waves in the rotational plane and in the
orthogonal direction. This approach and the suggested method of determining an arbitrary motion of the system
on the basis of initial data let us solve the stability problem for the rotational motions for all mentioned string
configurations. It is shown that the classic rotational motions arestable for the string meson model~or its
analogq-qq) and for theD baryon configuration, but they areunstablefor the string baryon modelsY and
q-q-q. For the latter two systems any small asymmetric disturbances grow with increasing time. The motion of
theq-q-q configuration becomes more complicated and quasiperiodic but the quarks do not merge. In the case
of the Y model the evolution of disturbances results in a quark falling into the junction. These features of the
classic behavior are important for describing hadron states on the Regge trajectories and for choosing and
developing the most adequate QCD-based string hadron models.

PACS number~s!: 12.40.Yx, 12.40.Nn
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INTRODUCTION

The string hadron models@1–9# use the striking analogy
between the QCD confinement mechanism at large in
quark distances and the relativistic string with linearly gro
ing energy connecting two material points. Such a str
with massive ends may be regarded as the meson s
model @2,3#.

String models of the baryon were suggested in the follo
ing four variants~Fig. 1!, differing from each other in the
topology of the spatial junction of three massive poin
~quarks! by relativistic strings:~a! the quark-diquark mode
q-qq @4# ~on the classic level it coincides with the mes
model @2#!, ~b! the linear configurationq-q-q @5#, ~c! the
‘‘three-string’’ model or Y configuration@6,7#, and ~d! the
‘‘triangle’’ model or D configuration@8,9#.

The problem of choosing the most adequate string bar
model among the four mentioned ones has not been so
yet. The investigation of this problem from the point of vie
of the QCD limit at large distances has not been comple
In particular, the QCD-motivated baryon Wilson loop ope
tor approach gives some arguments in favor of theY configu-
ration@10# or the ‘‘triangle’’ model@11#. Leaving the Wilson
loop analysis outside this paper, we concentrate on the c
sical dynamics of these configurations.

For all mentioned string hadron models the classical
lutions describing the rotational motion~planar uniform ro-
tations of the system! are known and widely used for mod
eling the orbitally excited hadron states on the main Re
trajectories@4,12–14#. The rotational motion of the meso
model or the baryon configurationq-qq is a rotation of the
rectilinear string segment@2,4#. For the modelq-q-q the mo-
tion is the same but with the middle quark at the rotatio
center. The form of rotating three-string configuration
three rectilinear string segments joined in a plane at
angles 120 °@6,7#. For the model ‘‘triangle’’ this form is the
0556-2821/2000/62~9!/094015~13!/$15.00 62 0940
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rotating closed curve consisting of segments of a hypoc
loid @8,9#.

In this paper we consider the motions of all these syste
which are close to rotational ones. They are interesting
to the following two reasons:~a! we are to search the mo
tions describing the hadron states, which are usually in
preted as higher radially excited states in the potential m
els @14#, in other words, we are to describe the daugh
Regge trajectories;~b! the important problem of stability o
rotational motions has not been solved yet for all mention
string models. For the meson string model the quasirotatio
motions of slightly curved string with massive ends we
searched in Refs.@15,16#. But some simplifying assumption
in these papers oblige us in Sec. I to verify the solutions@15#
numerically and to suggest another approach for obtain
the quasirotational solutions in the form of stationary wav
and solving the stability problem. In Secs. II, III, and IV th
stability problem for the string baryon configurationsD,
q-q-q andY ~Fig. 1! is tested using the suggested method
solving the initial-boundary value problem for these system

The obtained classical solutions are applied in describ
hadron states after the quantization. The standard quan
tion procedure for the open string is not applicable to
considered hadron models~in particular, to the string with
massive ends! because of the essential nonlinearity of t
boundary conditions@3#. To avoid these difficulties differen
authors restricted the dynamics of the system to some su
of the configurational space; i.e. they quantized sepa
classes of motions of the masslessY configuration@7# or of
the string with massive ends@12,16# by using a different
technique. In particular, the method developed in Ref.@17#
for the relativistic flux tube model was used in Ref.@16# for
quantizing the motions of the curved relativistic string wi
massive ends. For this purpose the authors consider only
dynamical coordinate — the distanceR between the quarks
~with the conjugated momentumpR). However, the adequat
quantization procedure for the string’s quasirotational m
©2000 The American Physical Society15-1
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tions has to include the infinite number of dynamical va
ables describing all possible string oscillations and is c
nected, for example, with the mentioned stationary wav
So the profound problem of quantization for the quasiro
tional motions of various string hadron models requires s
cial consideration beyond the scope of this paper.

I. STRING WITH MASSIVE ENDS

The relativistic string with the tensiong and the masse
m1 , m2 at the ends~the meson orq-qq baryon model! is
described by the action@2,3,13#

S52gE
V
A2gdtds2(

i 51

N

miE Aẋi
2~t!dt, ~1!

written here in the general form withN material points for all
mentioned hadron models. For the string with massive e
N52, Xm(t,s) are coordinates of a string point i
D-dimensional Minkowski spaceR1,D21 with the signature
1,2,2, . . . , g5Ẋ2X822(Ẋ,X8)2, where (a,b)5ambm is
the ~pseudo!scalar product, Ẋm5]tX

m, X8m5]sXm, V
5$(t,s):t1,t,t2 , s1(t),s,s2(t)%, s i(t) are inner
coordinates of the quark1 world lines, their coordinates in
R1,D21 arexi

m(t)5Xm(t,s i(t)), ẋi
m5(d/dt)xi

m(t), and the
speed of lightc51. The first summand in Eq.~1! is propor-
tional to the world surface area and may be rewritten in
equivalent form@3,15,16#.

The equations of motion

]

]t

]A2g

]Ẋm
1

]

]s

]A2g

]X8m
50, ~2!

and the boundary conditions for the quark trajectories

d

dt

ẋim

Aẋi
2

2
~21! ig

mi
F ]A2g

]X8m

2s i8~t!
]A2g

]Ẋm G U
s5s i

50

~3!

are deduced from action~1! @3#.
The exact solution of Eq.~2! satisfying conditions~3! and

describing the rotational motion of the rectilinear string
well known @2–4# and may be represented as

X0[t5bt, X11 iX25v21sin~vbs!•eivt. ~4!

1We use the term ‘‘quark’’ for brevity, here and below quark
antiquarks, and diquarks are material points on the classic leve

FIG. 1. String baryon models.
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Herev is the angular velocity,sP@s1 ,s2#, s i5const,s1

<0,s2; the substitutions̃5sin(vbs) can be made.
The authors of Refs.@15,16# search motions of this sys

tem close to the rotational one~4! in the form

X05t, X11 iX25sR~ t !ei [vt1f(t)1 f (s)] , ~5!

wheref(t), f (s), Ṙ(t) are assumed to be small. After su
stituting this formula into Eq.~2! and dropping the second
order terms they obtain the expression forf (s)

f ~s!5f̈~ t !v23R21~ t !@ f 1~s,v'!2 f 1~1,v'!#, ~6!

where f 1(s,v')5( 1
2 v'A1s21A12s2v'

2 )A, A
5arcsinsv' , v'5vR(t), s150<s<15s2, the first
heavy quark withm1→` is at rest.

Deducing Eq.~6! the authors of Refs.@15,16# ignore that
~a! the obtained functionf (s) ~6! depends ont essentially
@one may assume the dependencesR(t), v'(t) weak but this
cannot be valid for the multiplierf̈(t)#, so all previous cal-
culations appear to be wrong;~b! expressions~5!, ~6! do not
satisfy the boundary condition~3! for the moving quark. The
dependenciesf(t), f, R(t)2^R& on time should also be ana
lyzed. In particular, the following important question r
mains without answer: do these disturbances grow with
creasing time, in other words, is the rotational motion~4!
stable?

In our opinion, a better way of searching quasirotation
motions and solving the stability problem includes the cho
of the coordinatest,s on the world surface~that can always
be made@3#!, in which the orthonormality conditions

Ẋ21X8250, ~Ẋ,X8!50, ~7!

are satisfied. Under restrictions~7! the equations of motion
~2! become linear

Ẍm2X9m50, ~8!

and the boundary conditions~3! take the simplest form

mi

d

dt
Ui

m~t!1~21! igX8m~t,s i !50, i 51,2, ~9!

whereUi
m(t)5 ẋi

m(t)/Aẋi
2 is the unitR1,D21-velocity vector

of i th quark.
In Eqs. ~9! the functionss i(t) are chosen in the form

s i(t)5const. One can always fix them, in particular, as

s150, s25p ~10!

with the help of the reparametrizations@3#

t̃6s̃5 f 6~t6s! ~11!

( f 6 are arbitrary smooth monotone functions!, which keep
the invariance of Eqs.~7! and ~8!.

Using the general solution of Eq.~8!

Xm~t,s!5 1
2 @C1

m ~t1s!1C2
m ~t2s!#, ~12!
5-2
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we can reduce the problem in a natural way to solve ordin
differential equations. In particular, this approach is fruit
for considering the initial-boundary value problem~IBVP!
for the string with massive ends@18#. This problem implies
obtaining the motion of the string on the basis of two giv
initial conditions: an initial position of the system i
Minkowski space and initial velocities of string points.
other words, we are to determine the solution of Eq.~8!
Xm(t,s) satisfying the orthonormality~7!, boundary~9!, and
initial conditions.

An initial position of the string can be given as the pa
metric curve in Minkowski space

xm5rm~l!, lP@l1 ,l2#, r82,0. ~13!

The initial velocity of a string point is a timelike vector o
this curvevm(l), lP@l1 ,l2#, vm(l) may be multiplied by
an arbitrary scalar functionx(l).0.

To solve the problem we set parametrically the init
curve on the world sheet

t5 ť~l!, s5š~l!, lP@l1 ,l2#, ~14!

and use the following general form for the initial position
the string@18#:

Xm
„ť~l!,š~l!…5rm~l!, lP@l1 ,l2#. ~15!

Here u ť8u,š8, ť(l1)5š(l1)50, š(l2)5p. There is the
freedom in choosing the functionsť(l), š(l) @18,19# con-
nected with the invariance of Eqs.~7!, ~8!, ~9!, and~10! with
respect to the substitutions~11! where

f 1~j!5 f 2~j!5 f ~j!, f ~j12p!5 f ~j!12p ~16!

and f 8(j).0.
Using the formulas@18#

d

dl
C6

m
„ť~l!6š~l!…5F16

~v,r8!

D Gr8m7
r82

D
vm, ~17!

whereD(l)5A(v,r8)22v2r82, we can determine from the
initial data the functionC1

m in the initial segment@0,ť(l2)

1p# and the functionC2
m in the segment@ ť(l2)2p,0#.

The constants of integration are fixed from the initial con
tion ~15!.

The functionsC6
m are to be continued beyond the initi

segments with the help of boundary conditions~9! which
may be reduced to the equations@18,19#

U18
m~t!5gm1

21@dn
m2U1

m~t!U1n~t!#C18
n~t!, ~18!

U28
m~t!5gm2

21@dn
m2U2

m~t!U2n~t!#C28
n~t2p!, ~19!

C28
m~t!5C18

m~t!22m1g21U18
m~t!, ~20!

C18
m~t1p!5C28

m~t2p!22m2g21U28
m~t!. ~21!

where
09401
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m5H 1, m5n

0, mÞn.

Solving the systems of Eqs.~18!, ~19! with the initial condi-
tions

Ui
m
„ť~l i !…5vm~l i !/Av2~l i !, i 51,2, ~22!

we obtain the velocitiesUi
m(t) on the base of the function

C68
m(t) known from Eqs.~17! in the initial segments. Simul-

taneously we continue~with no limit! the functionsC6
m out-

side these segments with the help of Eqs.~20!, ~21! and
determine the world surface~12!.

The above described procedure of solving the init
boundary value problem~IBVP! for the string with the fixed
end ~the infinitely heavy quark withm1→` is at rest! and
m251, g51 is illustrated in Fig. 2. This is a typical ex
ample of a slightly disturbed motion close to the rotation
one ~4!. In the casem1→` Eqs.~18!, ~20! are to be substi-
tuted for the equations@18# U1

m(t)5U1
m5const~the infinite

mass moves at a constant velocity! and

C28
m~t!5@2U1

mU1n2dn
m#C18

n~t!, m1→`. ~23!

Equation ~19! with initial condition ~22!, i 52 was solved
numerically.

For the motion in Fig. 2 the initial distance between t
quarks isR(0)51, the initial string shape@the curve 1 in
Figs. 2~a! and 2~c!# is determined by Eq.~6! with the ampli-
tude multiplierb05f̈(0)v23R21(0)51. The initial veloci-
ties of string points correspond to rotating in thexy plane at
the angular velocityvW 5$0;0;v%, v51/A2:

vm~l!5$1;vW ~l!%, vW ~l!5@vW 3rW ~l!#. ~24!

The initial speed of the moving enduvW (l2)u5v'5vR(0)
51/A2 satisfies the relation

v'
2 1vv'mi /g51 ~25!

( i 52), that is valid for the rotational motion~4! @4,13#.
In Figs. 2~a! and 2~b! the positions of the string in

xy-plane~sectionst5const of the world surface! are shown.
They are numbered in order of increasingt with the step in
time Dt50.2 and these numbers are near the position of
moving quark marked by the small circle. The first turn
the string is shown in Fig. 2~a! and the fourth one~after the
missed time interval! is represented in Fig. 2~b!. We can see
that main features of the motion are kept: the string rota
and its shape~slightly deviating from straightness! changes
quasiperiodically.

The evolution of this shape is shown in detail in Fig. 2~c!,
where the first 9 curves from Fig. 2~a! ~with the same step
Dt50.2) are turned in thexy plane so that the second end
each curve lies on the axis of abscissas. In other words
curves in Fig. 2~c! are the string positions in the frame o
reference rotating with the string. One may conclude that
shape~6! of the string is not conserved with increasing tim
Changing the shape looks like spreading waves along
5-3
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FIG. 2. The curved string mo-
tion of type ~5!, ~6!.
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string ~that uniformly rotates!. Drawing other curves in this
manner we see that the disturbances of the shape do not
with growing time t. This also concerns the distanceR(t)
between the quarks shown in Fig. 2~d!. The distanceR(t)
varies quasiperiodically near the initial valueR(0)51. It is
interesting that the periodTR.4.75 when varyingR does not
coincide with the rotational periodT52p/v.8.886 and the
periodTs.2 when changing the string shape. This hierarc
of the periods or frequencies and will be clarified below.

The picture of motion~including the behavior ofR and
the string shape! is similar for various values ofv, R(0), m2
connected by Eq.~25!, and for various amplitudesb0 of the
disturbance~6!. If b0 is small enough the string motion i
visually identical with the pure rotational one. But the d
turbance of the string shape does not keep its form. So
may conclude that the expressions~5!, ~6! from Refs.@15,16#
do not describe a motion of the curved string during an
preciable time interval.

The problem of searching the quasirotational motions
the curved string, for which the string shape behaves
stationary waves is solved in this paper with the more c
venient ~in comparison with Refs.@15,16#! analytical ap-
proach. This method also confirms analytically the numer
investigation of the stability problem for the rotational m
tions.

For this purpose we consider the string with the infinite
heavy endm2→` ~or with the fixed end in the frame o
reference moving at the velocityU2

m5const) for the sake o
simplicity. It is convenient to use the unit velocity vector
the moving end

U1
m~t![Um~t!, U2~t!51 ~26!

for describing the string motion because the world surfac
09401
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y

e

-

f
e
-

l

is

totally determined from the given functionUm(t) and the
valueg/m1 using the formulas@19,20#

C68
m~t!5m1g21@A2U82~t!Um~t!6U8m~t!#. ~27!

If we substitute the analog of Eq.~23! for the second end

C18
m~t!5Pn

mC (2)8n , Pn
m52U2

mU2n2dn
m , m2→`

and substitute Eq.~27! into Eq. ~18!, we get the relation

U8m~t!5~dn
m2UmUn!Pk

n@A2U (2)82 U (2)
k 2U (2)8k #.

~28!

Here and below(2)[(t22p), the argument (t) may be
omitted.

The vector-functionUm(t) given in a segment with the
length 2p ~if g/m1 , U2

m are also given! contains all the
information about this motion of the system@20#. Indeed, the
system of ordinary differential equations with shifted arg
ment ~28! lets us continueUm(t) beyond the given initial
segment and obtain the world surface with using Eqs.~27!
and ~12!.

For the rotational motion~4! the velocity of the moving
quark satisfying Eq.~28! may be written in the form

Ūm~t!5G@e0
m1v0ém~t!#, G5~12v0

2!21/2. ~29!

Here v05v'5sinpu is the constant speed of this quar
ém5u21(d/dt)em(t), em5e1

m cosut1e2
m sinut are unit

spacelike rotating vectors,u5vb5p21arcsinv05const is
the ‘‘frequency’’ with respect tot, the ends are renumerate
in comparison with Eq.~4!. The second quark in this fram
of reference is at rest:U2

m5e0
m .
5-4
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To study the stability of the rotational motion~4! we con-
sider arbitrary small disturbances of this motion or of t
vector ~29! in the form

Um~t!5Ūm~t!1um~t!. ~30!

The disturbanceum(t) is given in the initial segment, fo
example,I 5@22p,0#; it is to be smalluumu!1 ~we neglect
the second order terms! and satisfies the condition

@Ū~t!,u~t!#50, ~31!

resulting from Eq.~26! for both Um and Ūm.
Substituting expressions~30!, ~29! into Eq.~28! we obtain

the equation describing the evolution ofum

u8m1Qum1Ūm~Ū8,u!

5~dn
m2ŪmŪn!Pk

n@Qu(2)
k 2u(2)8k #

1Q21@~112v0
2!Ūm2Pn

mŪ (2)
n #~Ū (2)8 ,u(2)8 !,

~32!

where

Q5A2Ū825Guv05
v0 arcsinv0

pA12v0
2

5const.

Projecting the disturbanceum onto the basic vectorse0
m ,

em(t), ém(t), e3
m we denote its three independent comp

nents in the following manner:

u0~t!5~e0 ,u!, ue~t!5~e,u!, uz~t!5~e3 ,u!.

The fourth component is expressed due to Eq.~31!: (é,u)
52v0

21u0. Considering corresponding projections one c
transform the system~32! into the following one:

u081Qu02GQue5u0(2)8 2Qu0(2)2GQue(2) , ~33!

ue81Que1uv0
21u05ue(2)8 1Que(2)1F~u0(2)!, ~34!

uz81Quz5uz(2)8 2Quz(2) , ~35!

whereF(u0(2))5u(v0
2112v0)u0(2)22A12v0

2u0(2)8 .
Equation~35! for z-axial disturbances is independent

others and may be easily solved: ifuz(t) is given in the
initial segmentI 5@22p,0#, the continuation of this func-
tion for t.0 is @hereDuz5uz(0)2uz(22p)#:

uz~t!5uz(2)1e2QtFDuz22QE
0

t

eQt̃uz(2)dt̃G . ~36!

The pure harmonic solutions~36! uz(t)5eiqt exist if the
‘‘frequency’’ q satisfies the relation

q/Q5cotpq, ~37!
09401
-

n

resulting from substitutionuz5eiqt into Eq. ~35!. The tran-
scendental Eq.~37! has the countable set of rootsqn , n
21,qn,n, the minimal positive root q15u
5p21arcsinv0. These pure harmonicz disturbances corre
sponding to variousqn result in the following correction to
the motion~4! @due to Eqs.~27!, ~12! there is only az or e3

m

component of the correction#:

X3~t,s!5B sinqns• cos~qnt1w0!. ~38!

Here the string ends have been again renumerated sos50
corresponds to the fixed end as in Eq.~4!. The amplitudeB is
small in comparison withv21.

Expression~38! describes the oscillating string in th
form of orthogonal~with respect to the rotational plane! sta-
tionary waves withn21 nodes in the interval 0,s,p.
Note that the moving quark is not in a node, it oscillat
along thez axis at the frequencyvn5vqn /u. The shapeF
5B sinqns of the z oscillation ~38! is not pure sinusoida
with respect to the distances5v21s̃5v21sinus from the
center to a point ‘‘s ’’:

F~s!5B sin~qnu21arcsinvs!, 0<s<v0 /v. ~39!

If n51 this dependence is linear. In this trivial case t
motion is pure rotational~4! with a small tilt of the rotational
plane. But the motions~38! with excited higher harmonics
n52,3, . . . arenontrivial.

Equation~35!, its harmonic solutions, the ‘‘frequencies
qn as roots of Eq.~37! were investigated in Refs.@19,21#
where the motions of the meson string with linearizab
boundary conditions~9! were studied and classified. Thos
solutions @in (311)-dimensional Minkowski space# with
qn , n>2 described the exotic motions of then21 times
folded rectilinear string withn21 points moving at the
speed of light. But in Eq.~38! these higher harmonics be
came apparent as~much more physical! excitations of the
rotating string.

It was shown in Ref.@21# that any smooth functionu(t)
in a segmentI with the length 2p may be expanded in the
series

u~t!5 (
n52`

1`

un exp~ iqnt!, tPI 5@t0 ,t012p#.

~40!

So if we expand any given disturbanceuz(t) in the initial
segmentI, we obtain solution~36! of Eq. ~35! in the form
~40! for all tPR. If the initial function uz(t) satisfies Eq.
~35! at the ends ofI, uz(t)PC2(I ), this series converge
absolutely inI, hence its sum~40! is a limited function for all
tPR. This is the proof of stability of the rotational motion
~4! for the string with fixed end with respect to thez oscil-
lations.

In Fig. 2 we observe another type of oscillation. The
planar disturbances are described by Eqs.~33! and ~34!.
Their solutions in the formu05b0eiQt, ue5b1eiQt exist
only if the ‘‘frequency’’ Q satisfies the equation
5-5
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G. S. SHAROV PHYSICAL REVIEW D 62 094015
Q22Q2~11v0
22!52QQ cotpQ. ~41!

The roots of Eq.~41! QnP(n21,n), n>1 behave like the
roots qn of Eq. ~37! but Qn.qn . The disturbances~30!
um5bmexp(iQnt) correspond to the following small (B
!v21) harmonic planar oscillations or planar stationa
waves:

Xm5e0
mt1em~t!@v21 sinus1B fr~s!cosQnt#

1B@e0
m f 0~s!1ém~t! f s~s!#sinQnt, ~42!

f 052~u22Qn
2!cosQns,

B5
mib0

2g~Qn
22u2!sinpQn

,

f s5~Qn1u!2 sin~Qn2u!s2~Qn2u!2 sin~Qn1u!s,

f r5~Qn1u!2 sin~u2Qn!s2~Qn2u!2 sin~Qn1u!s.

The shape of these stationary waves in the corotating fr
of reference~where the axesx and y are directed alongem

and ém) is approximately described by the functio
B@ f s(s)2 f 0(s)sinus# if the deflection is maximal. Thes
shapesF5Fn(s) for n51,2,3,4 are shown in Fig. 3 with
indicated numbersn. Here the parametersmi /g are the same
as for the example in Fig. 2. For eachn this curved string
oscillates at the frequencyvn5vQn /u, it hasn21 nodes in
(0,p) ~which are not strictly fixed becausef 0 and f r are
nonzero!, and the moving quark is not in a node, especia
for the main mode withn51. The latter feature@similar to
the motion~38!# radically differs from that in expression~6!
@15,16# where the disturbance in this endpoint is forced
nullified. Note that Eq.~42! describes both the deflection o
this endpoint Bém f s(p)sinQnt and its radial motion
Bem f r(p)cosQnt.

Any smooth disturbanceu(t) may be expanded in th
series similar to Eq.~40! with the rootsQn of Eq. ~41! @21#.
So any quasirotational motion of this sting, in particular, t

FIG. 3. Shapes of planar stationary waves forn51,2,3,4.
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motion in Fig. 2 is the superposition of the stationary wav
~42! and ~for nonplanar motions! ~38!. This fact let us con-
clude that the rotational motions~4! for the considered mode
are stable, and we explain the above-mentioned proble
with the ‘‘hierarchy of the periods’’ for the example in Fig
2. Now, when we expand this solution in the combination
expressions~42!, it becomes obvious that the radial perio
TR @Fig. 2~d!# corresponds to the main ‘‘frequency’’Q1
.0.463 with the background of higher harmonics, where
the ‘‘shape’’ periodTs is connected mainly with the follow-
ing ‘‘frequency’’ Q2.1.149, because the string shape f
the modeQ1 is closer to the rectilinear one~Fig. 3! and it is
‘‘not observable’’ in Fig. 2~c!. We note thatTRQ15TsQ2
5Tu whereT is the rotational period andu50.25.

The obtained results are generalized for the string w
both finite masses 0<m1 ,m2,` at the ends. For this pur
pose we are to substitute the disturbed expression~30! into
Eqs. ~18!–~21!, ~27! and deduce the equations generalizi
Eqs. ~32!. The search of their oscillatory solutionsu3

5Bzexp(iqt), um5Bmexp(iQt) results in the following gen-
eralizations of Eqs.~37! and ~41!:

~q2Q1Q2 /q!/~Q11Q2!5cotpq, ~43!

F1~Q!F2~Q!24Q1Q2Q2

2Q@Q1F2~Q!1Q2F1~Q!#
5cotpQ, ~44!

where Qi5uv i /A12v i
2, v i are the constant speeds of th

ends for Eq. ~4!, F i(Q)5Q22Qi
2(11v i

22). The corre-
sponding disturbances of the rotational motion~4! are the
stationary waves behaving similar to Eqs.~38! and ~42!. In
particular, in Eq. ~38! one should substitute sinqns for
cos(qns1fn). In this case the endpoints also oscillate at s
isfying Eqs.~43! and ~44! ‘‘frequencies’’ qn or Qn .

All roots of Eqs.~43!, ~44! are real numbers. Hence, th
amplitudes of these harmonics are not increasing~and not
decreasing! and the quasirotational motions constructed
combinations of these harmonics arestable~but they are not
asymptotically stable!. Note that the minimal positive root o
both Eqs.~43! and ~44! equalsu5vb. In both cases the
corresponding solutions are trivial: they describe a small
of the rotational plane or a small shift of the rotational cen
in this plane.

The obtained single-mode oscillatory motions for the
nite massesmi are simulated numerically and are represen
with typical graphs for Eqs.~43!, ~44! and shapes of the
harmonics, corresponding toQ i . Arbitrary slightly disturbed
rotational motions may also be obtained as solutions of
IBVP with certain initial data. Numerical experiments sho
their stability and that they are always superpositions of
above-described stationary waves.

The stability problem for the rotational motions for th
string baryon modelsq-q-q, Y andD ~Fig. 1! is more com-
plicated than that for the meson string model. We consi
all string baryon configurations in turn starting from th
model ‘‘triangle’’ @8,9#.
5-6
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II. ‘‘TRIANGLE’’ BARYON MODEL

This configuration may be regarded as a closed relativi
string with the tensiong carrying three pointlike massesm1 ,
m2 , m3 @8,9#. In action ~1! for the ‘‘triangle’’ model N53
and the domainV is divided by the quark trajectories int
three domains:V5V0øV̄1øV2 , V i5$(t,s):s i(t),s
,s i 11(t)% ~Fig. 4!. The equationss5s0(t) and s
5s3(t) determine the trajectory of the same~third! quark. It
is connected with the fact that the string is closed~so the
world surface is tube-like! and may be written in the follow-
ing general form@8#:

Xm
„t,s0~t!…5Xm

„t* ,s3~t* !…. ~45!

The parameterst and t* in these two parametrizations o
just the same line are not equal in general.

The equations of string motion and the boundary con
tions at three quark trajectories result from action~1! @8,9#.
Derivatives ofXm can have discontinuities on the liness
5s i(t) ~except for tangential!. However, by choosing coor
dinatest, s the induced metric on all the world surface m
be made continuous and conformally flat@8#, i.e., satisfying
the orthonormality conditions~7!. Under these conditions th
equations of motion for allV i take the form~8! and the
boundary conditions are@8,9#

mi

d

dt
Ui

m~t!2g@X8m1s i8~t!Ẋm#us5s i101g

3@X8m1s i8~t!Ẋm#us5s i2050, ~46!

where the same notationUi
m for the unit velocity vector of

the i th quark is used. In accordance with Eq.~45! for the
third quark one should sets5s0(t) in the second term o
Eq. ~46! and replacet by t* in the last term.

At this stage we have five undetermined functions in t
model: t* (t) in the closure condition~45! and four trajec-
tories s i(t), i 50, 1, 2, 3. Using the invariance of Eq
~7!, ~8!, ~46! with respect to the reparametrizations~11! we
fix two of these functions as follows~Fig. 4!:

s0~t!50, t* ~t!5t. ~47!

The remaining three functions will be calculated with so
ing the IBVP.

The first Eq.~47! may be obtained by the substitution~11!
with the requiredf 1 and f 2(h)5h. At the second step on
can get the equalityt* 5t by repeating the procedure~11!
with the functionf 15 f 2[ f that satisfies the condition

FIG. 4. The domainV for the modelD.
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2 f ~t!5 f „t* ~t!1s3~t!…1 f „t* ~t!2s3~t!….

The constraintt* (t)5t ~that is the closure of any coordi
nate linet5const on the world surface! was not fulfilled in
Refs.@8,9#.

Because of discontinuities ofX8mat s5s i(t) the general
solutions of Eq.~8! in three domainsV i are described by
three different functions (i 50,1,2)

Xm~t,s!5 1
2 @C i 1

m ~t1s!1C i 2
m ~t2s!#, ~t,s!PV i .

~48!

Nevertheless, the functionXm ~with the tangential deriva-
tives! is continuous inV.

The initial-boundary value problem~IBVP! for the ‘‘tri-
angle’’ string configuration is stated similarly to that for th
meson model in Sec. I. The procedure of its solving is brie
described below. One can find the details in e-print@22#.

An initial position of the string can be given as the cur
~13! in Minkowski space but for theD model lP@l0 ,l3#
and this curve is closed:rm(l0)5rm(l3). The function
rm(l) is piecewise smooth,r8m may have discontinuities a
the quark positionsl5l1 , l2.

Initial velocities on the initial curve can be given as
timelike vectorvm(l), lP@l0 ,l3#, vm(l) may be multi-
plied by an arbitrary scalar functionf(l).0. The condition
vm(l0)5vm(l3)•const is fulfilled.

To solve the problem we use the parametrization~14!,
~15!, lP@l0 ,l3# of the initial curve on the world surface
~Fig. 4!, and the formulas~17! for determining the functions
C i 68

m from the initial data in the finite segments

C i 1
m ~j!, jP@ ť~l i !1š~l i !,ť~l i 11!1š~l i 11!#,

C i 2
m ~j!, jP@ ť~l i 11!2š~l i 11!,ť~l i !2š~l i !#,

~49!

which lets us find the solution of the problem in the for
~48! in the zonesDi shown in Fig. 4. In these zones bound
by the initial curve and the characteristic linest2s

<ť(l i)2š(l i), t1s<ť(l i 11)1š(l i 11) the solution de-
pends only on initial data without the influence of the boun
aries. In others parts of the domainsV i the solution is ob-
tained with the help of the boundary conditions~46! which
may be reduced to the form@22#

Ui8
m5gmi

21@dn
m2Ui

m~t!Uin~t!#

3
d

dt
@C i 1

n ~t1s i !1C ( i 21)2
n ~t2s i !#. ~50!

For i 53 in Eq. ~50! one should replaceC31
m (t1s3) by

C01
m (t) in accordance with Eqs.~45! and ~47!.
Integrating systems~50! with the initial conditions~22!,

i 51,2,3 we can determine unknown vector functionsUi
m(t)

for tP@ ť(l i),t i
c# with the help of the functionsC i 68

m known
in the segments~49! from the initial data. Heret i

c are~mini-
mal! ordinates of the points in which the trajectoriess
5s i(t) cross the characteristic linest6s5const ~Fig. 4!.
5-7
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c if for

every value oft @after calculatingUi8
m from Eq. ~50!# we

determineC i 68
m outside segments~49! from the equations (i

51,2)

C ( i 21)1
m ~t1s i !5C i 1

m ~t1s i !2
mi

g
Ui

m~t!1Ci
1 ,

C i 2
m ~t2s i !5C ( i 21)2

m ~t2s i !2
mi

g
Ui

m~t!1Ci
2 .

~51!

They are obtained from Eqs.~46!, ~48! and from continuity
of Xm @22#. The similar relations fori 53 are

C21
m ~t1s3!5C01

m ~t!2m3g21U3
m~t!1C3

1 ,

C02
m ~t!5C22

m ~t2s3!2m3g21U3
m~t!1C3

2 .

The constants of integrationCi
6 are fixed from Eq.~15!.

For solving the system~50! we are to determine the func
tions s i(t) for t. ť(l i). Multiplying Ui

m(t) by
(d/dt)C j 6

m (t6s i) we obtain the equalities

~12s i8!@Ui ,C ( i 21)28 ~t2s i !#5~11s i8!@Ui ,C i 18 ~t1s i !#,

which let us expresss i8 in the following way~separately for
i 51,2 andi 53):

ds i

dt
5

$Ui ,@C ( i 21)28 ~t2s i !2C i 18 ~t1s i !#%

$Ui ,@C ( i 21)28 ~t2s i !1C i 18 ~t1s i !#%
, ~52!

ds3

dt
512

@U3 ,C018 ~t!#

@U3 ,C228 ~t2s3!#
.

09401
HereUi
m[Ui

m(t).
Equations~50!–~52! allow us to continue the function

C i 6
m unambiguously beyond the segments~49!. This algo-

rithm solves~numerically in general! the considered IBVP
with arbitrary initial conditionsrm(l), vm(l).

For the model ‘‘triangle’’ the exact solutions of Eqs.~8!,
~7!, ~45!, ~46! describing rotational motions of the syste
~with hypocycloidal segments of the strings between
quarks! are obtained in Refs.@8,9#. World surfaces with the
parametrizations i(t)5s i5const and the form of closure
condition ~45! t* 2t5T5const may be represented as fo
lows (X1[x, X2[y):

X05t2as, X11 iX25w~s!eivt. ~53!

Here w(s)5Ai cosvs1Bi sinvs, sP@s i ,s i 11#; a5T/
(s32s0)5const,v is the angular frequency of this rotation
Real (s i , T, v, mi /g) and complex (Ai , Bi! constants are
connected by certain relations@8,9,14#. There are many to-
pologically different types2 of solutions~53! but we consider
motions close to the simple states@9# in which three quarks
are connected by smooth segments of hypocycloids.

The simple motions~53! may be obtained by solving th
IBVP with corresponding initial data. To research the stab
ity of these motions we consider here the disturbed ini
conditionsrm(l) and vm(l). With an illustrative view in
Fig. 5 the example of such a motion@close to the simple state
~53!# of the ‘‘triangle’’ configuration is represented. Here th
initial string position is the rectilinear equilateral triang
with the basea50.5 and the altitudeh50.33 in thexy plane

2The so called exotic states@9# contain string points moving at the
speed of light.
5-8
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QUASIROTATIONAL MOTIONS AND STABILITY . . . PHYSICAL REVIEW D 62 094015
@position 1 in Fig. 5~a!#. The initial velocitiesvm(l) in the
form ~24! correspond to the uniform rotation of the system
the frequencyvW 5$0;0;v%, v52 about the origin of coor-
dinates. The quarks with massesm151, m251.5, m3
51.2, g51 are placed at the corners of the triangle.

The results of computing are represented as projection
the world surface level linest5X0(t,s)5const onto thexy
plain as in Fig. 2 and numbered with the time stepDt
50.15. The valuesrm(l) and vm(l) are close to those
which give the exact hypocycloidal solution~53! for this
system~with the samemi , g andv52) describing the uni-
form rotation of the system with the string shape that is
marked in Fig. 5~a!. The positions of the third quark with
m351.2 are marked by circles.

The further evolution of the system after one turn of t
triangle is represented in Fig. 5~b! ~one can find the omitted
phases of this motion in Ref.@22#!. In Fig. 5~c! the depen-
dence of three mutual distancesRi j between the three quark
on timet is shown, in particular,R12(t) is denoted by the full
line. In Fig. 5~d! the deflectiond(t) from rectilinearity of the
string segment withR13(t) is shown. We see that when th
system rotates the distances between the quarks and the
figuration of the string segments fluctuate near the val
corresponding to the motion~53! @x marks in Fig. 5~a!#.

This situation is typical for slightly disturbed rotation
motions of the string baryon model ‘‘triangle.’’ Numerou
tests~with various valuesmi , the energy,rm(l), vm(l) and
various types of disturbances@22#! show that the simple ro
tational motions~53! arestable. That is small disturbances o
the motions~initial conditions! do not grow with increasing
time.

We emphasize that the simple motions~53! are stable
with respect to transforming into the ‘‘quark-diquark’’ stat
of the D string configuration@9# with merging two quarks
into the diquark. It is shown in Ref.@22# that such a trans
formation may be obtained only through very strong dist
bances of the initial conditions, for example, by essentia
reducing one of the sides of the initial triangle. However,
this case the two nearest quarks do not merge but rev
with respect to each other.

When one of the quark massesmi is larger than the sum
of two others the shape of the triangle configuration for
simple rotational motion~53! tends to a rectilinear segmen
with the position of the heaviest mass at the rotational ce
when the energy of the system decreases@9#. In other words
theD configuration tends to theq-q-q one. But the motion of
the ‘‘triangle’’ model remains stable unlike that of theq-q-q
model described in the next section.

III. LINEAR STRING CONFIGURATION

The dynamics of the linear (q-q-q) string baryon model
is described by action~1! whereN53 and the domainV is
divided by the middle quark trajectory into two partsV1 and
V2 : V i5$(t,s):s i(t),s,s i 11(t)%, s1(t),s2(t)
,s3(t) @5#. The equations of string motion under conditio
~7! may be reduced to the same form~8!. The boundary
conditions at the endss5s1 ands5s3 look like Eqs.~9!
but for the middle quark they take the form~46!, i 52. At
09401
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this line the derivatives ofXm are not continuous in genera
Using the reparametrizations~11! we fix two ~from three!

functions s i(t) in a form similar to Eq.~10!: s150, s3
5p. The third functions2(t) is obtained from Eq.~52! with
solving IBVP that is described in detail in Ref.@5#. The main
stages of this procedure are the same as in Secs. I, II: d
mining the functionsC i 6

m , i 51,2 in Eq.~48! with the help
of given rm(l), vm(l) and Eq.~17! in the initial segments
~49!. The further continuation ofC i 6

m beyond Eq.~49! in-
cludes equations similar to Eqs.~18!–~21! for the endpoints
~herei 53 for the second end! and Eqs.~50! and~51! for the
middle quark.

The rotational motion of theq-q-q system is described by
Eq. ~4! but with the middle quark at the center of rotatio
The authors of Ref.@4# assumed that motion is unstable wi
respect to centrifugal moving away of the middle quark a
transforming this configuration into the quark-diquark on
The numerical experiments were made in Ref.@5# in accor-
dance with the above scheme of solving the IBVP. Th
showed that the rotational motion of theq-q-q system is
unstable indeed. Any arbitrarily small disturbances of th
initial data result in the complicated motion of the midd
quark including its centrifugal moving away but the mater
points never merge and the configuration never transfo
into a q-qq one on the classic level.

In Fig. 6 the example of such a motion of theq-q-q
system is represented@Figs. 6~a!–6~d!# in comparison with
the similar motion of the model ‘‘triangle’’@Figs. 6~e!–6~g!#.
For both models the quark masses arem15m351, m253,
Dt50.15 the tension isgD51 in the ‘‘triangle’’ andg52 in
theq-q-q configuration. The initial shape of the string is th
rectilinear segment, for theD configuration it is a particular
case of the hypocycloidal motion~53!. The initial velocities
satisfies Eqs.~24! and~25! wherev'5v050.5. The position
of the middle quark~marked by the square! is slightly dis-
placed with respect to the center of rotation so it uniform
moves at the initial stage@Figs. 6~a! and 6~e!# where the
behavior of both systems practically coincides.

Further@starting with position 17 in Fig. 6~b!# one can see
that in theq-q-q model the middle heavy quark moves to th
string end, while in the ‘‘triangle’’ model@Figs. 6~f!, 6~g!# it
remains in the vicinity of the rotational center. The latt
configuration is stable unlike theq-q-q one. The axes are
omitted here for saving space.

But the minimal distance between the nearest two qua
for the q-q-q system never equals zero. The middle qua
begins to play a role of rotational center for this string se
ment @Fig. 6~c!# and then it returns to the center of the sy
tem @Fig. 6~d!# and the process recurs. Such a quasiperio
motion of the q-q-q system is the qualitatively universa
result of the evolution for motions~4! with various types of
disturbances@5#.

IV. THREE-STRING MODEL

In the three-string baryon model orY configuration
@6,7,23,24# three world sheets~swept up by three segmen
of the relativistic string! are parametrized with three differen
functionsXi

m(t i ,s). It is convenient to use the different no
5-9
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FIG. 6. Behavior of theq-q-q
system ~a!–~d! in comparison
with the modelD ~e!–~g!.
m
th

-

ion

te

s
o
di

ft

ark

rk
rm

ons

ap-

of
to
tationst1 , t2 , t3 for the ‘‘timelike’’ parameters@23,25#. But
the ‘‘spacelike’’ parameters are denoted here by the sa
symbol s. These three world sheets are joined along
world line of the junction that may be set ass50 for all
sheets without loss of generality~see below and Ref.@25#!.

Under these notations the action of the three-string
close to Eq.~1!:

S52(
i 51

3 E dt iFgE
0

s i (t i )A2gids1miAẋi
2~t i !G . ~54!

This action with differentt i generalizes the similar expres
sions in Refs.@6,7,23# ~wheremi50) and in Ref.@24#, where
miÞ0 but the class of motions is limited.

There is the additional boundary condition at the junct
taking the form

X1
m~t,0!5X2

m
„t2~t!,0…5X3

m
„t3~t!,0…, ~55!

if the parameterst i on the three world sheets are connec
at this line in the following manner:

t25t2~t!, t35t3~t!, t1[t.

The equations of motion~2! and the boundary condition
for the junction and the quark trajectories are deduced fr
action~54!. Using its invariance one may choose the coor
nates in which the orthonormality conditions~7! are satisfied
and string equations of motion for allXi

m take the form~8!.
The junction condition~55! unlike more rigid conditions
with t15t25t3 on the junction line@6,7#, let us choose
these coordinates independently on each world sheet. A
this substitution~new coordinates are also denotedt i ,s) the
inner equations of the junction line will be more generals
5s0i(t i) ~in comparison with the previous oness50) and
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the boundary conditions in the junction and on the qu
trajectoriess5s i(t i) will take the following form:

(
i 51

3

@Xi8
m~t i ,s0i !1s0i8 ~t i !Ẋi

m~t i ,s0i !#t i8~t!50, ~56!

miUi8
m~t i !1g@Xi8

m1s i8~t i !Ẋi
m#us5s i (t i )

50.
~57!

Here in Eq.~56! t i5t i(t), s0i5s0i„t i(t)….
The reparametrizations similar to Eq.~11!

t̃ i6s̃5 f i 6~t i6s!, i 51,2,3 ~58!

~with six arbitrary smooth monotone functionsf i 6) keep in-
variance of Eqs.~7!, ~8!, ~56!, and~57!. Choosing the func-
tions f i 6 we can fix the equations of the junction and qua
trajectories on each world sheet independently in the fo
~10!

s0i~t i !50, s i~t!5p, i 51,2,3, ~59!

One can obtain the first Eq.~59! like that in Eq.~47! and the
equalities s i5p through the substitution~58! with f i 1
5 f i 2 keeping the invariance of the equations50.

In this paper the parametrization satisfies the conditi
~59! and~7!. But the ‘‘time parameters’’t1 , t2 andt3 in Eq.
~55! are not equal in general. The possible alternative
proach implies introducing the conditiont2(t)5t3(t)5t
on the junction line~55! in conjunction with the condition
s0i50 ~or s0i5const). But under these restrictions two
the functionss i(t) on the quark trajectories are not equal
constants in general.

If under orthonormal gauge~7! we demand satisfying the
conditions~59!, as the equalitiest15t25t3 on the junction
5-10
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QUASIROTATIONAL MOTIONS AND STABILITY . . . PHYSICAL REVIEW D 62 094015
line ~55! ~as, for example, in Ref.@7#!, then we actually
restrict the class of motions of the system, which the mo
describes. In other words, not all physically possible motio
satisfy the above mentioned conditions.

The proof of these statements in Ref.@25# uses the fact
that under restrictions~7! only reparametrizations~58! with
the functionsf i 15 f i 25 f i satisfying the condition~16! keep
Eqs.~59! @21,25#. These functions have the properties that
f (j) andg(j) satisfy conditions~16!, then the inverse func
tion f 21(j) and the superpositionf (g(j)) also satisfy Eq.
~16!. To obtain the equalitiest̃25 t̃35 t̃1 on the junction line
s50, we have to use transformations~58!, ~16! satisfying
the relationst i(t)5 f i

21
„f 1(t)…, i 52,3. This is possible only

if the functionst2(t), t3(t) satisfy conditions~16!, which
are not fulfilled for an arbitrary motion in general@25#.

For describing an arbitrary motion of the three-string
the suggested approach the unknown functionst i(t) are de-
termined from dynamic equations with solving the IBVP f
this system. This approach is similar to the above-formula
one for other string models. In particular, for theY configu-
ration we have the general solution~48! where the indexi in
C i 6

m numerates the world sheets. Using the given initial p
sition of the three-string in the form of three joined curves
Minkowski space

xm5r i
m~l!, lP@0,l i #, r1

m~0!5r2
m~0!5r3

m~0!

and initial velocitiesv i
m(l), we obtain the functionsC i 1

m and

C i 2
m in the initial segments@0,ť i(l i)1p# and @ ť i(l i)

2p,0# correspondingly from Eq.~17!.
The functionsC i 6

m are to be continued with using th
boundary conditions~55!, ~56!, ~57!. In particular, the con-
ditions on the quark trajectories~57! are reduced to the form
~19!, ~21!, ~22!:

Ui8
m5gmi

21@dn
m2Ui

m~t i !Uin~t i !#C i 28
n ~t i2p!,

~60!

C i 18
m~t i1p!5C i 28

m~t i2p!22mig
21Ui8

m~t i !. ~61!

Substituting Eq.~48! for Xi
m into the boundary conditions in

the junction~55!, ~56!, ~59! we express the functionC i 28
m(t i)

throughC i 18
m(t i):

d

dt
C i 2

m
„t i~t!…5(

j 51

3

Ti j

d

dt
C j 1

m
„t j~t!…, ~62!

where

Ti j 5H 21/3, i 5 j

2/3, iÞ j

Equations~62!, ~61!, and~60! let us infinitely continue the
functionsC i 6

m outside the initial segments if the function
t2(t) andt3(t) are known. They can be found by using th
isotropy conditionC i 68

2(t i)50 @resulting from Eqs.~7!# and
the following consequences of Eqs.~55!:
09401
el
s

f

d

-

@t i8~t!#2@C i 18 ~t i !,C i 28 ~t i !#5@C118 ~t!,C128 ~t!#.

SubstitutingC i 28
m from Eq. ~62! into these relations we ob

tain the formulas for calculating the functionst i(t)

t28~t!5
~C118 ,C318 !

~C218 ,C318 !
, t38~t!5

~C118 ,C218 !

~C218 ,C318 !
. ~63!

Here the functionsC i 18
m[C i 18

m(t i) are taken from Eqs.~17!
and ~61! during solving the IBVP.

Equations~60!–~63! form the closed system for infinite
continuation ofC i 6

m or for solving the IBVP in the three-
string model. The described method is used here~and with
more details in Ref.@25#! for investigating the rotational sta
bility of this configuration. For this purpose we consider t
IBVP with disturbed initial conditionsr i

m(l) andv i
m(l).

As was mentioned above the rotational motion of t
three-string is the uniform rotating of three rectilinear stri
segments joined in a plane at the angles 120°@6,7#. Their
lengths Ri or the speedsv i5vRi are connected with the
angular velocityv by the relation~25! or

Riv
2~Ri1mi /g!51. ~64!

This motion and slightly disturbed motions may be obtain
~numerically, in general! by solving the IBVP with the ap-
propriate initial positionr i

m(l) in the form of three rectilin-
ear segments with lengthsRi and velocities~24! with some
disturbancesdr i

m(l) or dv i
m(l).

The typical example of a quasirotational motion of t
three-string with massesm151, m252, m353, g51 is
represented in Fig. 7. Here the positions of the system in
xy plane are numbered in order of increasingt with the step
in time Dt50.125 and these numbers are near the positio
the first quark marked by the small square. This motion
close to the rotational one: the initial velocities satisfy t
relation ~24!, dv i

m50, the angular velocityv.1.6 and the
different lengthsR150.3, R3.0.125 are connected by Eq
~64!. But the assigned valueR250.22 does not satisfy Eq
~64! ~that givesR2.0.179) so this difference plays a role o
the disturbance for the motion in Fig. 7.

The evolution of this disturbance includes the motion
the junction@Figs. 7~a! and 7~b!# with varying the lengths of
the string segments unless one of these lengths beco
equal to zero, i.e., the third quark falls into the junction a
merges with the junction after the shown position 31 in F
7~c!. They move together@Fig. 7~d!# during the finite time.
The waves from the point of merging spread along
strings and complicate the picture of motion. The fallingi th
material point into the junction is simultaneous with beco
ing infinite in the corresponding ‘‘time’’ (t i→`). This is not
a ‘‘bad parametrization’’ but the geometry of the syste
changes: the three-string transforms into theq-q-q configu-
ration after merging a quark with the junction. The lifetim
of this ‘‘q-q-q stage’’ is finite but nonzero because the m
terial point with the massmi moving at a speedv,1 cannot
slip through the junction instantaneously. Otherwise un
three noncompensated tension forces the massless jun
5-11
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FIG. 7. The disturbed motion
of the three-string model.
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will move at the speed of light. But we must note that th
description is a purely classical one: it will unlikely be th
same after developing a more general QCD-based theor

Nevertheless on the classic level the numerical exp
ments in Ref.@25# show that the picture of motion in Fig.
is qualitatively identical for any small asymmetric distu
bancedr i

m(l) or dv i
m(l). Starting from some point in time

the junction begins to move. During this complicated moti
the distance between the junction and the rotational ce
increases and the lengths of the string segments vary q
periodically unless one of the material points inevitab
merges with the junction. So one may conclude that ro
tional motions of the three-string areunstable. The evolution
of the instability is slow at the first stage if the disturbance
small, but the middle and final stages are rather similar to
motion in Figs. 7~b! and 7~c!. The dependencest i(t) for
these motion do not satisfy the periodicity conditions~16! in
general@25#. This fact does not allow describing these m
tions in the frameworks of the parametrization@6,7# with
t15t25t3. The above-described behavior of slightly di
turbed rotational motions takes place also for the mass
(mi50) three-string model@25#.

CONCLUSION

In this paper the classic motions of the various meson
baryon~Fig. 1! string models close to the rotational motio
~4! or ~53! are investigated. For the meson string model~or
the q-qq baryon configuration! it is made both analytically
and numerically but in each of these methods we use
orthonormal conditions~7! which let us reduce the problem
to solving the systems of ordinary differential equations~18!,
~19!, ~28!. Using this approach we obtained a set of solutio
09401
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~38!, ~42! describing small oscillatory excitations of the ro
tating string in the form of stationary waves. They are
vided into two classes: the orthogonal orz oscillations~38!
and the planar oscillations~42!. Each class contains a coun
able set of solutions with different ‘‘frequencies’’qn , Qn ,
which are the roots of Eqs.~37!, ~41!, ~43!, and ~44!. For
these stationary waves the moving quarks are not in a n
of oscillation, they also oscillate. This was one of the reas
resulting in the wrong expression~6! in Refs.@15,16#.

The energyM and the angular momentumJ of the oscil-
latory excited motions~38!, ~42! are close to the valuesM
and J @13# for the pure rotational motions~4! because the
disturbances are small. In Ref.@16# the latter expressionsM
and J were used for the quantization of the curved stri
motions in the framework of the approach suggested in R
@17# for the relativistic flux tube model. But this procedu
was based upon the questionable assumption that only
specified motion~5!, ~6! of the curved string exists~or can be
the subject of interest!. So the quantization in Ref.@16# in-
cludes only one dynamical variableR for describing the con-
siderable set of motions.

However, in Sec. I of this paper we show that the sp
trum of string quasirotational motions is very rich and
arbitrary motion from this class is the superposition of t
stationary waves~38! and ~42!. So for the adequate quant
zation one should describe all infinite spectrum of the
modes taking, for example, their amplitudesB5Bn as dy-
namical variables. This procedure of quantization requi
the special study for each string model which appears
separate papers. At the final stage of this study some ge
alizations of the oscillatory states~38!, ~42! may be used for
describing the radial, hybrid or other hadron excitatio
Note that the planar oscillations~42! include also the radia
5-12
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motions of the string endpoints~a quark trajectory in the
corotating frame of reference is an ellipse!. This especially
concerns the mode with the ‘‘frequency’’Q1 of Eq. ~41! or
~44!.

A search of quasirotational motions in a form similar
Eq. ~30! for the string baryon model ‘‘triangle,’’q-q-q andY
encounters essential difficulties connected with nonfix
quark trajectoriess5s i(t) in Eq. ~46! or the expressions
t i(t) in Eq. ~55! for the three-string configuration. But fo
each string baryon model the method of solving the initi
boundary value problem with arbitrary initial position an
velocities is suggested. Using this approach we numeric
simulated various quasirotational motions for all the mod
and obtained that the simple@9# rotational states of the strin
model ‘‘triangle’’ are stable~i.e., small disturbances behav
like in the meson model! and the rotational motions of th
systemsq-q-q andY are unstable. In the latter two cases a
small asymmetric disturbances grow with increasing tim
For the modelq-q-q the middle quark moves away from th
center under the centrifugal force but then it quasiperio
d

,

or

09401
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-
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s
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cally returns without merging with an endpoint. The evol
tion of the three-string instability includes the complicat
motion of the junction and inevitably results in one of th
quarks falling into the junction.

These features of the classical behavior of the str
baryon models give some advantage for theq-qq and ‘‘tri-
angle’’ systems over theq-q-q andY configurations. But this
does not mean ‘‘closing’’ the latter two models, in particula
because of the fact that the majority of orbitally excit
baryon states are resonances so their classical stability
problem of minor importance. So the final choice of t
string baryon model is to depend on all aspects of this pr
lem, including QCD-based grounds@10,11# and describing
the baryon Regge trajectories@13,14#.
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