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For the relativistic string with massive endhe meson modgland four various string baryon models
(9-qq, g-g-q, Y andA) we consider the classical quasirotational motions, which are small disturbances of the
planar uniform rotations of these systems. For the string meson model two types of these solutions are
obtained. They describe oscillatory motions in the form of stationary waves in the rotational plane and in the
orthogonal direction. This approach and the suggested method of determining an arbitrary motion of the system
on the basis of initial data let us solve the stability problem for the rotational motions for all mentioned string
configurations. It is shown that the classic rotational motionsséable for the string meson modebr its
analogg-qq) and for theA baryon configuration, but they atenstablefor the string baryon model¥ and
g-g-g. For the latter two systems any small asymmetric disturbances grow with increasing time. The motion of
theg-qg-g configuration becomes more complicated and quasiperiodic but the quarks do not merge. In the case
of the Y model the evolution of disturbances results in a quark falling into the junction. These features of the
classic behavior are important for describing hadron states on the Regge trajectories and for choosing and
developing the most adequate QCD-based string hadron models.

PACS numbd(s): 12.40.Yx, 12.40.Nn

INTRODUCTION rotating closed curve consisting of segments of a hypocyc-
loid [8,9].
The string hadron mode[d—-9] use the striking analogy In this paper we consider the motions of all these systems

between the QCD confinement mechanism at large interwhich are close to rotational ones. They are interesting due
quark distances and the relativistic string with linearly grow-to the following two reasongia we are to search the mo-
ing energy connecting two material points. Such a stringions describing the hadron states, which are usually inter-
with massive ends may be regarded as the meson strirgyeted as higher radially excited states in the potential mod-
model[2,3]. els [14], in other words, we are to describe the daughter
String models of the baryon were suggested in the follow-Regge trajectoriegp) the important problem of stability of
ing four variants(Fig. 1), differing from each other in the rotational motions has not been _soIved yet for all mentiqned
topology of the spatial junction of three massive pointsString models. For the meson string model the quasirotational
(quarks by relativistic stringsi(@) the quark-diquark model Mmotions of slightly curved string with massive ends were
q-qq [4] (on the classic level it coincides with the meson S€&rched in Ref$15,1§. But some simplifying assumptions
model [2]), (b) the linear configuratiorg-g-q [5], (c) the in these papers oblige us in Sec. | to verify the solutidrtg

“three-string” model orY configuration[6,7], and (d) the numerlcglly and to suggest gnother approach. for obtaining
s " . . the quasirotational solutions in the form of stationary waves
triangle” model or A configuration[8,9].

. . and solving the stability problem. In Secs. Il, lll, and IV the
The problem of choosing the most adequate string baryog ability problem for the string baryon configurations
model among the four mentioned ones has not been solv

he | S £ thi blem f h int of Vi -g-g andY (Fig. 1) is tested using the suggested method of
yet. The |nve_st|_gat|on oft IS problem from the point of view solving the initial-boundary value problem for these systems.
of the QCD limit at large distances has not been completed. e gptained classical solutions are applied in describing

In particular, the QCD-motivated baryon Wilson loop opera-pagron states after the quantization. The standard quantiza-
tor approach gives some arguments in favor oftlwnfigu-  tion procedure for the open string is not applicable to the
ration[10] or the “triangle” model[11]. Leaving the Wilson  considered hadron modeis particular, to the string with
loop analysis outside this paper, we concentrate on the clagnassive endsbecause of the essential nonlinearity of the
sical dynamics of these configurations. boundary condition§3]. To avoid these difficulties different
For all mentioned string hadron models the classical soauthors restricted the dynamics of the system to some subset
lutions describing the rotational motigplanar uniform ro- of the configurational space; i.e. they quantized separate
tations of the systejmare known and widely used for mod- classes of motions of the massléésonfiguration[7] or of
eling the orbitally excited hadron states on the main Reggéhe string with massive endd2,1€ by using a different
trajectories[4,12—14. The rotational motion of the meson technique. In particular, the method developed in R&T)
model or the baryon configuratiaqqq is a rotation of the for the relativistic flux tube model was used in REE6] for
rectilinear string segmeng®,4]. For the modef]-g-q the mo-  quantizing the motions of the curved relativistic string with
tion is the same but with the middle quark at the rotationalmassive ends. For this purpose the authors consider only one
center. The form of rotating three-string configuration isdynamical coordinate — the distanEebetween the quarks
three rectilinear string segments joined in a plane at théwith the conjugated momentupy). However, the adequate
angles 120 16,7]. For the model “triangle” this form is the quantization procedure for the string’s quasirotational mo-
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a b c g 4 Here w is the angular velocityge[o4,05], oj=const, o
. q q <0< 0,; the substitutionr= sin(wbo) can be made.
q @ 4 a4 «q The authors of Refd.15,16 search motions of this sys-
q q q tem close to the rotational orid) in the form
FIG. 1. String baryon models. X0=t, X'+iX%=gR(t)elett ot +i(o)] (5)

tions has to include the infinite number of dynamical vari-where¢(t), f(o), R(t) are assumed to be small. After sub-
ables describing all possible string oscillations and is constituting this formula into Eq(2) and dropping the second-
nected, for example, with the mentioned stationary wavesprder terms they obtain the expression féer)

So the profound problem of quantization for the quasirota-

tional motions of various string hadron models requires spe- f(o)=p(t)w R Y)[f(ow,)—f1(1p,)], (6)
cial consideration beyond the scope of this paper.

where fl(a,vi)=(%le+0'71\/1—02vL2)A, A

I. STRING WITH MASSIVE ENDS =arcsivv, , v, =wR(t), o0,=0<o0<l1l=0,, the first

N . . . heavy quark withm;— is at rest.
The relativistic string with the tensiom and the masses Deducing Eq(6) the authors of Refd15,16 ignore that
m;, m, at the endsthe meson om-qq baryon modelis (5 the obtained functiorf (o) (6) depends ort essentially
described by the actioj?.3,13 [one may assume the dependerRés, v, (t) weak but this

N cannot be valid for the multiplies(t)], so all previous cal-
S=— yf J=gdrdo—> mif VX2(7)dr, (1)  culations appear to be wronfh) expressiong5), (6) do not
Q i=1 satisfy the boundary conditiaf8) for the moving quark. The
] . ] . ) dependencieg(t), f, R(t) —(R) on time should also be ana-
written here in the general form witk material points for all lyzed. In particular, the following important question re-
mentioned hadron models. For the string with massive endgains without answer: do these disturbances grow with in-
N=2, X*(r,0) are coordinates of a string point in creasing time, in other words, is the rotational motig
D-dimensional Minkowski spacB®~! with the signature gigple?
+,—, =, o, g=X3X2=(X,X")2, where @,b)=a*b, is In our opinion, a better way of searching quasirotational
the (pseudascalar product, X#=3d,X*, X'#g,x* motions and solving the stability problem includes the choice
={(1,0):<7<7p, o1(71)<0<0y(7)}, oi(7) are inner Of the coordinates, o on the world surfac¢that can always
coordinates of the quatkworld lines, their coordinates in be mad€3]), in which the orthonormality conditions
R~ arext(7)=X(7,0i(7)), xt=(d/d7)x/*(7), and the o 2 RV
speed of lightt=1. The first summand in Eq1) is propor- XTHXE=0, (X, X)=0, ™
tional to the world surface area and may be rewritten in theyre satisfied. Under restrictiorig) the equations of motion

equivalent form3,15,186. (2) become linear
The equations of motion

XK—X"#=0, ®
9 aN—g 9 aJ—g
Er +— o =0, (2)  and the boundary condition(8) take the simplest form
d o ,
and the boundary conditions for the quark trajectories m EU#(TH(_ D'yXH(7,00=0, =12, (9
d x, (=D'y[dV-g ,()av—g . whereU%(7) =x()/\/x? is the unitR® ~L-velocity vector
— - —O;\T = H
d > m ) [ " of ith quark.
T \/; ! IxX # X o In Egs. (9) the functionso(7) are chosen in the form
' o;(7)=const. One can always fix them, in particular, as
3
are deduced from actiofi) [3]. 01=0, op=m (10)

The exact solution of Eq2) satisfying conditiong3) and
describing the rotational motion of the rectilinear string is
well known[2-4] and may be represented as

with the help of the reparametrizatiof3]

Tro=f.(1*0) (11)
XP=t=br, X'+iX?=w sinwbo)- e (4) (f. are arbitrary smooth monotone functignsshich keep
the invariance of Eqgq7) and (8).
Using the general solution of E)
lwe use the term “quark” for brevity, here and below quarks,
antiquarks, and diquarks are material points on the classic level. XU (1,0)= 5[V (r+0)+VH*(r—0)], (12
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we can reduce the problem in a natural way to solve ordinary

differential equations. In particular, this approach is fruitful
for considering the initial-boundary value probleiBVP)
for the string with massive end48]. This problem implies

PHYSICAL REVIEW D 62 094015

s 1, u=v
v lo, HFE V.

Solving the systems of Eq&18), (19) with the initial condi-

obtaining the motion of the string on the basis of two given;jons

initial conditions: an initial position of the system in
Minkowski space and initial velocities of string points. In
other words, we are to determine the solution of ER).
X¥(1,0) satisfying the orthonormalit§7), boundary(9), and
initial conditions.
An initial position of the string can be given as the para-
metric curve in Minkowski space
XMIP#()\)v )\E[)\l!)\Z]: P’2<0- (13)
The initial velocity of a string point is a timelike vector on
this curvev”(N), N €[N 1,\2], v#(N) may be multiplied by
an arbitrary scalar functiog(\)>0.
To solve the problem we set parametrically the initial
curve on the world sheet
7=7(\), o=0(\), Ae[A{,\z], (14)
and use the following general form for the initial position of
the string[18]:
X*(r(\),a(\)=p*(\), Ne[hphz]. (15
Here|7'|<o’, 7(\{)=0(\1)=0, o(\,)=. There is the
freedom in choosing the functiong\), o(\) [18,19 con-
nected with the invariance of Eq¥), (8), (9), and(10) with
respect to the substitutiori1) where

f . (O=F_(H=1(§), f(f+2m)=F(§)+27 (16
andf’(£)>0.
Using the formulag18]
d . . , ’ , "2
K\If’i(r()\)ia()\))Z[li(vAp ) pﬂ:%vn, (17)

whereA(N) = \/(v,pr)z—uzp’z, we can determine from the
initial data the functio"# in the initial segmenf0,7(\,)
+7] and the function¥* in the segmenf r(\,)—,0].
The constants of integration are fixed from the initial condi-
tion (15).

The functionsW are to be continued beyond the initial
segments with the help of boundary conditiof® which
may be reduced to the equatidris,19

UiH(m)=ymy 84— U(nU (D ]V (1), (18)
UsH(r)=ym, [ 84— U4(n)U,o (1) ¥ "(r—m), (19)
VA=W (1) —2myy U A7), (20)
‘I’;”(T-I-7T)=‘I"_’L(T—W)—Zmzy_lUé”(T). (21

where

U = o (NI 2(N),  i=

we obtain the velocitie®)“(7) on the base of the functions
W'X(7) known from Egs(17) in the initial segments. Simul-
taneously we continuévith no limit) the functions¥% out-
side these segments with the help of E¢¥)), (21) and
determine the world surfadd.2).

The above described procedure of solving the initial
boundary value problertiBVP) for the string with the fixed
end (the infinitely heavy quark withm;—< is at rest and
m,=1, y=1 is illustrated in Fig. 2. This is a typical ex-
ample of a slightly disturbed motion close to the rotational
one(4). In the casan;—o Egs.(18), (20) are to be substi-
tuted for the equationl8] U4(7) =U4 = const(the infinite
mass moves at a constant velogignd

1,2, (22)

V() =[2UfUy,— & 1¥ (1), mp—eo. (23
Equation(19) with initial condition (22), i=2 was solved
numerically.

For the motion in Fig. 2 the initial distance between the
guarks isR(0)=1, the initial string shapéthe curve 1 in
Figs. 2a) and 2c)] is determined by Eq6) with the ampli-
tude multiplier8y,= ¢(0)w 3R™1(0)=1. The initial veloci-
ties of string points correspond to rotating in the plane at

the angular velocityo={0;0;0}, w=1/\/2:

v“ (M) ={Lv(N)}, v(N)=[wXp(\)]. (24)
The initial speed of the moving end (\,)|=v, = wR(0)
=1/\/2 satisfies the relation

vitwv, mly=1 (25)
(i=2), that is valid for the rotational motio#) [4,13].

In Figs. 2a) and Zb) the positions of the string in
xy-plane(sectionst = const of the world surfageare shown.
They are numbered in order of increasingith the step in
time At=0.2 and these numbers are near the position of the
moving quark marked by the small circle. The first turn of
the string is shown in Fig.(2) and the fourth onéafter the
missed time intervalis represented in Fig.(B). We can see
that main features of the motion are kept: the string rotates
and its shapéslightly deviating from straightnesghanges
quasiperiodically.

The evolution of this shape is shown in detail in Fi¢c)2
where the first 9 curves from Fig(& (with the same step
At=0.2) are turned in they plane so that the second end of
each curve lies on the axis of abscissas. In other words the
curves in Fig. 2c) are the string positions in the frame of
reference rotating with the string. One may conclude that the
shape(6) of the string is not conserved with increasing time.
Changing the shape looks like spreading waves along the
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string (that uniformly rotates Drawing other curves in this totally determined from the given functiod*(7) and the
manner we see that the disturbances of the shape do not graxalue y/m; using the formula$19,2q
with growing timet. This also concerns the distan&gt)
between the quarks shown in Figid2 The distanceR(t) WA r)zmlyfl[\/—U’Z(T)U“(T)tu'“( n]l. 27
varies quasiperiodically near the initial val®0)=1. It is
interesting that the periotlz=4.75 when varyindR does not  |f we substitute the analog of E¢R3) for the second end
coincide with the rotational periofl=2#/w=8.886 and the
periodTs=2 when changing the string shape. This hierarchy ~ W'*(7)=PyW¥ "), Py=2U5U,,— &), my—x
of the periods or frequencies and will be clarified below.

The picture of motion(including the behavior oR and  and substitute Eq27) into Eq. (18), we get the relation
the string shapsds similar for various values ab, R(0), m,
connected by Eq25), and for various amplitudeg, of the U'*(r)=(84—U"U,) P \/—U(’E)U(‘,)—U(’f)].
disturbance(6). If B, is small enough the string motion is (28
visually identical with the pure rotational one. But the dis-
turbance of the string shape does not keep its form. So wklere and below_,=(7—2), the argument ) may be
may conclude that the expressias$, (6) from Refs[15,16  omitted.
do not describe a motion of the curved string during an ap- The vector-functionU*(7) given in a segment with the
preciable time interval. length 27 (if y/m, U4 are also giveh contains all the

The problem of searching the quasirotational motions oinformation about this motion of the systd20]. Indeed, the
the curved string, for which the string shape behaves likesystem of ordinary differential equations with shifted argu-
stationary waves is solved in this paper with the more conment (28) lets us continudJ*(7) beyond the given initial
venient (in comparison with Refs[15,16) analytical ap- segment and obtain the world surface with using Eg%)
proach. This method also confirms analytically the numericand (12).
investigation of the stability problem for the rotational mo-  For the rotational motiori4) the velocity of the moving

tions. quark satisfying Eq(28) may be written in the form
For this purpose we consider the string with the infinitely -
heavy endm,—c (or with the fixed end in the frame of U“(r)=T[eb+vee“(n)], I'=(1-v3) 2 (29

reference moving at the velocity% = const) for the sake of
simplicity. It is convenient to use the unit velocity vector of Here vy=v, =sinw6 is the constant speed of this quark;

the moving end e*=0"Y(d/dr) e (7), e“=el coshr+essindr are unit
spacelike rotating vectorsf= wb= 7 tarcsinvo=const is
U(n=Ur), UX7n=1 (26)  the “frequency” with respect tar, the ends are renumerated

in comparison with Eq(4). The second quark in this frame
for describing the string motion because the world surface isf reference is at restlf=ej .
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To study the stability of the rotational motigd) we con-  resulting from substitution,=e'?7 into Eq. (35). The tran-
sider arbitrary small disturbances of this motion or of thescendental Eq(37) has the countable set of rootk,, n

vector (29) in the form —1<9,<n, the minimal positive root ¥;=46
. = larcsinu,. These pure harmoniz disturbances corre-
UX(7)=U"(7)+uH(7). (30 sponding to variousd,, result in the following correction to

the motion(4) [due to Eqs(27), (12) there is only az or 4
The disturbanceu”(7) is given in the initial segment, for component of the correctign
example,| =[ —2,0]; it is to be smallu*|<1 (we neglect

the second order termand satisfies the condition X3(7,0)=Bsind,0- cod 9,7+ ¢p). (38)
[U(7),u(n)]=0, (3D Here the string ends have been again renumerateg=s0
N corresponds to the fixed end as in E4). The amplitudeB is
resulting from Eq.26) for both U# andU*. small in comparison witho 2.
Substituting expressior{80), (29) into Eq.(28) we obtain Expression(38) describes the oscillating string in the
the equation describing the evolution wf form of orthogonalwith respect to the rotational plansta-
tionary waves withn—1 nodes in the interval €o<r.
u’#+Qur+UXU’,u) Note that the moving quark is not in a node, it oscillates
o along thez axis at the frequency,= w9,/6. The shapd-
=(8y—U"U,)P[Qu,—ui%)] =B sin9,0 of the z oscillation (38) is not pure sinusoidal
. — — with respect to the distance= w Yo = 0~ 'sin o from the
+Q (A +20 U =PLUL (U, ucy), center to a point &
(32)
F(s)=Bsin(d,0 larcsinws), O=s<vq/w. (39
where
If n=1 this dependence is linear. In this trivial case the
— vgarcsinug motion is pure rotationgl) with a small tilt of the rotational
Q= V_U’ZZFGUOZW:COHSL plane. But the motion$38) with excited higher harmonics
0

n=2,3,... arenontrivial.

Equation(35), its harmonic solutions, the “frequencies”
9, as roots of Eq(37) were investigated in Ref$19,21]
where the motions of the meson string with linearizable

Projecting the disturbanag” onto the basic vectorsf,
e“(7), e*(7), 5 we denote its three independent compo-

nents in the following manner: boundary conditiong9) were studied and classified. Those
B _ _ solutions [in (3+1)-dimensional Minkowski spagewith
Uo(7)=(€o,U), Ue(r)=(&,U), Uy (7)=(E3,U). 9,, n=2 described the exotic motions of te-1 times

folded rectilinear string withn—1 points moving at the

The f9|1|rth comp-one_nt IS expresseq due t9 B}): (€,u) speed of light. But in Eq(38) these higher harmonics be-
= —vg Uo. Considering corresponding projections one Caame apparent a@nuch more physicalexcitations of the
transform the syster(82) into the following one:

rotating string.

, o It was shown in Ref[21] that any smooth function(7)
Uo+ QUo~I'QUe=Up(—) = QUo() ~I'QUe—), (83 4 5 segment with the length 2r may be expanded in the
, _1 , series

Ugt+ QuUgt Gug u0=ue(_)+Que(_)+ F(ug(-y), (39

+
W+ QU= )~ QUy ). (35 u(T)=n=§;x upexplid,m), rel=[ry,ro+2m].

40
WhereF(Uo(_)) = 0(061+ 21)0)U0(_)_2\/1_UOU6(_) . ( )
Equation(35) for z-axial disturbances is independent of So if we expand any given disturbanog(7) in the initial
others and may be easily solved:uf(7) is given in the  segmentl, we obtain solution(36) of Eq. (35) in the form
initial segmentl =[ —27,0], the continuation of this func- (40) for all 7eR. If the initial function u,(7) satisfies Eq.
tion for 7>0 is [hereAu,=u,(0)—u,(—27)]: (35) at the ends ofl, u,(7) e C2(l), this series converges
absolutely inl, hence its sunf40) is a limited function for all
. (36) 7e R. This is the proof of stability of the rotational motions

=U,_,te 7 . o . ;
Uz(7) =y 8 (4) for the string with fixed end with respect to teoscil-

AUZ_ ZQJ eQ‘;UZ(_)d’;’
0

lations.
The pure harmonic solutiong6) u,(7)=¢e'?" exist if the In Fig. 2 we observe another type of oscillation. These
“frequency” O satisfies the relation planar disturbances are described by E@S3) and (34).
Their solutions in the formuy=B0e'®7, u.=pB,e'®" exist
9/Q=cotr ¥, (370 only if the “frequency” ® satisfies the equation
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1f ' ' ' ' ' ' ' ' i motion in Fig. 2 is the superposition of the stationary waves
(42) and (for nonplanar motions(38). This fact let us con-
08r 1 1 clude that the rotational motiorid) for the considered model
are stable and we explain the above-mentioned problem
06} ] with the “hierarchy of the periods” for the example in Fig.
2. Now, when we expand this solution in the combination of
_. 04} 2 1 expressiong42), it becomes obvious that the radial period
NG Tr [Fig. 2(d)] corresponds to the main “frequency®,
02f - ] =0.463 with the background of higher harmonics, whereas
RN N e NG the “shape” periodTy is connected mainly with the follow-
0 z ing “frequency” ©®,=1.149, because the string shape for
>~ ‘/\/\/ the mode® ; is closer to the rectilinear on&ig. 3) and it is
021 4 3 1 “not observable” in Fig. Zc). We note thafTz®,=T.0,
=T6 whereT is the rotational period and=0.25.
04001 02 03 02 05 08 07 08 09 1 The obtained results are generalized for the string with
s both finite masses€m;,m,<c at the ends. For this pur-

pose we are to substitute the disturbed expres&6ninto
Egs. (18)—(21), (27) and deduce the equations generalizing
Egs. (32). The search of their oscillatory solutions®
=B,exp(d7), u*=B*exp(®7) results in the following gen-
eralizations of Eqs(37) and (41):

FIG. 3. Shapes of planar stationary wavesrer1,2,3,4.

02-Q%(1+v,%)=2Q0 cotw®. (41)

The roots of Eq(41) ®,e(n—1,n), n=1 behave like the
roots 9, of Eq. (37) but ®,>9,. The disturbances$30)

u#= B*exp(®,7) correspond to the following smallB( (9—Q,Q,/9)/(Q,+Q,)=cotmd, (43
<w~ 1) harmonic planar oscillations or planar stationary
waves:

D4(0)Py(0)-4Q;Q,0°?

_ —1 _ .
Xt=eft+e(7)[w ~sinfo+Bf.(o)cosO,7] 2®[Q1¢2(®)+Q2<1>1(®)]_C°t“’ (44
+Blejfo(o)+e*(1)fy(o)]sin®,7, (42
f0=2(02—®ﬁ)cos®na, where Qi=0vi/\/1—vi2, v; ar2e the2 const_aznt speeds of the
ends for Eq.(4), ®;(0)=0°-Q{(1+v; °). The corre-
m.B sponding disturbances of the rotational moti@h are the
= 170 , stationary waves behaving similar to E¢88) and (42). In
2y(0%- 6?)sin70, particular, in Eq.(38) one should substitute sifo for
cos@,o+ ¢y). In this case the endpoints also oscillate at sat-
f=(0,+0)%sin(O®,— 0 o—(0,— )2siO,+ ), isfying Egs.(43) and (44) “frequencies” &, or ©,,.
All roots of Eqgs.(43), (44) are real numbers. Hence, the
f,=(0,+0)%si(0—0,)0—(0,— 0)2sinO,+ 6)o. amplitudes of these harmonics are not increasemgd not

decreasing and the quasirotational motions constructed as

The shape of these stationary waves in the corotating framgombinations of these harmonics atable(but they are not
of reference(where the axes andy are directed along@“  asymptotically stable Note that the minimal positive root of
and e*) is approximately described by the function both Egs.(43) and (44) equals#=wb. In both cases the
B[ fs(o)—fo(o)sinéo] if the deflection is maximal. These corresponding solutions are trivial: they describe a small tilt
shapesF=F,(s) for n=1,2,3,4 are shown in Fig. 3 with of the rotational plane or a small shift of the rotational center
indicated numbers. Here the parameters; / y are the same in this plane.
as for the example in Fig. 2. For eaohthis curved string The obtained single-mode oscillatory motions for the fi-
oscillates at the frequeney,= w®,/6, it hasn—1 nodes in  nite masses; are simulated numerically and are represented
(0,7r) (which are not strictly fixed becausg and f, are  with typical graphs for Eqs(43), (44) and shapes of the
nonzerg, and the moving quark is not in a node, especiallyharmonics, corresponding t; . Arbitrary slightly disturbed
for the main mode witm=1. The latter featurg¢similar to  rotational motions may also be obtained as solutions of the
the motion(38)] radically differs from that in expressidit) IBVP with certain initial data. Numerical experiments show
[15,16 where the disturbance in this endpoint is forcedlytheir stability and that they are always superpositions of the
nullified. Note that Eq(42) describes both the deflection of above-described stationary waves.
this endpoint Be*f (m)sin®,r and its radial motion The stability problem for the rotational motions for the
Betf,(7)cosO,T. string baryon modelg-g-q, Y andA (Fig. 1) is more com-

Any smooth disturbancei(7) may be expanded in the plicated than that for the meson string model. We consider
series similar to Eq(40) with the roots®,, of Eq.(41) [21].  all string baryon configurations in turn starting from the
So any quasirotational motion of this sting, in particular, themodel “triangle” [8,9].
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FIG. 4. The domair() for the modelA.

II. “TRIANGLE” BARYON MODEL

This configuration may be regarded as a closed r6|atiViSti(Nevertheless the function®

string with the tensiory carrying three pointlike masses, ,
m,, ms [8,9]. In action(1) for the “triangle” model N=3
and the domain(} is divided by the quark trajectories into
three domains:Q=Q,UQ,UQ,, Q;={(r,0):0(7)<0
<ois1(7)} (Fig. 4. The equationsoc=o0y(7) and o
=05(7) determine the trajectory of the sartthird) quark. It
is connected with the fact that the string is cloged the
world surface is tube-likeand may be written in the follow-
ing general forn8]:

XH(7,00(7))=XH(7",03(7%)). (45)
The parameters and 7* in these two parametrizations of
just the same line are not equal in general.

PHYSICAL REVIEW D 62 094015

2f(7)=f(7* (1) +o3(7))+ (7 (1) —03(7)).

The constraintr™ (7) = 7 (that is the closure of any coordi-
nate liner=const on the world surfagevas not fulfilled in
Refs.[8,9].

Because of discontinuities of “at o= o(7) the general
solutions of Eq.(8) in three domaind); are described by
three different functionsi&0,1,2)

Xt(r,0)= 3 [P (t+0)+ VL (r—0)], (1,0)eQ;.
(48)

(with the tangential deriva-
tives) is continuous in(}.

The initial-boundary value problerfiBVP) for the “tri-
angle” string configuration is stated similarly to that for the
meson model in Sec. |. The procedure of its solving is briefly
described below. One can find the details in e-p24].

An initial position of the string can be given as the curve
(13) in Minkowski space but for the\ model\ e[ \g,\3]
and this curve is closedp”(\g)=p*(N\3). The function
p™(\) is piecewise smoottp’# may have discontinuities at
the quark position& =\, \,.

Initial velocities on the initial curve can be given as a
timelike vectorv#(\), N e[Ng,A3], v*(\) may be multi-
plied by an arbitrary scalar functiop(A)>0. The condition

The equations of string motion and the boundary condi?” (o) =v*(X3)-const is fulfilled.

tions at three quark trajectories result from acti@h[8,9].
Derivatives of X* can have discontinuities on the lines
=oi(7) (except for tangential However, by choosing coor-

To solve the problem we use the parametrizatit#),
(15), N e[ Ng,A3] of the initial curve on the world surface
(Fig. 4), and the formula$17) for determining the functions

dinatesr, o the induced metric on all the world surface may Wi from the initial data in the finite segments

be made continuous and conformally [&1, i.e., satisfying
the orthonormality condition&’). Under these conditions the
equations of motion for alk); take the form(8) and the
boundary conditions ar3,9]

d .
My UH() = X 4 ol (1) XK ][p= g0t Y

X[X’M+O-i’(T)XM]|0'=0'i70:O7 (46)
where the same notatidd/ for the unit velocity vector of
the ith quark is used. In accordance with E¢5) for the
third quark one should set=oy(7) in the second term of
Eq. (46) and replacer by 7* in the last term.

At this stage we have five undetermined functions in this

model: 7* (7) in the closure conditiori45) and four trajec-
tories oy(7), i=0, 1, 2, 3. Using the invariance of Egs.
(7), (8), (46) with respect to the reparametrizatiofisl) we
fix two of these functions as followd=ig. 4):

(47)

oo(7)=0, T (7)=r.

The remaining three functions will be calculated with solv-

ing the IBVP.

The first Eq.(47) may be obtained by the substituti@hl)
with the requiredf . andf_(»)= 7. At the second step one
can get the equality™* = 7 by repeating the procedufél)
with the functionf, =f_=f that satisfies the condition

Ve (), Ee[T\)+o(N), T\ +a(Nis1)],

Ve (), Ee[1(Nis1)—a(Nir1), TN)—a(\)],
(49)

which lets us find the solution of the problem in the form
(48) in the zonedD, shown in Fig. 4. In these zones bounded
by the initial curve and the characteristic lines-o
<7(\)—o(\)), 7+o=<7(\i.1)+(\,,) the solution de-
pends only on initial data without the influence of the bound-
aries. In others parts of the domaif¥s the solution is ob-
tained with the help of the boundary conditio®) which
may be reduced to the forfi22]

U/ #=ym 84— UH(1)U; (7)]
d
X (Wl (r+ o)+ Wiy (1=0p)]. (50

For i=3 in Eq. (50) one should replac&4, (7+cd3) by
Wi, (7) in accordance with Eq$45) and (47).

Integrating systemg50) with the initial conditions(22),
i=1,2,3 we can determine unknown vector functiay r)
for re [vr()\i),ric] with the help of the function®;# known
in the segment§49) from the initial data. Here are (mini-
mal) ordinates of the points in which the trajectories
=¢;(7) cross the characteristic linest o=const(Fig. 4).
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FIG. 5. The quasirotational
motion of the modelA.
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However we can continue this procedure for 7 if for
every value ofr [after calculatingU/# from Eqg. (50)] we
determineW /4 outside segment&t9) from the equationsi(
=1,2)

m.
\Ifﬁfl)Jr(T"' o)=Y (7+ ‘Ti)_7lUiu(T)—’_CiJr ’

m; _
\Pf‘_(f—ai>=\1ff';_1)_(r—cri>—7'ui“<r>+ci :
(51
They are obtained from Eq$46), (48) and from continuity
of X* [22]. The similar relations for=3 are
‘I”2‘+(T+0'3)=‘I'6‘+(T)—m3'y*1U§(T)+C; ,
Vi (1)=Wh (17— 03)—mgy 'UL(7)+C3.

The constants of integratio@ii are fixed from Eq(15).

For solving the systentb0) we are to determine the func-
tions oi(7) for 7> ;‘()\i). Multiplying U#(7) by
(d/d7) W’ (7= 0;) we obtain the equalities

(1=0)[VU; ¥ (i_yy_(t—0)]=(1+0o{)[U; , ¥{, (7+ )],

which let us express; in the following way(separately for
i=1,2 andi=3):

doj {Ui [V 1) (7—0) =V (7+09)]}

dr —{u, [V (r= o)+ (7+ o)1t

(52

_ [YUs ¥ (7)]
[Us, V) (7—03)]

HereUf=U#(7).

Equations(50)—(52) allow us to continue the functions
W, unambiguously beyond the segme$). This algo-
rithm solves(numerically in generalthe considered IBVP
with arbitrary initial conditionsp*(\), v#(\).

For the model “triangle” the exact solutions of Eq8),

(7), (45), (46) describing rotational motions of the system
(with hypocycloidal segments of the strings between the
quarks are obtained in Refg8,9]. World surfaces with the
parametrizationo;(7) = o;=const and the form of closure
condition (45) 7* — 7=T=const may be represented as fol-
lows (X'=x, X2=y):

X0=r—aco, X'+iX?=w(o)e'e". (53
Here w(o)=A, coswo+B;sinwo, oelaj,oi,1]; a=T/
(03— o) =const,w is the angular frequency of this rotation.
Real (@i, T, o, m;/y) and complex 4;, B;) constants are
connected by certain relatioi8,9,14. There are many to-
pologically different typesof solutions(53) but we consider
motions close to the simple statgd in which three quarks
are connected by smooth segments of hypocycloids.

The simple motiong53) may be obtained by solving the
IBVP with corresponding initial data. To research the stabil-
ity of these motions we consider here the disturbed initial
conditions p#(\) and v#(\). With an illustrative view in
Fig. 5 the example of such a motipciose to the simple state
(53)] of the “triangle” configuration is represented. Here the
initial string position is the rectilinear equilateral triangle
with the basea= 0.5 and the altituda=0.33 in thexy plane

2The so called exotic stat§8] contain string points moving at the
speed of light.
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[position 1 in Fig. %a)]. The initial velocitiesv*(\) in the this line the derivatives oK* are not continuous in general.
form (24) correspond to the uniform rotation of the system at  Using the reparametrizatiori$l) we fix two (from three

the frequencyw={0;0;w}, w=2 about the origin of coor- functions ¢;(7) in a form similar to Eq.(10): 0,=0, o3

dinates. The quarks with masses; =1, m,=1.5 m; =1r. The third fUﬂCtiOﬂTz(T) is obtained from Eq<52) with
=12, y=1 are p|aced at the corners of the triang|e_ SOlVing IBVP that is described in detail in Réﬁ] The main
The results of computing are represented as projections éftages of this procedure are the same as in Secs. |, II: deter-

the world surface level lines=X°(7,o) =const onto thecy ~ Mining the functions¥{, , i=1,2 in Eq.(48) with the help
plain as in Fig. 2 and numbered with the time stap  Of given p#(\), v*(\) and Eq.(17) in the initial segments
=0.15. The valuep*(\) and v*(\) are close to those (49). The further continuation o, beyond Eq.(49) in-
which give the exact hypocycloidal solutioi®3) for this  cludes equations similar to Egd.8)—(21) for the endpoints
system(with the samam,, y andw=2) describing the uni- (herei=3 for the second endind Eqs(50) and(51) for the
form rotation of the system with the string shape that is xmiddle quark.
marked in Fig. 8a). The positions of the third quark with The rotational motion of thg-g-g system is described by
m;=1.2 are marked by circles. Eq. (4) but with the middle quark at the center of rotation.
The further evolution of the system after one turn of theThe authors of Ref4] assumed that motion is unstable with
triangle is represented in Fig(lH (one can find the omitted respect to centrifugal moving away of the middle quark and
phases of this motion in Ref22]). In Fig. 5c) the depen- transforming this configuration into the quark-diquark one.
dence of three mutual distancBg between the three quarks The numerical experiments were made in R&}.in accor-
on timet is shown, in particulaiR,(t) is denoted by the full dance with the above scheme of solving the IBVP. They
line. In Fig. 5d) the deflections(t) from rectilinearity of the  showed that the rotational motion of tlipg-q system is
string segment witlR,5(t) is shown. We see that when the unstableindeed. Any arbitrarily small disturbances of the
system rotates the distances between the quarks and the cdnitial data result in the complicated motion of the middle
figuration of the string segments fluctuate near the valueguark including its centrifugal moving away but the material
corresponding to the motiof®3) [x marks in Fig. %a)]. points never merge and the configuration never transforms
This situation is typical for slightly disturbed rotational into ag-qq one on the classic level.
motions of the string baryon model “triangle.” Numerous In Fig. 6 the example of such a motion of tleg-q
tests(with various valuesn; , the energyp*(\), v*(\) and  system is representddFigs. @a)—6(d)] in comparison with
various types of disturbanc¢g2]) show that the simple ro- the similar motion of the model “triangle{Figs. 6e)—6(g)].
tational motiong53) arestable That is small disturbances of For both models the quark masses arg=mz;=1, m,=3,
the motions(initial conditions do not grow with increasing At=0.15 the tension iy, =1 in the “triangle” andy=2 in
time. the g-g-q configuration. The initial shape of the string is the
We emphasize that the simple motio(B3) are stable rectilinear segment, for th& configuration it is a particular
with respect to transforming into the “quark-diquark’” states case of the hypocycloidal motioi%3). The initial velocities
of the A string configuration9] with merging two quarks satisfies Eqs.24) and(25) wherev, =v,=0.5. The position
into the diquark. It is shown in Ref22] that such a trans- of the middle quarkKmarked by the squares slightly dis-
formation may be obtained only through very strong distur-placed with respect to the center of rotation so it uniformly
bances of the initial conditions, for example, by essentiallymoves at the initial staggFigs. 6a) and Ge)] where the
reducing one of the sides of the initial triangle. However, inbehavior of both systems practically coincides.
this case the two nearest quarks do not merge but revolve Further[starting with position 17 in Fig.®)] one can see
with respect to each other. that in theg-g-g model the middle heavy quark moves to the
When one of the quark masses is larger than the sum string end, while in the “triangle” moddlFigs. &f), 6(g)] it
of two others the shape of the triangle configuration for theremains in the vicinity of the rotational center. The latter
simple rotational motior{53) tends to a rectilinear segment configuration is stable unlike thg-g-q one. The axes are
with the position of the heaviest mass at the rotational centeomitted here for saving space.
when the energy of the system decred€dsin other words But the minimal distance between the nearest two quarks
the A configuration tends to thg-g-q one. But the motion of  for the g-g-gq system never equals zero. The middle quark
the “triangle” model remains stable unlike that of theq-q begins to play a role of rotational center for this string seg-

model described in the next section. ment[Fig. 6(c)] and then it returns to the center of the sys-
tem|[Fig. 6(d)] and the process recurs. Such a quasiperiodic
. LINEAR STRING CONFIGURATION motion of theq-gq-q system is the qualitatively universal

_ _ _ result of the evolution for motion§) with various types of
The dynamics of the linearg¢g-q) string baryon model  disturbance$5].

is described by actiofil) whereN=3 and the domailf) is

divided by the middle quark trajectory into two pafls and :

Q0 O={(no):o(N<o<oi.a(D}, o) <oa(r) . THREE-STRING MOBEL

< o3(7) [5]. The equations of string motion under conditions In the three-string baryon model oY configuration
(7) may be reduced to the same for(®). The boundary [6,7,23,24 three world sheetéswept up by three segments
conditions at the ends =0, and o= o3 look like Egs.(9)  of the relativistic stringare parametrized with three different
but for the middle quark they take the for6), i=2. At  functionsX!(r;,0). It is convenient to use the different no-
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tationst,, 75, 75 for the “timelike” parameterg23,25. But  the boundary conditions in the junction and on the quark

the “spacelike” parameters are denoted here by the sam@ajectorieso= oj(7;) will take the following form:

symbol o. These three world sheets are joined along the

world line of the junction that may be set as=0 for all

sheets without loss of generalitgee below and Ref25]).
Under these notations the action of the three-string is

3
21 [X{“(7i,00) + o (T)XE (7 ,00)]7 (1)=0, (56)

close to Eq/(1): mU{#(7) + 'Y[Xillu—'—O-i,(Ti)Xiu”a:Ui(Ti):O'
3 oi(r) — \/2— (57)
Sz_gl dri 0 —gidotmivxi(ri) | (59 Here in Eq.(56) 7i=7,(7), 00;=03i(7i(7)).

The reparametrizations similar to E@.1)
This action with differentr; generalizes the similar expres-
sions in Refs[6,7,23 (wherem;=0) and in Ref[24], where Tito=f.(r*o), =123 (58)
m; # 0 but the class of motions is limited.
There is the additional boundary condition at the junction(with six arbitrary smooth monotone functiofis.) keep in-

taking the form variance of Eqs(7), (8), (56), and(57). Choosing the func-
tions f;.. we can fix the equations of the junction and quark
X5 (7,0)=X5(7,(7),00= X5 (73(7),0), (55) trajectories on each world sheet independently in the form
(10)
if the parameters; on the three world sheets are connected
at this line in the following manner: ooi(7))=0, oi(n)=m, =123, (59
T,=1y(7), T3=75(7), TI=T. One can obtain the first E¢G9) like that in Eq.(47) and the

equalities ;=7 through the substitution58) with f;,

The equations of motiof2) and the boundary conditions =f,_ keeping the invariance of the equation=0.
for the junction and the quark trajectories are deduced from In this paper the parametrization satisfies the conditions
action(54). Using its invariance one may choose the coordi-(59) and(7). But the “time parameters’r;, 7, andrs in Eq.
nates in which the orthonormality conditiofi are satisfied (55) are not equal in general. The possible alternative ap-
and string equations of motion for &l take the form(8).  proach implies introducing the conditiory(7)=r3(7)=17
The junction condition(55) unlike more rigid conditions on the junction line(55) in conjunction with the condition
with 7,=7,= 75 on the junction line[6,7], let us choose =0 (or oy =const). But under these restrictions two of
these coordinates independently on each world sheet. Afteéhe functionss;(7) on the quark trajectories are not equal to
this substitutionnew coordinates are also denotgdo) the  constants in general.
inner equations of the junction line will be more genesal If under orthonormal gaug€’) we demand satisfying the
=0i(7;) (in comparison with the previous ones=0) and  conditions(59), as the equalities, = 7,= 73 on the junction
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line (55 (as, for example, in Ref(7]), then we actually (7 (DY (7)), %! _(7)]=[V] (1), ¥ (D]
restrict the class of motions of the system, which the model

describes. In other words, not all physically possible motion%ubstitutingqf{g from Eq. (62) into these relations we ob-

satisfy the above mentioned conditions. tain the formulas for calculating the functiong 7)
The proof of these statements in REZ5] uses the fact
that under restriction$7) only reparametrizationé8) with (W1, Wi,) (W1, W)
the functionsf, . = f,_ =f; satisfying the conditiori16) keep (1) =— —, T()=————. (63
Egs.(59) [21,25. These functions have the properties that: if (Vo ,W3,) (Vo W3y)

f(&¢) andg(€) satisfy conditiong16), then the inverse func- _ ) )
tion f~1(&) and the superpositioh(g(&)) also satisfy Eq.  Here the functionsk/#=¥/#(7;) are taken from Eqg17)

(16). To obtain the equalities, = 7,= 7, on the junction line  2"d(61) during solving the IBVP.

o=0, we have to use transformatiofts8), (16) satisfying I%{quatipns(Gf%;(%) fform trlle. clotiedléy\//sFt)e_m ;? r itrrl]finite
the relationsr;(7)=f; *(f1(7)), i=2,3. This is possible only continuation oT%.. or for solving the In the three-

- . . o ; string model. The described method is used Hera with
are ot ffiled for an rbirary motion in gener@s] | Mmore details in Refl25) for investigating the rotatonal sta
For describing an arbitrary motion of the three-string in bility of this configuration. For this purpose we consider the

the suggested approach the unknown functigs) are de- IBVP with disturped initial conditionsp{‘(?\) andu#(x).
termined from dynamic equations with solving the IBVP for As was r_nentlone_d above t_he rotational m_o_tlon of _the
this system. This approach is similar to the above—formulateéhree'smng IS the_unlform rotating of three rectilinear ;tnng
one for other string models. In particular, for tieconfigu- ~ Se9Ments joined in a plane at the angles 1ER7]. Their
ration we have the general soluti¢#8) where the indexin ~ 1€NgthsR; or the speeds;=wR; are connected with the
v numerates the world sheets. Using the given initial po_angular velocityw by the relation(25) or

sition of the three-string in the form of three joined curves in

. 2 . . =
Minkowski space Rio*(Ri+m/y)=1. (64)

This motion and slightly disturbed motions may be obtained
(numerically, in generalby solving the IBVP with the ap-
- . . . propriate initial positiorp#(\) in the form of three rectilin-
and initial velocitiew “(\), we obtain the function¥#, and . o .

) R . . ear segments with length® and velocities(24) with some
ve in the |n|t|al_ segments 0,7;(\;) + 7] and [7i(\;) disturbancesip/“(\) or su(\).
—m,0] correspondingly from Eq(17). - _ . The typical example of a quasirotational motion of the

The functionsW{. are to be continued with using the three-string with masses, =1, m,=2, mz=3, y=1 is

boundary conditiong55), (56), (57). In particular, the con-  represented in Fig. 7. Here the positions of the system in the
ditions on the quark trajectori¢§7) are reduced to the form yy plane are numbered in order of increastngith the step

x#=pl(N), Ne[ON],  pf(0)=p5(0)=p5(0)

(19), (22), (22 in time At=0.125 and these numbers are near the position of
» s g . the first quark marked by the small square. This motion is
Ui#=ym [, = U (m)U;i () ]¥{ (7 —m), close to the rotational one: the initial velocities satisfy the

(60 relation (24), sv!*=0, the angular velocityw=1.6 and the
, ) 1 different lengthsR;=0.3, R3=0.125 are connected by Eqgs.
Vil(ri+m)=ViE(r—m)—2myy "Uj*(7). (61)  (64). But the assigned valuB,=0.22 does not satisfy Eq.
(64) (that givesR,=0.179) so this difference plays a role of
Substituting Eq(48) for X{* into the boundary conditions in  the disturbance for the motion in Fig. 7.

the junction(55), (56), (59) we express the functiowr/*( ;) The evolution of this disturbance includes the motion of
throughW/#(7,): the junction[Figs. 7a) and 7b)] with varying the lengths of
the string segments unless one of these lengths becomes
3 d equal to zero, i.e., the third quark falls into the junction and
E_‘I’fi(Ti(T))ZJZI Tij g, Vi (73(), (62 merges with the junction after the shown position 31 in Fig.

7(c). They move togethelFig. 7(d)] during the finite time.
The waves from the point of merging spread along the
strings and complicate the picture of motion. The falliiy
material point into the junction is simultaneous with becom-
L= o ing infinite in the corresponding “time” f;— ). This is not
olass, I1#] a “bad parametrization” but the geometry of the system
changes: the three-string transforms into ¢hg-q configu-
Equationg62), (61), and(60) let us infinitely continue the  ration after merging a quark with the junction. The lifetime
functions Wf.. outside the initial segments if the functions of this “q-g-q stage” is finite but nonzero because the ma-
m5(7) and3(7) are known. They can be found by using the terial point with the masa; moving at a speed<1 cannot
isotropy condition¥ /2 (7;)=0 [resulting from Egs(7)] and  slip through the junction instantaneously. Otherwise under
the following consequences of Eq85): three noncompensated tension forces the massless junction

where

~1/3, i=j
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will move at the speed of light. But we must note that this(38), (42) describing small oscillatory excitations of the ro-
description is a purely classical one: it will unlikely be the tating string in the form of stationary waves. They are di-
same after developing a more general QCD-based theory. vided into two classes: the orthogonal Doscillations(38)
Nevertheless on the classic level the numerical experiand the planar oscillationg?2). Each class contains a count-
ments in Ref[25] show that the picture of motion in Fig. 7 able set of solutions with different “frequencies¥,, ®,,
is qualitatively identical for any small asymmetric distur- which are the roots of Eq$37), (41), (43), and (44). For
bancedp/ (\) or sv#(\). Starting from some point in time these stationary waves the moving quarks are not in a node
the junction begins to move. During this complicated motionof oscillation, they also oscillate. This was one of the reasons
the distance between the junction and the rotational centgesulting in the wrong expressidf) in Refs.[15,16.
increases and the lengths of the string segments vary quasi- The energyM and the angular momentudhof the oscil-
periodically unless one of the material points inevitablylatory excited motiong38), (42) are close to the valuesl
merges with the junction. So one may conclude that rotaand J [13] for the pure rotational motion&4) because the
tional motions of the three-string aumstable The evolution  disturbances are small. In R¢1L6] the latter expressiorisl
of the instability is slow at the first stage if the disturbance isand J were used for the quantization of the curved string
small, but the middle and final stages are rather similar to thenotions in the framework of the approach suggested in Ref.
motion in Figs. Tb) and 7c). The dependences(7) for  [17] for the relativistic flux tube model. But this procedure
these motion do not satisfy the periodicity conditi¢hé) in ~ was based upon the questionable assumption that only one
general[25]. This fact does not allow describing these mo- specified motior{5), (6) of the curved string exist®r can be
tions in the frameworks of the parametrizatip®,7] with  the subject of interestSo the quantization in Ref16] in-
m,=T7,= 3. The above-described behavior of slightly dis- cludes only one dynamical varialdefor describing the con-
turbed rotational motions takes place also for the masslessiderable set of motions.

(m;=0) three-string mod€25]. However, in Sec. | of this paper we show that the spec-
trum of string quasirotational motions is very rich and an
CONCLUSION arbitrary motion from this class is the superposition of the

stationary wave$38) and (42). So for the adequate quanti-

In this paper the classic motions of the various meson andation one should describe all infinite spectrum of these
baryon(Fig. 1) string models close to the rotational motions modes taking, for example, their amplitudBs-B,, as dy-
(4) or (53) are investigated. For the meson string mo@el  namical variables. This procedure of quantization requires
the g-qq baryon configurationit is made both analytically the special study for each string model which appears in
and numerically but in each of these methods we use theeparate papers. At the final stage of this study some gener-
orthonormal condition$7) which let us reduce the problem alizations of the oscillatory stat¢38), (42) may be used for
to solving the systems of ordinary differential equati¢t®), describing the radial, hybrid or other hadron excitations.
(19), (28). Using this approach we obtained a set of solutionsNote that the planar oscillation@2) include also the radial
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motions of the string endpoint& quark trajectory in the cally returns without merging with an endpoint. The evolu-
corotating frame of reference is an ellips&his especially tion of the three-string instability includes the complicated
concerns the mode with the “frequency®; of Eq.(41) or  motion of the junction and inevitably results in one of the
(44). quarks falling into the junction.

A search of quasirotational motions in a form similar to  These features of the classical behavior of the string
Eqg. (30) for the string baryon model “triangle,-q-q andY  paryon models give some advantage for thgq and “tri-
encounters essential difficulties connected with nonfixeqang|en systems over the-g-q andY configurations. But this
quark trajectoriesr=o;(7) in Eq. (46) or the expressions (oes not mean “closing” the latter two models, in particular,
7i(7) in Eq. (55 for the three-string configuration. But for pecause of the fact that the majority of orbitally excited
each string baryon model the method of solving the initial-haryon states are resonances so their classical stability is a
boundary value problem with arbitrary initial position and problem of minor importance. So the final choice of the
velocities is suggested. Using this approach we numericallgtring baryon model is to depend on all aspects of this prob-

simulated various quasirotational motions for all the modelgem, including QCD-based ground40,11 and describing
and obtained that the simpll] rotational states of the string the baryon Regge trajectori€$3,14).

model “triangle” are stablgi.e., small disturbances behave

like in the meson modgland the rotational motions of the

systemgy-q-gq andY are unstable. In the latter two cases any ACKNOWLEDGMENTS

small asymmetric disturbances grow with increasing time.
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