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Precision studies of duality in the ’t Hooft model
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We address the numerical aspects of local quark-hadron duality using the example of the exactly solvable
’t Hooft model, two-dimensional QCD withNc→`. The primary focus of these studies is the total semilep-
tonic decay widths relevant for extractinguVcbu and uVubu. We compare the exact channel-by-channel sum of
exclusive modes to the corresponding rates obtained in the standard 1/mQ expansion arising from the operator
product expansion. An impressive agreement sets in unexpectedly early, immediately after the threshold for the
first hadronic excitation in the final state. Yet even at higher energy release it is possible to discern the seeds
of duality-violating oscillations. We find the ‘‘small velocity’’ sum rules to be exceptionally well saturated
already by the first excited state. We also obtain a convincing degree of duality in the differential distributions
and in an analogue ofRe1e2(s). Finally, we discuss possible lessons for semileptonic decays of actual heavy
quarks in QCD.

PACS number~s!: 12.38.Aw, 11.10.Kk, 13.20.2v
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I. INTRODUCTION

Questions of how to compare hadronic observables to
apparent underlying fundamental theory of QCD lie at
heart of understanding the nature of strong interactio
Thirty years after its inception, QCD inD54 spacetime di-
mensions still stubbornly refuses to admit a global soluti
The asymptotic freedom property of the theory permits
perturbative calculation of~Euclidean! Green functions in-
volving large values of momentum transfer or energy rele
in terms of quarks and gluons, the fundamental objects
QCD. But at lower scales one enters the nonperturbative
gime, which not only invalidates~or at least complicates! the
standard perturbative methods of field theory developed
QED, but also leads to a dramatic change in the phys
spectrum of the theory. Instead of quarks and gluons, o
colorless hadrons are produced as asymptotic states in
process, even at arbitrarily large energy.

Many nontrivial theoretical techniques respecting QC
first principles have been developed to study nonperturba
features of the theory. Yet despite numerous advances
one has been able to compute the masses, wave function
transition amplitudes of hadrons in terms of quark mas
and couplings directly from the QCD Lagrangian. Moreov
many existing theoretical tools are expressed through var
expansions in certain small parameters; the actual rang
each parameter where the expansions are applicable is
not well known. In such a situation, it is clearly advant
geous to build a soluble toy field theory that incorporates
many features of the QCD Lagrangian as possible.

Such a theory does indeed exist, the famous ’t Ho
model@1#, which is defined by the Yang-Mills Lagrangian i
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D52 spacetime dimensions in the limit of a large number
colors Nc . As was shown in the original paper, the quar
antiquark sector of the theory admits an infinite tower
confined, color-singlet solutions that can be obtained,
principle, to an arbitrary degree of numerical accuracy. T
reason for this solubility lies precisely in the defining fe
tures of the model. LargeNc eliminates all Feynman dia
grams with internalqq̄ loops and nonplanar gluons. On th
other hand,D52 allows gluon self-couplings to be elimi
nated by gauging away one component of the gauge pote
Am. Since only two components are initially present, t
commutator term@Am,An# in the covariant derivative, which
gives gluon self-coupling, vanishes identically in su
gauges. Then the only remaining Feynman diagrams to
summed for the quark-antiquark Green function are ‘‘ra
bow’’ and ‘‘ladder’’ diagrams, whose Schwinger-Dyso
equations can be solved, giving rise to an integral expres
called the ’t Hooft equation~discussed in Sec. II!.

The ’t Hooft model provides an excellent laboratory f
testing various approaches to strong interaction physics.
ter all, the ’t Hooft equation provides a means to comp
hadronic masses, wave functions, and transition amplitu
in terms of the underlying partonic degrees of freedom.

In this work we are specifically interested in questions
local quark-hadron duality in the inclusive decays of hea
quarks. The notion of duality in general terms was first
troduced in the early days of QCD in Ref.@2# but not pur-
sued for quite some time. A more detailed consideration w
given a few years ago by Shifman@3# and later reiterated in
a number of papers~see, e.g., Refs.@4,5#!, with applications
relevant to Minkowskian observables amenable to study
an operator product expansion~OPE!. This allows the for-
mulation of the concept of local duality in a more quantit
tive way, including nontrivial nonperturbative effects; we r
fer the reader to these recent publications for the theore
aspects. Here the question of duality is studied concretely
©2000 The American Physical Society11-1
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comparing the weak decay width of a meson containin
heavy quark computed in two ways. In terms of parto
degrees of freedom, one has an OPE depending upon the
quark diagram~with perturbative corrections! and a number
of nonperturbative matrix elements suppressed by power
the heavy quark mass. In terms of the hadronic degree
freedom, one simply computes the weak decay amplitude
each allowed exclusive channel, and adds them up one
one. This comparison is especially instructive since one m
consider the behavior of solutions as the massmQ of the
heavy decaying quark is varied.

Such a problem was first considered in Ref.@6#, where the
main elements in numerical computations of exclusive de
rates were annunciated. The hadronic result was compar
the Born-level free-partonic diagram as a function ofmQ . In
terms of the OPE, the latter is the tree-level piece of
Wilson coefficient corresponding to the unit operator. T
numerical agreement was seen to be remarkable, in tha
onset of the asymptotic agreement was clearly visible
ready for relatively small values ofmQ . The intrinsically
limited numerical accuracy for sufficiently heavy quark
however, prohibited drawing a definite conclusion about
size of nonperturbative corrections for asymptotically lar
mQ . Additional numerical studies@7# considered similar
questions for weak decay topologies other than the sim
spectator tree diagram, in particular weak annihilation~WA!.

The validity of the OPE was addressed analytically
Refs.@5,8,9#, which considered on one hand the nature of
OPE for heavy quark decays, and on the other an exp
1/mQ expansion of the decay amplitudes, which allows
analytical summation of the individual decay rates in t
asymptotic regime. The agreement of the two approac
through relative order 1/mQ

4 was obtained by means of
number of sum rules derived directly from the ’t Hooft equ
tion, the archetype of which first appeared in Ref.@10#.

While adequate to illustrate the theoretical validity of t
OPE for the inclusive decay widths of heavy flavors, t
analytic methodsper secannot help in answering the pract
cal question relevant to phenomenology of beauty and ch
quarks: Namely, how accurately do the OPE-improved p
ton computations describe the true weak decay width o
heavy flavor meson with finite mass, only a few times larg
than the typical strong interaction scale? A purely analy
expansion can hardly be used for this purpose, since
a priori unknown how small an expansion parameter mus
for the expansion to start yielding a reasonable approxi
tion, not to mention achieving the necessary precision.
obtain insights into the size of deviations between the ac
decay widths and the expressions obtained from the OPE
quarks in the intermediate mass range, one must employ
numerical computations.

In this paper we focus on semileptonic decays of he
quarks. In the contexts of both real QCD and the ’t Ho
model, they are technically simpler than nonleptonic deca
Moreover, the magnitude of local duality violation is ph
nomenologically most important in semileptonic deca
when one extractsuVcbu and uVubu. We use the technique
developed in Ref.@6# to evaluate the required decay rate
and confront the total decay width with the expansion
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terms of a power series in 1/mQ of Ref. @5#. Moreover, by
making use of a number of relations derived in the large-mQ

limit of the ’t Hooft equation@11#, members of the set o
nonperturbative matrix elements involved can be related
each other, providing an economical description of the n
perturbative physics. These are the tools that allow us
study the onset of quark-hadron duality.

As explained in Appendix A, we use a scheme based
the modified Multhopp method, by which the ’t Hooft equ
tion is converted into an infinite-dimension eigenvector s
tem that for practical reasons must be truncated at so
number N of eigenvector modes. The asymptotic conve
gence of this approach has not been rigorously studied
though it apparently must yield unlimited accuracy when
number of the Multhopp modesN goes to infinity. Yet the
rate of convergence at largeN is not well known. Addition-
ally, large quark masses turn out to require one to us
larger N for sufficient numerical accuracy, as discussed
Sec. II. It therefore seems mandatory to make an indepen
cross-check of the numerical accuracy. We investigate
problem by comparing the numerical values of a number
static properties of heavy mesons at different values ofmQ ,
with the results of their 1/mQ expansions obtained analyt
cally from the ’t Hooft equation; this is the topic of Sec. II
We find that our solutions have sufficient numerical accura
for massesmQ corresponding to physical values~in the sense
explained in Sec. III! as large as 20 GeV.

The duality of the inclusive widths of heavy-flavor ha
rons to the parton-level widths, including the power corre
tions from the OPE, emerges through a set of sum rules
equate sums of weighted transition probabilities to poss
final states and expectation values of the local heavy qu
operators. Since our main interest lies inb→c transitions,
which carry in practice a limited energy release, the m
relevant are the so-called small velocity~SV! sum rules,
which we study here in the heavy quark limit. The behav
of these sum rules not only shapes the semileptonicb→c
decays in actual QCD, but is also important for the deter
nation of the basic parameters of the heavy quark expans

An additional advantage of the heavy quark limit for o
investigation is that we are able to compute the SV am
tudes semianalytically, using the exact relations@11# derived
from the ’t Hooft equations and relying for input only on
few static parameters, which can be computed with a h
precision. A discussion of these relations appears in Sec.
We find that the SV sum rules in the ’t Hooft model a
saturated to an unexpectedly high degree by the first exc
tion above the ground state~which we henceforth call the
‘‘ P-wave’’ excitation, despite the fact that inD52 only ra-
dial excitations occur!. Its contributions to even the Darwin
(rD

3 ) and kinetic (mp
2 ) expectation values constitute ove

90% and 96% of the totals, respectively, while it satura
the ‘‘optical’’ sum rule for MB2mb to a 1.5% accuracy
This appears to be an intriguing dynamical feature of
model. A similar high-saturation effect has been observed
a quark flux-tube model@12#, for the contribution from the
‘‘valence’’ quarkonium states.

We study the size of violations of local duality in th
1-2
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PRECISION STUDIES OF DUALITY IN THE ’t HOOFT . . . PHYSICAL REVIEW D62 094011
semileptonic decaysb→cl n̄ assuming vectorlike weak cur
rents and massless leptons. These assumptions are imp
for comparison with QCD far beyond the obvious parallel
closely resembling the actual world: The strength of
resonance-related duality violation crucially depends on
threshold behavior in the decay probabilities, which is co
pletely different in two and four dimensions. The two-bo
phase space, while}upW u in D54, is }1/upW u, that is, infinite
at threshold, inD52. On the other hand, the situation
special for massless leptons: Their invariant mass is alw
zero if they are produced by a vectorlike source, and
weak vertex is then proportional to the momentum. As
result, in this case the threshold behavior of the decay
becomes}upW u much in the same way as in real QCD. This
a crucial detail if one tries to draw practical lessons from
’t Hooft model. The need for a vectorlike coupling inD
52 is even more stark for the parton-level calculation. Th
one finds that the integrated three-body phase space act
diverges for massless leptons, and only the behavior of
weak decay amplitude renders the width finite. We prov
more arguments in favor of such a choice in Sec. V, which
dedicated to the inclusive decay widths.

In Sec. VI we briefly illustrate how well the duality work
for the vacuum correlator of light quarks in the timelike d
main. In the context of the heavy quark expansion this
relevant for the nonleptonic decay widths, includin
spectator-dependent effects like WA.

Section VII summarizes our investigation and discus
the conclusions that can be drawn for actual QCD.

Appendixes describe the computational technique e
ployed and contain a number of relations for the heavy qu
limit of the ’t Hooft equation employed in these numeric
studies.

II. THE ’T HOOFT EQUATION AND ITS SOLUTIONS

We first review some well-known properties of th
’t Hooft model both as a reminder and to establish notati
Confinement is manifest in 111 spacetime dimensions wit
largeNc , and the quark(m1)-antiquark(m̄2) two-particle ir-
reducible Green function, i.e., the meson wave funct
w(x), is given by the ’t Hooft equation:

Mn
2wn~x!5S m1

22b2

x
1

m2
22b2

12x Dwn~x!

2b2E
0

1

dy wn~y!P
1

~y2x!2
, ~1!

wherex is the momentum fraction in light-cone coordinat
carried by the quark, and

b2[
gs

2

2p
~Nc21/Nc!. ~2!

Sinceb is finite in the large-Nc limit, it provides a natural
unit of mass. Thus, all masses in this paper are understoo
multiples ofb. Indeed, as pointed out in Ref.@6#, b fills the
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role in 111 dimensions of served byLQCD in 311. We
discuss the estimation ofb as a particular number in Sec. II

The singularity of the QCD Coulomb interaction in E
~1! is regularized using a principal value prescription, ind
cated by P in Eq.~1!.

Solutionsn50,1, . . . of the ’tHooft equation alternate in
parity, with the lowest being a pseudoscalar. The gen
analytic solution in closed form is not known. As the eige
value indexn increases, the eigenvaluesMn

2 asymptotically
approachb2@p2n1O(ln n)#.

The static limit m1[mQ→` is most easily studied
@8,10,11# by employing the ‘‘nonrelativistic’’ variablesMn

5mQ1en , t5(12x)mQ and Cn(t)5wn(12t/mQ)/AmQ ,
in terms of which Eq.~1! assumes the form

enCn~ t !5
m2

22b2

2t
Cn~ t !1

t

2
Cn~ t !2

b2

2 E
0

`

ds
Cn~s!

~ t2s!2
.

~3!

We solve the finite-mass ’t Hooft equation using a n
merical method called the Multhopp technique@13#, a ven-
erable system for solving integral equations with singu
kernels. It was first applied to the ’t Hooft equation in Re
@14#. The idea is to expand the wave function in a series
modes, not unlike Fourier analysis, and then turn the eq
tions for the mode coefficients into an equivalent infinit
dimension eigenvector problem. In practice, one then tr
cates at some point where the higher modes are deeme
have little effect upon the wave function solutions, which
of course strongly dependent on the highest value ofn used.
The detailed formulas for applying thestandardMulthopp
technique to mesons with unequal quark masses in
’t Hooft model appear in Appendix A of Ref.@6#.

Intrinsic to the original Multhopp technique is the eval
ation of the wave function at a discrete set of points cal
‘‘Multhopp angles,’’ which in the current problem ar
equivalent to

xk5
1

2 F11cosS kp

N11D G , k51, . . . ,N, ~4!

whereN is the number of modes retained in the numeri
solution. The mode coefficients are then obtained by the
of a discrete inversion formula@~A7! in @6##. However, the
Multhopp solutions can be seen to vanish asAx andA12x
at the end pointsx50 and x51, respectively@see ~A10!,
~A11! in @6##, while the exact solutions are known to vanis
asxg1 and (12x)g2, respectively, where

mi
2

b2
1pg i cotpg i51, ~5!

leading to a type of Gibbs phenomenon in the Multho
solutions. Since the Multhopp angles cease to sample
wave function at some finite distance from the end points
may be expected that the wave functions thus obtained
numerically inaccurate there. This shortcoming led Brow
Spence, and Weis@15# to improve the Multhopp technique
1-3



on
re
a

av

ta
k
f

we
lu
v
t

s
it

o
,

o
n

t
ot
re
e

an
e
c

n
n;
er

gh
th

ar

nce
sup-
tant
ro-
ssive
ems
ans-

ft
he
.

and
ri-

ble,

mit.
te
en

ce
orre-

tes

g.

e

in
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by eliminating the Multhopp angles and using instead a c
tinuous inversion formula. The algebraic details are p
sented in Appendix A, and it is this improved numeric
technique that is used in obtaining our results.

III. HEAVY QUARK EXPANSION AND CROSS CHECK
OF THE ALGORITHM

Let us first establish a bit of notation. The mass of a he
quark of flavorQ is labeled asm1→mQ ; in the weak tran-
sitions considered in subsequent sections, the final-s
quark q is assigned the massmq . The spectator antiquar
massm2 is labeled bym, or msp if there is any chance o
confusion.

As explained in the previous section and Appendix A,
use the modified Multhopp technique to find numerical so
tions of the ’t Hooft eigenstate problem. Since the hea
meson wave functions are peaked near the end of the in
val, the accuracy deteriorates with increasingmQ . The same,
in principle, applies to the high excitations of light hadron
A more appropriate strategy for heavy quarks is to start w
a solution of the infinite-mass~static! equation. This has
been done analytically@5,8#, and full consistency1 with the
OPE was demonstrated.

However, our practical interest lies in the properties
heavy hadrons withmQ lying in the intermediate domain
specifically for mQ one order of magnitude larger thanb.
The convergence of the 1/mQ expansion in this case is to
difficult to quantify analytically. This is just the situatio
where the numerical computations are best employed.

Therefore, an important element of the analysis is
check the accuracy of the numerical computations of b
the heavy hadron masses and wave functions at diffe
values ofmQ . To this end, we compute the masses and c
tain moments for the ground and first excited states,
compare them to the analytic 1/mQ expansion. In general, th
terms in the 1/mQ expansion depend on a number of expe
tation values in the static limit, like the kinetic onemp

2

5^Q̄( iDW )2Q&, etc. However, one can show@11# that the
parameters appearing here through high order in 1/mQ can be
expressed in terms of just the asymptotic valueL̄5MHQ

2mQ and the corresponding decay constant. These qua
ties are the ones most accessible to numerical evaluatio
particular, L̄ is expected to be the most accurately det
mined quantity.

Our main computations refer to the case ofmsp50.56b,
as chosen in Ref.@6#. It corresponds~see Sec. IV! to a mass
of the strange quark in QCD. The choice of a noticeable li
quark mass may be motivated by an attempt to mimic
effect of the transverse gluons absent inD52, which in a
certain respect supply some effective mass to the light qu

1In the case that the fermionsf created by the weak current hav
mf50, this agreement was shown up to and includingO(1/mQ

4 )
terms in the weak decay width in@5#, while terms up to and includ-
ing O(mf

2/mQ) were shown to coincide with those in the OPE
@8#. In the current work we takemf50.
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Clearly, this can be only a rather crude approximation, si
the bare quark mass breaks chiral invariance. One can
pose, nevertheless, that this side effect is not too impor
for our purposes. The chiral symmetry is spontaneously b
ken anyway, and the presence of a massless versus a ma
pion does not seem to be essential for the range of probl
we address here. On the other hand, the effect of the tr
verse degrees of freedom is known to soften thex→1 sin-
gularity of the heavy quark distribution function@10,16,17#,
similar to the impact of the light quark mass in the ’t Hoo
model. The behavior of the distribution function affects t
inclusive decays of the heavy quarks in an essential way

We also present some results formsp50.26b, partly to
explore light quark dependences of matrix elements
partly to investigate the beginnings of failure of the nume
cal solutions asmsp→0. The numberN of Multhopp modes
used is 500; we considered smallerN as well to study this
dependence, but since the behavior was found to be sta
we do not dwell on it further here.

The masses of heavy hadrons obey@5,8,18#

MHQ
2mQ5L̄1

mp
2 2b2

2mQ
1

rD
3 2rpp

3

4mQ
2

1OS b4

mQ
3 D , ~6!

where

mp
2 5^Q̄~ iDW !2Q&, rD

3 52
1

2
^Q̄~DW •EW !Q&,

rpp
3 52

1

2
^ iT$Q̄~ iDW !2Q~x!,Q̄~ iDW !2Q~0!%&q50 ,

~7!

and these expectation values refer to the infinite mass li
In therpp

3 expression,q is the momentum variable conjuga
to x, and diagonal transitions within the correlator have be
removed.

SinceL̄ in QCD traditionally denotes the mass differen
between a ground-state pseudoscalar meson and its c
sponding heavy quark in the largemQ limit @as it is defined
in Eq. ~6!#, and we need it for a number of the excited sta
HQ

(n) as well, we assign the notation

L̄ (n)[e (n), ~8!

and usee and L̄ throughout the paper on equal footin
Equations ~6!–~14! hold for each stateHQ

(n) with n
50,1, . . . , sothat an implicit superscript~n! is to be under-
stood in these expressions.

According to Ref.@11#, the following relations hold in the
’t Hooft model:

mp
2 5

L̄22m21b2

3
, rD

3 5
b2F2

4
,

~9!

rpp
3 5

1

36
@8L̄~L̄22m21b2!13b2F2#.
1-4
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HereF is the scaled decay constant in the heavy quark lim
i.e.,

F (n)5E
0

`

dt Cn~ t !

5 lim
mQ→`

E
0

mQ
dt

1

AmQ

fnS 12
t

mQ
D5 lim

mQ→`

cnAmQ, ~10!

where the superscript is suppressed if there is no ambig

cn5E
0

1

dx wn~x!, ~11!

and the exact relation betweencn and the decay constant o
the nth excitation is given in Eq.~B8!. In the heavy quark
limit one has

L̄5mQ^12x&, mp
2 5mQ

2 ~^x2&2^x&2!, ~12!

but there areO(1/mQ) corrections to these relations. Fo
further applications to the decay widths we also consider
scalar expectation value@5#

1

2MHQ

^Q̄Q&5
mQ

MHQ

K 1

xL . ~13!

Then the following expansions hold:

AmQcn5S 12
2@2e (n)2m~21!n#

3mQ
DF (n)

1OS b5/2

mQ
2 D ,

mQ^12x&5L̄2
L̄21mp

2

mQ

1
4L̄~6L̄218mp

2 13b2!1b2F2

24mQ
2

1OS b4

mQ
3 D ,

~14!

mQ
2 ~^x2&2^x&2!5mp

2 2
1

3mQ
~8L̄mp

2 1b2F2!1OS b4

mQ
2 D ,

mQ

MHQ

K 1

xL 512
mp

2 2b2

2mQ
2

2
rD

3 2rpp
3

2mQ
3

1OS b4

mQ
4 D .

We note that values ofmp
2 , rD

3 , or rpp
3 determined from

the expansions Eqs.~14! suffer degraded numerical accura
compared to those taken directly from Eqs.~9! sinceL̄ andF
are determined from more stable expansions~in particular,
they do not depend upon close numerical cancellatio!.
09401
t,
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Therefore, we use Eqs.~9! as primary information and rel
egate Eqs.~14! to numerical checks. Our method of dete
mining L̄ from theMHQ

2mQ expression, designed to min
mize the influence of potentially large uncertainties at la
mQ , is described in Appendix C.

Values of MHQ
2mQ and the averages in Eqs.~14! as

functions of mQ from m50.56b to 50b are presented in
Table I for both the ground and first excited states. Sim
results for just the ground state withm50.26b are presented
in Table II. Based upon the 10 data points presented in Ta
I for the ground state, one may fit to a polynomial in 1/mQ ,
obtaining

1

b
~MHQ

2mQ!51.31720.086
b

mQ
20.050

b2

mQ
2

1OS b3

mQ
3 D ,

c0AmQ

b
52.03222.775

b

mQ
1OS b2

mQ
2 D ,

mQ

b
^12x&51.31622.491

b

mQ
13.789

b2

mQ
2

1OS b3

mQ
3 D ,

~15!

mQ
2

b2
~^x2&2^x&2!50.807424.050

b

mQ
1OS b2

mQ
2 D ,

mQ

MHQ

K 1

xL 5110.099
b2

mQ
2

20.044
b3

mQ
3

1OS b4

mQ
4 D .

The corresponding expressions using the approach of Ap
dix C @neglecting the one forMHQ

2mQ , which is used as

input and hence is identical throughO(b2/mQ
2 )# read

c0AmQ

b
52.03522.816

b

mQ
1OS b2

mQ
2 D ,

mQ

b
^12x&51.31822.544

b

mQ
14.512

b2

mQ
2

1OS b3

mQ
3 D ,

~16!

mQ
2

b2
~^x2&2^x&2!50.807823.996

b

mQ
1OS b2

mQ
2 D ,

mQ

MHQ

K 1

xL 5110.096
b2

mQ
2

20.066
b3

mQ
3

1OS b4

mQ
4 D .

This agreement between the two approaches is quite ex
lent and is exhibited in Figs. 1–5 forMHQ

2mQ and the
quantities in Eqs.~14!; in general, the exact results are pr
sented as points on a solid line, while each fit using Eqs.~16!
1-5
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TABLE I. Matrix elements as functions of heavy quark massmQ and light quark massm50.56b,
computed numerically via the BSW-improved Multhopp technique. All masses are in units ofb.

mQ MHQ
2mQ AmQucnu mQ^12x& mQ

2 (^x2&2^x&2)
mQ

MHQ

K1x L21

Ground state (n50)

0.56 1.21918 0.7300 0.280 0.017 8.3431022

1.0 1.24633 0.9534 0.432 0.048 4.5931022

3.0 1.28764 1.4210 0.791 0.211 9.0431023

5.0 1.29904 1.6061 0.944 0.333 3.5831023

7.0 1.30423 1.7503 1.029 0.417 1.8831023

10.0 1.30820 1.7901 1.102 0.500 9.3331024

15.0 1.31131 1.8633 1.166 0.582 4.1431024

25.0 1.31375 1.9271 1.222 0.661 1.4631024

35.0 1.31475 1.9560 1.248 0.700 7.3131025

50.0 1.31545 1.9783 1.268 0.732 3.5331025

First excited state (n51)

0.56 2.82831 0.0000 0.280 0.032 21.3031021

1.0 2.77888 0.0922 0.476 0.091 29.6231022

3.0 2.66569 0.4429 1.094 0.457 23.2931022

5.0 2.61977 0.6427 1.437 0.775 21.6031022

7.0 2.59522 0.7648 1.649 1.014 29.4031023

10.0 2.57436 0.8775 1.848 1.267 25.1431023

15.0 2.55644 0.9812 2.033 1.529 22.5031023

25.0 2.54088 1.0765 2.205 1.797 29.6831024

35.0 2.53382 1.1213 2.287 1.933 25.1031024

50.0 2.52833 1.1566 2.351 2.046 22.5631024
pr
-
fro

a
e
e
fo

eas-

d
it:

an

c-
is presented as a dashed line. In Fig. 6 the analogous ex
sion MHQ

2mQ for the m50.56b first excited state is pre
sented, while Fig. 7 uses the same methods and values
Table II to presentMHQ

2mQ for them50.26b ground state.
In Fig. 1 and especially in Fig. 7, the quality of numeric
results is seen~as expected! to begin breaking down at larg
mQ and smallm, sinceN5500 is fixed. We conclude that th
numerical routine we rely upon is sufficiently accurate
N5500 up tomQ'(25–30)b. The critical value ofmQ also
09401
es-

m

l

r

depends, however, on the meson’s light quark mass, decr
ing for smallm. This is expected since at smallm the sharp-
ness of the wave function asx→1 becomes stronger, an
more Multhopp functions are required to approximate
Each Multhopp function vanishes likeA12x. Likewise, the
required N increases for the excited states. Still, one c
check that it is possible to go as high asmQ515b even form
as small as 0.1b.

It turns out that a numerically significant cancellation o
TABLE II. The same matrix elements as in Table I for the ground state andm50.26b.

mQ MHQ
2mQ AmQc0 mQ^12x& mQ

2 (^x2&2^x&2)
mQ

MHQ

K1x L21

0.26 0.81299 0.5067 0.130 0.005 3.6131021

1.0 0.92634 0.9481 0.373 0.050 7.6031022

3.0 0.99222 1.3788 0.658 0.202 1.4031022

5.0 1.00958 1.5420 0.772 0.306 5.4031023

7.0 1.01725 1.6277 0.833 0.375 2.8031023

10.0 1.02288 1.6999 0.885 0.442 1.3831023

15.0 1.02692 1.7612 0.930 0.509 6.5131024

25.0 1.02946 1.8137 0.969 0.591 3.4231024

35.0 1.03003 1.8369 0.987 0.665 2.9631024

50.0 1.02992 1.8543 1.002 0.811 2.9731024
1-6
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curs in the value ofmp
2 2b2 in 1/mQ

2 corrections and, in
particular, at the 1/mQ

3 level betweenrD
3 and rpp

3 , for the
ground state just around our primary valuem50.56b. Such
a numerical suppression of the power corrections is accid
tal and does not occur for the excited states, nor form
50.26b.

Let us note that the expectation value of thelight-quark
scalar density in the heavy meson turns out very close
unity for the ground state, which may be seen by tak
mQ↔m andx↔12x in Eq. ~13! and referring to Table III;
this is a characteristic feature of a nonrelativistic~with re-
spect to the light quark! bound-state system. It implies a
almost simple additive dependence ofL̄ on the light quark
massm,

L̄.L̄ um501m, ~17!

FIG. 1. Values of the ground-state energyMHQ
2mQ versusmQ

for m50.56b determined through direct numerical calculatio
~solid line!; fit of the mass expansion Eq.~6! to O(1/mQ

2 ), using the
relations Eq.~9! and the approach described in Appendix C~dashed
line!.

FIG. 2. Values of the ground-state integralc0AmQ for m
50.56b ~solid line!. c0 is related to the decay constant via E
~B8!. The dashed line represents an approximation using the
expansion in Eq.~14!, good toO(1/mQ), and the asymptotic value
F from a polynomial fit in 1/mQ to the points on the solid line.
09401
n-

to
g

and indeed one can verify this feature by comparingMHQ

2mQ values between Table I (m50.56b) and Table II (m
50.26b). While this pattern is expected when the specta
quark is heavy, ita priori need not hold when it is light. This
supports the naive expectation that the chiral symme
breaking may lead to a description in some aspects res
bling the nonrelativistic constituent quark model. The abo
expectation value, however, decreases for the excited st
as expected from such a picture.

Drawing semi-quantitative conclusions for QCD requir
a translation rule between the mass parameters in the
theories, that is, an estimate of the value ofb in GeV.
Different dimensionful quantities can be taken as the ya
stick; since the theories are not identical, this translation r
must be introduced with some care. As follows from t
heavy quark sum rules, the physics of duality in the dec
widths of heavy flavors crucially depends on the propert
of the lowest excited heavy-quark states, in particular

st

FIG. 3. Values of the ground-state matrix elementmQ^12x& for
m50.56b ~solid line!. The dashed line represents an approximat
using the second expansion in Eq.~14!, good toO(1/mQ

2 ).

FIG. 4. Values of the ground-state matrix elementmQ
2 (^x2&

2^x&2) for m50.56b ~solid line!. The dashed line represents a
approximation using the third expansion in Eq.~14!, good to
O(1/mQ).
1-7
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P-wave excitations with opposite parity to the ground-st
multiplet. It will become evident from the next section th
they are of primary importance for the 1/mQ expansion of
static properties as well. Therefore, we choose the mass
ference between the lowest parity-even (P-wave! state and
the parity-odd ground-state meson to gauge the transla
between the mass scales.

In the ’t Hooft model the mass differencee12e0 for light
spectators amounts to about 1.3b. Real charm spectroscop
suggests that the firstP-wave excitations are between 40
and 500 MeV above the ground state. Taking the lar
value for sake of illustration, we arrive at the estimate

b'400 MeV, ~18!

which is adopted in our analysis. This falls rather close to
estimate of Ref.@19#, which relied on a quite different type
of effect in the light-quark systems.

Assuming a value for the ‘‘bare’’b quark mass in QCD
~normalized at the appropriate scale*mb) of about 4 GeV,
we conclude that mesons with quarks of masses

mb'10b, mc'~2.5–3.5!b, ~19!

represent in the ’t Hooft model the actual beauty and cha
mesons.

TABLE III. Ground-state matrix elements as functions ofm,
used to probe the expectation value of the light-quark scalar den

^HQuq̄quHQ&/2MHQ
.

m MHQ K 1

12x L m

MHQ

K 1

12x L21

mQ57b

0.10 7.84710 73.0 27.031022

0.26 8.01725 31.1 19.431023

0.40 8.15422 19.2 25.631022

0.56 8.30423 13.8 26.731022

1.00 8.71728 8.24 25.531022

1.50 9.19304 5.87 24.331022

mQ510b

0.10 10.85436 98.6 29.231022

0.26 11.02288 42.6 14.531023

0.40 11.15925 26.2 26.231022

0.56 11.30820 18.7 27.431022

1.00 11.71817 11.0 26.131022

1.50 12.19091 7.73 24.831022

mQ520b

0.10 20.86224 182.0 21.331021

0.26 21.02864 81.0 12.031023

0.40 21.16490 49.4 26.731022

0.56 21.31284 34.9 28.331022

1.00 21.71902 20.2 27.031022

1.50 22.18785 14.0 25.631022
09401
e

if-

on

r

e

m

The value ofL̄.1.3b'500 MeV seems to be in a rea
sonable correspondence with the size of this difference
QCD when it is normalized at a low hadronic sca
L̄(1 GeV)'(600660) MeV @20#.

It should be noted, however, that the kinetic expectat
value in the ’t Hooft model turns out to be rather sma
mp

2 .0.8b2'0.12 GeV2. This is not surprising, since th
chromomagnetic field is absent in two dimensions, while
was shown@18,21,22# to be crucial in the real case. Indee
the comparison is better justified for the differencemp

2

2mG
2 in actual QCD versus the value ofmp

2 in the ’t Hooft
model. These questions were discussed in detail in Ref.@23#,
and can be easily understood using the sum rule represe
tion. Due to the absence of spin in two dimensions, ther
no difference between the would-be spin-1/2 and spin-
light degrees of freedom. In particular, labeling the ‘‘oscill
tor strengths’’t defined in the next section by spin rath
than excitation number,t1/25t3/2 and e1/25e3/2 effectively
hold. Then the sum

mp
2 53(

n
en

2ut1/2u216(
n

en
2ut3/2u2→9(

n
en

2ut1/2u2,

~20!

and the latter sum is just the general expression formp
2

2mG
2 :

mp
2 2mG

2 59(
n

en
2ut1/2u2. ~21!

Accepting such an identification suggested in Ref.@23# and
the estimatemp

2 2mG
2 .(0.1560.1) GeV2, we again observe

a reasonable agreement with the findings of the ’t Ho
model.

IV. DUALITY IN THE SV SUM RULES

A useful theoretical limit—the so-called small velocit
~SV! regime—was suggested in the mid 1980s@24# as a the-
oretical tool for studying semileptonic heavy quark deca
This refers to kinematics where bothb and c quarks are
heavy, but the energy release is limited, so that the velo
of the final charm hadron is small. At large energy relea
the OPE for the width must converge rapidly to the act
hadronic width. Still, at fixed energy release the deviatio
although 1/mQ suppressed, are present regardless of the
solute values of masses.

In the SV regime the semileptonic decays proceed eit
to the ground-state charm final state,D or D* ~the semi-
elastic transitions!, or to excited ‘‘P-wave’’ states of the op-
posite parity. Other decays are suppressed by higher po
of velocity, or by heavy quark masses.

The equality of the sum of partial decay widths and
OPE expansion is achieved through the sum rules that re
the sums of theP-wave transition probabilities, weighte
with powers of the excitation energies, to the static char
teristics of the decaying heavy hadron. The onset of conv
gence of the OPE expansion for the widths is then direc

ity
1-8
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related to the pattern of saturation of the sum rules by
lowest excitations. If higher states contribute significan
they delay the onset of duality, while their absence leads
tight quark-hadron duality after the firstP-wave channel is
open.

Knowledge of degree of saturation of the heavy qu
sum rules is also important for another reason: It determ
the hadronic scale above which one can apply the pertu
tive treatment to compute corrections or account for evo
tion of the effective operators. The lower this scale, the m
predictive in turn is the treatment of the nonperturbative
fects in the OPE.

A recent review of the SV sum rules can be found in R
@22# ~the perturbative aspects are discussed in more deta
Ref. @23#!. For most practical purposes addressed here,
can consider the perturbative effects to be absent in th
Hooft model. In particular, the heavy quark parameters
not depend perturbatively on the normalization point, a
there is no need in the explicit ultraviolet cutoff to introdu
a normalization point. The sum rules we address are

FIG. 5. Values of the ground-state matrix element (mQ /
MHQ

)^1/x&21 for m50.56b ~solid line!. The dashed line repre
sents an approximation using the final expansion in Eq.~14!, good
to O(1/mQ

3 ).

FIG. 6. Same as in Fig. 1, except for the first excited state
09401
e
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1

4
5(

n
tnk

2 , ~22!

1

2
L̄k5(

n
~en2ek!tnk

2 , ~23!

~mp
2 !k5(

n
~en2ek!

2tnk
2 , ~24!

~rD
3 !k5(

n
~en2ek!

3tnk
2 . ~25!

Herek andn denote excitation indices for the initial and fin
states, respectively~in practice only transitions from the
ground state are interesting, so we limit ourselves tok50; in
this case the indexk is omitted!. The so-called ‘‘oscillator
strengths’’ t parametrize the transition amplitudes into t
opposite-parity states in the SV limit,

1

2mQ
^nuQ̄gmQuk&5tnkemnvn1O~vW 3!, ~26!

wherevW is the velocity of the final state hadron. In the dia
onal transitionrk

2 is the slope of the Isgur-Wise~IW! func-
tion of stateuk&:

1

2mQ
^k~vW !uQ̄g0Quk~0!&512rk

2 vW 2

2
1O~vW 4!. ~27!

The expressions fortnk and rk in terms of the light-cone
wave functions are

tnk5E
0

`

dt Cn~ t !t
d

dt
Ck~ t !

52 lim
mQ→`

E
0

1

dx wn~x!~12x!
d

dx
wk~x!,

FIG. 7. Same as in Fig. 1, exceptm50.26b.
1-9
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TABLE IV. Meson mass eigenvaluesek[MHQ

(k) 2mQ and oscillator strengthst as functions of excitation
numberk, for m50.56b. The value for a given nonperturbative matrix element for eachk indicates the
fractional amount remaining after saturating the corresponding sum rules Eqs.~22!–~25! by statesn with n
<k.

k ek tk0 r221/4 L̄ mp
2 rD

3

0 1.318
1 2.516 7.2531021 6.231023 1.531022 3.631022 8.831022

3 3.989 5.3631022 7.831024 2.731023 9.431023 3.331022

5 5.060 1.7331022 2.231024 9.331024 4.131023 1.831022

7 5.949 8.3731023 8.731025 4.331024 2.231023 1.131022

9 6.724 4.9231023 4.131025 2.331024 1.231023 6.731023

11 7.421 3.2431023 2.131025 1.331024 7.431024 4.331023

13 8.060 2.2931023 1.131025 7.031025 4.431024 2.731023

15 8.653 1.7131023 5.431026 3.631025 2.431024 1.531023

17 9.209 1.3231023 2.131026 1.531025 1.031024 6.631024

19 9.735 1.0531023
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25E

0

`

dtUS t
d

dt
1

1

2DCk~ t !U2

5 lim
mQ→`

E
0

1

dxUF ~12x!
d

dx
2

1

2Gwk~x!U2

. ~28!

The finite-mQ corrections to thex-integral forms turn out to
be rather significant, leading to significant problems in p
cision numerical studies. To avoid this problem we use
analytic expression for the inelastic amplitudes obtained
Ref. @11#:

tnk5 K nUt d

dt UkL 52
b2

2~en2ek!
3

F (n)F (k)S 12~21!n2k

2 D ,

~29!

whereF (n) are the asymptotic values of the decay consta
cn scaled up by the factorAmQ, as in Eq.~10!. The constants
F (n) are computed as the values ofcnAmQ at mQ515b ~see
Table I! augmented by the 1/mQ corrections detailed in the
first of Eqs.~14!, while values ofen are computed using th
procedure described in Appendix C.

The results of the computations for the casemQ
515b, m50.56b are presented in Table IV. Our centr
result is a surprisingly good saturation of the sum rules: T
first (n51) excitation generates 99.4% ofr2, 98.5% of
L̄, 96% of mp

2 , and even 91% ofrD
3 . The rest is almost

completely saturated by the secondP-wave state (n53),
where the cumulative values for the same quantities r
99.92%, 99.73%, 99.1%, and 96.7%, respectively.

In terms of absolute numbers, the sum rules Eqs.~22!–
~25! would give r221/450.529, L̄51.278b, mp

2

50.782b2, and rD
3 50.99b3, the last of which givesF (0)

51.99Ab, in fine agreement with the values obtained fro
the values obtained in the previous section via the meth
described in Appendix C. The few-percent discrepancy c
responds to the accuracy in determinations of squared d
constants.
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The level of saturation by the lowest open channels
extraordinary. The explicit reason for such a perfect satu
tion of the sum rules involving even rather high,;e3 powers
of the excitation energy can be read off Eq.~29!—t ’s are
inversely proportional to the third power of the excitatio
energy. With the asymptoticsen;An, F (n);n21/4, the first
excitation energye12e0 is notably smaller than the next on
e32e0 including three energy gaps. The general peculia
of the ’t Hooft model leading to such a saturation is n
understood completely.

With this pattern of saturation of the SV sum rules for t
ground-state meson, one expects an early onset of acc
duality for the inclusive widths in theb→c transitions, only
slightly above the threshold of the first excitation. Demo
strating this result through direct evaluation of the dec
widths is one of the purposes of the next section.

V. LOCAL DUALITY IN THE DECAY WIDTHS

The semileptonic widths described in this work were co
sidered in detail in Ref.@5#. Here we recapitulate a few bas
points. The weak decay Lagrangian is

Lweak52
G

A2
~ c̄gmb!~ ēgmn!. ~30!

In terms of the previous notation,Q→b, q→c ~or, later in
this section,u), andHQ→B. The key property of allD52
vectorlike currents is that forme5mn50, the invariant mass
q2 of the lepton pair is always zero. For all computation
purposes decays into this massless lepton pair are equiv
to decays into a single massless pseudoscalar particlf
weakly coupled to quarks according to

L̃weak52
G

A2p
c̄gmb emn]nf. ~31!

Several arguments favor our choice of a vectorlike we
decay interaction in the ’t Hooft model. One is of course t
1-10
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simplicity of Eq. ~31!. Another is that forq250 some diffi-
cult problems of renormalization are absent, as we now
cuss. The central problem in applying the OPE in practic
disentangling perturbative and nonperturbative effects. M
precisely, this refers to the separation of short-distance
fects attributed to the coefficient functions from lon
distance effects residing in the matrix elements of the eff
tive heavy-quark operators.

The perturbative corrections, for example those t
renormalize the weak quark current, are generally rather n
trivial, even in the ’t Hooft model. However, according to th
nonrenormalization theorem of Ref.@5#, such vertex correc-
tions are absent from the decays withq250. This allows one
to isolate the problem of renormalization of the underlyi
current from the question of interest in our study: possi
deviations of the full decay widths due to the presence
thresholds in the production of the hadronic resonances.

In reality, from the OPE viewpoint some short-distan
corrections still remain even in this special kinematic reg
due to the high-momentum tails in the meson wave fu
tions. These tails come from the hard gluon exchanges
tween the constituents. In principle, these ‘‘hard’’ comp
nents can also be separated from the ‘‘soft’’ bound-st
dynamics explicitly. However, in practice this is not nece
sary: These effects are completely contained in the me
wave functions.

Another advantage of vectorlike currents is appar
when one notes that theD52 three-body ‘‘semileptonic’’
phase space diverges logarithmically for massless lept
Explicitly, for the decay M→m1ml1ml ~equal lepton
masses are assumed to render the expressions simpler!, the
three-body phase space turns out to be

F3~M ;m,ml ,ml !5
1

4p3~M2m!A~M1m!224ml
2

K

3F ~M1m!2@~M2m!224ml
2#

~M2m!2@~M1m!224ml
2#

G ,

~32!

whereK is the complete elliptic integral of the first kind. A
ml→m, one regains Eqs.~4.1!–~4.3! of @6#, while as ml
→0, the argument of the elliptic integral goes to unity, a
K(12e)→ ln(8/e)/2. This is a manifestation of the logarith
mic infrared divergence of the massless scalar Green fu
tion at large distance inD52. A detailed calculation show
that the vector nature of the weak coupling regularizes
phase space integral, preventing the partonic rate from
verging in the limit of massless leptons. Furthermore, as
cussed in the Introduction, this also removes the 1/upW u sin-
gularity in the threshold behavior for hadronic two-bo
decays.

As a final advantage of vectorlike currents and the spe
kinematic pointq250, note that atq250 theB→D (n) tran-
sition amplitudes are directly expressed in terms of the ov
lap between the initial and the final wave functions:
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1

2MB
^nuemnJnuB&52qzE

0

1

dx wn~x!wB~x!, ~33!

whereqz52upW u52(MB
22Mn

2)/2MB , so that the partial de-

cay width forB→D (n)l n̄ is given by

Gn5
G2

4p

MB
22Mn

2

MB
U E

0

1

dx wn~x!wB~x!U2

u~MB2Mn!.

~34!

The threshold suppression mentioned above is manifeste
the explicit factor (MB

22Mn
2): The reciprocal of this factor in

the phase space is removed byqz
2 from the matrix element. It

is also possible to derive this result directly using the me
ods of Ref.@6#; note, however, that these expressions
much simpler than those of Ref.@6#, because the vectorlike
current with massless leptons restrictsq2 to 0. The sum of
these widths over all open channels is to be compared to
OPE prediction. The remarkable speed of saturation inn,
anticipated in the last section, is illustrated for one sam
case in Table V.

Turning to the OPE, we mention one more problem as
ciated with an accurate understanding of local duality vio
tion. Apart from the purely theoretical aspect that OP
power series are generally only asymptotic and, thus hav
formally zero radius of convergence in 1/mQ , one normally
has additional practical limitations. Only a limited number
the terms, as well as the associated expectation values
usually known, which places additional theoretical uncerta
ties that dominate in practice at sufficiently largemQ .

This feature can be naturally incorporated in the analy
of our concrete model. We account completely only throu
terms that scale like 1/mQ

4 , the highest order that emerge
from the OPE free from the four-fermion operators@5#. The
rest, although calculable in principle term-by-term in t
’t Hooft model, are taken to represent the OPE ‘‘tails’’ di
carded by the unavoidable truncation.

Using the sum rules of the ’t Hooft model, Ref.@5# estab-
lished the following exact representation for the total dec
width:

TABLE V. Illustration of the speed of saturation in excitatio
numbern of the total hadronic widthGHQ

by partial widthsGn from
exclusive channels of massMn . In this example,mQ515b, mq

510b, andm50.56b, for which MHQ
516.3113b.

n Mn ^nuHQ& Gn /GHQ
(m50

n Gm /GHQ

0 11.3082 0.96426 9.4531021 0.9448313
1 12.5744 0.25996 5.3631022 0.9984744
2 13.4495 0.044347 1.2331023 0.9997062
3 14.1780 0.023927 2.7431024 0.9999801
4 14.8095 0.005462 1.0331025 0.9999903
5 15.3810 0.006617 9.4931026 0.9999998
6 15.9043 0.001391 1.8731027 1.0000000
1-11
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GB5
G2

4p

mb
22mc

2

MB
E

0

1dx

x
wB

2~x!2 (
Mn.MB

Gn , ~35!

whereGn at Mn.MB are understood as given by Eq.~34!
without the explicitu-function singling out the open chan
nels; suchGn are therefore all negative. On the other han
the OPE yields the result

GB5
G2

4p

mb
22mc

2

mb
F mb

MB
E

0

1dx

x
wB

2~x!1OS b5

M5D G , ~36!

with M generically denoting the OPE expansion parame
we do not specify here if it ismb or mb2mc , or some other
combination. It was shown in Ref.@5# that theGn term in Eq.
~35! is dual to the order term in Eq.~36!; however we do not
use this here and rather treat the latter as an intrinsic un
tainty in the ‘‘practical’’ version of the OPE.

Thus, our strategy is to compare the exact width

GB5
G2

4p (
Mn,MB

MB
22Mn

2

MB
U E

0

1

dxwn~x!wB~x!U2

, ~37!

to

GOPE5
G2

4p

mb
22mc

2

mb

mb

MB
E

0

1dx

x
wB

2~x!. ~38!

The expectation value (mb /MB)^1/x& above can either be
evaluated numerically, or in the spirit of the OPE, compu
in the form of a 1/mb expansion, the last of Eqs.~14!. It turns
out that the expansion converges very rapidly to the ex
result, so that this does not significantly affect the obser
pattern of local duality at the quantitative level. The Bor
term partonic rate is simply given byGOPE with this expec-
tation value set to unity,

Gb5
G2

4p

mb
22mc

2

mb
. ~39!

The main practical interest of these calculations lies in
b→c width with its limited energy releaseEr . In general,Er
can be small either ifmb is not large enough, or even at larg
mb if Er5mb2mc ~or mb2mc2Aq2 if q2 is nonzero! is
insufficient due to a significantc quark mass. The latter cas
falls into the SV category, and the violations of duality a
suppressed here even at the maximalq2 by heavy quark sym-
metry, as was pointed out in the mid 1980s@24#. Therefore,
onea priori expects a different pattern in the two cases. W
try to separate the possible effects by considering differ
choices formb andmc rather than by only taking them clos
to their realistic values.

With these arguments in mind, one can expect to fi
significant effects of duality violation in the cases whe
1/mc or 1/mb effects are important. As suggested in R
@23#, in this case it is advantageous to fixmb close to its
actual value, and varymc from nearmb down to smaller
values, changing in this way the energy release. At one
of the interval the local duality is supported by the hea
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quark symmetry with large quark masses and SV kinemat
while at another end it rests on the large energy release

We start from the SV case whenmb is fixed and large and
mc is large as well, varying the energy release by increas
mc towardsmb . Since the violation of local duality is ex
pected to be suppressed for all values ofmc , high numerical
accuracy is vital. We fixmb515b ('6 GeV), and varymc
from 5b up to mb . The results are given in Table VI an
Fig. 8. We note that the difference between the two width
so small that one must plot ln(GB /GOPE21) rather than the
widths themselves. This is expected since the SV sum r
are very well saturated, as detailed in the previous sectio
the higher thresholds are then strongly suppressed num
cally at finite energy release. But formc approachingmb ,
where they could be noticeable, the heavy quark symm

FIG. 8. Duality deviation between exact hadronic widthGB and
G determined from the OPE@Eq. ~38! or ~C10!#, good toO(1/mQ

4 ).
Heremb515b, m50.56b, andmc variable.

TABLE VI. Numbers relevant to local duality violation fo
mQ515b, m50.56b, andmq variable.N indicates the excitation
number of the heaviest final-state meson kinematically allowed
the given initial meson massMHQ

: MN<MHQ
,MN11 . GHQ

is
the total hadronic width Eq.~37!, while GOPE andGQ are given by
Eqs.~38! and ~39!, respectively.

mq N GHQ
/GOPE21 GHQ

/GQ21

5.0 18 1.431028 4.131024

6.0 16 1.231027 4.131024

7.0 13 3.231027 4.131024

8.0 11 6.331027 4.131024

9.0 8 1.231026 4.231024

10.0 6 2.231026 4.231024

11.0 4 4.331026 4.231024

12.0 3 9.031026 4.231024

12.5 2 2.131025 4.431024

13.0 1 3.231025 4.531024

13.5 1 3.431025 4.531024

14.0 0 5.931024 1.031023

14.5 0 8.431024 1.331023
1-12
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works efficiently since both quarks are very heavy. In fa
the only prominent features on the plot occur when thre
olds to the first fewD states of opposite parity to the groun
stateB meson are crossed, for example betweenmc513.5
and 14b. The deviation is extremely small also for small
mc where thec quark velocity is rather large—yet there th
energy release is significant, and a large number of exc
states~up to 18 atmc55b'2 GeV) are produced. Tabl
VII and Fig. 9 show analogous results formb510b, m
50.56b.

To render the duality violation more apparent, we co
sider~Table VIII and Fig. 10! the same decay widths for ab
quark with half the mass,mb55b'2 GeV. Even here the
deviation is below per mill as soon as the first excitation c
appear with sufficient phase space. The duality-violat
component at last exhibits the proper oscillating behav
~note the decrease betweenmc53 and 3.5b or 1 and 1.5b),
but this effect is too small to be extracted reliably at larg
energy release where this property becomes an asymp
rule.

As follows from our computations, local duality is vio
lated at a tiny level in theb→c decays in the ’t Hooft mode
whenever it isa priori meaningful to apply OPE. A possibl
reason behind this might be that for unidentified reasons
heavy quark symmetry works for the inclusive widths t

FIG. 9. Same as Fig. 8, exceptmb510b.

TABLE VII. Same as in Table VI, exceptmQ510b.

mq N GHQ
/GOPE21 GHQ

/GQ21

5.0 6 6.931026 9.431024

5.5 5 8.631026 9.431024

6.0 4 1.331025 9.531024

6.5 3 1.831025 9.531024

7.0 3 2.131025 9.531024

7.5 2 5.531025 9.931024

8.0 1 7.631025 1.031023

8.5 1 7.931025 1.031023

9.0 0 1.431023 2.431023

9.5 0 1.931023 2.831023
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effectively, down to relatively low masses and velocities
order 1. This was conjectured in the early papers on
subject@24#.

Therefore, our final attempt in the quest for a sizea
duality violation inb decays is considering the (b→u)-type
transitions, where the heavy quark symmetryper sedoes not
constrain the individual transition form factors. We fix in o
expressionsmc5m50.56b or 0.26b ~but still keep the two
quarks flavor-distinguished! and vary mb from 1b
'0.4 GeV to 12b'4.5 GeV. The results are shown i
Table IX and Fig. 11, and Table X and Fig. 12, respective
Although the difference between the actual width and
OPE approximation is larger, it still is very small and a
proaches a percent level formb as low as 2b'0.8 GeV.
The total decay width is no longer saturated to such a h
degree by transitions to the ground state, especially for la
mb . Nevertheless, the duality is amazingly well satisfi
when just the first few open channels are summed. Ag
the only prominent features in the plots appear when cro
ing kinematic thresholds due to the lightestD mesons of
opposite parity to the ground-stateB.

The extraordinary agreement betweenGB and GOPE may
be underscored by instead plotting~Fig. 13, final column of
Table IX! the difference betweenGB and the Born-term par-
tonic rateGb given in Eq.~39!. From an algebraic point o
view, GB andGOPE differ generically atO(1/M5), while GB
andGb begin to differ already atO(1/M2).

FIG. 10. Same as Fig. 8, exceptmb55b.

TABLE VIII. Same as in Table VI, exceptmQ55b.

mq N GHQ
/GOPE21 GHQ

/GQ21

1.0 3 8.531025 3.731023

1.5 3 8.031025 3.731023

2.0 2 1.931024 3.831023

2.5 2 2.531024 3.831023

3.0 1 3.531024 3.931023

3.5 1 3.231024 3.931023

4.0 0 6.631023 1.031022

4.5 0 7.331023 1.131022
1-13
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RICHARD F. LEBED AND NIKOLAI G. URALTSEV PHYSICAL REVIEW D 62 094011
Thus, we find local duality between the actual semile
tonic decay width and its OPE expansion to be very w
satisfied in all cases.

Before concluding this section, let us briefly address
ality in the differential distributionG21dG/dE. In the heavy
quark limit the shape of the final-state hadronic mass dis
bution follows the heavy quark distribution function in th
decaying meson; for theb→u decays under consideration
this is the light-cone distribution functionF(x). In decays
with q250 the recoil energy of the lepton pairE is directly
related to the final state massMh :

E5
MB

22Mh
2

2MB
. ~40!

Since q250, these decays are analogous tob→sg in the
standard model. In the large-mb limit one has

1

G

dG

dE
5

2

L̄
FS 2E2mb

L̄
D . ~41!

FIG. 11. Same as Fig. 8, exceptmc5m50.56b and mb vari-
able.

FIG. 12. Same as Fig. 11, exceptmc5m50.26b.
09401
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At finite mb in a theory with narrow resonances the actu
distribution is given by a comb ofd-functions with spacing
in the argument of Eq.~41! of order L̄/mb . In order to
obtain a continuous result, we adopt the simple ansatz
averaging over the peaks. Using Eq.~40! to define the energy
En of the nth stateMh , we integrate thed-function for the
nth state evenly over the energy range (En1En11)/2 to
(En1En21)/2, i.e., the midpoints between energy eigenv
ues. LettingN be the maximum number of kinematicall
allowedMh values, we establish the endpoint bins by defi
ing E215Emax5MB/2 andEN115Emin50.

We find that our numerical computations yield a distrib
tion resembling the light-cone distribution functionw2; spe-
cifically,

F~y!5L̄C2
„~12y!L̄…5 lim

mQ→`

L̄

mQ
w2S 12~12y!

L̄

mQ
D .

~42!

FIG. 13. Same masses as in Fig. 11, using the Born-term
tonic rate Gb instead ofGOPE. Note that the deviation is much
larger.

FIG. 14. Exact differential widthG21dG/dE, averaged as de
scribed in the text, compared to the continuous parton distribu
computed via Eq.~43! with mQ525b, at mb510b andm50.56b.
1-14
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Recalling thatMB5mb1L̄1O(1/mb) and combining Eqs.
~41! and ~42! yields

1

G

dG

dE
' lim

mQ→`

2

mQ
w2S 12

MB22E

mQ
D . ~43!

The two sides of this expression are plotted in Fig. 14, us
mQ525b to represent the limitmQ→`, while the actual
distribution is considered atmb510b. The agreement is
quite remarkable. The continuous distribution appears
pass approximately through the midpoint of each bin; ow
to the near-equal spacing of ’t Hooft model eigenvalues
Mn

2 , Eq. ~40! shows that these bin midpoints are very clo
to the valuesEn themselves.

It is also interesting to consider integration over a range
E. In particular, defineF(122E/MB) as the cumulative
fractional width from maximum energyMB/2 down to the
givenE; thenF(0)50 andF(1)51. While the exact resul
for (DG/G amounts to an integration of thed-function dif-
ferential widths renormalized so that the cumulative res
approaches unity, the integral of the continuous distribut
gives

F~y!5 lim
mQ→`

2

mQ
E

0

y

dz w2S 12
MHQ

mQ
zD . ~44!

These two curves are presented in Fig. 15. Two featu
particularly stand out in this plot. First, even formb as large
as 10b'4 GeV, the overwhelming part of the decay pro
ability falls into the transitions to at most four lowest state
Second, the continuous curve seems to provide a nearly
timal description possible for the step-like exact distributio
The point-to-point deviation for all plotted values with
22E/MB.0.04 does not exceed half of the contribution
the nearest threshold.

TABLE IX. Same as in Table VI, exceptmq5m50.56b fixed
andmQ variable.

mQ N GHQ
/GOPE21 GHQ

/GQ21

1.0 0 1.331021 1.831021

2.0 0 2.431022 4.231022

3.0 1 1.531023 1.131022

4.0 2 2.731024 5.731023

5.0 4 6.031025 3.631023

6.0 5 2.731025 2.631023

7.0 7 1.131025 1.931023

8.0 8 5.731026 1.531023

9.0 10 2.831026 1.231023

10.0 13 1.331026 9.331024

11.0 15 4.531027 7.731024

12.0 18 4.831028 6.531024
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VI. DUALITY IN THE VACUUM CURRENT
CORRELATOR

In this section we briefly illustrate the onset of duality f
the absorptive part of the vector current correlator with lig
quarks, of the type that determines the normalized cross
tion R(e1e2→hadrons) as a function of energy. In the co
text of the heavy quark decays this is relevant in nonlepto
decay widths in two kinds of processes: in spectat
independent decays, whereR(q2) determines the weigh
with which the semileptonic width at givenq2 must be inte-
grated overq2 ~see Ref.@8#!, and in the effects of WA de-
cays.

In either case, atNc→` the cross section appears as
comb-like collection ofd-functions:

R~q2!5(
n

cn
2d~q22Mn

2!; cn5E
0

1

dx wn~x!. ~45!

The above expression for the residues refers to the c
where a vector current is considered. We suppress here
factor of ANc /p relating cn to f n @Eq. ~B8!#. We also as-

TABLE X. Same as in Table IX, exceptmq5m50.26b.

mQ N GHQ
/GOPE21 GHQ

/GQ21

1.0 0 2.231021 3.131021

2.0 1 1.231023 2.931022

3.0 1 1.131023 1.531022

4.0 2 1.931024 8.431023

5.0 4 5.231025 5.531023

6.0 5 2.431025 3.831023

7.0 7 1.031025 2.831023

8.0 8 5.131026 2.231023

9.0 10 2.531026 1.731023

10.0 12 1.131026 1.431023

11.0 15 4.231027 1.131023

12.0 17 5.231028 9.731024

FIG. 15. The partially-integrated~in E) differential distribution
F(122E/MB) and the corresponding smeared exact res
G21(dG as defined in the text, for the same inputs as in Fig. 1
1-15
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RICHARD F. LEBED AND NIKOLAI G. URALTSEV PHYSICAL REVIEW D 62 094011
sume in what follows that the light quark masses are eq
mu5md , and areO(b) or less, in order to reach asymptot
q2 more quickly.

In the extreme situation of infinitely narrow resonanc
one cannot, of course, discuss a point-to-point equality of
cross sectionR(q2) with its OPE in the form of 1/q2 expan-
sion. A meaningful comparison is possible if each reson
peak is somehow averaged over an interval no smaller
the distance between adjacent peaks, the latter being app
mately given byDq2.p2b2 @1#. It is worth recalling that
R(q2) is proportional tom2/q4, so one must consider non
vanishing masses for the vector current, and address the
terms formally suppressed bym2/q2.

This question was first addressed in the context of n
leptonic decays in Ref.@7# using the numerical approach
Duality for the average cross section in the same manne
above, i.e., using sum rules derived from the ’t Hooft eq
tion and analytically matching terms in the 1/mQ expansion,
was obtained in Ref.@8#. Yet establishing the asymptotic
per secannot tell us beforehand how early one can exp
the onset of duality. Here we study this question numerica
in the domain of intermediateq2.

The concrete amount of the deviation betweenR(q2) and
ROPE(q2) in the case of direct resonances may depend in
essential way on the chosen smearing procedure. Intere
in the qualitative features only, we choose a rather sim
fied, crude method: We spread the integral ofR(q2) evenly
over the interval between the successive resonances. M
precisely, we put

R̄~q2!5
1

M2n11
2 2M2n21

2 E
M2n21

2

M2n11
2

dq2R~q2!

5
c2n

2

M2n11
2 2M2n21

2
, ~46!

for M2n21
2 ,q2,M2n11

2 , with M 21
2 54m2, the partonic pair

production threshold. Here we use the fact thatcn vanish for
odd n when mu5md[m. This smearing is very similar to
that described for the differential width in the last sectio
except that averaging is performed inq2 rather thanE. The
free quark loopR(q2), which is of course the leading term o
the OPE, is given by

R0~q2!5
2m2

q4

1

A124m2/q2
. ~47!

Table XI and Fig. 16 show the results for our reference c
m50.56b. The agreement of the average hadronic cross
tion with the parton-computed probability again turns out
be very good. Apparently, this can be related to two fac
the heavy suppression of power corrections toR(q2) in the
OPE ~see Eqs.~34!,~35! in @8#!, and an early onset of th
asymptotics in the spectrum,

Mn11
2 2Mn

2.p2b2, ~48!

which even atn50 is satisfied to about 15%.
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VII. DISCUSSION AND SUMMARY

The main motivation behind the present study has bee
assess the magnitude of local duality violations in the inc
sive semileptonic decays ofb-flavored particles. We consid
ered this question using the ’t Hooft model as a toy theory
which all relevant decay amplitudes can be evaluated
merically. The ’t Hooft model, while retaining certain ke
features of fullD54 QCD that shape the spectrum of ha
rons~quark confinement, chiral symmetry breaking!, still dif-
fers from D54 in many respects. Yet using it as a lab f
exploration carries an important advantage—it allows
‘‘wiggle room’’ for interpretation of the results. There are n
ad hocparameters to choose or adjust, and as soon as
underlying weak decay Lagrangian is fixed, the numeri
results are unambiguous and must be accepted at face v
This positively distinguishes this approach from vario
models where often the conclusions, even qualitatively,
pend on the arbitrary choice of parameters according to o

FIG. 16. Saturation of the leading term in the OPE of t
vacuum polarization functionR0 by exclusive channeld-function

contributions, smeared as described in the text (R̄).

TABLE XI. Saturation of the vacuum current correlator as d
picted graphically in Fig. 16. The fiducialq2 point in each interval

M2n21
2 ,q2,M2n11

2 , in which R̄ ~averaged hadronicd-functions!
andR0 ~Born-term partonic expression! are compared, is chosen t
be M2n

2 .

n M2n R̄(M2n
2 )3104 R0(M2n

2 )3104

0 1.7792 930.5 805.6
1 4.5349 15.18 15.30
2 6.2796 4.082 4.099
3 7.6574 1.838 1.844
4 8.8310 1.037 1.040
5 9.8703 0.6635 0.6651
6 10.813 0.4602 0.4614
7 11.681 0.3376 0.3385
8 12.490 0.2581 0.2588
9 13.250 0.2036 0.2042
1-16
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PRECISION STUDIES OF DUALITY IN THE ’t HOOFT . . . PHYSICAL REVIEW D62 094011
preferences.~There do exist, however, quark potential mod
calculations, e.g. Ref.@29#, in which certain sum rules an
duality properties may be demonstrated without resorting
such additional parameters.! The question of a particula
model being compatible with the general dynamical prop
ties of QCD underlying the OPE approach, often quite pr
lematic in simplified quark models, does not arise for t
’t Hooft model.

Although the simplest illustration of the asymptotic natu
of the decay width 1/mQ expansion and related violations o
local duality @3# follows just from the existence of hadron
thresholds~see, e.g.,@8#!, violation of local duality is a more
universal phenomenon that isnot directly related to existence
of hadronic resonances nor even confinement itself. This
been illustrated in Ref.@4# by the example of soft instanto
effects that do not lead, at least at small density, to qu
confinement—but do indeed generate computable oscilla
duality-violating contributions to the total decay rates.

Nevertheless, there is a widespread opinion that dec
with manifest resonance structure in the final state are m
difficult for—if compatible at all with—the standard OPE
Even the possibility that the OPE does not fully apply in t
case of ‘‘hard’’ confinement has been occasionally voiced
the literature. The analytic studies performed in Refs.@5,8,9#,
which explicitly demonstrate in the ’t Hooft model the app
cability of the OPE to the total widths, should help to all
such conceptual concerns. Nevertheless, the intuition
mains that resonance dominance is not ‘‘favorable’’ for t
OPE, and problems might show up, for instance, throug
delayed numerical onset of duality, in that the approxim
equality of the OPE predictions and the actual decay wid
may set in only after a significant number of thresholds
been passed. To address such issues, the ’t Hooft m
seems to represent the most certain testing ground for l
duality in the domain of decays of moderately heavy quar

Contrary to naive expectations, we found surprisingly
curate duality between the~truncated! OPE series forGsl and
the actual decay widths. The deviations are suppressed
very high degree almost immediately after the threshold
the first excited final state hadron is passed. No suspe
delay in the onset of duality was found. Needless to say,
confirmation of the analytic sum rules of Refs.@5,8,9,11#
using the numerical approach of Refs.@6,7# indicates that no
conceptual discrepancy remains between the two.

The key property that governs the onset of the 1/mQ ex-
pansion for the semileptonic widths is the pattern of satu
tion of the heavy quark sum rules. We examined a particu
class, the SV sum rules in the heavy quark limit, that has
most transparent quantum mechanical meaning. We fo
them saturated to an amazing degree by the very first e
tation. The contribution of the remaining, higher states to
slope of the IW function,L̄, andmp

2 does not exceed a few
percent. Even in the Darwin operator sum rule, the first
citation accounts for 90% of the whole expectation val
despite the fast-growing weight, (ek2e0)3 of higher-order
contributions. This peculiarity underlies the early onset
duality for the case when initial- and final-state quarks
both heavy.

Some of the duality-violating features observed in the
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studies have natural explanations. At fixed energy rele
mQ2mq the magnitude of the deviations is smaller ifmQ ,
mq are both large~as in b→c) than if they are both small
This is expected, since in the former case the heavy qu
symmetry for the elastic amplitude additionally enforces a
proximate duality even when no expansion in large ene
release can be applied.

It is interesting, however, that at fixedmb the duality vio-
lation decreases rapidly asmc decreases, in full accord with
the OPE where the higher order terms are generally s
pressed by powers of 1/(mb2mc). This is clearly adynami-
cal feature that goes beyond heavy quark symmetryper se,
the quality of which deteriorates asmc decreases.

It is also instructive to note that including the calculat
power-suppressed OPE terms significantly reduces the di
ence between the actual decay width and its purely parto
evaluation. Moreover, the seeds of oscillations inheren
duality violation~as functions of quark masses!, can be seen
Since we adopted the truncated OPE expansion to mirror
existing implementation of the OPE in QCD, the deviatio
do not average to zero but rather oscillate around the~rapidly
dissipating! contributions attributed to discarded highe
order terms.

The numerical effects of duality violation we study tu
out to be typically quite small. Partially this can be attribut
to moderate size of the corresponding expectation va
multiplying 1/mQ

k corrections in the OPE. Yet certainly no
all power corrections in heavy quarks are suppressed in
model. It is well known from ordinary quantum mechani
that masses~eigenvalues! typically are much more robus
against perturbations than wave functions themselves~or
transition amplitudes!. We observe a similar pattern in th
’t Hooft model. For example, 1/mQ corrections to the meson
decay constants turn out very significant even at the scal
the b quark mass. Apparently, the inclusive decay rates
into the class of ‘‘robust’’ observables, although, as e
plained above, this was difficult to anticipate beforehand

We note here another ‘‘fragile’’ observable, the light-co
heavy quark distribution function, which can be measured
decays of the typeb→sg. In D52 the scaled spread
mQ

2 (^x2&2^x&2) of thex distribution approachesmp
2 at large

mQ . Yet, as seen in Fig. 4, even at theb quark mass one
would obtain from this distribution only about 60% of th
actual value ofmp

2 , due to significant 1/mQ corrections. This
caveat may be important for existing analyses of the de
distributions inB decays, where such effects routinely a
not included.

We also briefly addressed the inclusive differential dec
distributions in the analogues ofb→u l n̄ or b→sg decays.
Generally, we find good agreement~at the scale correspond
ing to the physicalb mass! with the parton-based predictio
incorporating effects of the ‘‘Fermi motion,’’ and in particu
lar for the partially integrated probability

F~x!5
1

Gsl
E

0

xMB
2

dMh
2 dGsl

dMh
2

. ~49!

This distribution, following Refs.@25,26#, is examined in
1-17
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realB decays in the quest foruVubu @27#. However, the point-
to-point deviations are clearly still significant, for the deca
to only the 4 or 5 lowest final states saturate the overwhe
ing fraction of the total decay probability. It is quite concei
able, though, that such deviations are less pronounce
actual QCD owing to the significant resonance widths and
a richer resonance structure.

The vacuum current correlator also turns out to be es
cially robust; even neglecting all OPE corrections except
leading partonic contribution leads to excellent agreem
with the hadronic result.

Turning to the direct phenomenological conclusions t
can be inferred from our studies, we see that, to the ex
our findings can be transferred to real QCD, violation
local duality in the total semileptonic widths ofB mesons is
not an issue. The scale of duality violation lies far below t
phenomenologically accessible limits, and cannot affect
credibility of uVcbu or uVubu extractions.

In reality there are, of course, essential conceptual dif
ences between the two theories, including those aspects
are expected to be essential for local duality~for a discus-
sion, see Ref.@8#!. Although many seem to optimisticall
suggest that duality violation is more pronounced in the
Hooft model than for actual heavy flavor hadrons, some
ferences may still work in the opposite direction. InD52
there are no dynamical gluons, nor a chromomagnetic fi
that in D54 provides a significant scale of nonperturbati
effects in heavy flavor hadrons. Likewise, there is no spin
D52, and no correspondingP-wave excitations of the ligh
degrees of freedom~the so-calledj 53/2 states!, which seem
to play an important role inD54.

Two-dimensional QCD neither has long perturbati
‘‘tails’’ of actual strong interactions suppressed weakly~by
only powers of logs of the energy scale!. In D52 the per-
turbative corrections are generally power-suppressed, as
lows from the dimension of the gauge coupling. As d
cussed in Ref.@8#, it is conceivable that the characterist
mass scale for freezing out the transverse gluonic degree
freedom is higher than in the ‘‘valence’’ quark channe
This would imply a possibly higher scale for onset of dual
in as /p corrections to various observables.

Regardless of these differences, we conclude that p
ence of resonance structureper seis not an obstacle for fine
local quark-hadron duality tested in the context of the OP
As we see in the ’t Hooft model, resonances themselves
not seem to demand a larger duality interval. As soon as
mass scale of the states saturating the sum rules in a pa
lar channel~quark or hybrid! has been passed, the dec
width can be well approximated numerically by the expa
sion stemming from the OPE.

The ground states of heavy mesons in the ’t Hooft mo
exhibit relatively small expectation values of nonperturbat
operators (mp

2 , rD
3 , but not L̄) compared to real QCD, if

our identificationb.400 MeV is adopted. This may be re
garded as a reason for small duality violation forGsl in the
model. However, even if we scaleb up to 700–800 MeV to
make up for smallness of the nonperturbative OPE effe
09401
s
-

in
o

e-
e
nt

t
nt
f

e
e

r-
hat

t
f-

ld

n

ol-
-

of
.

s-

.
o
e

cu-

-

l
e

s,

the duality violation is still very small, and superficiall
rather insignificant even in charm.

We note, however, that the specific choice Eq.~30! of the
weak interaction effectively requires decays to occur only
q250, and therefore the effects of four-fermion operators
the type (Q̄Gq)(q̄GQ) are totally absent, at least in the low
est orders of perturbation theory~cf. Ref. @5#, Sec. III.B.3!.
As was suggested in Ref.@28#, it is conceivable that the
apparent excess inGsl(D) is simply related to a noticeabl
magnitude of the non-valence~nonfactorizable! expectation
values^Du( c̄Gs)( s̄Gc)uD&. If this conjecture is true, similar
effects inGsl(B→Xuln) are still suppressed but possibly d
tectable in future precision experiments. In the context of
present study, it suffices to say that this would be a leg
mate OPE effect rather than a manifestation of a signific
local duality violation in the strict sense.
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APPENDIX A: THE BSW IMPROVEMENT
OF THE MULTHOPP TECHNIQUE

The Brower-Spence-Weis@15# ~BSW! improvement of
the Multhopp technique avoids the need for evaluating
wavefunction at a discrete set of points called ‘‘Multhop
angles,’’ thus improving the behavior of the solutions in t
endpoint regions, as described in Sec. II. Here we exhibit
expressions used by BSW, correcting along the way so
minor typographical errors in their work.

Starting with the ’t Hooft equation~1! with bare quark
massesm1 andm2, one converts the kinematic variablesx,y
to angular variables:

x5
11cosu

2
, y5

11cosu8

2
, ~A1!

in terms of which the ’t Hooft equation reads

M p
2

2
wp~u!5F m1

2

11cosu
1

m2
2

12cosuGwp~u!

1E
0

p

du8wp~u8!P
1

~cosu2cosu8!2
. ~A2!

Expanding
1-18
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wp~u!5 (
n51

`

an
(p) sinnu, ~A3!

and using the continuous inversion identity@contrast with
Eq. ~A7! of Ref. @6##

E
0

p

du sinmu sinnu5
p

2
~dmn2dm,2n!, ~A4!

one obtains the infinite-dimensional eigenvector system

M p
2an

(p)5~H01V!nmam
(p) , ~A5!

where

~H0!nm51
4

pE0

p

duF m1
2

11cosu
1

m2
2

12cosuGsinnu sinmu,

~A6!

Vnm52
4

p
b2E

0

p

du sinnuE
0

p

du8 sinu8 sinmu8

3P
1

~cosu2cosu8!2
. ~A7!

Both of these integrals can be evaluated, with the result

~H0!nm54 min~n,m!@~21!m1nm1
21m2

2#, ~A8!

Vnm5Vn21,m21S m

m21D
1

8m

n1m21 F11~21!n1m

2 G , ~A9!

where Vn05V0m50 for m,n>0. This recursive form for
Vnm is most convenient for numerical calculations; howev
one may also write the closed-form solution,

Vnm54mF11~21!n1m

2 GFcS 12n2m

2 D2cS 12un2mu
2 D G .

~A10!
09401
,

Note that the ‘‘potential’’V in Eq. ~A10! is real but not
symmetric, owing to the extra sinu8 in Eq. ~A7!; therefore,
the ‘‘Hamiltonian’’ H01V is not Hermitian, and the eigen
vectors a(p) are not orthogonal. This is a direct result
converting the exact wave functions, which are eigenfu
tions of a Hermitian Hamiltonian when written in terms
the variablex ~and therefore orthogonal inx), into orthogo-
nal functions of the variableu. This transformation is non-
unitary because the number of modes used is not infin
therefore, the overlap of different eigenvector solutio
should be small when a large number of modes are u
Indeed, this turns out to be empirically true; nevertheless,
take the further step of orthogonalizing the numerical eig
vector solutions recursively by means of the standard Gr
Schmidt procedure, i.e.,

uworth
(p) &5

uw (p)&2 (
j 50

p21

uworth
( j ) &^worth

( j ) uw (p)&

A^w (p)uw (p)&2 (
j 50

p21

^worth
( j ) uw (p)&

. ~A11!

For N5500 modes, this typically changes expectation valu
by one part in 105.

The expressions for these overlaps and other matrix
ments in terms of the mode coefficientsan are presented in
Appendix B.

APPENDIX B: MATRIX ELEMENTS

A number of useful overlaps and other integrals a
straightforward to evaluate in terms of the mode coefficien
using the expressions~A3!. Solving them amounts to evalu
ating a number of trigonometric integrals. Such expressi
are especially convenient since they permit a number of
tegrations that introduce no numerical uncertainties~except
due to machine precision! beyond those of solving the origi
nal Multhopp-BSW eigenvector equation~A5!.

In particular, denote thepth eigenstate wave function pre
sented in Eq.~A3! by wp

(a) and that for some other set o
masses in theqth eigenstate bywq

(b) ; the latter wavefunction
then has an expansion like Eq.~A3! with mode coefficients
bn

(q) . Truncating afterN modes, one then finds
^wp
(a)uwq

(b)&5E
0

1

dx wp
(a)~x!wq

(b)~x!522 (
m51

N

mam
(p) (

n51

N

nbn
(q)F11~21!m1n

2 G 1

@12~m2n!2#@12~m1n!2#
. ~B1!

Indeed, the normalization integral*0
1dx w(x)251 is just the casea5b andp5q, in agreement with Eq.~A9! of Ref. @6#.

Other useful expectation values include

K x2
1

2L
p

5E
0

1

dxS x2
1

2D @wp
(a)~x!#252 (

m51

N

mam
(p) (

n51

N

nan
(p)F12~21!m1n

2 G 1

@42~m2n!2#@42~m1n!2#
, ~B2!

K S x2
1

2D 2L
p

5E
0

1

dxS x2
1

2D 2

@wp
(a)~x!#252

1

2 (
m51

N

mam
(p) (

n51

N

nan
(p)F11~21!m1n

2 G@2126~m21n2!1~m22n2!2#

3@„12~m2n!2
…„12~m1n!2

…„92~m2n!2
…„92~m1n!2

…#21. ~B3!
1-19



te

.

b

on
cy

at
n
re
is
e
g

to
ort
ll

ed
n

s
,

ith
ey

ain
r-
the

m

ds
cil-

ible.
ful

les,
in-

RICHARD F. LEBED AND NIKOLAI G. URALTSEV PHYSICAL REVIEW D 62 094011
Note that the spread of the wave function may be compu
about any convenient point inx, viz.,

^~ax1b!2&2^~ax1b!&25a2~^x2&2^x&2!, ~B4!

so that the additive constants of21/2 above are irrelevant
Also,

K 1

xL
p

5E
0

1

dx
1

x
@wp

(a)~x!#25 (
m51

N

am
(p) (

n51

N

an
(p)I mn ,

~B5!

where

I mn52 (
j 5um2nu/2

(m1n)/221
1

2 j 11

5cS m1n11

2 D2cS um2nu11

2 D , m2n even;

I mn5
1

um2nu
2

1

m1n
22 (

j 5(um2nu21)/2

(m1n21)/221
1

2 j 11

5
1

um2nu
2

1

m1n
1cS um2nu

2 D
2cS m1n

2 D , m2n odd. ~B6!

One also finds

K 1

12xL
p

5E
0

1

dx
1

12x
@wp

(a)~x!#25 (
m51

N

am
(p) (

n51

N

an
(p)Jmn ,

~B7!

where, using the notation of Eq.~B6!, one finds Jmn
51I mn for m2n even, andJmn52I mn for m2n odd.

Finally, the decay constant of thepth excitation@cf. Eqs.
~10!,~11!# is given by

f p
(a)5ANc

p E
0

1

dx wp
(a)~x!5ANc

p
cp5ANc

p
3

p

4
a1

(p) .

~B8!

APPENDIX C: ADDITIONAL RELATIONS
USED IN THE ANALYSIS

The numerical calculation of large-mQ matrix elements
with acceptable accuracy relies on achieving a balance
tween competing effects.

On one hand, Multhopp solutions to the ’t Hooft equati
with mQ@b tend to suffer degraded numerical accura
since they are highly concentrated into the small kinem
region 12x!1. As discussed in Sec. II, the endpoint regio
x'0 and 1 are where the Multhopp solutions—or more p
cisely, their derivatives—tend to break down. This effect
compounded whenm!b, since lighter quark masses forc
sharper end point behavior in the wave function. Althou
the BSW solution ameliorates this behavior, asmQ is in-
09401
d

e-

ic
s
-

h

creased one eventually faces the problem of attempting
represent a function with only a very small region of supp
in x by a finite number of modes with support over the fu
rangexP@0,1#. In practice, we gauge the errors committ
through such ‘‘lattice spacing’’ effects by computing a give
quantity with N5500 and noting the amount by which it
value shifts if one uses insteadN5100, and as expected
such errors become substantial~as much as a few percent! by
the time one reachesmQ.25b or m,0.4b.

On the other hand, although numerical solutions w
mQ , m.O(b) have the highest numerical accuracy, th
also have substantialO(1/mQ), O(1/mQ

2 ), etc. corrections
that are difficult to disentangle.

We adopt an intermediate strategy of employing cert
exact relations that hold for the ’t Hooft solutions. To dete
mine the relevant static expectation values, we solve
finite-mQ heavy hadron mass expansion forL̄ @Eq. ~6!#:

MHQ
2mQ5L̄1

mp
2 2b2

2mQ
1

rD
3 2rpp

3

4mQ
2

1OS b4

mQ
3 D . ~C1!

Neglecting the order term and using the relations@Eq. ~9!#

mp
2 5

L̄22m21b2

3
, rD

3 5
b2F2

4
,

~C2!

rpp
3 5

1

36
@8L̄~L̄22m21b2!13b2F2#,

we thus arrive at an equation cubic inL̄ that depends onF2.
We solve it atmQ515b.

The asymptotic value of the scaled decay constantF (n)

5AmQcn must also be evaluated at a finite value ofmQ ,
thus including 1/mQ-suppressed pieces. We account for the
explicitly using the expansion@11# @the first of Eqs.~14!#

AmQcn5S 12
2@2L̄ (n)2m~21!n#

3mQ
DF (n)1OS b5/2

mQ
2 D .

~C3!

We likewise solve this equation forF (n) at mQ515b.
Turning to the analysis of the SV sum rules Eqs.~22!–

~25! in Sec. IV, we note that their rapid saturation deman
an exceptionally high precision in evaluating both the os
lation strengthst in the right-hand side~RHS! and the ex-
pectation values in the left-hand side~LHS!. Reaching such
an accuracy through direct computation seems imposs
Therefore, we use a number of identities to get meaning
results. First, we employ the expression fortnk in terms of
en , ek , and the corresponding decay constants:

tnk52
b2

2~en2ek!
3

F (n)F (k)S 12~21!n2k

2 D . ~C4!

Then we make use of the fact that the discussed sum ru
being completeness sums, are exact when summation
cludes all excitations~see Ref.@11#!. Therefore, one has
1-20
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1

rk
22 1

4

Frk
22

1

4
2(

l 51

n

t lk
2 G5

1

rk
22 1

4

(
l 5n11

`

t lk
2 , ~C5!

2

L̄k
F1

2
L̄k2(

l 51

n

~e l2ek!t lk
2 G5

2

L̄k
(

l 5n11

`

~e l2ek!t lk
2 ,

~C6!

1

~mp
2 !k

F ~mp
2 !k2(

l 51

n

~e l2ek!
2t lk

2 G5
1

~mp
2 !k

(
l 5n11

`

3~e l2ek!
2t lk

2 ,
~C7!

1

~rD
3 !k

F ~rD
3 !k2(

l 51

n

~e l2ek!
3t lk

2 G5
1

~rD
3 !k

(
l 5n11

`

3~e l2ek!
3t lk

2 .
~C8!

The sums on the RHS can be accurately evaluated since
higher contributions fall off in magnitude very quickly. I
practice, we truncate the sum atl 520.
us
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s.

e-

ys
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the

A similar approach was used to evaluate the dual
violating differenceGB2GOPE as a function ofmQ . We use
the exact relation@5# @Eqs.~34!, ~35!, ~38!#

GB5
G2

4p

mb
22mc

2

MB
E

0

1dx

x
wB

2~x!

2
G2

4p (
Mn.MB

MB
22Mn

2

MB
U E

0

1

dx wn~x!wB~x!U2

,

~C9!

and therefore,

GB2GOPE

GOPE
5S E

0

1dx

x
wB

2~x! D 21

3(
n

Mn
22MB

2

mb
22mc

2 U E
0

1

dx wn~x!wB~x!U2

3u~Mn2MB!. ~C10!

The summation runs over all final excited states kinem
cally forbiddenin the decay. Once again, the sum converg
rapidly and is dominated by the lowest couple of states.
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