PHYSICAL REVIEW D, VOLUME 62, 094011

Precision studies of duality in the 't Hooft model

Richard F. Lebetl
Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606

Nikolai G. UraltseV
Department of Physics, University of Notre Dame du Lac, Notre Dame, Indiana 46556
and Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg, 188350, Russia
(Received 3 July 2000; published 2 October 2000

We address the numerical aspects of local quark-hadron duality using the example of the exactly solvable
't Hooft model, two-dimensional QCD withN.—cc. The primary focus of these studies is the total semilep-
tonic decay widths relevant for extractifg.,| and|V,y|. We compare the exact channel-by-channel sum of
exclusive modes to the corresponding rates obtained in the standagcetpansion arising from the operator
product expansion. An impressive agreement sets in unexpectedly early, immediately after the threshold for the
first hadronic excitation in the final state. Yet even at higher energy release it is possible to discern the seeds
of duality-violating oscillations. We find the “small velocity” sum rules to be exceptionally well saturated
already by the first excited state. We also obtain a convincing degree of duality in the differential distributions
and in an analogue &®.+.-(s). Finally, we discuss possible lessons for semileptonic decays of actual heavy
quarks in QCD.

PACS numbds): 12.38.Aw, 11.10.Kk, 13.26:v

I. INTRODUCTION D =2 spacetime dimensions in the limit of a large number of
colorsN.. As was shown in the original paper, the quark-
Questions of how to compare hadronic observables to thentiquark sector of the theory admits an infinite tower of
apparent underlying fundamental theory of QCD lie at theconfined, color-singlet solutions that can be obtained, in
heart of understanding the nature of strong interactionsprinciple, to an arbitrary degree of numerical accuracy. The
Thirty years after its inception, QCD iD =4 spacetime di- reason for this solubility lies precisely in the defining fea-
mensions still stubbornly refuses to admit a global solutiontures of the model. Largél. eliminates all Feynman dia-
The asymptotic freedom property of the theory permits thegrams with internafjq loops and nonplanar gluons. On the
perturbative calculation ofEuclidean Green functions in- other hand,D=2 allows gluon self-couplings to be elimi-
volving large values of momentum transfer or energy releas@ated by gauging away one component of the gauge potential
in terms of quarks and gluons, the fundamental objects oA*. Since only two components are initially present, the
QCD. But at lower scales one enters the nonperturbative resommutator ternfA*,A”] in the covariant derivative, which
gime, which not only invalidater at least complicat¢she  gives gluon self-coupling, vanishes identically in such
standard perturbative methods of field theory developed igauges. Then the only remaining Feynman diagrams to be
QED, but also leads to a dramatic change in the physicadummed for the quark-antiquark Green function are ‘“rain-
spectrum of the theory. Instead of quarks and gluons, onljyow” and “ladder” diagrams, whose Schwinger-Dyson
colorless hadrons are produced as asymptotic states in a@yjuations can be solved, giving rise to an integral expression
process, even at arbitrarily large energy. called the 't Hooft equatioridiscussed in Sec.)lI
Many nontrivial theoretical techniques respecting QCD  The 't Hooft model provides an excellent laboratory for
first principles have been developed to study nonperturbativeesting various approaches to strong interaction physics. Af-
features of the theory. Yet despite numerous advances, ner all, the 't Hooft equation provides a means to compute
one has been able to compute the masses, wave functions, lggidronic masses, wave functions, and transition amplitudes
transition amplitudes of hadrons in terms of quark masse# terms of the underlying partonic degrees of freedom.
and couplings directly from the QCD Lagrangian. Moreover, |n this work we are specifically interested in questions of
many existing theoretical tools are expressed through variouscal quark-hadron duality in the inclusive decays of heavy
expansions in certain small parameters; the actual range @fuarks. The notion of duality in general terms was first in-
each parameter where the expansions are applicable is oft@g@duced in the early days of QCD in R¢®] but not pur-
not well known. In such a situation, it is clearly advanta-sued for quite some time. A more detailed consideration was
geous to build a soluble toy field theory that incorporates agjiven a few years ago by Shifm48] and later reiterated in
many features of the QCD Lagrangian as possible. a number of paper&ee, e.g., Ref§4,5]), with applications
Such a theory does indeed exist, the famous 't Hooftrelevant to Minkowskian observables amenable to study via
model[1], which is defined by the Yang-Mills Lagrangian in an operator product expansi¢®PB). This allows the for-
mulation of the concept of local duality in a more quantita-
tive way, including nontrivial nonperturbative effects; we re-
*Email address: lebed@jlab.org fer the reader to these recent publications for the theoretical
"Email address: uraltsev@undhep.hep.nd.edu aspects. Here the question of duality is studied concretely by
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comparing the weak decay width of a meson containing derms of a power series inrhj of Ref. [5]. Moreover, by
heavy quark computed in two ways. In terms of partonicmaking use of a number of relations derived in the lamgg-
degrees of freedom, one has an OPE depending upon the frimit of the 't Hooft equation[11], members of the set of
quark diagramwith perturbative correctionsand a number nonperturbative matrix elements involved can be related to
of nonperturbative matrix elements suppressed by powers @&ach other, providing an economical description of the non-
the heavy quark mass. In terms of the hadronic degrees gferturbative physics. These are the tools that allow us to
freedom, one simply computes the weak decay amplitude fostudy the onset of quark-hadron duality.
each allowed exclusive channel, and adds them up one by As explained in Appendix A, we use a scheme based on
one. This comparison is especially instructive since one maye modified Multhopp method, by which the 't Hooft equa-
consider the behavior of solutions as the mags of the  tion is converted into an infinite-dimension eigenvector sys-
heavy decaying quark is varied. _ tem that for practical reasons must be truncated at some
Such a problem was first considered in Ré{, where the  ,,her N of eigenvector modes. The asymptotic conver-
main elements in numerlcal computations of exclusive decajance of this approach has not been rigorously studied, al-
rates were annunciated. The hadronic result was compared ough it apparently must yield unlimited accuracy when the

the Born-level free-partonic diagram as a functiomgf. In e
terms of the OPE, the latter is the tree-level piece of thenumber of the Multhopp modeN goes to infinity. Yet the

) - . . rate of convergence at largéis not well known. Addition-
Wilson coefficient corresponding to the unit operator. The v large quark masses turn out to require one to use a
numerical agreement was seen to be remarkable, in that t y, large g q

onset of the asymptotic agreement was clearly visible al_argerN for sufficient numerical accuracy, as di;cussed in
ready for relatively small values ahg. The intrinsically Sec. Il. It therefore seems mandatory to make an independent

limited numerical accuracy for sufficiently heavy quarks,cross-check of the numerical accuracy. We investigate this

however, prohibited drawing a definite conclusion about thé’roblem by comparing the numerical values of a number of
size of nonperturbative corrections for asymptotically largeStatic properties of heavy mesons at different valuesigf
mo. Additional numerical studie§7] considered similar With the results of their T, expansions obtained analyti-
questions for weak decay topologies other than the simpl€ally from the 't Hooft equation; this is the topic of Sec. IlI.
spectator tree diagram, in particular weak annihilat\m). We find that our solutions have sufficient numerical accuracy

The validity of the OPE was addressed analytically infor massesng corresponding to physical valués the sense
Refs.[5,8,9], which considered on one hand the nature of theexplained in Sec. I)las large as 20 GeV.
OPE for heavy quark decays, and on the other an explicit The duality of the inclusive widths of heavy-flavor had-
1/mq expansion of the decay amplitudes, which allows anrons to the parton-level widths, including the power correc-
analytical summation of the individual decay rates in thetions from the OPE, emerges through a set of sum rules that
asymptotic regime. The agreement of the two approachegquate sums of weighted transition probabilities to possible
through relative order m‘é was obtained by means of a final states and expectation values of the local heavy quark
number of sum rules derived directly from the 't Hooft equa-Operators. Since our main interest lieskip-c transitions,
tion, the archetype of which first appeared in Ra0]. which carry in practice a limited energy release, the most

While adequate to illustrate the theoretical validity of therelevant are the so-called small velocit®V) sum rules,
OPE for the inclusive decay widths of heavy flavors, thewhich we study here in the heavy quark limit. The behavior
analytic methodger secannot help in answering the practi- Of these sum rules not only shapes the semileptbniec
cal question relevant to phenomenology of beauty and charrflecays in actual QCD, but is also important for the determi-
quarks: Namely, how accurately do the OPE-improved parhation of the basic parameters of the heavy quark expansion.
ton computations describe the true weak decay width of a An additional advantage of the heavy quark limit for our
heavy flavor meson with finite mass, only a few times largerfinvestigation is that we are able to compute the SV ampli-
than the typical strong interaction scale? A purely analyticdtudes semianalytically, using the exact relatiphs] derived
expansion can hardly be used for this purpose, since it ifom the 't Hooft equations and relying for input only on a
a priori unknown how small an expansion parameter must béew static parameters, which can be computed with a high
for the expansion to start yielding a reasonable approximaprecision. A discussion of these relations appears in Sec. IV.
tion, not to mention achieving the necessary precision. TOVe find that the SV sum rules in the 't Hooft model are
obtain insights into the size of deviations between the actusgaturated to an unexpectedly high degree by the first excita-
decay widths and the expressions obtained from the OPE fdion above the ground statevhich we henceforth call the
quarks in the intermediate mass range, one must employ realP-wave” excitation, despite the fact that d=2 only ra-
numerical computations. dial excitations occyr Its contributions to even the Darwin

In this paper we focus on semileptonic decays of heav;(p%) and Kkinetic (uf,) expectation values constitute over
quarks. In the contexts of both real QCD and the 't Hooft90% and 96% of the totals, respectively, while it saturates
model, they are technically simpler than nonleptonic decayshe “optical” sum rule forMg—m, to a 1.5% accuracy.
Moreover, the magnitude of local duality violation is phe- This appears to be an intriguing dynamical feature of the
nomenologically most important in semileptonic decaysmodel. A similar high-saturation effect has been observed in
when one extract§V.,| and|V,,|. We use the techniques a quark flux-tube mod€l12], for the contribution from the
developed in Ref[6] to evaluate the required decay rates,“valence” quarkonium states.
and confront the total decay width with the expansion in We study the size of violations of local duality in the
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semileptonic decayb— clv assuming vectorlike weak cur- role in 1+1 dimensions of served bjqcp in 3+1. We
rents and massless leptons. These assumptions are importdigcuss the estimation @ as a particular number in Sec. Il1.
for comparison with QCD far beyond the obvious parallel of The singularity of the QCD Coulomb interaction in Eq.
closely resembling the actual world: The strength of the(1) is regularized using a principal value prescription, indi-
resonance-related duality violation crucially depends on theated by P in Eq(1).

threshold behavior in the decay probabilities, which is com- Solutionsn=0,1, ... of the 'tHooft equation alternate in
pletely different in two and four dimensions. The two-body parity, with the lowest being a pseudoscalar. The general
phase space, while|5| inD=4, is oc1/|f)|, that is, infinite ~ analytic solution in closed form is not known. As the eigen-
at threshold, inD=2. On the other hand, the situation is Value indexn increases, the eigenvalubt; asymptotically
special for massless leptons: Their invariant mass is alwaygpproach3’ w?n+0O(Inn)].

zero if they are produced by a vectorlike source, and the The static limit m;=mg—c is most easily studied
weak vertex is then proportional to the momentum. As d8,10,11 by employing the “nonrelativistic” variabled/ ,
result, in this case the threshold behavior of the decay rate Mo+ e€,, t=(1—x)mg and ¥ (t)=¢,(1—t/mg)/mg,

becomes<|p | much in the same way as in real QCD. This is in terms of which Eq(1) assumes the form

a crucial detail if one tries to draw practical lessons from the > )

't Hooft model. The need for a vectorlike coupling I v (t)=m2_'8 - (t)+£\lf (t)—'B—fwds Wn(s)

=2 is even more stark for the parton-level calculation. There """ 2t . 2°" 2Jo  (t-9)?

one finds that the integrated three-body phase space actually 3

diverges for massless leptons, and only the behavior of the

weak decay amplitude renders the width finite. We provide We solve the finite-mass 't Hooft equation using a nu-

more arguments in favor of such a choice in Sec. V, which ismerical method called the Multhopp techniges], a ven-

dedicated to the inclusive decay widths. erable system for solving integral equations with singular
In Sec. VI we briefly illustrate how well the duality works kernels. It was first applied to the 't Hooft equation in Ref.

for the vacuum correlator of light quarks in the timelike do- [14]. The idea is to expand the wave function in a series of

main. In the context of the heavy quark expansion this ianodes, not unlike Fourier analysis, and then turn the equa-

relevant for the nonleptonic decay widths, includingtions for the mode coefficients into an equivalent infinite-

spectator-dependent effects like WA. dimension eigenvector problem. In practice, one then trun-
Section VIl summarizes our investigation and discussegates at some point where the higher modes are deemed to
the conclusions that can be drawn for actual QCD. have little effect upon the wave function solutions, which is

Appendixes describe the computational technique emef course strongly dependent on the highest value a$ed.
ployed and contain a number of relations for the heavy quarRhe detailed formulas for applying tretandard Multhopp
limit of the 't Hooft equation employed in these numerical technique to mesons with unequal quark masses in the

studies. 't Hooft model appear in Appendix A of Ref6].
Intrinsic to the original Multhopp technique is the evalu-
Il. THE 'T HOOFT EQUATION AND ITS SOLUTIONS ation of the wave function at a discrete set of points called
“Multhopp angles,” which in the current problem are

We first review some well-known properties of the equivalent to
't Hooft model both as a reminder and to establish notation.

Confinement is manifest in41 spacetime dimensions with 1 kar

largeN., and the quarkt;)-antiquark,) two-particle ir- =3 1+co N+1/| k=1,...N, )
reducible Green function, i.e., the meson wave function

¢(X), is given by the 't Hooft equation: whereN is the number of modes retained in the numerical

solution. The mode coefficients are then obtained by the use

) mi—pB2 m5— B2 of a discrete inversion formulgA7) in [6]]. However, the
Maen(X)=| ———+ | #n(¥) Multhopp solutions can be seen to vanish\asand 1 —x
at the end pointx=0 andx=1, respectively[see(A10),
, 1 1 (A11) in [6]], while the exact solutions are known to vanish
—B fo dy ‘Pn(y)P(y_—X)g' (1) asx” and (1-x)"2, respectively, where
wherex is the momentum fraction in light-cone coordinates mi2 _
carried by the quark, and EJF myi cotmy =1, ®)

leading to a type of Gibbs phenomenon in the Multhopp
solutions. Since the Multhopp angles cease to sample the
wave function at some finite distance from the end points, it
Since g is finite in the largeN. limit, it provides a natural may be expected that the wave functions thus obtained are
unit of mass. Thus, all masses in this paper are understood asmerically inaccurate there. This shortcoming led Brower,
multiples of 8. Indeed, as pointed out in Rg¢6], 3 fills the  Spence, and Weikl5] to improve the Multhopp technique

, 9
B2= == (Ne— IIN,). @
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by eliminating the Multhopp angles and using instead a conClearly, this can be only a rather crude approximation, since
tinuous inversion formula. The algebraic details are prethe bare quark mass breaks chiral invariance. One can sup-
sented in Appendix A, and it is this improved numerical pose, nevertheless, that this side effect is not too important

technique that is used in obtaining our results. for our purposes. The chiral symmetry is spontaneously bro-
ken anyway, and the presence of a massless versus a massive

IIl. HEAVY QUARK EXPANSION AND CROSS CHECK pion does not seem to be essential for the range of problems

OF THE ALGORITHM we address here. On the other hand, the effect of the trans-

verse degrees of freedom is known to soften xhel sin-

Let us first establish a bit of notation. The mass of a heavyjularity of the heavy quark distribution functiga0,16,17,
quark of flavorQ is labeled asn;—mgq; in the weak tran-  similar to the impact of the light quark mass in the 't Hooft
sitions considered in subsequent sections, the final-stat@odel. The behavior of the distribution function affects the
quark g is assigned the mass,. The spectator antiquark inclusive decays of the heavy quarks in an essential way.
massm, is labeled bym, or mg, if there is any chance of We also present some results fiog,=0.268, partly to
confusion. explore light quark dependences of matrix elements and

As explained in the previous section and Appendix A, wepartly to investigate the beginnings of failure of the numeri-
use the modified Multhopp technique to find numerical solu-cal solutions asn,—0. The numbeN of Multhopp modes
tions of the 't Hooft eigenstate problem. Since the heavyused is 500; we considered smallgras well to study this
meson wave functions are peaked near the end of the intedependence, but since the behavior was found to be stable,
val, the accuracy deteriorates with increasing. The same, we do not dwell on it further here.
in principle, applies to the high excitations of light hadrons. The masses of heavy hadrons olj6)8,18
A more appropriate strategy for heavy quarks is to start with

a solution of the infinite-massstatio equation. This has — pi-p% pi-p3. B
been done analyticall{5,8], and full consistencywith the Mpg—Me=A+———+ A ol —=|. (©
OPE was demonstrated. Q Mg Mg

However, our practical interest lies in the properties of
heavy hadrons wittmg lying in the intermediate domain,
specifically formg one order of magnitude larger thah - 1 _
The convergence of therhf, expansion in this case is too w2=(Q(iD)%Q), pi=- §<Q(5.|§)Q>,
difficult to quantify analytically. This is just the situation
where the numerical computations are best employed. 1

Therefore, an important element of the analysis is to 3 A2 SR 2

’ . ! =—=(iT D ,Q(iD 0)Pg=0s
check the accuracy of the numerical computations of both Pan 2<I {QUD)"Q(),QID)"Q(0)} )0
the heavy hadron masses and wave functions at different (7)
values ofmg . To this end, we compute the masses and cer- ) o o
tain moments for the ground and first excited states, an@nd these expectation values refer to the infinite mass limit.
compare them to the analyticr expansion. In general, the I the p3 . expressiong is the momentum variable conjugate
terms in the Ih,, expansion depend on a number of expec-0 X, and diagonal transitions within the correlator have been
tation values in the static limit, like the kinetic one? removed.
—(Q(iD)2Q), etc. However, one can shofi1] that the SinceA in QCD traditionally denotes the mass difference
parameters appearing here through high orderrimyidan be between a ground-state pseudoscalar meson and its corre-

. . , ™™ sponding heavy quark in the largeg limit [as it is defined
expressed in terms of Ju§t the asymptotic valtie: MHQ in Eq. (6)], and we need it for a number of the excited states
—mg and the corresponding decay constant. These quantjy(n s¢ well we assign the notation

ties are the ones most accessible to numerical evaluation; in

particular, A is expected to be the most accurately deter- A= (), @)
mined quantity.

Our main computations refer to the casenaf,=0.5683, e :
as chosen in Ref6]. It correspondgsee Sec. I\}'¥o a mass and l:.see ag d /; 4thrrc1) ul?jhofut the ;;]apetr tor;(ﬁ)qual_t;ootmg.
of the strange quark in QCD. The choice of a noticeable "gthua lons (6)-(14) 10id Tor each stateHg™ with n
quark mass may be motivated by an attempt to mimic the 0.1, s sathat an |m_pI|C|t superscripn) is to be under-
effect of the transverse gluons absentDirs 2, which in a Stood in these expressions.

certain respect supply some effective mass to the light quarkf chcff(t) rrﬂlc:]c?eﬁ(') Ref[11], the following relations hold in the

where

5 KZ_m2+ﬁ2 5 :ﬁze

Un the case that the fermiorisreated by the weak current have ’“”:T' Pp 4
m;=0, this agreement was shown up to and includmgl/m‘é)
terms in the weak decay width 5], while terms up to and includ- 1 ©)
ing O(mf/mQ) were shown to coincide with those in the OPE in 3 — —r8A(A2—m2+ B2)+3B2F2
[8]. In the current work we taken;=0. Pam 36[ ( BT3B
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HereF is the scaled decay constant in the heavy quark limit,Therefore, we use Eq$9) as primary information and rel-

ie., egate Eqgs(14) to numerical checks. Our method of deter-
. mining A from theMHQ—mQ expression, designed to mini-

F(”)zf dt v (1) mize the influence of potentially large uncertainties at large
0

Mg, is described in Appendix C.
" 1 i Values of M, _—mq and the averages in Eqél4) as
= lim J th—¢>n(1——): lim c,ymg, (100 functions of mg from m=0.568 to 508 are presented in
mg—o+ 0 \/m_Q Mq mg— Table | for both the ground and first excited states. Similar
. ) ) .. results for just the ground state with=0.268 are presented
where the superscript is suppressed if there is no ambiguity, Tapje 11 Based upon the 10 data points presented in Table
| for the ground state, one may fit to a polynomial img/,

1
cn=J dx ¢,(X), (11 obtaining
0
| 1 ~ B Foiol &
and the exact relation betweep and the decay constant of —(MHQ—mQ)—1.317— 0.086——0.056— +O| — [,
the nth excitation is given in Eq(B8). In the heavy quark B Ma Mg e}
limit one has
e 2 2 c @=2032—2775£+O '8—2
A=mg(1-x), uZ=mg((x*)—(x)?), (12 oNg—“ g mZ
but there areO(1/mg) corrections to these relations. For ) 3
further applications to the decay widths we also consider the @u_x): 1316-2 491£ i3 78& L0 B
scalar expectation valyé] B ' ST mé mg
(15
1 — Mg 1 13
2MH <QQ>_ MH X/ ( ) mé B BZ
Q e —2(<x2>—<x>2)=0.8074—4.056m—+O —
Then the following expansions hold: B Q Ma
2[2eM —m(—=1)" m 1 2 3 4
\/chn=(1— 2 3mm( )])F(”) MQ <;>=1+o.099’8—2—0.044ﬂ—3+o B_4 :
Q Ho Ma Mq Mq
B2 The corresponding expressions using the approach of Appen-
+0 m_é ' dix C [neglecting the one foM Ho ™ Ma which is used as
input and hence is identical throu@(ﬂzlmé)] read
1 A Mg 2
Mo({l—X)=A— m
Q{1 mg o/ 82 035- 2,816 + 0 2|,
_ B Mg m5
4N (6A%+8u’+3p%) + B2F?
+ 2
2 m
24mg ™01 x)=1.318-2.544" + 251
B m mZ
B4 Q Q
+0 F), ﬂ3
Q +0 —3),
(14 mg
T _ g (16)
ma((x*) = (x)?) = uZ—3——(8AuZ+ B?F?)+0| — |, m2 P 52
Q Mo —2((x?)—(x)?)=0.8078-3.996 —+0| —
B Mq ma

me <1>:1_ Mi—Bz_p%—piuo(ﬁ_“)

% 2 3 4
Mg\ X 2mg, 2mg, mg,

m 1 2 3 4
2 (1) _14 0006 0066 +o| 2|,
Mg 1 X my My \mg

We note that values gi2, p3, orp>_ determined from
the expansions Eqgl4) suffer degraded numerical accuracy This agreement between the two approaches is quite excel-

compared to those taken directly from E¢®.sinceA andF  lent and is exhibited in Figs. 1-5 fdvl,;,—mq and the
are determined from more stable expansi¢insparticular, quantities in Eqs(14); in general, the exact results are pre-
they do not depend upon close numerical cancellationssented as points on a solid line, while each fit using E.
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TABLE I. Matrix elements as functions of heavy quark masg and light quark massn=0.568,
computed numerically via the BSW-improved Multhopp technique. All masses are in urts of

1
Mg Muy— Mo Jmglc| Mo(1—%) ma((x%) = (x)?) %<;>—1
Q
Ground staterf=0)
0.56 1.21918 0.7300 0.280 0.017 83402
1.0 1.24633 0.9534 0.432 0.048 4590 2
3.0 1.28764 1.4210 0.791 0.211 9:040 3
5.0 1.29904 1.6061 0.944 0.333 35803
7.0 1.30423 1.7503 1.029 0.417 1:880 3
10.0 1.30820 1.7901 1.102 0.500 98804
15.0 1.31131 1.8633 1.166 0.582 44404
25.0 1.31375 1.9271 1.222 0.661 1480 4
35.0 1.31475 1.9560 1.248 0.700 7310 °
50.0 1.31545 1.9783 1.268 0.732 3680 °
First excited staten(=1)
0.56 2.82831 0.0000 0.280 0.032 —1.30x10°?
1.0 2.77888 0.0922 0.476 0.091 —9.62x10 2
3.0 2.66569 0.4429 1.094 0.457 —3.29x10 2
5.0 2.61977 0.6427 1.437 0.775 —1.60x 10 2
7.0 2.59522 0.7648 1.649 1.014 —9.40x10 3
10.0 2.57436 0.8775 1.848 1.267 —5.14x10°8
15.0 2.55644 0.9812 2.033 1.529 —2.50x10 3
25.0 2.54088 1.0765 2.205 1.797 -9.68<10°*
35.0 2.53382 1.1213 2.287 1.933 -5.10x10°*
50.0 2.52833 1.1566 2.351 2.046 —2.56x10°%

is presented as a dashed line. In Fig. 6 the analogous expregepends, however, on the meson’s light quark mass, decreas-
sion MHQ—mQ for the m=0.568 first excited state is pre- ing for smallm. This is expected since at smaitlthe sharp-
sented, while Fig. 7 uses the same methods and values froRgss of the wave function as—1 becomes stronger, and
Table Il to presenMHQ—mQ for them=0.268 ground state. more Multhopp functions are required to approximate it:
In Fig. 1 and especially in Fig. 7, the quality of numerical Each Multhopp function vanishes lik¢l—x. Likewise, the
results is seefas expectedto begin breaking down at large requiredN increases for the excited states. Still, one can
Mg and smalim, sinceN =500 is fixed. We conclude that the check that it is possible to go as highrag=153 even form
numerical routine we rely upon is sufficiently accurate foras small as 0.

N=500 up tomy~(25-30)3. The critical value oing also It turns out that a numerically significant cancellation oc-

TABLE Il. The same matrix elements as in Table | for the ground statenand.263.

1
Mo Mug ™Mo Vmoco Mo(1—x) ma((x*) = (x)?) %<)—(>—l
Q
0.26 0.81299 0.5067 0.130 0.005 3610 !
1.0 0.92634 0.9481 0.373 0.050 72600 2
3.0 0.99222 1.3788 0.658 0.202 12400 2
5.0 1.00958 1.5420 0.772 0.306 52400 3
7.0 1.01725 1.6277 0.833 0.375 2280073
10.0 1.02288 1.6999 0.885 0.442 13803
15.0 1.02692 1.7612 0.930 0.509 6:510 4
25.0 1.02946 1.8137 0.969 0.591 34204
35.0 1.03003 1.8369 0.987 0.665 2080 *
50.0 1.02992 1.8543 1.002 0.811 2070 *
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132 Mg, = 0.56, oxact —e— 135 Fit oo
1.315 | Fit - - 1.3 msp=0_56,exact .
131 f 125 ¢
12+
o 1305 -
E ¥ 115t
I 13} Xy
EIO ERREN
1.205 |
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1.29 | N 14
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FIG. 1. Values of the ground-state enenrg)qqf Mg Versusmg FIG. 3. Values of the ground-state matrix elemeny1—x) for
for m=0.568 determined through direct numerical calculation m=0.568 (solid line). The dashed line represents an approximation
(solid line); fit of the mass expansion E¢f) to O(l/mé), using the  using the second expansion in Ed4), good toO(l/mé).
relations Eq(9) and the approach described in Appendixdashed

line). and indeed one can verify this feature by compaﬂMgQ

—mq values between Table h{=0.563) and Table Il (n

=0.268). While this pattern is expected when the spectator

quark is heavy, it priori need not hold when it is light. This

supports the naive expectation that the chiral symmetry

tal and does not occur for the excited states, nor rfor rEIr_eaking may Iea_d_to_ a desc_ription in some aspects resem-

—0.268. ing the_ nonrelativistic constituent quark model. The above
Let us note that the expectation value of fight-quark expectation value, however_, decreases for the excited states,

as expected from such a picture.

Eﬁi?rf(?re?ﬁétyglrgutgg ;Z?;’y VC:]?;? nmt:;,nieo:;gﬁ%yd% skeinto Drawing semi-quantitative conclusions for QCD requires
. ’ . ) Y% translation rule between the mass parameters in the two
Mo—m andx~1-x in Eq. (13 and referring to Table III; theories, that is, an estimate of the value ®fin GeV.
tsr:oIchts ti fﬁ;rl?grtsrgjgiggh“gg_;;?e nsc;/rgnilr?]tlvlltimg:iéi-an Different dimensionful quantities can be taken as the yard-
) a = C stick; since the theories are not identical, this translation rule
almost simple additive dependence /ofon the light quark  myst pe introduced with some care. As follows from the

curs in the value ofu?— B2 in 1/mf, corrections and, in
particular, at the 3 level betweerpy andp3 . for the
ground state just around our primary value= 0.563. Such
a numerical suppression of the power corrections is accide

massm, heavy quark sum rules, the physics of duality in the decay
— — widths of heavy flavors crucially depends on the properties
A=Ajm=otm, 17) of the lowest excited heavy-quark states, in particular the
2.1 j [T
2r mg, = 0.56, exact 0.9 Fit o
191 0.8 Mgy = 0.56, exact
18 | 07 |
1.7 +
EO 16l (\E 06
:O 15 | NI 05|
14t 7 < 04 ¢
13} 1 € 03l
12l | 0.2
14}
o , , , 01t .
~ 5025 15 10 7 5 3 ol . .
mq -~ 5025 15 10 7 5 3

m,
FIG. 2. Values of the ground-state integrajymg for m :
=0.568 (solid line). ¢, is related to the decay constant via Eq.  FIG. 4. Values of the ground-state matrix elemen@((xz)
(B8). The dashed line represents an approximation using the first (x)?) for m=0.568 (solid line). The dashed line represents an
expansion in Eq(14), good toO(1/mg), and the asymptotic value approximation using the third expansion in E@4), good to
F from a polynomial fit in I to the points on the solid line. O(1/mg).
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TABLE lll. Ground-state matrix elements as functions rof The value 0f/T21.3B~500 MeV seems to be in a rea-
used_to probe the expectation value of the light-quark scalar densitgoname correspondence with the size of this difference in
(Holag[Hg)2My,.. QCD when it is normalized at a low hadronic scale,

A(1 GeV)~(600=60) MeV[20].
m My <i> ﬂ<i>_1 It should be noted, however, that the kinetic expectation
Q 1-x Mg \1-X value in the 't Hooft model turns out to be rather small,
w?=0.88°~0.12 Ge\?. This is not surprising, since the
Me=758 chromomagnetic field is absent in two dimensions, while it
0.10 784710 73.0 —7.0x10°2 was showr{18,21,23 to be crucial in the real case. Indeed,
0.26 8.01725 31.1 1+9.4%10°23 the comparison is better justified for the differenpg.
0.40 8.15422 19.2 —56X10°2 —,ué in actual QCD versus the value ﬂfi in the 't Hooft
056 8.30423 13.8 —6.7X10°2 model. These questions were discussed in detail in[RR&f,
1.00 8.71728 8.24 55X 102 and can be easily understood using the sum rule representa-
1.50 9.19304 5.87 —4.3x10°2 tion. Due to the absence of spin in two dimensions, there is
no difference between the would-be spin-1/2 and spin-3/2
mo=108 light degrees of freedom. In particular, labeling the “oscilla-
0.26 11.02288 42.6 +4.5% 1072 hold. Then the sum
0.40 11.15925 26.2 —6.2x10
0.56 11.30820 18.7 —7.4x10°2
1.00 11.71817 11.0 ~6.1x 1072 wi=3> |12 +6>, €13,°—9>, €142
1.50 12.19091 7.73 —4.8x10°2 " " : 20
my=208 o )
and the latter sum is just the general expression ,ufé;
0.10 20.86224 182.0 —-1.3x10°* —p2:
0.26 21.02864 81.0 +2.0x10°3 ¢
0.40 21.16490 49.4 —6.7X107?
0.56 21.31284 34.9 ~8.3x10°2 po—ng=92 €l (21
1.00 21.71902 20.2 —7.0x10°? A
1.50 22.18785 14.0 —5.6x10°?

Accepting such an identification suggested in R28] and
the estimatg.2 — u2=(0.15+0.1) Ge\?, we again observe
A reasonable agreement with the findings of the 't Hooft
model.

P-wave excitations with opposite parity to the ground-stat
multiplet. It will become evident from the next section that
they are of primary importance for theni$ expansion of

static properties as well. Therefore, we choose the mass dif- IV. DUALITY IN THE SV SUM RULES
ference between the lowest parity-evefPr\yave state and

: . A useful theoretical limit—the so-called small velocity
the parity-odd ground-state meson to gauge the translatio ; . .
between the mass scales. &V) regime—was suggested in the mid 19824] as a the-

In the 't Hooft model the mass differeneg— €, for light oretical tool for studying semileptonic heavy quark decays.

spectators amounts to about &.3Real charm spectroscopy This refers to kinematics where both and ¢ quarks are
suggests that the firf-wave excitations are between 400 heavy, but the energy release is limited, so that the velocity

; of the final charm hadron is small. At large energy release
and 500 Mev at_)ove the ground .S‘a‘e- Taklng_ the Iarge[he OPE for the width must converge rapidly to the actual
value for sake of illustration, we arrive at the estimate

hadronic width. Still, at fixed energy release the deviations,
B~400 MeV, (18) although g suppressed, are present regardless of the ab-
solute values of masses.

which is adopted in our analysis. This falls rather close to the [N the SV regime the semileptonic decays proceed either

estimate of Ref[19], which relied on a quite different type to the ground-state charm final stafe,or D* (the semi-

of effect in the light-quark systems. elastic transitions or to excited ‘P-wave” states of the op-
Assuming a value for the “bare quark mass in QCD Posite parity. Other decays are suppressed by higher powers

(normalized at the appropriate scaten,) of about 4 Gev, Of velocity, or by heavy quark masses.

we conclude that mesons with quarks of masses The equality of the sum of partial decay widths and its
OPE expansion is achieved through the sum rules that relate
mpy~108, m.~(2.5-3.58, (190 the sums of theP-wave transition probabilities, weighted

with powers of the excitation energies, to the static charac-
represent in the 't Hooft model the actual beauty and charnteristics of the decaying heavy hadron. The onset of conver-
mesons. gence of the OPE expansion for the widths is then directly
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mq Ma

FIG. 5. Values of the ground-state matrix elemembg(
MHQ)(llx)—l for m=0.568 (solid line). The dashed line repre-
sents an approximation using the final expansion in(k&4), good
to O(1/my).

FIG. 7. Same as in Fig. 1, except=0.268.

1

P 7= 2 Thio (22)
n

related to the pattern of saturation of the sum rules by the
lowest excitations. If higher states contribute significantly,
they delay the onset of duality, while their absence leads to a
tight quark-hadron duality after the firBtwave channel is
open.

Knowledge of degree of saturation of the heavy quark
sum rules is also important for another reason: It determines
the hadronic scale above which one can apply the perturba-
tive treatment to compute corrections or account for evolu-
tion of the effective operators. The lower this scale, the more
predictive in turn is the treatment of the nonperturbative ef-
fects in the OPE. Herek andn denote excitation indices for the initial and final

A recent review of the SV sum rules can be found in Ref.states, respectivelyin practice only transitions from the
[22] (the perturbative aspects are discussed in more detail iground state are interesting, so we limit ourselvels+®; in
Ref. [23]). For most practical purposes addressed here, onhis case the indek is omitted. The so-called *“oscillator
can consider the perturbative effects to be absent in the %trengths”  parametrize the transition amplitudes into the
Hooft model. In particular, the heavy quark parameters d@mpposite-parity states in the SV limit,
not depend perturbatively on the normalization point, and
there is no need in the explicit ultraviolet cutoff to introduce
a normalization point. The sum rules we address are

1
EAKZE (en—ek)rﬁk, (23

(24)

(Mi)k:; (€n—€)> 7oy,

<p%>k=; (en— €372 (25)

1 — -
m<n|Q’)’MQ|k>:TnkE’u,}UV‘i‘O(Us), (26)

264 wherev is the velocity of the final state hadron. In the diag-
262 | onal transitionp? is the slope of the Isgur-WiséW) func-
tion of state|k):
26
o A — V2,
£ 2581 (k)| QoQlk(0))=1=pf 5 +OWw*).  (27)
lg Mg
S 256
The expressions for,, and p, in terms of the light-cone
254 + wave functions are
252 " d
05 o . . . mspl= 0.56, exact —e— Tok= JO dt W (t)t &‘Pk(t)
T 5025 15 10 7 5 3

Mg

1 d
=— lim J;) dx @n(x)(l—X)&qu(X),

FIG. 6. Same as in Fig. 1, except for the first excited state. mg—
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TABLE IV. Meson mass eigenvalueg= MH??— mg and oscillator strengths as functions of excitation

numberk, for m=0.563. The value for a given nonperturbative matrix element for ela¢hdicates the
fractional amount remaining after saturating the corresponding sum rules22s(25) by statesn with n

<k.
k €k Tko p’—1/4 A e P
0 1.318
1 2.516 7.25%10°* 6.2x10°° 1.5x10°? 3.6x 102 8.8x10°?
3 3.989 5.36¢ 10?2 7.8x1074 2.7x10°3 9.4x 1073 3.3x10°2
5 5.060 1.7% 102 2.2x1074 9.3x10°4 4.1x10°3 1.8x10°2
7 5.949 8.3%x10°° 8.7x10°° 4.3x10°4 2.2x10°3 1.1x10°2
9 6.724 4.9%10°° 4.1x10°° 2.3x1074 1.2x1072 6.7x10°°
11 7.421 3.2%10°3 2.1x10°° 1.3x107 7.4x1074 4.3x10°°3
13 8.060 2.2%10°3 1.1x10°5 7.0<10°° 4.4x1074 2.7x10°°
15 8.653 1.7x10°8 5.4x10°° 3.6x10°° 2.4x10°4 1.5x1073
17 9.209 1.3x10°8 2.1x10°° 1.5x10°° 1.0x10°* 6.6x10°4
19 9.735 1.0%10 3
) % The level of saturation by the lowest open channels is
Pk= f dt ta +5 extraordinary. The explicit reason for such a perfect satura-
0 tion of the sum rules involving even rather highe® powers
_ 1 d 1 2 of the excitation energy can be read off E§9)—r's are
= lim j dx|| (1=%) &~ 5| ¢K(X) (28 inversely proportional to the third power of the excitation
mg—=+0 energy. With the asymptotics,~n, F(M~n~" the first

excitation energy; — €q is notably smaller than the next one

be rather significant, leading to significant problems in pre-€ 2 h€0 'nCLUd'?tg thrgzel (lane(;gy 9aps. Tﬁ'e general peculiarity
cision numerical studies. To avoid this problem we use the é € tt doo mlotel eading to such a saturation is not
analytic expression for the inelastic amplitudes obtained iifinderstood completely.

The finiteimg corrections to the-integral forms turn out to

Ref. [11]: With this pattern of saturation of the SV sum rules for the
ground-state meson, one expects an early onset of accurate
d iz —(—1)nk dl_JaIity for the inclusive widths in thbgc trar)sit_ions, only
Thk= < nitg ‘ k> =— —SF(”)F(‘O( ) slightly above the threshold of the first excitation. Demon-
2(en—€x) strating this result through direct evaluation of the decay

(29 widths is one of the purposes of the next section.

whereF(™ are the asymptotic values of the decay constants
¢, scaled up by the factofymg, as in Eq.(10). The constants

F(™ are computed as the valuesmfymg atmg= 153 (see The semileptonic widths described in this work were con-
Table ) augmented by the fly corrections detailed in the sidered in detail in Ref5]. Here we recapitulate a few basic
first of Eqs.(14), while values ofe, are computed using the points. The weak decay Lagrangian is
procedure described in Appendix C.

The results of the computations for the ca G — _
=158, m=0.568 are presented in Table IV. Our central Eweak:_ﬁ(cyﬂb)(e)m’/)- (30
result is a surprisingly good saturation of the sum rules: The
first (n=1) excitation generates 99.4% pf, 98.5% of |, terms of the previous notatio@—b, g—c (or, later in

A, 96% of u%, and even 91% op3. The rest is almost this sectionyu), andHq—B. The key property of alD=2

completely saturated by the secoRewave state If=3),  vectorlike currents is that fan,=m,=0, the invariant mass

where the cumulative values for the same quantities reag? of the lepton pair is always zero. For all computational

99.92%, 99.73%, 99.1%, and 96.7%, respectively. purposes decays into this massless lepton pair are equivalent
In terms of absolute numbers, the sum rules 88—  to decays into a single massless pseudoscalar pawicle

(25 would give p?—1/4=0.529, A=1.2783, Mi weakly coupled to quarks according to

=0.78282, and p3=0.998%, the last of which givesF©

=1.99/8, in fine agreement with the values obtained from Toeals — ——Cy,b €79, (31)

the values obtained in the previous section via the methods weak 27 Yu v

described in Appendix C. The few-percent discrepancy cor-

responds to the accuracy in determinations of squared decay Several arguments favor our choice of a vectorlike weak

constants. decay interaction in the 't Hooft model. One is of course the

V. LOCAL DUALITY IN THE DECAY WIDTHS
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simplicity of Eq. (31). Another is that forg2=0 some diffi- TABLE V. lllustration of the speed of saturation in excitation
cult problems of renormalization are absent, as we now disaumbem of the total hadronic widti'y, , by partial widthsl", from
cuss. The central problem in applying the OPE in practice igxclusive channels of masd,,. In this examplemg=158, mj
disentangling perturbative and nonperturbative effects. More=108, andm=0.563, for which M}, =16.3113.

precisely, this refers to the separation of short-distance ef
fects attributed to the coefficient functions from long- N Mn (n[Hg) Fallh,  Zheol'm/Thy
Sistar?ce effectskresidin? in the matrix elements of the effecb 11.3082 0.96426 94510 L 09448313
IV?I'hga\rl)égllj?k:ati?/gergo?rrs&ions for example those thaé 12.5744 0.25996 5.3610°* 0.9984744
renormalize the weak quark currént, are generally rather nor%- 13.4495  0.044347 1'2610;3, 0.9997062
trivial, even in the 't Hooft model. However, according to the 14.1780 0023927 27410 0.9999801

—5
nonrenormalization theorem of R¢6], such vertex correc- 4 14.8095 0.005462 1‘0310_6 0.9999903
tions are absent from the decays wifh=0. This allows one 5 153810 0.006617 9'49107 0.9999998
6 15.9043 0.001391 1.8710°7 1.0000000

to isolate the problem of renormalization of the underlying
current from the question of interest in our study: possible
deviations of the full decay widths due to the presence of

thresholds in the production of the hadronic resonances. 1 v 1

In reality, from the OPE viewpoint some short-distance qum“ﬂf J,|B)= _quo dX @n(X) pp(x),  (33)

corrections still remain even in this special kinematic region

due to the high-momentum tails in the meson wave func-

tions. These tails come from the hard gluon exchanges bevhereq,= _|5|: —(Mé— Mﬁ)/ZMB, so that the partial de-
tween the constituents. In principle, these “hard” COMPO- oy width forB—DM|7 is given by

nents can also be separated from the “soft” bound-state

dynamics explicitly. However, in practice this is not neces-

sary: These effects are completely contained in the meson G? Mé—Mﬁ 1 2
wave functions. L P VI . fo dX en(X)@p(X)| O(Mp—Mp).
Another advantage of vectorlike currents is apparent (34)

when one notes that thB=2 three-body “semileptonic”
phase space diverges logarithmically for massless leptons.
Explicitly, for the decayM—m+m;+m, (equal lepton The threshold suppression mentioned above is manifested in
masses are assumed to render the expressions sinthier the explicit factor 13— M2): The reciprocal of this factor in
three-body phase space turns out to be the phase space is removeddgyfrom the matrix element. It
is also possible to derive this result directly using the meth-
ods of Ref.[6]; note, however, that these expressions are

®o(M:m.my.m;) = 1 K much simpler than those of Rd6], because the vectorlike
SR 473(M —m) (M +m)2—am? current with massless leptons restrigfsto 0. The sum of

! these widths over all open channels is to be compared to the
(M+m)2[(M—m)2—4m,2] OPE prediction. The remarkable speed of saturatiom,in

> > | anticipated in the last section, is illustrated for one sample
(M=m)T(M+m)*—4my] case in Table V.

(32 Turning to the OPE, we mention one more problem asso-
ciated with an accurate understanding of local duality viola-
tion. Apart from the purely theoretical aspect that OPE

whereK is the complete elliptic integral of the first kind. As power series are generally only asymptotic and, thus have a
m—m, one regains Eqgsi4.1)—(4.3 of [6], while asm;  formally zero radius of convergence innig, one normally
—0, the argument of the elliptic integral goes to unity, andhas additional practical limitations. Only a limited number of
K(1—e€)—In(8/e)/2. This is a manifestation of the logarith- the terms, as well as the associated expectation values, are
mic infrared divergence of the massless scalar Green funasually known, which places additional theoretical uncertain-
tion at large distance iD=2. A detailed calculation shows ties that dominate in practice at sufficiently lange .
that the vector nature of the weak coupling regularizes the This feature can be naturally incorporated in the analysis
phase space integral, preventing the partonic rate from dief our concrete model. We account completely only through
verging in the limit of massless leptons. Furthermgre, as disterms that scale like m‘é, the highest order that emerges
cussed in the Introduction, this also removes the [Lsin-  from the OPE free from the four-fermion operat$s. The
gularity in the threshold behavior for hadronic two-body rest, although calculable in principle term-by-term in the
decays. 't Hooft model, are taken to represent the OPE “tails” dis-
As a final advantage of vectorlike currents and the speciatarded by the unavoidable truncation.
kinematic pointg?=0, note that at>=0 theB— D" tran- Using the sum rules of the 't Hooft model, RE5] estab-
sition amplitudes are directly expressed in terms of the overlished the following exact representation for the total decay
lap between the initial and the final wave functions: width:
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G2 mi—m? [1dx
B 247 Ms Jox ¢

20— X T, (35
M >Mpg

wherel',, at M,,>Myg are understood as given by E@®4)
without the explicit6-function singling out the open chan-

nels; suchl’, are therefore all negative. On the other hand,

the OPE vyields the result

2 2 2
G my—me

B_4’7T my

mbj'ldx 20040
Mg 0;¢B(X)

. (36)

185
=

with M generically denoting the OPE expansion parameterf,’-0

we do not specify here if it isn, or m,—m,, or some other
combination. It was shown in Rdf5] that thel",, term in Eq.
(35) is dual to the order term in E¢36); however we do not

use this here and rather treat the latter as an intrinsic uncet2.0

tainty in the “practical” version of the OPE.
Thus, our strategy is to compare the exact width
G? Mg—M?2| (2 2
Ie=7- WS My jo dXen(X)@s(X)| , (37)
to
2 2 2
Fopt:f_w mbTbm° &1—; Oli—x P3(X). (38)

The expectation valuenf,/Mg)(1/x) above can either be

PHYSICAL REVIEW D62 094011

TABLE VI. Numbers relevant to local duality violation for
mo=158, m=0.563, andm, variable.N indicates the excitation
number of the heaviest final-state meson kinematically allowed for
the given initial meson masMHQ: MN$MHQ<MN+1- FHQ is
the total hadronic width Eq.37), while I'gpg andI'g are given by
Egs.(38) and(39), respectively.

5.0 18 1.410°8 4.1x10°4
6.0 16 1.%x10°7 4.1x10°4
7.0 13 3.x1077 4.1x10°4

11 6.3%10°7 4.1x1074

8 1.2<10°6 4.2x1074
10.0 6 2.%10°° 4.2x1074
11.0 4 4.3%10°8 4.2x10°4

3 9.x10°® 4.2x10°4
125 2 2.x10°° 4.4x10°4
13.0 1 3.x10°% 4.5x10°4
13.5 1 3.410°° 4.5x10°4
14.0 0 5.9% 104 1.0x10°8
14.5 0 8.410°*4 1.3x10°8

quark symmetry with large quark masses and SV kinematics,

while at another end it rests on the large energy release.
We start from the SV case when, is fixed and large and

m, is large as well, varying the energy release by increasing

m. towardsmy,. Since the violation of local duality is ex-

evaluated numerically, or in the spirit of the OPE, computedoected to be suppressed for all valuesmf, high numerical

in the form of a 1, expansion, the last of Eg&l4). It turns

accuracy is vital. We fixm,=158 (=6 GeV), and varyn,

out that the expansion converges very rapidly to the exadrom 58 up to m,. The results are given in Table VI and
result, so that this does not significantly affect the observedrig. 8. We note that the difference between the two widths is

pattern of local duality at the quantitative level. The Born-
term partonic rate is simply given byopg With this expec-
tation value set to unity,

so small that one must plot Hg/I'gpe— 1) rather than the

widths themselves. This is expected since the SV sum rules
are very well saturated, as detailed in the previous section—
the higher thresholds are then strongly suppressed numeri-

_G_2 mg—m (39) cally at finite energy release. But fon, approachingm,,
47 m, where they could be noticeable, the heavy quark symmetry
The main practical interest of these calculations lies in the 3

b— c width with its limited energy releadg, . In generalE,
can be small either ifn, is not large enough, or even at large
m, if E;=m,—m, (or m,—m.— o if g is nonzery is
insufficient due to a significart quark mass. The latter case
falls into the SV category, and the violations of duality are
suppressed here even at the maxigfaby heavy quark sym-
metry, as was pointed out in the mid 198@4]. Therefore,

onea priori expects a different pattern in the two cases. We 2 6
try to separate the possible effects by considering different® -6.5

choices form, andm, rather than by only taking them close
to their realistic values.

With these arguments in mind, one can expect to find

significant effects of duality violation in the cases where
1/m; or 1/im, effects are important. As suggested in Ref.
[23], in this case it is advantageous to fix, close to its
actual value, and varyn. from nearm, down to smaller

-3.5

= -45

910(TeTope —1
&
[4,]

FIG. 8. Duality deviation between exact hadronic widlty and

values, changing in this way the energy release. At one entl determined from the OPEEQq. (38) or (C10)], good tOO(llmg)_
of the interval the local duality is supported by the heavyHerem,=158, m=0.563, andm, variable.
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TABLE VII. Same as in Table VI, excephy=108. TABLE VIII. Same as in Table VI, excephg=>58.
mg N Ty /Tope—1 Ty, /To—1 mg N Ty /Tope—1 Ty, /To—1
5.0 6 6.9<10°® 9.4x 1074 1.0 3 8.5<10°° 3.7x10°3
55 5 8.6x10°° 9.4x10°4 1.5 3 8.0x10°° 3.7x10°3
6.0 4 1.310°5 9.5x10°4 2.0 2 1.9<1074 3.8x10°°
6.5 3 1.8<10°5 9.5x10°4 25 2 2.5¢10°4 3.8x10°°
7.0 3 2.1x10°° 9.5x10°4 3.0 1 3.5¢107* 3.9x10°3
7.5 2 5.5<10°° 9.9x10™4 35 1 3.%1074 3.9x10°3
8.0 1 7.6<10°° 1.0x10°8 4.0 0 6.6<10°3 1.0x10°2
8.5 1 7.9<10°° 1.0x10°2 45 0 7.3<10°3 1.1X10°2
9.0 0 1.4x10°8 2.4x10°°
9.5 0 1.%10°° 2.8x10°°3

effectively, down to relatively low masses and velocities of
order 1. This was conjectured in the early papers on the
works efficiently since both quarks are very heavy. In fact,subject[24].
the only prominent features on the plot occur when thresh- Therefore, our final attempt in the quest for a sizeable
olds to the first fewD states of opposite parity to the ground- duality violation inb decays is considering théd < u)-type
stateB meson are crossed, for example betwesnr=13.5  transitions, where the heavy quark symmedey sedoes not
and 148. The deviation is extremely small also for smaller constrain the individual transition form factors. We fix in our
m. where thec quark velocity is rather large—yet there the expressionsn.=m=0.568 or 0.263 (but still keep the two
energy release is significant, and a large number of excitequarks flavor-distinguished and vary m, from 13
states(up to 18 atm.=58~2 GeV) are produced. Table ~0.4 GeV to 18~4.5 GeV. The results are shown in
VIl and Fig. 9 show analogous results fom,=2108, m Table IX and Fig. 11, and Table X and Fig. 12, respectively.
=0.568. Although the difference between the actual width and its

To render the duality violation more apparent, we con-OPE approximation is larger, it still is very small and ap-
sider(Table VIII and Fig. 10 the same decay widths forta  proaches a percent level fon, as low as ~0.8 GeV.
guark with half the masan,=58~2 GeV. Even here the The total decay width is no longer saturated to such a high
deviation is below per mill as soon as the first excitation cardegree by transitions to the ground state, especially for larger
appear with sufficient phase space. The duality-violatingm,. Nevertheless, the duality is amazingly well satisfied
component at last exhibits the proper oscillating behaviowhen just the first few open channels are summed. Again,
(note the decrease between=3 and 3.8 or 1 and 1..8),  the only prominent features in the plots appear when cross-
but this effect is too small to be extracted reliably at largering kinematic thresholds due to the lightd3t mesons of
energy release where this property becomes an asymptotipposite parity to the ground-staBe
rule. The extraordinary agreement betwdeg and I’ 5pg may

As follows from our computations, local duality is vio- be underscored by instead plottifigig. 13, final column of
lated at a tiny level in th&— c decays in the 't Hooft model Table IX) the difference betweehg and the Born-term par-
whenever it isa priori meaningful to apply OPE. A possible tonic ratel’,, given in Eq.(39). From an algebraic point of
reason behind this might be that for unidentified reasons theiew, I'g andI" op differ generically atO(1/M°®), while I'g
heavy quark symmetry works for the inclusive widths tooandI, begin to differ already a®(1/M?).

-2.5
T T
w w
o o
< <
) )
[=] [=]
= =
8 8

55 1 1 1 1 1 1 1 1

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
mC mC
FIG. 9. Same as Fig. 8, excemt,=1083. FIG. 10. Same as Fig. 8, exceap,=58.
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log4(T'aTope —1)

My

FIG. 11. Same as Fig. 8, excepl.=m=0.563 and m, vari-
able.

PHYSICAL REVIEW D62 094011

logo{Te/Ty=1)

my

FIG. 13. Same masses as in Fig. 11, using the Born-term par-
tonic ratel', instead of['gpe. Note that the deviation is much
larger.

Thus, we find local duality between the actual semilep-
tonic decay width and its OPE expansion to be very wellAt finite m, in a theory with narrow resonances the actual

satisfied in all cases.

distribution is given by a comb of-functions with spacing

Before concluding this section, let us briefly address duin the argument of Eq(41) of order K/mb_ In order to

ality in the differential distributiod” ~*dI'/dE. In the heavy

obtain a continuous result, we adopt the simple ansatz of

quark limit the shape of the final-state hadronic mass distriaveraging over the peaks. Using E40) to define the energy
bution follows the heavy quark distribution function in the g of the nth stateM,,, we integrate thes-function for the
decaying meson; for thb—u decays under consideration, nth state evenly over the energy rangé,¢ E,.)/2 to

this is the light-cone distribution functioR(x). In decays
with q2=0 the recoil energy of the lepton pdiris directly
related to the final state mabé;, :

M3—M2
T oM “0

Since g>=0, these decays are analogousbte-sy in the
standard model. In the largeg limit one has

1dlr 2 (ZE—mb) (41)

TdE x| &

logo(I'a/Tope —1)

My

FIG. 12. Same as Fig. 11, excapt=m=0.263.

(E,+E,_1)/2, i.e., the midpoints between energy eigenval-
ues. LettingN be the maximum number of kinematically
allowed M, values, we establish the endpoint bins by defin-
ing E_1=E»=Mpg/2 andEy, 1=Ein=0.

We find that our numerical computations yield a distribu-
tion resembling the light-cone distribution functigrf; spe-
cifically,

— — A X A
Fiy)=AT((1-y)A)= lim = 1-(1-y) —|.
mQﬂoo Q Q
(42)
1.2 . . . :
---------- 1/T x dT/dE (my=10)

4| — From (2/mg) X 95 (Mg=25)
2
o L
g o8
f
32
5 06
5
2
E 04}
z

02}

0 -t A 1 1 1 1 L

06 065 07 075 08 08 09 095 1

2E/mg

FIG. 14. Exact differential widtH"~dl'/dE, averaged as de-
scribed in the text, compared to the continuous parton distribution
computed via Eq(43) with mg=258, atm,=108 andm=0.568.
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Recalling thatM g=m,+ A+ O(1/my) and combining Egs.

(41 and(42) yields 09
08|
FENmITxm_Q(P g ) (43 L o6
Q W o5t
(}] .
5 04¢
The two sides of this expression are plotted in Fig. 14, using g3 |
mo=25B to represent the limimg— o, while the actual 02| |
dietribution is considered ambzlo,B. _Th.e agreement is ' 1T % ZAT (My=10) --oeoeere
quite remarkable. The continuous distribution appears to otr From (2/mg) x g2 (mq=25) 1
pass approximately through the midpoint of each bin; owing 0 . ' . : . s .
0 005 01 015 02 025 03 035 04

to the near-equal spacing of 't Hooft model eigenvalues in
Mﬁ, Eq. (40) shows that these bin midpoints are very close

to the valuesE,, themselves. FIG. 15. The partially-integratein E) differential distribution

It iS also interesting to Consider integration over a range Oﬁ)(l— 2E/M B) and the Corresponding smeared exact result
E. In particular, define®(1—2E/Mg) as the cumulative T -1sdl' as defined in the text, for the same inputs as in Fig. 14.
fractional width from maximum energiz/2 down to the
givenE; then®(0)=0 and®(1)=1. While the exact result VI. DUALITY IN THE VACUUM CURRENT
for ZAT'/T" amounts to an integration of th&function dif- CORRELATOR
ferential widths renormalized so that the cumulative result

approaches unity, the integral of the continuous distribution In this sec'uon we briefly illustrate the onset of duehty for
gives the absorptive part of the vector current correlator with light

quarks, of the type that determines the normalized cross sec-
tion R(e*e~ —hadrons) as a function of energy. In the con-
2 [y My text of the heavy quark decays this is relevant in nonleptonic
d(y)= lim _f dz (PZ( 1— _QZ), (44) decay widths in two kinds of processes: in spectator-
MqJo Mq independent decays, wheR(g?) determines the weight
with which the semileptonic width at givey? must be inte-
grated overy? (see Ref[8]), and in the effects of WA de-
These two curves are presented in Fig. 15. Two featuregays.
particularly stand out in this plot. First, even fioy, as large In either case, aN.— the cross section appears as a
as 18~4 GeV, the overwhelming part of the decay prob- comb-like collection ofs-functions:
ability falls into the transitions to at most four lowest states.
Second, the continuous curve seems to provide a nearly op- ) 2 2 ~ 1
timal description possible for the step-like exact distribution. R(q )=; Ché(q°—Mp);  Cp= jo dX on(x). (49
The point-to-point deviation for all plotted values with 1
—2E/Mg>0.04 does not exceed half of the contribution of The ahove expression for the residues refers to the case
the nearest threshold. where a vector current is considered. We suppress here the
factor of N,/ relatingc, to f,, [Eq. (B8)]. We also as-

1-2E/Mg

mQ—>oc

TABLE IX. Same as in Table VI, exceph,=m=0.563 fixed

andmg variable. TABLE X. Same as in Table IX, excep,=m=0.268.

Mg N Thg/Tope—1 Ty /To—1 Mg N Ty /Tope—1 Ty, /To—1
1.0 0 1.3x10°! 1.8x10°! 1.0 0 2.210°* 3.1x10°1
2.0 0 2.4<10°2 4.2x10°? 2.0 1 1.2x10°% 2.9x 102
3.0 1 1.5¢10°° 1.1x10°? 3.0 1 1.1x10°° 1.5x10°?
4.0 2 2.7x 1074 5.7x10°3 4.0 2 1.%<10°4 8.4x 1073
5.0 4 6.0<10°° 3.6x10°3 5.0 4 5.210°° 5.5x10°°
6.0 5 2.7x10°° 2.6x10°3 6.0 5 2.4<10°° 3.8x10°°
7.0 7 1.1x10°° 1.9x10°3 7.0 7 1.0x10°° 2.8x10°3
8.0 8 5.7 10 © 1.5x10°3 8.0 8 5.1x10°© 2.2x10°3
9.0 10 2.%10°¢ 1.2x10°3 9.0 10 2.5¢10°8 1.7x10°3
10.0 13 1.%x10°¢ 9.3x10 4 10.0 12 1.x10° 1.4x10°3
11.0 15 451077 7.7x10°4 11.0 15 4.x10°7 1.1x10°°
12.0 18 4.&10°8 6.5x 104 12.0 17 5.%10°8 9.7x10™*
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sume in what follows that the light quark masses are equal, TABLE XI. Saturation of the vacuum current correlator as de-
my,=my, and areO(B) or less, in order to reach asymptotic picted graphically in Fig. 16. T_he fiducigP point in each interval
g2 more quickly. M2,_,<q?<M2,,,, in which R (averaged hadronié-function9

In the extreme situation of infinitely narrow resonancesandR, (Born-term partonic expressipare compared, is chosen to
one cannot, of course, discuss a point-to-point equality of thée M3, .
cross sectiomR(q?) with its OPE in the form of K expan-
sion. A meaningful comparison is possible if each resonanf Man R(M2,)x 10" Ro(M3%,) X 10*
peak is somehow averaged over an interval no smaller tha

the distance between adjacent peaks, the latter being approxi- 1.7792 930.5 805.6
mately given byAq?=?p? [1]. It is worth recalling that 4.5349 15.18 15.30
R(g?) is proportional tom?/g*, so one must consider non- 6.2796 4.082 4.099
vanishing masses for the vector current, and address the OFE 7.6574 1.838 1.844
terms formally suppressed by?/q?. 4 8.8310 1.037 1.040

This question was first addressed in the context of non® 9.8703 0.6635 0.6651
leptonic decays in Ref[7] using the numerical approach. © 10.813 0.4602 0.4614
Duality for the average cross section in the same manner & 11.681 0.3376 0.3385
above, i.e., using sum rules derived from the 't Hooft equa-8 12.490 0.2581 0.2588
tion and analytically matching terms in thenid expansion, 9 13.250 0.2036 0.2042

was obtained in Ref[8]. Yet establishing the asymptotics
per secannot tell us beforehand how early one can expect

the onset of duality. Here we study this question numerically, VIl. DISCUSSION AND SUMMARY
in the domain of intermediatg®.

The concrete amount of the deviation betw&g?) and The main motivation behind the present study has been to

ROPHq?) in the case of direct resonances may depend in afSsess the mag.nitude of local duality viqlations in the inclu—
slye semileptonic decays offlavored particles. We consid-

essential way on the chosen smearing procedure. Interest 4 thi . inq the 't Hooft model h .
in the qualitative features only, we choose a rather simpli-ere this question using the 't Hooft model as a toy theory in

fied, crude method: We spread the integraRgfj?) evenly which all relevant decay amplitudes can be evaluated nu-

over the interval between the successive resonances. Moferically. The 't Hooft model, while retaining certain key
precisely, we put eatures of fullD=4 QCD that shape the spectrum of had-

rons(quark confinement, chiral symmetry breakinsfill dif-

) fers fromD=4 in many respects. Yet using it as a lab for

R(g?)= 5 5 j M2”+1dq2R(q2) exploration carries an important advantage—it allows no
M3ni1—Man_1IM3, o “wiggle room” for interpretation of the results. There are no

ad hocparameters to choose or adjust, and as soon as the

underlying weak decay Lagrangian is fixed, the numerical

results are unambiguous and must be accepted at face value.

This positively distinguishes this approach from various

for M2, _,<q?<M2, . ,, with M? ;=4m? the partonic pair Models where qften the _conclusions, even qualitatively, de-

production threshold. Here we use the fact thavanish for ~ Pend on the arbitrary choice of parameters according to one’s

odd n when my=mg=m. This smearing is very similar to

that described for the differential width in the last section, 20

2
Con

- (46)
M§n+1_ M%nfl

except that averaging is performeddp rather tharE. The Ro
free quark loopR(g?), which is of course the leading term of R e
the OPE, is given by 15 _
Ru(t)= L @ 3
q°)= : X
° gq* V1—4m?/g? N':; 10 ¢ y
i
Table Xl and Fig. 16 show the results for our reference case
m=0.568. The agreement of the average hadronic cross sec 5| _
tion with the parton-computed probability again turns out to
be very good. Apparently, this can be related to two facts: :
the heavy suppression of power correctiondR(@?) in the . . L e— . :
OPE (see EQs(34),(35 in [8]), and an early onset of the 20 40 60 80 100 120 140 160
asymptotics in the spectrum, o
MﬁH—Mﬁ:wzﬁz, (48) FIG. 16. Saturation of the leading term in the OPE of the
vacuum polarization functiofRy by exclusive channe$-function
which even an=0 is satisfied to about 15%. contributions, smeared as described in the t&t (
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preferences(There do exist, however, quark potential modelstudies have natural explanations. At fixed energy release
calculations, e.g. Ref29], in which certain sum rules and mg—m, the magnitude of the deviations is smallemit,
duality properties may be demonstrated without resorting tan, are both largeas inb—c) than if they are both small.
such additional parametersThe question of a particular This is expected, since in the former case the heavy quark
model being compatible with the general dynamical propersymmetry for the elastic amplitude additionally enforces ap-
ties of QCD underlying the OPE approach, often quite probproximate duality even when no expansion in large energy
lematic in simplified quark models, does not arise for therelease can be applied.
't Hooft model. It is interesting, however, that at fixed, the duality vio-
Although the simplest illustration of the asymptotic naturelation decreases rapidly as, decreases, in full accord with
of the decay width Ihy expansion and related violations of the OPE where the higher order terms are generally sup-
local duality[3] follows just from the existence of hadronic pressed by powers of If,—m.). This is clearly adynami-
thresholdgsee, e.g.[8]), violation of local duality is a more cal feature that goes beyond heavy quark symmp#ay se
universal phenomenon thatnst directly related to existence the quality of which deteriorates as, decreases.
of hadronic resonances nor even confinement itself. This has It is also instructive to note that including the calculated
been illustrated in Ref4] by the example of soft instanton power-suppressed OPE terms significantly reduces the differ-
effects that do not lead, at least at small density, to quarkence between the actual decay width and its purely partonic
confinement—but do indeed generate computable oscillatingvaluation. Moreover, the seeds of oscillations inherent to
duality-violating contributions to the total decay rates. duality violation(as functions of quark masgesan be seen.
Nevertheless, there is a widespread opinion that decaySince we adopted the truncated OPE expansion to mirror the
with manifest resonance structure in the final state are mosixisting implementation of the OPE in QCD, the deviations
difficult for—if compatible at all with—the standard OPE. do not average to zero but rather oscillate aroundtgidly
Even the possibility that the OPE does not fully apply in thedissipating contributions attributed to discarded higher-
case of “hard” confinement has been occasionally voiced inorder terms.
the literature. The analytic studies performed in RESs3,9, The numerical effects of duality violation we study turn
which explicitly demonstrate in the 't Hooft model the appli- out to be typically quite small. Partially this can be attributed
cability of the OPE to the total widths, should help to allay to moderate size of the corresponding expectation values
such conceptual concerns. Nevertheless, the intuition remultiplying 1/m‘(3 corrections in the OPE. Yet certainly not
mains that resonance dominance is not “favorable” for theg|| power corrections in heavy quarks are suppressed in the
OPE, and problems might show up, for instance, through @nodel. It is well known from ordinary quantum mechanics
delayed numerical onset of duality, in that the approximatehat massegeigenvaluek typically are much more robust
equality of the OPE predictions and the actual decay widthggainst perturbations than wave functions themselices
may set in only after a significant number of thresholds hasransition amplitudes We observe a similar pattern in the
been passed. To address such issues, the 't Hooft modglHooft model. For example, i corrections to the meson
seems to represent the most certain testing ground for locg@lecay constants turn out very significant even at the scale of
duality in the domain of decays of moderately heavy quarksthe b quark mass. Apparently, the inclusive decay rates fall
Contrary to naive expectations, we found surprisingly acinto the class of “robust” observables, although, as ex-
curate duality between theruncated OPE series fof'g and  plained above, this was difficult to anticipate beforehand.
the actual decay widths. The deviations are suppressed to a We note here another “fragile” observable, the light-cone
very high degree almost immediately after the threshold foheavy quark distribution function, which can be measured in
the first excited final state hadron is passed. No suspectqﬂgcays of the typeb—sy. In D=2 the scaled spread
dela_y in the onset of duallty was found. Needless to say, th|§1(2?(<x2>_<x>2) of the x distribution approacheg? at large
confirmation of the analytic sum rules of Ref$,8,9,11 . vet, as seen in Fig. 4, even at tbequark mass one
using the numerical approach of Ref8,7] indicates that N0 yyould obtain from this distribution only about 60% of the

conceptual discrepancy remains between the two. actual value ofu’, due to significant g, corrections. This

The key property that governs the onset of theid/ex-  .5yeat may be important for existing analyses of the decay
pansion for the semileptonic widths is the pattern of saturagjsyributions inB decays, where such effects routinely are
tion of the heavy quark sum rules. We examined a particulaf,,; included.

class, the SV sum rules in the heavy quark limit, that has the "y 5150 briefly addressed the inclusive differential decay
most transparent quantum mechanical meaning. We found. . . : —
Jistributions in the analogues bf—u v or b—sy decays.

them saturated to an amazing degree by the very first eXCGeneraII e find good agreemet the scale correspond-
tation. The contribution of the remaining, higher states to the y, we Tind g 9 p

L — N ing to the physicab mass with the parton-based prediction
slope of the IW functionA, andu7 does not exceed a few j,cqmorating effects of the “Fermi motion,” and in particu-
percent. Even in the Darwin operator sum rule, the first €X1ar for the partially integrated probability

citation accounts for 90% of the whole expectation value,
despite the fast-growing weighte(— €,)° of higher-order

2
contributions. This peculiarity underlies the early onset of d(x)= iJXMBdMﬁ dFs'. (49)
duality for the case when initial- and final-state quarks are FgJo dMﬁ
both heavy.

Some of the duality-violating features observed in theseThis distribution, following Refs[25,2€], is examined in
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real B decays in the quest foW | [27]. However, the point- the duality violation is still very small, and superficially
to-point deviations are clearly still significant, for the decaysrather insignificant even in charm.

to only the 4 or 5 lowest final states saturate the overwhelm- We note, however, that the specific choice EBf) of the

ing fraction of the total decay probability. It is quite conceiv- weak interaction effectively requires decays to occur only at
able, though, that such deviations are less pronounced # =0, and therefore the effects of four-fermion operators of
actual QCD owing to the significant resonance widths and tdhe type QI'q)(ql’Q) are totally absent, at least in the low-
a richer resonance structure. est orders of perturbation theo(gf. Ref. [5], Sec. III.B.3.

The vacuum current correlator also turns out to be espeAs was suggested in Ref28], it is conceivable that the
cially robust; even neglecting all OPE corrections except th@pparent excess iig(D) is simply related to a noticeable
leading partonic contribution leads to excellent agreemenfagnitude of the non-valend@onfactorizable expectation
with the hadronic result. values(D|(cI's)(sI'c)|D). If this conjecture is true, similar

Turning to the direct phenomenological conclusions thatffects inl'g(B— Xl v) are still suppressed but possibly de-
can be inferred from our studies, we see that, to the extertectable in future precision experiments. In the context of the
our findings can be transferred to real QCD, violation ofpresent study, it suffices to say that this would be a legiti-
local duality in the total semileptonic widths 8fmesons is mate OPE effect rather than a manifestation of a significant
not an issue. The scale of duality violation lies far below thelocal duality violation in the strict sense.
phenomenologically accessible limits, and cannot affect the
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Two-dimensional QCD neither has long perturbative APPENDIX A: THE BSW IMPROVEMENT
“tails” of actual strong interactions suppressed wealby OF THE MULTHOPP TECHNIQUE
only powers of logs of the energy scalén D=2 the per-

turbative corrections are generally power-suppressed, as fol- 1he Brower-Spence-Weigl5] (BSW) improvement of
lows from the dimension of the gauge coupling. As dis-the Multhopp technique avoids the need for evaluating the

cussed in Ref[8], it is conceivable that the characteristic wavefunction at a discrete set of points called “Multhopp

mass scale for freezing out the transverse gluonic degrees 8pg|es_, thus_ improving th_e behawor of the solutions |_n_the
S : . " endpoint regions, as described in Sec. II. Here we exhibit the
freedom is higher than in the *“valence” quark channels.

This would imply a possibly higher scale for onset of duality expressions used by BSW, correcting along the way some

. / " ¢ . b bl minor typographical errors in their work.
IN as/m COITECUONS (0 varous observables. Starting with the 't Hooft equatiorfl) with bare quark

Regardless of these differences, we conclude that pre?ﬁassesnl andm,, one converts the kinematic variables
ence of resonance structyser seis not an obstacle for fine 4 angular variables:

local quark-hadron duality tested in the context of the OPE.

As we see in the 't Hooft model, resonances themselves do 1+ cosé 14 cos@’
not seem to demand a larger duality interval. As soon as the X= — y= — (A1)
mass scale of the states saturating the sum rules in a particu-
lar channel(quark or hybrid has been passed, the decay. . , .
width can be well approximated numerically by the expan—'n terms of which the 't Hooft equation reads
sion stemming from the OPE. 2 2 )
The ground states of heavy mesons in the 't Hooft model % (6)= m " ma ()
exhibit relatively small expectation values of nonperturbative 2 #r 1+cosf  1-cosg|®P
operators 2, p3, but notA) compared to real QCD, if 1
our identification3=400 MeV is adopted. This may be re- + J'de’(Pp(g')ln . (A2)
garded as a reason for small duality violation f&y in the 0 (cosf—cosh’)?

model. However, even if we scafgup to 700-800 MeV to
make up for smallness of the nonperturbative OPE effectd-xpanding
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* Note that the “potential”V in Eq. (A10) is real but not
ep(0)=2 aP sinng, (A3)  symmetric, owing to the extra s#i in Eq. (A7); therefore,
= the “Hamiltonian” Hy+V is not Hermitian, and the eigen-
vectorsa(P are not orthogonal. This is a direct result of
converting the exact wave functions, which are eigenfunc-
tions of a Hermitian Hamiltonian when written in terms of
the variablex (and therefore orthogonal ), into orthogo-
K a . . . . .
f dosinmésinné= = (Smn— Om —n)> (A4) nal functions of the variabl@. This transformation is non-

0 2 ' unitary because the number of modes used is not infinite;
) o ) ) ) therefore, the overlap of different eigenvector solutions
one obtains the infinite-dimensional eigenvector system  ghould be small when a large number of modes are used.

Indeed, this turns out to be empirically true; nevertheless, we
Mgaﬁp)=(H0+V)nmaETﬁ’), (AS) take the further step of orthog(?nalizirzlg the numerical eigen-
vector solutions recursively by means of the standard Gram-

and using the continuous inversion identfiyontrast with
Eq. (A7) of Ref.[6]]

where Schmidt procedure, i.e.,
’ 4fwd m? ms | _ p-1
(Ho)nm mJo 0 1+cosf 1—cosd sinngsinmé, | (P)) — 2 |QD(J)h><QD<()Jr%h|QD(p)>
(A6) |y = (A11)
4 T T
Vom=— ;BZJ de sinnef dé’ sin@’ sinmg’ \/<‘»D(p)|‘»°(p)> 2 (ot ®)
0 0
1 For N=500 modes, this typically changes expectation values
X P _ (A7) by one partin 12
(cosf—cosh’)? The expressions for these overlaps and other matrix ele-

) . ments in terms of the mode coefficiersts are presented in
Both of these integrals can be evaluated, with the result  Appendix B.

(Ho)pm=4 min(n,m)[(—=1)™ "mi+m3],  (A8) APPENDIX B: MATRIX ELEMENTS
m A number of useful overlaps and other integrals are
Viom= V"Lml(m) straightforward to evaluate in terms of the mode coefficients,
using the expression#3). Solving them amounts to evalu-
8m 1+ (—1)"m ating a number of trigonometric integrals. Such expressions
I > , (A9) are especially convenient since they permit a number of in-

tegrations that introduce no numerical uncertain{escept

where V,,0=Vo,=0 for m,n=0. This recursive form for due to machine precisigpmeyond those of solving the origi-
V,,m iS Most convenient for numerical calculations; however,nal Multhopp-BSW eigenvector equatigA5).

one may also write the closed-form solution, In particular, denote thpth eigenstate wave function pre-
sented in Eq(A3) by ¢ and that for some other set of
V. —am 1+(—=p"m (1—n—m) B (1—|n—m|” masses in theth elgenstate by ; the latter wavefunction
nm 2 2 2 : then has an expansion like EGA3) with mode coefficients

(A10)  b'?. Truncating afteN modes, one then finds

1+(—1)m*n
2

1
[1—(m—n)2][1—(m+n)?]

N N
o o) = f dx ¢ () ef7 ()= —2 2 ma > nbi? (B1)

Indeed, the normalization integrﬁgdx ¢(x)?=1 is just the casa=b andp=q, in agreement with Eq(A9) of Ref. [6].
Other useful expectation values include

N

1 N 1—(—1)m*n 1
_Z — 1@ 2 _ (P) (p)
<X 2>p f dx(x )[(P ()] mzzl M3 nzl 1% 2 [4—(m—n)?][4—(m+n)?]’ (B2
2 _aym+n
< X— %) > fldx(x— E) [eP(x)]? -3 2 maﬂ,‘,’)E nalP +(+ [21-6(m*+n?)+(m?—n?)?]
o Jo

X[(1=(m=n)*)(21—(m+n)*)(O—(m—n)*)(9—(m+n)?)]~*. (B3)
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Note that the spread of the wave function may be computedreased one eventually faces the problem of attempting to

about any convenient point ix viz.,

((ax+b)?)—((ax+b))2=a%((x>)—(x)?), (B4

so that the additive constants efl/2 above are irrelevant.

Also,
N N

1 11
<;> = fo X Lo (017= 2, ail) 3 &Iy,
p

(BS)
where
I _2(m+§):/271 1
mn j=|m—n|/2 2j+1
_[m+n+1 [m—n|+1 _
=y 3 3 ,  m—n even;
1 1 (m+n-1)/2—-1 1
ln= 7 — —— —2 .
™M Im-n| m+n TjoqmSH-nr2j+1
1 1 [m—n|
~|m=n| m+n 2
m+n
— 5 ) m—n odd. (B6)

One also finds

N N
<%> - [ 1e@00=3, a3 a3,
p 0 m= n=1
(B7)

where, using the notation of EqB6), one finds Jy,
=+, for m—n even, andl,,,= — I ,,, for m—n odd.

Finally, the decay constant of theth excitation[cf. Egs.
(10),(11)] is given by

N Ne
(a) — @(x)=\/—Sc.= \/—x—gatP
fo'=\— J dX o (X)=\/ —Cp \/ 7T><4al .

(B8)

APPENDIX C: ADDITIONAL RELATIONS
USED IN THE ANALYSIS

The numerical calculation of large, matrix elements

with acceptable accuracy relies on achieving a balance b

tween competing effects.

On one hand, Multhopp solutions to the 't Hooft equation

represent a function with only a very small region of support
in X by a finite number of modes with support over the full
rangex e[ 0,1]. In practice, we gauge the errors committed
through such “lattice spacing” effects by computing a given
quantity with N=500 and noting the amount by which its
value shifts if one uses instedd=100, and as expected,
such errors become substantia$ much as a few percentty

the time one reachasy>258 or m<0.43.

On the other hand, although numerical solutions with
Mg, m=0(B) have the highest numerical accuracy, they
also have substantid@(1/mg), O(1/mQ) etc. corrections
that are difficult to disentangle.

We adopt an intermediate strategy of employing certain
exact relations that hold for the 't Hooft solutions. To deter-
mine the relevant static expectation values, we solve the

finite-mg heavy hadron mass expansion for[Eq. (6)]:
:84
mg

2 2 3 3

— Mz—B° pp—p
Mo=A+—2——+——""+0| —

2mq 4mg

. (CD

Mis,—

Neglecting the order term and using the relatipig. (9)]

XZ_mZ+B2 5 IBZFZ

2 —— = —
M= 3 ’ Pp 4

. (C2
P3Gl BA(AP—m?+ B?) +357F?],

we thus arrive at an equation cubicAnthat depends oR?.
We solve it atmg=154.

The asymptotic value of the scaled decay constfit

= moC, must also be evaluated at a finite valuenog,
thus including Iihy-suppressed pieces. We account for them
explicitly using the expansiofiL1] [the first of Eqs(14)]

BS/z)
mg,
(C3

2[2AM —m(—1)"]

FW+0
3mg

VMgCp=| 1—

We likewise solve this equation fé*" at mg=153.
Turning to the analysis of the SV sum rules E(&2)—

(25) in Sec. IV, we note that their rapid saturation demands
an exceptionally high precision in evaluating both the oscil-
lation strengthsr in the right-hand sidéRHS) and the ex-
pectation values in the left-hand sideHS). Reaching such

N accuracy through direct computation seems impossible.

herefore, we use a number of identities to get meaningful
results. First, we employ the expression Qg in terms of
€., €, and the corresponding decay constants:

with mg> g tend to suffer degraded numerical accuracy
since they are highly concentrated into the small kinematic ’
region 1—x<<1. As discussed in Sec. ll, the endpoint regions N B
x~0 and 1 are where the Multhopp solutions—or more pre- nk 2(en—€)®
cisely, their derivatives—tend to break down. This effect is

compounded whem< g, since lighter quark masses force Then we make use of the fact that the discussed sum rules,
sharper end point behavior in the wave function. Althoughbeing completeness sums, are exact when summation in-
the BSW solution ameliorates this behavior, rag is in-  cludes all excitationgsee Ref[11]). Therefore, one has

EME®

1-(—1nk
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1 1
2 1 _4_|=217-|2k ——Ig 7,2, (CS)
Pk 32 Pk
2 [1 1 2
A_J_Ak 2 (&— Gk)7'|k Aklgﬂ(ﬂ_fk )T
(Co)
2 2.2
7y (15K 241 (&1— € le_ ()
X (€~ €Tk
(C7)
= (o) 2 (€—e0® 3
€ — € 'T
(ol PRI & (AT ST T
X (&~ €0y
(C8)
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A similar approach was used to evaluate the duality-
violating differencel’ s —I'opg @s a function ofng . We use
the exact relation5] [Egs.(34), (35), (39)]

. G? mﬁ—mﬁjldx )
B_E MB 07¢B(X)
(32 M3—M?2 2
(C9
and therefore,
FB_FOPE dX -1
T | | e
1—‘OPE 0
M2— 1 2
x> J dX @(X) @a(X)
n mb_mc 0
X O(M,—Mp). (C10

The sums on the RHS can be accurately evaluated since the The summation runs over all final excited states kinemati-
higher contributions fall off in magnitude very quickly. In cally forbiddenin the decay. Once again, the sum converges

practice, we truncate the sumlat 20.

rapidly and is dominated by the lowest couple of states.
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