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We study QCD with one flavor at finite baryon density. In the limit of very high baryon density the system
is expected to be a color superconductor. In the case of one flavor, the order paramete?isfinmoﬁ and
has a total angular momentum of 1. We show that, in weak coupling perturbation theory, the energetically
preferred phase exhibits “color-spin locking”; i.e., the color and spin direction of the condensate are aligned.
We discuss the properties of this phase and argue that it shares important features of the hadronic phase at low
density. In particular, we find an unbroken rotational symmetry, spin-3/2 quasiparticles, and an unusual mecha-
nism for quark-antiquark condensation. Our results are relevant to three flavor QCD in the regime where the
strange quark mass is bigger than the critical value for color-flavor locking. We find that the gaps in this case
are on the order of 1 MeV.

PACS numbgs): 12.38.Aw, 11.15.EX, 24.85.p

[. INTRODUCTION takes place in the up-down sector. In this case, we expect the
strange quarks to form an independent superfldjdQ]. It is
The behavior of hadronic matter in the regime of verythis state we wish to study in more detail in this work.

high baryon density but small temperature has attracted a lot At moderate densities, instantons play an important role
of interest recently. It was realized a long time ago thatin determining the pairing gap for light quarks,6,14,13.
asymptotic freedom combined with the presence of a Fermut instantons do not contribute to the scattering amplitude
surface implies that high density quark matter is a supercorf© two strange quarks. In the following, we will therefore
ductor[1—4]. More recently, it was pointed out that the cor- focus on perturbative interactiofi8,4,16—2Q. This has the

responding gaps can be quite large, on the ordex-fL00 added advantage that our results are rigorous in the limit of

MeV [5,6]. It was also realized that the phase structure jvery large chemical potential. If two strange quarks are in a

quite rich, and that matter at very high density exhibits acolor anti-symmetric wave function their combined spin and

. spatial wave function cannot be antisymmetric. This means
wealth of nonperturbative phenomena, such as a mass g - :
. ) . . at pairing between strange quarks has to involve total an-
and chiral symmetry breaking, in a regime where the cou-

ling is weak and systematic calculations are posdib] gulgr momentum one or greater. W_e Wi_II see thqt the pertur-
Ping Y P ' bative one gluon exchange interaction is attractive for color

_ The structure of the superconducting state dep_ends Senscihti—symmetric Cooper pairs in both the spin 0 and spin 1
tively on the number of quark flavors and their masses;izies.

[9-12]. For two light flavors the dominant order parameter Quark superfluids with total angular momentum one have
pairs up and down quarks in a color antisymmetric wavepeen studied using renormalization group methi@is-24),
function. The condensate is a flavor singlet and breaks thﬁerturbative QCDI[4,18,25,28, and Nambu—Jona-Lasinio
gauge symmetry SU(3)SU(2). The up andlown quarks  models[26]. In the present work we wish to present a de-
that are singlets under the residual gauge symmetry rematailed investigation of the phase structure and of the symme-
gapless. In the case of three light flavors the pair condensatees. For this purpose, we will not only consider the realistic
involves the coupling of color and flavor degrees of freedomgcase of three flavor matter witng>+/2pgA, but also the
color-flavor locking[7,13]. Both the color and flavor sym- academic situation of one flavor QCD at large chemical po-
metries are broken, but a vectorlike combination of the twotential. In particular, we shall argue that one flavor QCD
remains a symmetry. This implies, among other things, thaprovides a new and interesting realization of the concept of
all gluons acquire a mass and that chiral symmetry is brokerguark-hadron continuity.

In addition to that, the spectrum of low-lying states bears an The paper is organized as follows. In Sec. Il we study the
uncanny resemblance to what is expected, on phenomenghase structure of one flavor QCD in the nonrelativistic
logical grounds, for three flavor QCD at low baryon density.limit. We show that the stable phase exhibits color-spin-
This has led us to the conjecture that the hyperon mattelocking, and discuss the symmetries of this phase in Sec. Il
phase at low density might be continuously connected tan Secs. IV and V we study the phase structure in the ul-
quark matter at high density, without any phase transitiortrarelativistic limit. We conclude in Sec. VI.

[8].

If the strange quark mass is included, the structure of the
ground state depends on the relative magnitude of the gap,
the strange quark mass, and the Fermi momen&i0]. If
A>m?/(2pg) all flavors participate and the system exhibits  In practice we are mostly interested in the phase structure
color-flavor locking. If the gap is smaller then pairing only of superfluid strange quark matter. In this case, we expect

Il. PHASE STRUCTURE IN THE NONRELATIVISTIC
LIMIT
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that p->m; and the strange quark mass can be treated aswhere3, (k)= —[S (k) — S, *(k)] is the proper self energy
perturbation. Nevertheless, it is also interesting to consideand D2°(q—k) is the Coulomb gluon propagator.

the opposite limim>pg . The nonrelativistic limit simplifies Before we proceed, we have to specify the color-spin
the calculation and we shall study it first. In the nonrelativ-structure of the gap matrix. The gap is & 3 matrix which
istic limit, the QCD Lagrangian simplifies as transforms asA—UAR under gauge transformationd

5 e SU(3) and rotation® € SO(3). This is similar to the situ-

P 1 ion in liquid 3He [27] and in the col ducti
L=t Dot w— — + _CG? gamr, 1 ation in liqui e [27] and in the color superconducting
V| Pot T op F 98V G @) phase ofN;=3 QCD[7]. In liquid *He the order parameter
. . ) __describes the coupling of the nuclear spin to the orbital an-
We are interested in the behavior of one-flavor matter W'ﬂbular momentum of the pair. In the case of three flavor QCD

M>pg=>Aqcp. This means that the density is sufficiently {he orger parameter specifies the coupling between the color
large to justify the perturbative treatment, but not so large as,§ flavor wave functions of the pair. While the order pa-

to invalidate the nonrelativistic limit. The dominant interac- .3 meters in the three cases look similar, the symmetries in-

tion between quarks is given by the Coulomb force. This,g|yed are not the same. LiquitHe is characterized by a

mtergct_lon IS attractive bgtwegn qu_arks in a_ coI_or antls_ym—gk)ba| SO(3) SO(3)x U(1) symmetry, high density QCD

metric 3 state. In a Fermi liquid, this attractive interaction with one flavor by SU(3)x SO(3)x U(1), andN;=3 QCD

will lead to an instability. We shall assume that this instabil-py SU(3).x SU(3), X SU(3)sx U(1). The fact that the sym-

ity is resolved by the formation of a condensate of quarkmetry groups are not the same implies, among other things,

pairs in a color 3state. that the number of independent components of the order pa-
The Pauli principle requires that the wave function of tworameter is not the same. The same statement applies to the

identical quarks is antisymmetric. In QCD with only one number of independent structures in the Landau-Ginzburg

flavor this implies that color Jairs cannot condense in a functional. We find that the number of independent quartic
total angular momentum zero state. The obvious alternativérms in the Landau-Ginzburg functional is 5 in the case of
is to consider order parameters with total angular momentumHe, 3 in the case of one flavor QCD, and 2 in the case of

one. In the nonrelativistic limit there are only two possibili- three flavor QCD. _
ties: In any case, the preferred order parameter is governed by

dynamics, not symmetry, and has to determined for each
(pe—1)?= oo\, (P—1)2= i Uzaikilﬂ- (2)  system separately. In the following, we shall consider the
following order parameters:
Here, we have introduced a vector notation for the antisym-
metric Gell-Mann matrice§A=()\2,)\5,)\7). The two order
parameters are independent, because in the nonrelativistic
limit spin and orbital angular momentum are separately con-

A2=A8?, B phasgCSL),

AP=A5%6,5, polar phas¢2S0),

served. a_ . a3 .
In order to derive a gap equation for the order parameters Af=A5*"(81+182), A phase,
defined in Eq.(2) we follow the usual Nambu-Gorkov pro- a 1 a2
cedure and introduce a bispino¥ = (s,u) with s Af=A(6%611 6%62), planarphase,  (6)
colrzéf - In this basis, the fermionic part of the action be which correspond to the “inert” phases of liquitHe. These

phases are characterized by having the largest residual sym-

do— g A metry groups, and by their stability under small perturbations
Sl(q)=< A N , (3 that are consistent with the residual symmetry. There are
Qo™ @q three additional inert phases in liquitHe, theA,, B,, and

where we have defined>q=q2/(2M)—,u. The interaction phases|27], but they do not lead to a gap on the Fermi

vertex is a diagonal matrid®=diad \%/2,(A?)"/2]. The surface in the case #l¢=1 QCD. L
Nambu-Gorkov matrix3) is easily inverted to give the nor- In the following, we shall outline the calculation in the

mal and anomalous components of the quark propagator. THESE of tth phase of the=1 order'paramete(Q). We. shall
anomalous propagator is refer to this phase as the color-spin-locked state, in analogy

with the color-flavor-locked phase ®f;=3 QCD. The de-
termination of the gap in the other phases proceeds along

Su(a)=— (4)

qo—wﬁ—AT

where we have to keep in mind thatis a color-spin matrix. 1in the context of color-flavor locking, it is sometimes argued that

The gap equation now follows from the Dyson-SchwingerO”e can make use of color and flavor symmetries in order to restrict
equation the possible order parameters to diagonal matrices. This is not nec-

essarily correct, because there is no reason to exclude non-

g4 Hermitian order parameters. An example is thehase of liquid
3 (k)= _ing 2 q)4FaS(q)FbDab(q—k), (5) :Hlfcsj which is one of the stable phases %ie at zero magnetic
™ ield.
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similar lines and we will briefly summarize the results be- 2 g2 4p2\1 (A A 2A
low. In order to determine the anomalous propagator we A= — —|og| — _f € + ,
38w 3 JE€+A2 e+ (20)2

have to diagonalize the color-spin structure of the gap ma-
trix. In the case of color-spin lockingCSL) this can be (13

1 I 1 Q. o 2: _— Q. Y
acf.ue.ved. using the opservatlon ﬂlatf\’*) 2= (0 An). where we have introduced a cutdff This equation is easily
This implies that the eigenvalues af (A 4) are 1 and-2. 1t g5|yeq

is useful to introduce the corresponding projection operators

0

1 NG —_n—2/3 — 2 gz 4p'%
Pipo=35(1—0-\p), (7) Ac=27(2AN)exp( — 1/G), G—gﬁlog m_% .
.- (14

Pao=5(1+ 20-\a). 8
The factor 2?? is due to the fact that thg=% andg=2
As we will explain in the next section, the subscriptle- ~ 9@ps are not equal. There is a similar factot2 in the case
notes the grand spin of the eigenstate. In particular, we havef the color-flavor-locked phase M;=3 QCD[11]. We can
tr(Pg)=(2g+1), so the degeneracies of the eigenvalues 10W repeat this calculation for the other phases. The main
and —2 are 4 and 2, respectively. It is now straightforwardingredient is the spectrum of gap matrix. We find

to determine the anomalous quark propagator. We find + 3.2
polar phase A'A=(o3\a)%,

9) \?={1 (d=4),0 (d=2)},

S,u(q) = AP, —2APy),
l - .
do—wg—A?  gg—wg—(24)?
planar phase ATA= (o A3+ 0,03)2,
Using the explicit form of the projection operators, we can (15)

calculate the color factors for the two terms in the propaga- \?={2 (d=4),0 (d=2)},
tor. We find

\a AT g . A phase ATA=(o"A\3)(0"\3),
(7) Pllz(?) =~ 3Pt 3Pan, (10 \2={1 (d=2).0 (d=4)}.

2

5 =5Pip. (11)  serve that the color-spin-locked phase is the only phase in

)\a) ()\a>T 2 whered indicates the degeneracy of the eigenvalue. We ob-
3/2
3

which all excitations are gapped. The gaps in the other

. . phases are easily calculated. We find
The gap matrix is proportional t85,—2P4,. For the gap

equation to close, the right hand side of E5).also has to be A(polan=A(planay=A(A phasg=223A(CSL),
proportional to the same combination of projectors. In the (16)
weak coupling limitA< x we can neglect the difference of

the gaps in the denominator of E@) and the gap equation which is a simple consequence of the fact that in the A,
indeed closes. At stronger coupling, the-1/2 andg=3/2  polar, and planar phases all nonzero gaps are equal. Even
gaps are independent, and there is a small admixture of #ough the gap in the CSL phase is smaller than the gap in
spin singlet, color symmetric gap. This is analogous to thehe other phases, the critical temperature is not. The gap in
situation in the color-flavor locked phase. Putting everythingthe CSL phase is suppressed becausegthg,? gaps are

together, we find the following gap equation: not equal. BufT, is determined by the solution of the finite
temperature gap equation in the linit—0, and does not
29° [ d*q A(Q) depend on the spectrum of the gap matrix.
A(k)= ?f AT So far, we have only discussed the solution of the gap
(2m)" | do— wg—A%(Q) equation in the different phases. The stable phase is deter-
2A(q) mined by the condition that the thermodynamic potential is
] D(q—k). (120 ~ minimal. The grand potential can be calculated from
g5~ wg—[2A(q))?
d*q .
We takeD(p) to be a screened Coulomb propagabp) Q= Ef (277)4{”'09[30 (@)S(e)]—tIS(a)=(a)]}-
=1/(p?+m3) where m3=g?upg/(27?) is the Debye (17)

screening mass. In the weak coupling limit the gap equation

is dominated by momenta in the vicinity of the Fermi sur- The traces can be calculated using the representation of the
face. In this case, there is no dependence&k@md we can propagator in terms of projection operat¢®. In the color-
approximate the gap by a constaA{k)=A. We get spin-locked phase, we find
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2 .
0=- M—pF12A§S,I09<A—M). (18) G=

N4 (20)
2772 csl A

N QL

o We can verify that the operators satisfy @Dcommutation
In the polar, planar and A-phase the gap is bigger, but theg|ations

number of condensed states is smaller. We find

[Gi!Gj]:iEijkGlU (21)
4/3 . - .
Q(polan=0Q(A phase=?Q(CSL), (19) zsﬂgsgommute with the gap matrix in the color-spin-locked
[G.(a-Xa)]=0. (22

andQ (planar)= 3 Q(polar). This result shows that the color-
spin-locked phase is indeed favored, but only by a very smal
amount, 3x 2~ %3=1.2.

Finally, we study the phases of the=1 condensate

(o, q\ay). The gap depends on the matfigi(q)-Xa]

Khis means that the color-spin-locked state is invariant with
respect to rotations generated 6y We can combine grand
spinG and orbital angular momentulm=r X p to obtain the

~ . 3 - alorL+G.
whered®=A%q;. The eigenvalues ofd:-\,) can be found conserved  total angulgr_ r.nor_ne_ntumagener L+G
Away from the nonrelativistic limit onlyd is conserved, not

from the fact that §-X,)3=(d-X,). This means thath - N > - !

~ - .. L andG separately. We will discuss this issue further in Sec.
={ld|,—dl,0}, so that there are always two gapless excita,
tions, independent of the structure of In the B phased Excitations in the color-spin-locked phase are character-
=(, and the gap is isotropic. There are four gapped and twéized by their grand spin quantum numbeyg;. The quan-
gapless modes. Even though the gap function is isotropic, theim numbers of quasiparticles can be determined using
gap equation contains extra factors of @s{nd the gap is . L.
reduced compared to the result in the polar phase ofsthe G?=L+(0-\p). (23
=1 order parameter. We will study these suppression factors ) ) ] )
in more detail in Sec. IV. In the other phases the gap is ndVe can now verify that the projectoi8y defined in Egs.

longer isotropic. In the polar phase, for example, we have?7),(8) satisfyéngzg(g+ 1)P4. In the color-spin-locked

d=e; and the gap behaves agq)~ cos(). Because the Phase there is g=3 quartet of quasiparticles with ga,
gap is not isotropic, both the gap and the condensation er@nd ag=7; doublet with gap A. All gluons acquire a mass

octet of gauge bosons splits intoga=1 triplet and ag=2

quintet. If we couple orbital angular momentum to grand
IIl. SYMMETRIES OF THE COLOR-SPIN-LOCKED spin we find onej=0 state, twoj=1 andj=2 states, as
PHASE well as onej =3 state.

The results of the previous section show that, in weakI In t?\f cr:1olor-slp|rl1)-rloi((:k(ra]d£hase tfr:E(U of rt:aryc;[: numli[lerrn «
coupling and in the limit that the quark mass is large, highS spontaneously broken. AS a consequence, the system ex-

density QCD with one quark flavor exhibits color-spin lock- h'r?'ts SU_[Zl)_irﬂUIC::;ty and thet spectrr]um ((:jonta:jnfha nr:atssless
ing. In this section we wish to discuss some of the propertie? onon. The order parameter 1S charged, and the pnoton ac-

: : i by the Higgs mechanism. This also implies
of the color-spin-locked phase. We will also contrast thes UIres a mass - . )
properties with our expectations for the behavior of one fla-hat QCD with three flavc_>rs exhibits the Melsgper effect if
vor QCD at low density. the strange ququ mass is larger than the critical mass for

In the A phase the SO(3)SU(3)xU(1) symmetry is color-flavor-locking. Both the color-flavor-locked phase and
P ! Sy y the phase with pairing in the up-down sector only do not
broken to U(1)X SU(2).Here, U1) is the residual rotational exhibit the Meissner effect
symmetry andSU(2) is the unbroken part of the gauge We would now like to .com are these results with our
group. In the color-spin-locked phase the original rotational : comp ;
and gauge symmetries are completely broken, but there is %xpectatlons for the behavior of QCD with one flavor at low

new SQ@3) invariance which is generated by a combinationgagr%gt?ecvﬂ}é/h g%?olz\g ;hborlﬁeﬂ:xg;ngfs '?higl(r?ehel:lasl that
of the original S@3) generators and the $B8) color y y y Y-

. w o there is no spontaneous symmetry breaking, and that there
generatoré.Consider the “grand spin” generators are no Goldstone bosorls;—1 QCD has a large mass gap

in all channels. The lowest dimension operator with baryon
numberB=1 is a spin 3/2 current
20ur discussion here applies to the idealized case of one flavor
QCD. In QCD with three flavors but separate pairing in the up- nﬁzeabc(qaCqub)qc. (24
down and strange quark sectors the colo(3Us broken to SW2)
by the primary condensate. This means that the color-spin-lockedhis suggests that the lightest baryon has spin 3/2. This
phase of the strange superfluid =3 QCD cannot have exact agrees with the expectation from the quark model. In order to
rotational invariance. construct a color singlet state in which three quarks of the
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same flavor occupy as state the total spin has to be 3/2. chiral representation. In terms of left and right handed
Finally, this expectation is also borne out by phenomenolspinorsy, g the action becomes

ogy. In QCD, the lightest =3/2 baryon has spin 3/2. The

splitting betweers=1/2 ands=3/2 baryons withl =3/2 is L=y(d+ h+gA) g

about 400 MeV. The situation in the meson sector is less o o

clear. For light quarks, phenomenology suggests that both = ¢(q- o+ u+gA- o) yr+ ¢ (q- o+ u+gA- o) ¥,

the scalar §,) and the pseudoscalar() are heavy, and the (26)
lightest state is a vector(). For heavy quarks, on the other

hand, the Ilghtegt quark_ anti-quark bound state is a pseUd(\)/vhere we have introduced,=(1.6) and o,=(1,— o).
scalar, and the first excited state a vector. K £

. There are two types of order parameters with total angular
Let us now turn to the effects of a nonzero chemical po-

tential. Since the theory has a mass gap, there has to ber%omentum one, depending on whether the condensate

. . . ~ . couples quarks of the same or opposite chirality. We begin
critical chemical potentialu.=Mg/3 below which the with order parameters that connect quarks of the same chiral-

baryon density is zero. Depending on whether nuclear mattq{y We have

is self-bound, this transition is continuous or not. We have 7’

no information on the interaction between two spin-3/2 bary- A .o .o~

ons. If the lightest meson is a scalar, it is naturpal to assur):we YCysUN b= thrl 020N 2R~ i ooONpe,  (27)

that thes-wave scattering length is attractive. Even if this is . . R

not the case at very small density, repulsive interactions may YCak, = — Yrio20N2rt+ Pior,oNo 4,

get screened as the density is increased. In this case, we (28

expect one flavor nuclear matter to be a superconductor. A ~ _

natural order parameter farwave superconductivity is wherea = v,y and we have selected a particular direction in

color space. There are two additional order parameters with

d=(1,Cvsm,)- (25  the opposite parityCys— C andCa—CZX. In this case, the

relative sign between thBRR and LL terms is flipped. As

This order parameter breaks th¢lWJof baryon number, and usual, perturbative interactions do not distinguish between
will lead to the appearance of a massless phonon. It alsorder parameters of different parity. In the weak coupling
breaks the (1) of electromagnetism, and gives a mass to thdimit, only states with the same chirality and helicity contrib-
photon. ute. In order to make this manifest, we introduce the helicity

If the density is very large we expect baryons to dissolveprojectorsH . = 1 (1+¢-q). Using the fact that
and it becomes natural to describe the system in terms of -
guarks. As we have seen, one-gluon exchange causes an in-
stability near the Fermi surface and the quark liquid is a
golor supercond.uctor. In the color-spin-locked phase rqta\-Ne see that, in the weak coupling limit, the second order
tional symmetry is unbroken, and the only global Symmemesparamete(ZS) is not independent of the fir§p7).
that get broken are the(l) of baryon number and of elec- "~ 5 ger to derive the gap equation we again consider the

YrooH L oH L Yr= Proa0H + Y (29)

i . . T Mhanded quarks and introduce the bispinBre (g, ¥ r)
metries, the high density phase cannot be distinguished fromith Yo = —io,yt. The inverse fermion propagator takes

the low density phase. What is even more surprising is that e form
the spectrum of fermions is very similar to the low energy
phase. We saw that the spectrum contains spin-3/2 and spin-
1/2 multiplets, where the spin-3/2 quasiparticles are lower in
energy. This is the expected behavior in one flavor QCD at
low density. These observations suggest that the high density
phase might be continuously connected to the low densityrhe normal and anomalous components of the Nambu-
phase, similar to what we suggested in the case of thregorkov propagator are determined by the inverse of the ma-
flavor QCD[8]. trix (30). The anomalous propagator is given by

qo+tp  A-gH,

S Ha)= (30

A*-QqH, g-o—p

IV. THE POLAR PHASE IN THE ULTRA-RELATIVISTIC 1 1
LIMIT So1= -

qf-oA q.-0—AT(g--0)7'A &

We would now like to consider the opposite limit of R L
massless, ultrarelativistic quarks. In this section we shallith q.=(go* ,q) andA=A-qH , . Except for the angu-
study the polar phadd 8,25. More complicated phases will lar dependence of the gap parameter this propagator has the
be considered in the following section. The main new ingre-same form as the propagator in the spin 0 case. The corre-
dient in the relativistic limit is that the interaction preservessponding gap equation has been discussed many times in the
the chirality of the quarks. It is therefore useful to employ aliterature[16—19. Here, we simply quote the result
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g2 cog A)A(qp) - We can derive the gap equation foCA - ;/)\21// follow-
A(kg)=—— | dqo | dcog ) ing the same steps as in the spin zero case. We introduce the
1272 Va5+cog 6)2A(qp)? iSDi i it i
™ Yo Yo bispinor W = (¢, e, ) With ¢ =i,y . The inverse fer-

mion propagator takes the form

q-o+u  H,A-oH_
HAoH, Qqo—pu

{ 1+cog6)]
X

1—cog 0)+F?/(2u?) (36

S‘l(q)=(

(32)  The anomalous quark propagator is determined by the in-
verse of this matrix. The gap equation is

f quJ dcog6)

i[3—cog0)]

+ :
1—cog 0) + G?/(2u?)

G and F are the magnetic and electric components of the g

gluon self-energy. Fomy<q<u we have F?=m3 and A(ko)(AY)?=
G2=(ml4)mix  with  x=|go—Kko|/|q—k|=|go—Kol/

2
1272

{V2u[ 1~ cos@)]}*2. A(p) 1 o
The gap equation is dominated by collinear scattering X = 5{[1+(k~A)(q~A)]

with cos@)=1. To leading order, we can solve the gap equa- \/QSJF A(qo)*(AT)?

tion by setting cosf)=1 in the numerator. We also drop the I P

angular dependence in the denominator of the anomalous X(1+k-q)—(k-A+q-4)

quark propagator. In this limit, the gap is the same as for the

spin zero case —i(k-A+q-A)k(AxQq)}

2

1
{ 1—cog ) +F?/(2u?)

Ao=5127*(2IN¢)%?ug~® exp( - Si) (33 .
V29
1
whereN; is the number of flavors that are active in deter- + o[ (37)
mining the screening mass. Here, we only show the contri- 1-cog60)+G(2u%)

bution of electric and magnetic gluon exchanges to the pre- .. 2x\2_ . & 412 .
exponent. Additional contributions from the fermion self- with (A1)"=1-(k-4)". We observe that in the absence of

energy were found in Ref25]. We can calculate corrections s?:reenlng hand dampm_gb?:G:O, ”electnﬁ and mlagnetlcw
to the leading order resulh,_;=A,_, by expanding the gluon exchanges contribute equally to the spin 1 gap. We

|=172=0 also note that the gap has a node if the direction of the order
numerator around cog(=1. The correction term has no col-

. ) ) parameter is aligned with the pair momentum. This is due to
linear singularity and the gluon self-energy terfind G he fact that the condensate connects quarks of opposite he-

can be neglected. We findl, _, = exp(X) Ao with licity. In order to produce a gap for a quark moving with
17 d 3 1 momentumf), the condensate has to flip the helicity of the
Cl:_J' cog ) [cos( 0)(_ — Zcog 0)> quark. But this cannot happen if the spin of the condensate is
2) 1-cog0) 2 2 parallel top. We can see this explicitly from the fact that
1 1 AA N N SN2 (R A2
0+ _ AA=H_A-oH, A-ocH_=H_[(A-0)"—(A-q)°]H_.
+cog 6 + - cog 4 2 +
<03+ 3e0s0)|-2| -
=-2. (34  If A~q this expression vanishes, so there is no gap i$
o parallel toA.
This implies that A;_;=exp(—=6)Ao=0.004,_, [25], To leading order, we can solve the gap equation by evalu-

which shows that the angular momentur1 gap IS aiing the angular factors fok-A=0 andk-g=1. In this
strongly suppressed with respect to teave gap. While  case the complicated matrix element in E8j7) reduces to
the natural scale of the-wave gap isA=100 MeV, the  he expression for the spin zero cd4®]. The leading cor-

p-wave gap is expected to be less than 1 MeV. rection to this result can be determined as in B4). We
We now come to superfluid order parameters that couplgnd

uarks of opposite chirality. In weak coupling, the only op-
»?- i PP Y Ping Y op 1( dcog¥6) 1 3 3
1on 1s f— cog 0) + 5 cog )’ — 5| =— .
1-cog0) 2 2 2
YCyNop= — Phio0N o= hrioa0Noh . (35) (39
. _ o This implies ALR=exp(—9/2)A,=0.01A,, which is bigger
In this case, the parity of the order parameter is fixed. Thehan theLL,RR gap by a factor-4.5.
order paramete¢Cy5§1p has the opposite symmetry under  Finally, we have to consider the possibility that pairing
the exchange of the two fermion fields and cannot be colotakes place both between quarks of the same and of opposite
antisymmetric. chirality. In QCD with one flavor the chiral U(})symmetry

Cs=1 2

094007-6



QUARK HADRON CONTINUITY IN QCD WITH ONE FLAVOR PHYSICAL REVIEW D62 094007

is anomalous, so there is no symmetry that prevents the two V. COLOR-SPIN-LOCKING IN THE

condensates from mixing. But even if the chemical potential ULTRARELATIVISTIC LIMIT

is infinitely large, and the effects of the anomaly can be

neglected, simultaneous pairing may still take place. As we In the polar phase the color and spin orientation of the

shall see, by combining the two order parameters we capondensate are completely uncorrelated. In this section, we

obtain a gap with enhanced symmetries, and simultaneoushall deal with the more complicated cases in which the two

pairing could be energetically favored. In the following we 51 entangled. In practice, we will only discuss the color-

will consider a gap matrix of the form spin-locked phase. The calculation in th#e and planar

phases is very similar, and we have verified that, in weak

coupling, they do no compete with the color-spin-locked
1 - A . - _ phase. As in the previous section, we have to deal with three

whereA . =3(1+a-p) projects on positivénegative en- different cases, pairing between quarks of the same chirality,

ergy states. This is equivalent to projecting on states withiing petween different chiralities, or a combination of the
equal chirality and helicityA , =PgH , + P H_. The deri-

vation of the gap equation proceeds_ along the same Iin_es as e begin with the simplest case, which is pairing be-
_tln_(re]fore, only that EOW \r/]vefhave to include both chiralities.y een quarks of the same chirality. The gap matrix has the
€ propagator fakes the form form A=(q-Xa) A . Asin Sec. I, this matrix can be diago-
1 1 nalized using the relation®=A. This gives the eigenvalues
A _ ) (41) +1 and 0. Projectors on the nonzero eigenvalues are given
4= h  (G+ L) +AG—4) A by P.,;=2%(=1+A)A. We observe that, just as in the non-

) ) ) ) relativistic limit, theB phase of thé&RR (or LL) order param-
The quadratic form in the denominator determines the struceter is not fully gapped. The value of the gap is easy to

A=A (A p+Ay y)A LNy, (40)

Sy=—

ture of the gap. We find determine. Using the projectors introduced above we observe
. ) that the gap equation reduces to the one we found in the
AA=A(4—4) A4~ L) polar phase, Eq(32). This impliesA¢g=Apg=exp(-6)Aq.
RN . S . Even though the gap in tH& phase is equal to the one in the
={(A1-q)*+[A5—(A,-9)°]IA _, (42)

polar phase, the condensation energy is not. Because the gap
) ) in the B phase is isotropic, the condensation energy is three
where we havg assumed that there is no relative phase bgs,ag larger and th8 phase is energetically favored.

tweenA; andA,. If this is not the case, E¢42) contains The B phase of the (R+RL) order parameter is more
interference terms~ Im(ATA;) with a more complicated complicated. As in Sec. IV we concentrate on tHe sector
chiral structure. There is no general reason why such termsnd consider the gap matrix

should be absent. Indeed, we shall find that interference be-

tween theLL and LR terms is important in the color-spin- N

locked phase. Here, we neglect interference effects for sim- A=H_(o-Ap)H . (43
plicity. Equation (42) shows that the casd;=A,=A is

special, because the gap function is completely isotropicThe physical gaps are determined by the eigenvalues of
Nevertheless, rotational invariance is still broken. The gap is
straightforward to determine. Since the two structures in Eq.
(40) have different chirality, the one-gluon exchange matrix
elements decouple. As a result, the gap equation is just a
linear combination of the gap equations in the andLR From (KA)2=2(KA) it follows that A\=2,0. The corre-
case. To leading order, the gap is again identical to the spin

; i — 1A =117, '
zero gap. Taking into account the angular dependence of th onding projectors are,= 2AA andPe=1-344. This
matrix elements, the gap is suppressed Byl*LR shows that the eigenvalue=2 has degeneracy 2, and the

— exp(—=5)A,. This result simply corresponds to an averageelgenvalue)\zo has degeneracy 1. Of course, the actual

of the correction terms in theL andLR channel. Because degeneracies are 4 and _2f b_ec‘f"“_se of»thﬁe trivial degeneracy
the gap is isotropic, the condensation energy is increased ByR—RL. In the nonrelativistic limityyCy- Xy reduces to

a factor 3/2 over pure.R pairing. This is not sufficient, #o,0-\ais. But while the nonrelativistic order parameter
however, to overcome the bigger angular suppression factomgzg. )CAw leads to a fully gapped state, we find that in the
We conclude that in the limit of massless quarks, pairing inultrarelativistic limit two modes remain gapless. This is re-
the polar phase is dominated by th® andRL channels.  |ated to the result that in the polar phase e+ RL gap has

a node on the Fermi surface, see E2f).
This also means that, unlike the nonrelativistic cék®

3T0 leading order in the coupling, condensates with an arbitranN€ 9ap equgtlonLFLs noLtRmodlfled as compared fo the polar
linear combination ofLL and LR diquarks are degenerate. The Phase. We findA = A 5 =exp(=9/2)A, where A, is the
degeneracy is lifted once higher order corrections are included. A8Pin zero gap. On the other hand, because the gap is isotro-
present, however, it is not clear whether the next-to-leading ordepic, the condensation energy is increased compared to the
calculation performed in the present work is complete. polar phase by a factor 3/2.

AA=H,[(0-Xa)?—(q-Npa)?H ;. (44)
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Finally, we have to consider the possibility that pairing g2 1 A(Qo)
takes place in both theL,RRandLR,RL channels. In par- A(kg)= 2f dqof d cog 0){5 —
ticular, we would like to consider the gap matrix 127 V0ot (A(do))
AN e o n E A(do) 1
AZA@Ty A 49 3 o5+ 2A(q0)?) | 1—cos o)+ F?/(2u2)
We note that this order parameter has positive parity, and 1
that the parity is fixed, even if only perturbative interactions +1—cos{ 0)+G2(2u2) | (50)
are taken into account. The physical gaps are determined by K
[cf. Eq. (42)] In leading order we can neglect the difference between the
gaps and findALL,""R=A,. Taking the difference into ac-
AR=A _[(a-Na)2+i7- (GXNa)]A . (46)  count we getAg""R=272PA,, as in the nonrelativistic

case. Again, the condensation energy is bigger as compared
W h imil h | h to the polar state, even though the gap is smaller. We can
e _note that, similar to the polar case, the Structure, g, jetermine the corrections which come from nonforward

(q-Xa) has disappeared, but this time an interference term igcattering. The calculation is identical to the one in the polar

present. We can now follow the standard procedure and d§shase and we find L. "-R=2"2exp(~5)A,.

termine the characteristic equation b, We find (KZ)3 The color-spin-locked stat@6) has a number of interest-
—5(AA)2+4(AA)=0 which leads to the eigenvalues ing properties. First we note that, as in the nonrelativistic
=0,1,4. The corresponding projectors are limit, rotational invariance is unbroken, and the low-lying

fermions are organized into a spin-3/2 and a spin-1/2 multip-
. let. What is new in the relativistic case is the fact that both
Po=A,, Pyp=3(1-37(AA)A_, the U(1), and U(1), symmetries are broken. The U(l)
symmetry is also broken in the polar phase, but there is an
important difference here. Without the chirally odd interfer-
ence term in Eq46) the diquark condensate does not induce

a quark-antiquark condensa(@?LwR). In the color-spin-

where we follow the notation used in E(¥),(8). We note  |ocked state, there is a nonvanishing condensate
that in the weak coupling limit, all particles are gapped. The

eigenvaluex =1 has multiplicity 4, whilex =4 has multi- Ses=(a- (X Np) ). (51)
plicity 2. This implies that the spectrum is identical to the

one we found in the nonrelativistic color-spin-locked phaseln the weak coupling limit we find 3.

As a consequence, the structure of the gap equation is alse— (1/67%) u®log(2). The condensate is a scalar under ro-

Pyo=—3[1—(AK)]A _, (47)

very similar to Eq.(12). We find tations generated by the grand angular momentum operator.
This means_that is has the same symmetries as the quark
d4q A(do) ML condensatézpzﬂ}. Once higher or_der perturbative corre_ctions
A(ko):ng AT 073 5 are included, we expect the primary condensitg to in-
(2m)" [ dot wg+[A(do)] duce a non-zerdyy) as well. As a result, there will be a

A(qg) M- nonzero quark condensate even at very large density, where
o)V instantons are exponentially suppressed.
]Dw(q—kx (48) P Y SUPP

a5+ w§+[2A(qO)]Z We saw that the gap in the stg#b), which has an equal
LL+LR
csl

exp(—=5)A,. This is suppressed with respect to the
gap in the color-spin-locked phase of the pui order pa-
rameterALR=exp(—4.5)A,, and the larger number of con-

mixture of LL and LR components, is given by
. ) :2—2/3
with w(2]=(q—,u,)2 and the matrix elements

v 1 a A A ciag densed species is insufficient to overcome this suppression.
Mg =151 Yu| 5 |A R A (A= VAZPgY, On the other hand, we saw that the spectrum in lthe
+LR state corresponds exactly to the spectrum in the non-
AT Ko B Ak relativistic limit. This suggests that, if the baryon density is
X 2 Aiha- (k=A% ], (49) increased iMN{=1 QCD with massive quarks, the order pa-

rameter evolves from the fully gappéd. + LR state to the
. . a C 1 .. partially gapped_R state. In order to see whether this can
whereAl=3(1*a-q), ALl=3(1=a-k), andPgy are the  happen continuously we would like to study the spectrum for
projeCtOI’S defined in Eq47) The structure of these matrix a genera| linear combination of thhd. andLR order param-
elements is quite complicated, but the traces simplify in thesters

weak coupling limit. In this case, we can evaluate the matrix
elements in the forward directiog=k and find A=A_[cogB)q+sinB)y] - NaA . (52)
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order corrections that may couple condensates of different
flavors.

In QCD with one flavor, as in QCD with two or more
flavors, the Fermi surface is unstable with respect to the for-
1.5} mation of color antisymmetric Cooper pairs. However, be-
cause the wave function of the pair cannot be antisymmetric
in flavor, the Cooper pairs have to have angular momentum
1 one or greater. As a result, the magnitude of the gap is sup-
pressed with respect to the spin zero gap in two flavor QCD.
Using weak coupling perturbation theory, we find
<exp(—4.5)A, whereAy is the spin zero gap. If the typical
magnitude of the gap in two flavor QCD is 100 MeV, we
find that the one flavor gap 5~1 MeV.

In one flavor QCD the order parameter is a spin-color

FIG. 1. Quasiparticle spectrum in the color-spin-locked phase a§1alrix, and interesting phases can arise because of the pos-

a function of the mixing angl@ between the.L andLR conden-  Sibility that color and spin degrees of freedom become en-
sates, see Eq53). tangled. The situation is superficially similar to the phase

structure of liquid®*He [27] and high density QCD with three
flavors[11,30,31, but the dynamics and the symmetries in-
volved are different. Nevertheless, as in B@® Eliashberg
studies ofN;=3 QCD or liquid *He, we find that, in weak
coupling perturbation theory, thB phase is energetically

0.5 1 1.5 2 2.5 3

For B= m/2 this corresponds to the pukdR order parameter
(43), and forB=m/4 we get an equal mixture afL andLR
as in Eq.(45). For an arbitrary value oB the spectrum of

AR is given by favored. In analogy with the color-flavor-locked phase of
) N;=3 QCD we refer to this phase as color-spin locked.
N1=cogB)”, The situation is particularly simple in the nonrelativistic

limit. In this case, there is a unique ground state, and the

Npa= 2[5 \/Ecoiﬁ) m_:; cog2p)], spectrum in 'gh_e _col(_)r-_spin-IO(_:ked_ phgse is fully gapped. In
' (53) the ultrarelativistic limit the situation is more complicated.

The order parameter exhibits color-spin locking, but to lead-

where all eigenvalues are doubly degenerate. We show tHB9 Order in the coupling constant there is a continuous fam-
spectrum as a function o8 in Fig. 1. We note that the ily of states which differ by the mixing angle between the

- - and gty + ¥ g components of the order pa-
spectrum is fully gapped for all values @ except forg YRYR— YL R : . i )
—0,7/2. There are three values @, B=0,/4,m/2, for rameter. Except at special points, the spectrum is again fully

which two pairs of eigenvalues meet, and the degeneracy Oqapped.

. In the color-spin-locked phase the original rotational sym-
the spectrum is enhanced. These correspond to the cases Wtry is broken, but there is an unbroken (30symmetry
already discussed in detail, putd and LR pairing, and

i - \ ! which is generated by a combination of the original angular
equalLL andLR pairing. To leading order in the coupling, momentum and color generators. The only non-anomalous
the gap and the condensation energy are independent of td@mmetry which is broken in the color-spin-locked phase is
mixing angleg. Taking subleading corrections into account, the U(1) of baryon number. This means that the global sym-
we found that in the nonrelativistic limit the state corre- metries of the color-spin-locked phase agree with what we
sponding toB= /4 is favored. In the ultrarelativistic limit, expect, on phenomenological grounds, for one flavor QCD at
the energetically preferred state hé@s- w/2. We therefore low density. We also found that the color-spin-locked phase
conjecture that as a function @f-/m the order parameter has certain other features that are characteristitNgf 1
evolves frompB= /4 to B= /2. QCD. In particular, we saw that the color-spin-locked phase
supports low energy spin-3/2 quasiparticles, and that there is
a mechanism for generating quark-antiquark condensates.
VI. CONCLUSIONS These observations lead us to conjecture that in one flavor
In summary, we have studied QCD with one flavor atQCD the low and high density phases are continuqusly con-
high baryon density. Our results are relevant to QCD withN€cted. In the case of one flavor QCD this suggestion is less
three flavors in the case when the strange quark mass gdlcal than in the case of three flavors. In particular, it is
bigger than the critical value for color-flavor lockifg,10]. nown that for sufficiently small values of the quark mass
They also apply to the situation in two flavor QCD when thethere IS NO phase transition along the finite temperature axis
difference between the chemical potentials for up and dowr£32]' In this case, we expect the only ph_a_se transition in the
quarks is bigger than the gd@8,29. In both cases there is |4 Plane to be the nuclear onset transition.
no pairing between quarks of different flavors, and the pos-
sible phases are identical to those in one flavor QCD. We ACKNOWLEDGMENTS
should note, however, that even if the pair condensate in- This work was supported in part by U.S. DOE Grant No.
volves only a single flavor, there will still be some depen-DE-FG-88ER40388. | would like to acknowledge the hospi-
dence on the number flavors. This dependence arises frotality of the National Institute for Nuclear Theory in Seattle,
the N; dependence of the screening mass, and from highewhere this work was completed.

094007-9



THOMAS SCHAFER

PHYSICAL REVIEW D 62 094007

[1] S. C. Frautschi, ifProceedings of the Workshop on Hadronic [18] R. D. Pisarski and D. H. Rischke, Phys. Rev.6D 074017

Matter at Extreme Energy Densjtyedited by N. Cabibbo
(Erice, ltaly, 1978.
[2] B. C. Barrois, Nucl. PhysB129, 390(1977.

(2000.
[19] D. K. Hong, V. A. Miransky, I. A. Shovkovy, and L. C.
Wijewardhana, Phys. Rev. B1, 056001(2000.

[3] F. Barrois, Ph.D. thesis, Caltech, UMI Microfiche No. 79- [20] W. E. Brown, J. T. Liu, and H. Ren, Phys. Rev.6l, 114012

04847-mc.

[4] D. Bailin and A. Love, Phys. Re[d.07, 325(1984.

[5] M. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. 82,
247 (1998.

[6] R. Rapp, T. ScHar, E. V. Shuryak, and M. Velkovsky, Phys.
Rev. Lett.81, 53 (1998.

[7] M. Alford, K. Rajagopal, and F. Wilczek, Nucl. PhyB537,
443(1999.

[8] T. Schder and F. Wilczek, Phys. Rev. Le82, 3956(1999.

[9] M. Alford, J. Berges, and K. Rajagopal, Nucl. Phig&58 219
(1999.

[10] T. Schder and F. Wilczek, Phys. Rev. B0, 074014(1999.

[11] T. Schder, Nucl. PhysB575 269 (2000.

[12] R. D. Pisarski, Phys. Rev. C(to be publishey
nucl-th/9912070.

[13] M. Srednicki and L. Susskind, Nucl. PhyB187, 93 (1981).

[14] G. W. Carter and D. Diakonov, Phys. Rev. @&, 016004
(1999.

[15] R. Rapp, T. Scffar, E. V. Shuryak, and M. Velkovsky, Ann.
Phys.(N.Y.) 280, 35 (2000.

[16] D. T. Son, Phys. Rev. 39, 094019(1999.

[17] T. Schder and F. Wilczek, Phys. Rev. B0, 114033(1999.

(2000.

[21] N. Evans, S. D. Hsu, and M. Schwetz, Nucl. Ph§551, 275
(1999.

[22] N. Evans, S. D. Hsu, and M. Schwetz, Phys. Leté49, 281
(1999.

[23] T. Schder and F. Wilczek, Phys. Lett. B50, 325(1999.

[24] S. D. Hsu and M. Schwetz, Nucl. PhyB572, 211 (2000.

[25] W. E. Brown, J. T. Liu, and H. Ren, Phys. Rev. (b be
published, hep-ph/9912409.

[26] J. Hosek, hep-ph/9812516; M. lwasaki and T. Iwado, Phys.
Lett. B 350, 163(1995.

[27] D. Vollhardt and P. Wte, The Superfluid Phases of Helium 3
(Taylor and Francis, New York, 1990

[28] P. Bedaque, hep-ph/9910247.

[29] D. T. Son and M. A. Stephanov, hep-ph/0005225.

[30] I. A. Shovkovy and L. C. Wijewardhana, Phys. Lett.480,
189(1999.

[31] N. Evans, J. Hormuzdiar, S. D. Hsu, and M. Schwetz, Nucl.
Phys.B581, 391 (2000.

[32] C. Alexandrou, A. Borici, A. Feo, P. de Forcrand, A. Galli, F.
Jegerlehner, and T. Takaishi, Phys. Rev6@ 034504(1999.

094007-10



