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Quark hadron continuity in QCD with one flavor
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We study QCD with one flavor at finite baryon density. In the limit of very high baryon density the system

is expected to be a color superconductor. In the case of one flavor, the order parameter is in a 3¯of color and
has a total angular momentum of 1. We show that, in weak coupling perturbation theory, the energetically
preferred phase exhibits ‘‘color-spin locking’’; i.e., the color and spin direction of the condensate are aligned.
We discuss the properties of this phase and argue that it shares important features of the hadronic phase at low
density. In particular, we find an unbroken rotational symmetry, spin-3/2 quasiparticles, and an unusual mecha-
nism for quark-antiquark condensation. Our results are relevant to three flavor QCD in the regime where the
strange quark mass is bigger than the critical value for color-flavor locking. We find that the gaps in this case
are on the order of 1 MeV.

PACS number~s!: 12.38.Aw, 11.15.Ex, 24.85.1p
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I. INTRODUCTION

The behavior of hadronic matter in the regime of ve
high baryon density but small temperature has attracted
of interest recently. It was realized a long time ago th
asymptotic freedom combined with the presence of a Fe
surface implies that high density quark matter is a superc
ductor@1–4#. More recently, it was pointed out that the co
responding gaps can be quite large, on the order ofD.100
MeV @5,6#. It was also realized that the phase structure
quite rich, and that matter at very high density exhibits
wealth of nonperturbative phenomena, such as a mass
and chiral symmetry breaking, in a regime where the c
pling is weak and systematic calculations are possible@7,8#.

The structure of the superconducting state depends s
tively on the number of quark flavors and their mass
@9–12#. For two light flavors the dominant order parame
pairs up and down quarks in a color antisymmetric wa
function. The condensate is a flavor singlet and breaks
gauge symmetry SU(3)→SU(2). The up anddown quarks
that are singlets under the residual gauge symmetry rem
gapless. In the case of three light flavors the pair conden
involves the coupling of color and flavor degrees of freedo
color-flavor locking@7,13#. Both the color and flavor sym
metries are broken, but a vectorlike combination of the t
remains a symmetry. This implies, among other things, t
all gluons acquire a mass and that chiral symmetry is brok
In addition to that, the spectrum of low-lying states bears
uncanny resemblance to what is expected, on phenom
logical grounds, for three flavor QCD at low baryon densi
This has led us to the conjecture that the hyperon ma
phase at low density might be continuously connected
quark matter at high density, without any phase transit
@8#.

If the strange quark mass is included, the structure of
ground state depends on the relative magnitude of the
the strange quark mass, and the Fermi momentum@9,10#. If
D.ms

2/(2pF) all flavors participate and the system exhib
color-flavor locking. If the gap is smaller then pairing on
0556-2821/2000/62~9!/094007~10!/$15.00 62 0940
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takes place in the up-down sector. In this case, we expec
strange quarks to form an independent superfluid@4,10#. It is
this state we wish to study in more detail in this work.

At moderate densities, instantons play an important r
in determining the pairing gap for light quarks@5,6,14,15#.
But instantons do not contribute to the scattering amplitu
for two strange quarks. In the following, we will therefor
focus on perturbative interactions@3,4,16–20#. This has the
added advantage that our results are rigorous in the limi
very large chemical potential. If two strange quarks are i
color anti-symmetric wave function their combined spin a
spatial wave function cannot be antisymmetric. This me
that pairing between strange quarks has to involve total
gular momentum one or greater. We will see that the per
bative one gluon exchange interaction is attractive for co
anti-symmetric Cooper pairs in both the spin 0 and spin
states.

Quark superfluids with total angular momentum one ha
been studied using renormalization group methods@21–24#,
perturbative QCD@4,18,25,26#, and Nambu–Jona-Lasinio
models@26#. In the present work we wish to present a d
tailed investigation of the phase structure and of the sym
tries. For this purpose, we will not only consider the realis
case of three flavor matter withms.A2pFD, but also the
academic situation of one flavor QCD at large chemical
tential. In particular, we shall argue that one flavor QC
provides a new and interesting realization of the concep
quark-hadron continuity.

The paper is organized as follows. In Sec. II we study
phase structure of one flavor QCD in the nonrelativis
limit. We show that the stable phase exhibits color-sp
locking, and discuss the symmetries of this phase in Sec.
In Secs. IV and V we study the phase structure in the
trarelativistic limit. We conclude in Sec. VI.

II. PHASE STRUCTURE IN THE NONRELATIVISTIC
LIMIT

In practice we are mostly interested in the phase struc
of superfluid strange quark matter. In this case, we exp
©2000 The American Physical Society07-1
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THOMAS SCHÄFER PHYSICAL REVIEW D 62 094007
that pF.ms and the strange quark mass can be treated
perturbation. Nevertheless, it is also interesting to cons
the opposite limitm.pF . The nonrelativistic limit simplifies
the calculation and we shall study it first. In the nonrelat
istic limit, the QCD Lagrangian simplifies as

L5c†S p01m2
p2

2M
1gA0Dc2

1

4
Gmn

a Ga mn. ~1!

We are interested in the behavior of one-flavor matter w
M.pF.LQCD. This means that the density is sufficient
large to justify the perturbative treatment, but not so large
to invalidate the nonrelativistic limit. The dominant intera
tion between quarks is given by the Coulomb force. T
interaction is attractive between quarks in a color antisy
metric 3̄ state. In a Fermi liquid, this attractive interactio
will lead to an instability. We shall assume that this instab
ity is resolved by the formation of a condensate of qu
pairs in a color 3̄state.

The Pauli principle requires that the wave function of tw
identical quarks is antisymmetric. In QCD with only on
flavor this implies that color 3̄pairs cannot condense in
total angular momentum zero state. The obvious alterna
is to consider order parameters with total angular momen
one. In the nonrelativistic limit there are only two possibi
ties:

~fs51! i
a5c is2s ilA

ac, ~f l 51! i
a5c is2q̂ilA

ac. ~2!

Here, we have introduced a vector notation for the antisy
metric Gell-Mann matriceslW A5(l2 ,l5 ,l7). The two order
parameters are independent, because in the nonrelativ
limit spin and orbital angular momentum are separately c
served.

In order to derive a gap equation for the order parame
defined in Eq.~2! we follow the usual Nambu-Gorkov pro
cedure and introduce a bispinorC5(c,cc) with cc
5 is2c†. In this basis, the fermionic part of the action b
comes

S21~q!5S q02vq D

D q01vq
D , ~3!

where we have definedvq5q2/(2M )2m. The interaction
vertex is a diagonal matrixGa5diag@la/2,(la)T/2#. The
Nambu-Gorkov matrix~3! is easily inverted to give the nor
mal and anomalous components of the quark propagator.
anomalous propagator is

S21~q!5
D

q0
22vq

22D2
, ~4!

where we have to keep in mind thatD is a color-spin matrix.
The gap equation now follows from the Dyson-Schwing
equation

S~k!52 ig2E d4q

~2p!4
GaS~q!GbDab~q2k!, ~5!
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whereS(k)52@S21(k)2S0
21(k)# is the proper self energy

andDab(q2k) is the Coulomb gluon propagator.
Before we proceed, we have to specify the color-s

structure of the gap matrix. The gap is a 333 matrix which
transforms asD→UDR under gauge transformationsU
PSU(3) and rotationsRPSO(3). This is similar to the situ-
ation in liquid 3He @27# and in the color superconductin
phase ofNf53 QCD @7#. In liquid 3He the order paramete
describes the coupling of the nuclear spin to the orbital
gular momentum of the pair. In the case of three flavor QC
the order parameter specifies the coupling between the c
and flavor wave functions of the pair. While the order p
rameters in the three cases look similar, the symmetries
volved are not the same. Liquid3He is characterized by a
global SO(3)3SO(3)3U(1) symmetry, high density QCD
with one flavor by SU(3)c3SO(3)3U(1), andNf53 QCD
by SU(3)c3SU(3)L3SU(3)R3U(1). The fact that the sym-
metry groups are not the same implies, among other thin
that the number of independent components of the order
rameter is not the same. The same statement applies to
number of independent structures in the Landau-Ginzb
functional. We find that the number of independent qua
terms in the Landau-Ginzburg functional is 5 in the case
3He, 3 in the case of one flavor QCD, and 2 in the case
three flavor QCD.

In any case, the preferred order parameter is governe
dynamics, not symmetry, and has to determined for e
system separately. In the following, we shall consider
following order parameters:1

D i
a5Dd i

a , B phase~CSL!,

D i
a5Dda3d i3 , polar phase~2SC!,

D i
a5Dda3~d i11 id i2!, A phase ,

D i
a5D~da1d i11da2d i2!, planar phase, ~6!

which correspond to the ‘‘inert’’ phases of liquid3He. These
phases are characterized by having the largest residual
metry groups, and by their stability under small perturbatio
that are consistent with the residual symmetry. There
three additional inert phases in liquid3He, theA1 , B1, andb
phases@27#, but they do not lead to a gap on the Ferm
surface in the case ofNf51 QCD.

In the following, we shall outline the calculation in th
case of theB phase of thes51 order parameter~2!. We shall
refer to this phase as the color-spin-locked state, in anal
with the color-flavor-locked phase ofNf53 QCD. The de-
termination of the gap in the other phases proceeds a

1In the context of color-flavor locking, it is sometimes argued th
one can make use of color and flavor symmetries in order to res
the possible order parameters to diagonal matrices. This is not
essarily correct, because there is no reason to exclude
Hermitian order parameters. An example is theA phase of liquid
3He, which is one of the stable phases of3He at zero magnetic
field.
7-2
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QUARK HADRON CONTINUITY IN QCD WITH ONE FLAVOR PHYSICAL REVIEW D62 094007
similar lines and we will briefly summarize the results b
low. In order to determine the anomalous propagator
have to diagonalize the color-spin structure of the gap m
trix. In the case of color-spin locking~CSL! this can be
achieved using the observation that (sW •lW A)2522(sW •lW A).
This implies that the eigenvalues of (sW •lW A) are 1 and22. It
is useful to introduce the corresponding projection opera

P1/25
1
3 ~12sW •lW A!, ~7!

P3/25
2
3 ~11 1

2 sW •lW A!. ~8!

As we will explain in the next section, the subscriptg de-
notes the grand spin of the eigenstate. In particular, we h
tr(Pg)5(2g11), so the degeneracies of the eigenvalue
and22 are 4 and 2, respectively. It is now straightforwa
to determine the anomalous quark propagator. We find

S21~q!5
DP3/2

q0
22vq

22D2
1

22DP1/2

q0
22vq

22~2D!2
. ~9!

Using the explicit form of the projection operators, we c
calculate the color factors for the two terms in the propa
tor. We find

S la

2 D P1/2S la

2 D T

52
1

3
P1/21

1

3
P3/2, ~10!

S la

2 D P3/2S la

2 D T

5
2

3
P1/2. ~11!

The gap matrix is proportional toP3/222P1/2. For the gap
equation to close, the right hand side of Eq.~5! also has to be
proportional to the same combination of projectors. In
weak coupling limitD!m we can neglect the difference o
the gaps in the denominator of Eq.~9! and the gap equation
indeed closes. At stronger coupling, theg51/2 andg53/2
gaps are independent, and there is a small admixture
spin singlet, color symmetric gap. This is analogous to
situation in the color-flavor locked phase. Putting everyth
together, we find the following gap equation:

D~k!5
2g2

9 E d4q

~2p!4 H D~q!

q0
22vq

22D2~q!

1
2D~q!

q0
22vq

22@2D~q!#2J D~q2k!. ~12!

We takeD(p) to be a screened Coulomb propagatorD(p)
51/(pW 21mD

2 ) where mD
2 5g2mpF /(2p2) is the Debye

screening mass. In the weak coupling limit the gap equa
is dominated by momenta in the vicinity of the Fermi su
face. In this case, there is no dependence onk and we can
approximate the gap by a constant,D(k).D. We get
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3

g2

8p2
logS 4pF

2

mD
2 D 1

3E0

L

de H D

Ae21D2
1

2D

Ae21~2D!2J ,

~13!

where we have introduced a cutoffL. This equation is easily
solved

Dcsl5222/3~2L!exp~21/G!, G5
2

3

g2

8p2
logS 4pF

2

mD
2 D .

~14!

The factor 222/3 is due to the fact that theg5 1
2 and g5 3

2

gaps are not equal. There is a similar factor 221/3 in the case
of the color-flavor-locked phase inNf53 QCD@11#. We can
now repeat this calculation for the other phases. The m
ingredient is the spectrum of gap matrix. We find

polar phase D†D5~s3lA
3 !2,

l25$1 ~d54!,0 ~d52!%,

planar phase D†D5~s1lA
11s2lA

2 !2,
~15!

l25$2 ~d54!,0 ~d52!%,

A phase D†D5~s1lA
3 !~s2lA

3 !,

l25$1 ~d52!,0 ~d54!%,

whered indicates the degeneracy of the eigenvalue. We
serve that the color-spin-locked phase is the only phas
which all excitations are gapped. The gaps in the ot
phases are easily calculated. We find

D~polar!5D~planar!5D~A phase!522/3D~CSL!,
~16!

which is a simple consequence of the fact that in the
polar, and planar phases all nonzero gaps are equal. E
though the gap in the CSL phase is smaller than the ga
the other phases, the critical temperature is not. The ga
the CSL phase is suppressed because theg5 1

2 , 3
2 gaps are

not equal. ButTc is determined by the solution of the finit
temperature gap equation in the limitD→0, and does not
depend on the spectrum of the gap matrix.

So far, we have only discussed the solution of the g
equation in the different phases. The stable phase is de
mined by the condition that the thermodynamic potentia
minimal. The grand potential can be calculated from

V5
1

2E d4q

~2p!4
$tr log@S0

21~q!S~q!#2tr@S~q!S~q!#%.

~17!

The traces can be calculated using the representation o
propagator in terms of projection operators~9!. In the color-
spin-locked phase, we find
7-3
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THOMAS SCHÄFER PHYSICAL REVIEW D 62 094007
V52
mpF

2p2
12Dcsl

2 logS 2m

Dcsl
D . ~18!

In the polar, planar and A-phase the gap is bigger, but
number of condensed states is smaller. We find

V~polar!5V~A phase!5
24/3

3
V~CSL!, ~19!

andV(planar)5 1
2 V(polar). This result shows that the colo

spin-locked phase is indeed favored, but only by a very sm
amount, 33224/3.1.2.

Finally, we study the phases of thel 51 condensate

^cs2q̂ilA
ac&. The gap depends on the matrix@dW (q̂)•lW A#

whereda5D i
aq̂i . The eigenvalues of (dW •lW A) can be found

from the fact that (d̂•lW A)35(d̂•lW A). This means thatl
5$udW u,2udW u,0%, so that there are always two gapless exc
tions, independent of the structure ofdW . In the B phasedW

5q̂, and the gap is isotropic. There are four gapped and
gapless modes. Even though the gap function is isotropic
gap equation contains extra factors of cos(u) and the gap is
reduced compared to the result in the polar phase of ths
51 order parameter. We will study these suppression fac
in more detail in Sec. IV. In the other phases the gap is
longer isotropic. In the polar phase, for example, we ha
dW 5ê3 and the gap behaves asD(q̂); cos(u). Because the
gap is not isotropic, both the gap and the condensation
ergy are suppressed with respect to theB phase.

III. SYMMETRIES OF THE COLOR-SPIN-LOCKED
PHASE

The results of the previous section show that, in we
coupling and in the limit that the quark mass is large, h
density QCD with one quark flavor exhibits color-spin loc
ing. In this section we wish to discuss some of the proper
of the color-spin-locked phase. We will also contrast the
properties with our expectations for the behavior of one
vor QCD at low density.

In the A phase the SO(3)3SU(3)3U(1) symmetry is
broken to U(1)3SU(2).Here, U~1! is the residual rotationa
symmetry andSU(2) is the unbroken part of the gaug
group. In the color-spin-locked phase the original rotatio
and gauge symmetries are completely broken, but there
new SO~3! invariance which is generated by a combinati
of the original SO~3! generators and the SU~3! color
generators.2 Consider the ‘‘grand spin’’ generators

2Our discussion here applies to the idealized case of one fl
QCD. In QCD with three flavors but separate pairing in the u
down and strange quark sectors the color SU~3! is broken to SU~2!
by the primary condensate. This means that the color-spin-loc
phase of the strange superfluid inNf53 QCD cannot have exac
rotational invariance.
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2
1lW A . ~20!

We can verify that the operators satisfy SO~3! commutation
relations

@Gi ,Gj #5 i e i jkGk , ~21!

and commute with the gap matrix in the color-spin-lock
phase

@GW ,~sW •lW A!#50. ~22!

This means that the color-spin-locked state is invariant w
respect to rotations generated byGW . We can combine grand
spinGW and orbital angular momentumLW 5rW3pW to obtain the
conserved total angular momentum generatorJW5LW 1GW .
Away from the nonrelativistic limit onlyJW is conserved, not
LW andGW separately. We will discuss this issue further in S
V.

Excitations in the color-spin-locked phase are charac
ized by their grand spin quantum numbersg,g3. The quan-
tum numbers of quasiparticles can be determined using

GW 25 11
4 1~sW •lW A!. ~23!

We can now verify that the projectorsPg defined in Eqs.
~7!,~8! satisfy GW 2Pg5g(g11)Pg . In the color-spin-locked
phase there is ag5 3

2 quartet of quasiparticles with gapD,
and ag5 1

2 doublet with gap 2D. All gluons acquire a mass
via the Higgs mechanism. In the color-spin-locked phase
octet of gauge bosons splits into ag51 triplet and ag52
quintet. If we couple orbital angular momentum to gra
spin we find onej 50 state, twoj 51 and j 52 states, as
well as onej 53 state.

In the color-spin-locked phase the U~1! of baryon number
is spontaneously broken. As a consequence, the system
hibits superfluidity and the spectrum contains a mass
phonon. The order parameter is charged, and the photon
quires a mass by the Higgs mechanism. This also imp
that QCD with three flavors exhibits the Meissner effect
the strange quark mass is larger than the critical mass
color-flavor-locking. Both the color-flavor-locked phase a
the phase with pairing in the up-down sector only do n
exhibit the Meissner effect.

We would now like to compare these results with o
expectations for the behavior of QCD with one flavor at lo
baryon density. QCD with one flavor has a U(1)A chiral
symmetry which is broken by the anomaly. This means t
there is no spontaneous symmetry breaking, and that t
are no Goldstone bosons.Nf51 QCD has a large mass ga
in all channels. The lowest dimension operator with bary
numberB51 is a spin 3/2 current

hm5eabc~qaCgmqb!qc. ~24!

This suggests that the lightest baryon has spin 3/2. T
agrees with the expectation from the quark model. In orde
construct a color singlet state in which three quarks of

or
-

d
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QUARK HADRON CONTINUITY IN QCD WITH ONE FLAVOR PHYSICAL REVIEW D62 094007
same flavor occupy ans state the total spin has to be 3/
Finally, this expectation is also borne out by phenomen
ogy. In QCD, the lightestI 53/2 baryon has spin 3/2. Th
splitting betweens51/2 ands53/2 baryons withI 53/2 is
about 400 MeV. The situation in the meson sector is l
clear. For light quarks, phenomenology suggests that b
the scalar (a0) and the pseudoscalar (h8) are heavy, and the
lightest state is a vector (v). For heavy quarks, on the othe
hand, the lightest quark-anti-quark bound state is a pseu
scalar, and the first excited state a vector.

Let us now turn to the effects of a nonzero chemical p
tential. Since the theory has a mass gap, there has to
critical chemical potentialmc.MB/3 below which the
baryon density is zero. Depending on whether nuclear ma
is self-bound, this transition is continuous or not. We ha
no information on the interaction between two spin-3/2 ba
ons. If the lightest meson is a scalar, it is natural to assu
that thes-wave scattering length is attractive. Even if this
not the case at very small density, repulsive interactions m
get screened as the density is increased. In this case
expect one flavor nuclear matter to be a superconducto
natural order parameter fors-wave superconductivity is

f5^hmCg5hm&. ~25!

This order parameter breaks the U~1! of baryon number, and
will lead to the appearance of a massless phonon. It
breaks the U~1! of electromagnetism, and gives a mass to
photon.

If the density is very large we expect baryons to dissol
and it becomes natural to describe the system in term
quarks. As we have seen, one-gluon exchange causes a
stability near the Fermi surface and the quark liquid is
color superconductor. In the color-spin-locked phase ro
tional symmetry is unbroken, and the only global symmetr
that get broken are the U~1! of baryon number and of elec
tromagnetism. The gauge symmetry is completely bro
and all colored excitations have a mass. In this sense,
system remains confined. This means that in terms of s
metries, the high density phase cannot be distinguished f
the low density phase. What is even more surprising is
the spectrum of fermions is very similar to the low ener
phase. We saw that the spectrum contains spin-3/2 and s
1/2 multiplets, where the spin-3/2 quasiparticles are lowe
energy. This is the expected behavior in one flavor QCD
low density. These observations suggest that the high den
phase might be continuously connected to the low den
phase, similar to what we suggested in the case of th
flavor QCD @8#.

IV. THE POLAR PHASE IN THE ULTRA-RELATIVISTIC
LIMIT

We would now like to consider the opposite limit o
massless, ultrarelativistic quarks. In this section we s
study the polar phase@18,25#. More complicated phases wi
be considered in the following section. The main new ing
dient in the relativistic limit is that the interaction preserv
the chirality of the quarks. It is therefore useful to employ
09400
l-

s
th

o-

-
a

er
e
-
e

y
we
A

so
e

,
of
in-

a
-

s

n
he

-
m
at

in-
n
t
ity
ty
ee

ll

-

chiral representation. In terms of left and right hand
spinorscL,R the action becomes

L5c̄~q”1m” 1gA” !c

5cR
†~q•s1m1gA•s!cR1cL

†~q•s̄1m1gA•s̄ !cL ,

~26!

where we have introducedsm5(1,sW ) and s̄m5(1,2sW ).
There are two types of order parameters with total angu
momentum one, depending on whether the conden
couples quarks of the same or opposite chirality. We be
with order parameters that connect quarks of the same ch
ity. We have

cCg5q̂l2c5cRis2q̂l2cR2cLis2q̂l2cL , ~27!

cCaW l2c52cRis2sW l2cR1cLis2ŝl2cL ,
~28!

whereaW 5g0gW and we have selected a particular direction
color space. There are two additional order parameters w
the opposite parity,Cg5→C andCaW →CSW . In this case, the
relative sign between theRR and LL terms is flipped. As
usual, perturbative interactions do not distinguish betwe
order parameters of different parity. In the weak coupli
limit, only states with the same chirality and helicity contri
ute. In order to make this manifest, we introduce the helic
projectorsH65 1

2 (16sW •q̂). Using the fact that

cRs2H1sW H1cR5cRs2q̂H1cR ~29!

we see that, in the weak coupling limit, the second or
parameter~28! is not independent of the first~27!.

In order to derive the gap equation we again consider
Dyson-Schwinger equation for the fermion self-energy in
Nambu-Gorkov representation. We concentrate on ri
handed quarks and introduce the bispinorC5(cR ,cc,R)
with cc,R52 is2cR

† . The inverse fermion propagator take
the form

S21~q!5S q•s1m DW •q̂H1

DW * •q̂H1 q•s̄2m
D . ~30!

The normal and anomalous components of the Nam
Gorkov propagator are determined by the inverse of the
trix ~30!. The anomalous propagator is given by

S2152
1

q2•s̄
D

1

q1•s2D†~q2•s̄ !21D
~31!

with q65(q06m,qW ) andD5DW •q̂H1 . Except for the angu-
lar dependence of the gap parameter this propagator ha
same form as the propagator in the spin 0 case. The co
sponding gap equation has been discussed many times i
literature@16–19#. Here, we simply quote the result
7-5
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D~k0!5
g2

12p2E dq0E d cos~u!
cos~u!D~q0!

Aq0
21cos~u!2D~q0!2

3H 1
2 @11cos~u!#

12cos~u!1F2/~2m2!

1

1
2 @32cos~u!#

12cos~u!1G2/~2m2!
J . ~32!

G and F are the magnetic and electric components of
gluon self-energy. Forq0!qW !m we have F25mD

2 and

G25(p/4)mD
2 x with x5uq02k0u/uqW 2kW u.uq02k0u/

$A2m@12cos(u)#%1/2.
The gap equation is dominated by collinear scatter

with cos(u).1. To leading order, we can solve the gap eq
tion by setting cos(u)51 in the numerator. We also drop th
angular dependence in the denominator of the anoma
quark propagator. In this limit, the gap is the same as for
spin zero case

D05512p4~2/Nf !
5/2mg25 expS 2

3p2

A2g
D , ~33!

whereNf is the number of flavors that are active in dete
mining the screening mass. Here, we only show the con
bution of electric and magnetic gluon exchanges to the p
exponent. Additional contributions from the fermion se
energy were found in Ref.@25#. We can calculate correction
to the leading order resultD l 515D l 50 by expanding the
numerator around cos(u)51. The correction term has no co
linear singularity and the gluon self-energy termsF and G
can be neglected. We findD l 515exp(3c1)Dl50 with

c15
1

2E d cos~u!

12cos~u! H cos~u!S 3

2
2

1

2
cos~u! D

1cos~u!S 1

2
1

1

2
cos~u! D22J

522. ~34!

This implies that D l 515exp(26)Dl50.0.004D l 50 @25#,
which shows that the angular momentuml 51 gap is
strongly suppressed with respect to thes-wave gap. While
the natural scale of thes-wave gap isD5100 MeV, the
p-wave gap is expected to be less than 1 MeV.

We now come to superfluid order parameters that cou
quarks of opposite chirality. In weak coupling, the only o
tion is

cCgW l2c52cLis2sW l2cR2cRis2sW l2cL . ~35!

In this case, the parity of the order parameter is fixed. T
order parametercCg5gW c has the opposite symmetry und
the exchange of the two fermion fields and cannot be co
antisymmetric.
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We can derive the gap equation forcCDW •gW l2c follow-
ing the same steps as in the spin zero case. We introduc
bispinorC5(cR ,cc,L) with cc,L5 is2cL

† . The inverse fer-
mion propagator takes the form

S21~q!5S q•s1m H1DW •sW H2

H2DW •sW H1 q•s2m
D . ~36!

The anomalous quark propagator is determined by the
verse of this matrix. The gap equation is

D~k0!~D̂'
k !25

g2

12p2
E dq0E d cos~u!

3
D~q0!

Aq0
21D~q0!2~D̂'

q !2

1

2
$@11~ k̂•D̂ !~ q̂•D̂ !#

3~11 k̂•q̂!2~ k̂•D̂1q̂•D̂ !2

2 i ~ k̂•D̂1q̂•D̂ !k̂~D̂3q̂!%

3H 1

12cos~u!1F2/~2m2!

1
1

12cos~u!1G2/~2m2!
J . ~37!

with (D̂'
k )2512( k̂•D̂)2. We observe that in the absence

screening and damping,F5G50, electric and magnetic
gluon exchanges contribute equally to the spin 1 gap.
also note that the gap has a node if the direction of the o
parameter is aligned with the pair momentum. This is due
the fact that the condensate connects quarks of opposite
licity. In order to produce a gap for a quark moving wi
momentumpW , the condensate has to flip the helicity of th
quark. But this cannot happen if the spin of the condensa
parallel topW . We can see this explicitly from the fact that

D̄D5H2DW •sW H1DW •sW H25H2@~DW •sW !22~DW •q̂!2#H2 .
~38!

If D;q̂ this expression vanishes, so there is no gap ifq̂ is
parallel toDW .

To leading order, we can solve the gap equation by eva
ating the angular factors fork̂•D̂50 and k̂•q̂51. In this
case, the complicated matrix element in Eq.~37! reduces to
the expression for the spin zero case@18#. The leading cor-
rection to this result can be determined as in Eq.~34!. We
find

cs515
1

2E d cos~u!

12cos~u! H cos~u!1
1

2
cos~u!22

3

2J 52
3

2
.

~39!

This implies DLR5exp(29/2)D0.0.01D0, which is bigger
than theLL,RR gap by a factor;4.5.

Finally, we have to consider the possibility that pairin
takes place both between quarks of the same and of opp
chirality. In QCD with one flavor the chiral U(1)A symmetry
7-6



tw
tia
b
w
ca
o
e

it

s
s

ru

b

rm
b

-
im

pi
p
Eq
rix
st

sp
f t

g

d

cto
i

the
we

wo
or-

ak
ed
ree
lity,
he

e-
the
-
s
iven
n-

to
rve
the

e
gap

ree

e
ual
racy

r
he
e-

olar

otro-
the

ar
e
.
rd

QUARK HADRON CONTINUITY IN QCD WITH ONE FLAVOR PHYSICAL REVIEW D62 094007
is anomalous, so there is no symmetry that prevents the
condensates from mixing. But even if the chemical poten
is infinitely large, and the effects of the anomaly can
neglected, simultaneous pairing may still take place. As
shall see, by combining the two order parameters we
obtain a gap with enhanced symmetries, and simultane
pairing could be energetically favored. In the following w
will consider a gap matrix of the form

D5L1~DW 1• p̂1DW 2•gW !L1l2 , ~40!

whereL65 1
2 (16aW • p̂) projects on positive~negative! en-

ergy states. This is equivalent to projecting on states w
equal chirality and helicity,L15PRH11PLH2 . The deri-
vation of the gap equation proceeds along the same line
before, only that now we have to include both chiralitie
The propagator takes the form

S2152
1

q”2m”
D

1

~q”1m” !1D̄~q”2m” !21D
. ~41!

The quadratic form in the denominator determines the st
ture of the gap. We find

D̄D̃[D̄~q”2m” !21D~q”2m” !

5$~DW 1•q̂!21@DW 2
22~DW 2•q̂!2#%L2 , ~42!

where we have assumed that there is no relative phase
tweenDW 1 and DW 2. If this is not the case, Eq.~42! contains
interference terms; Im(D1* D2) with a more complicated
chiral structure. There is no general reason why such te
should be absent. Indeed, we shall find that interference
tween theLL and LR terms is important in the color-spin
locked phase. Here, we neglect interference effects for s
plicity. Equation ~42! shows that the caseDW 15DW 2[DW is
special, because the gap function is completely isotro
Nevertheless, rotational invariance is still broken. The ga
straightforward to determine. Since the two structures in
~40! have different chirality, the one-gluon exchange mat
elements decouple. As a result, the gap equation is ju
linear combination of the gap equations in theLL and LR
case. To leading order, the gap is again identical to the
zero gap. Taking into account the angular dependence o
matrix elements, the gap is suppressed byDLL1LR

5exp(25)D0. This result simply corresponds to an avera
of the correction terms in theLL andLR channel. Because
the gap is isotropic, the condensation energy is increase
a factor 3/2 over pureLR pairing. This is not sufficient,
however, to overcome the bigger angular suppression fa
We conclude that in the limit of massless quarks, pairing
the polar phase is dominated by theLR andRL channels.3

3To leading order in the coupling, condensates with an arbitr
linear combination ofLL and LR diquarks are degenerate. Th
degeneracy is lifted once higher order corrections are included
present, however, it is not clear whether the next-to-leading o
calculation performed in the present work is complete.
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V. COLOR-SPIN-LOCKING IN THE
ULTRARELATIVISTIC LIMIT

In the polar phase the color and spin orientation of
condensate are completely uncorrelated. In this section,
shall deal with the more complicated cases in which the t
are entangled. In practice, we will only discuss the col
spin-locked phase. The calculation in theA and planar
phases is very similar, and we have verified that, in we
coupling, they do no compete with the color-spin-lock
phase. As in the previous section, we have to deal with th
different cases, pairing between quarks of the same chira
pairing between different chiralities, or a combination of t
two.

We begin with the simplest case, which is pairing b
tween quarks of the same chirality. The gap matrix has
form D5(q̂•lW A)L1 . As in Sec. II, this matrix can be diago
nalized using the relationD35D. This gives the eigenvalue
61 and 0. Projectors on the nonzero eigenvalues are g
by P615 1

2 (611D)D. We observe that, just as in the no
relativistic limit, theB phase of theRR ~or LL) order param-
eter is not fully gapped. The value of the gap is easy
determine. Using the projectors introduced above we obse
that the gap equation reduces to the one we found in
polar phase, Eq.~32!. This impliesDcsl

LL 5Dpol
LL5exp(26)D0.

Even though the gap in theB phase is equal to the one in th
polar phase, the condensation energy is not. Because the
in the B phase is isotropic, the condensation energy is th
times larger and theB phase is energetically favored.

The B phase of the (LR1RL) order parameter is more
complicated. As in Sec. IV we concentrate on theLR sector
and consider the gap matrix

D5H2~sW •lW A!H1 . ~43!

The physical gaps are determined by the eigenvalues of

D̄D5H1@~sW •lW A!22~ q̂•lW A!2#H1 . ~44!

From (D̄D)252(D̄D) it follows that l52,0. The corre-
sponding projectors areP25 1

2 D̄D and P0512 1
2 D̄D. This

shows that the eigenvaluel52 has degeneracy 2, and th
eigenvaluel50 has degeneracy 1. Of course, the act
degeneracies are 4 and 2, because of the trivial degene
LR→RL. In the nonrelativistic limitcCgW •lW Ac reduces to
cs2sW •lW Ac. But while the nonrelativistic order paramete
cs2sW •lW Ac leads to a fully gapped state, we find that in t
ultrarelativistic limit two modes remain gapless. This is r
lated to the result that in the polar phase theLR1RL gap has
a node on the Fermi surface, see Eq.~38!.

This also means that, unlike the nonrelativistic case~12!
the gap equation is not modified as compared to the p
phase. We findDcsl

LR5Dpol
LR5exp(29/2)D0 where D0 is the

spin zero gap. On the other hand, because the gap is is
pic, the condensation energy is increased compared to
polar phase by a factor 3/2.
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THOMAS SCHÄFER PHYSICAL REVIEW D 62 094007
Finally, we have to consider the possibility that pairin
takes place in both theLL,RR andLR,RL channels. In par-
ticular, we would like to consider the gap matrix

D5L1~ q̂1gW !•lW AL1 . ~45!

We note that this order parameter has positive parity,
that the parity is fixed, even if only perturbative interactio
are taken into account. The physical gaps are determine
@cf. Eq. ~42!#

D̄D̃5L2@~aW •lW A!21 igW •~ q̂3lW A!#L2 . ~46!

We note that, similar to the polar case, the struct
(q̂•lW A) has disappeared, but this time an interference term
present. We can now follow the standard procedure and
termine the characteristic equation forD̄D̃. We find (D̄D̃)3

25(D̄D̃)214(D̄D̃)50 which leads to the eigenvaluesl
50,1,4. The corresponding projectors are

P05L1 , P3/25
4
3 ~12 1

4 ~D̄D̃ !!L2 ,

P1/252 1
3 @12~D̄D̃ !#L2 , ~47!

where we follow the notation used in Eq.~7!,~8!. We note
that in the weak coupling limit, all particles are gapped. T
eigenvaluel51 has multiplicity 4, whilel54 has multi-
plicity 2. This implies that the spectrum is identical to th
one we found in the nonrelativistic color-spin-locked pha
As a consequence, the structure of the gap equation is
very similar to Eq.~12!. We find

D~k0!5g2E d4q

~2p!4 H D~q0!M3/2
mn

q0
21vq

21@D~q0!#2

1
D~q0!M1/2

mn

q0
21vq

21@2D~q0!#2J Dmn~q2k!, ~48!

with vq
25(q2m)2 and the matrix elements

Mg
mn5

1

12
trFgmS la

2 DL2
q lW A•~ q̂2gW !L2

q Pggn

3S la

2 D T

L1
k lW A•~ k̂2gW !L1

k G , ~49!

where L6
q 5 1

2 (16aW •q̂), L6
k 5 1

2 (16aW • k̂), and Pg are the
projectors defined in Eq.~47!. The structure of these matri
elements is quite complicated, but the traces simplify in
weak coupling limit. In this case, we can evaluate the ma
elements in the forward directionqW .kW and find
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D~k0!5
g2

12p2E dq0E d cos~u!H 1

3

D~q0!

Aq0
21„D~q0!…2

1
2

3

D~q0!

Aq0
21„2D~q0!…2

J H 1

12cos~u!1F2/~2m2!

1
1

12cos~u!1G2/~2m2!
J . ~50!

In leading order we can neglect the difference between
gaps and findDcsl

LL1LR5D0. Taking the difference into ac
count we getDcsl

LL1LR5222/3D0, as in the nonrelativistic
case. Again, the condensation energy is bigger as comp
to the polar state, even though the gap is smaller. We
also determine the corrections which come from nonforw
scattering. The calculation is identical to the one in the po
phase and we findDcsl

LL1LR5222/3exp(25)D0.
The color-spin-locked state~46! has a number of interest

ing properties. First we note that, as in the nonrelativis
limit, rotational invariance is unbroken, and the low-lyin
fermions are organized into a spin-3/2 and a spin-1/2 mul
let. What is new in the relativistic case is the fact that bo
the U(1)V and U(1)A symmetries are broken. The U(1)A
symmetry is also broken in the polar phase, but there is
important difference here. Without the chirally odd interfe
ence term in Eq.~46! the diquark condensate does not indu
a quark-antiquark condensate^c̄LcR&. In the color-spin-
locked state, there is a nonvanishing condensate

Scsl5^c̄aW •~ q̂3lW A!c&. ~51!

In the weak coupling limit we find Scsl
52(1/6p2)m3 log(2). The condensate is a scalar under
tations generated by the grand angular momentum oper
This means that is has the same symmetries as the q
condensatêc̄c&. Once higher order perturbative correctio
are included, we expect the primary condensateScsl to in-
duce a non-zerôc̄c& as well. As a result, there will be a
nonzero quark condensate even at very large density, w
instantons are exponentially suppressed.

We saw that the gap in the state~45!, which has an equa
mixture of LL and LR components, is given byDcsl

LL1LR

5222/3exp(25)D0. This is suppressed with respect to th
gap in the color-spin-locked phase of the pureLR order pa-
rameterDcsl

LR5exp(24.5)D0, and the larger number of con
densed species is insufficient to overcome this suppress
On the other hand, we saw that the spectrum in theLL
1LR state corresponds exactly to the spectrum in the n
relativistic limit. This suggests that, if the baryon density
increased inNf51 QCD with massive quarks, the order p
rameter evolves from the fully gappedLL1LR state to the
partially gappedLR state. In order to see whether this ca
happen continuously we would like to study the spectrum
a general linear combination of theLL andLR order param-
eters

D5L1@cos~b!q̂1sin~b!gW #•lW AL1 . ~52!
7-8
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QUARK HADRON CONTINUITY IN QCD WITH ONE FLAVOR PHYSICAL REVIEW D62 094007
For b5p/2 this corresponds to the pureLR order parameter
~43!, and forb5p/4 we get an equal mixture ofLL andLR
as in Eq.~45!. For an arbitrary value ofb the spectrum of
D̄D̃ is given by

l15cos~b!2,

l2,35
1
4 @56A2 cos~b!A927 cos~2b!23 cos~2b!#,

~53!

where all eigenvalues are doubly degenerate. We show
spectrum as a function ofb in Fig. 1. We note that the
spectrum is fully gapped for all values ofb except forb
50,p/2. There are three values ofb, b50,p/4,p/2, for
which two pairs of eigenvalues meet, and the degenerac
the spectrum is enhanced. These correspond to the case
already discussed in detail, pureLL and LR pairing, and
equalLL andLR pairing. To leading order in the coupling
the gap and the condensation energy are independent o
mixing angleb. Taking subleading corrections into accou
we found that in the nonrelativistic limit the state corr
sponding tob5p/4 is favored. In the ultrarelativistic limit
the energetically preferred state hasb5p/2. We therefore
conjecture that as a function ofpF /m the order paramete
evolves fromb5p/4 to b5p/2.

VI. CONCLUSIONS

In summary, we have studied QCD with one flavor
high baryon density. Our results are relevant to QCD w
three flavors in the case when the strange quark mas
bigger than the critical value for color-flavor locking@9,10#.
They also apply to the situation in two flavor QCD when t
difference between the chemical potentials for up and do
quarks is bigger than the gap@28,29#. In both cases there i
no pairing between quarks of different flavors, and the p
sible phases are identical to those in one flavor QCD.
should note, however, that even if the pair condensate
volves only a single flavor, there will still be some depe
dence on the number flavors. This dependence arises
the Nf dependence of the screening mass, and from hig

FIG. 1. Quasiparticle spectrum in the color-spin-locked phas
a function of the mixing angleb between theLL andLR conden-
sates, see Eq.~53!.
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order corrections that may couple condensates of diffe
flavors.

In QCD with one flavor, as in QCD with two or mor
flavors, the Fermi surface is unstable with respect to the
mation of color antisymmetric Cooper pairs. However, b
cause the wave function of the pair cannot be antisymme
in flavor, the Cooper pairs have to have angular momen
one or greater. As a result, the magnitude of the gap is s
pressed with respect to the spin zero gap in two flavor QC
Using weak coupling perturbation theory, we findD
,exp(24.5)D0 whereD0 is the spin zero gap. If the typica
magnitude of the gap in two flavor QCD is 100 MeV, w
find that the one flavor gap isD;1 MeV.

In one flavor QCD the order parameter is a spin-co
matrix, and interesting phases can arise because of the
sibility that color and spin degrees of freedom become
tangled. The situation is superficially similar to the pha
structure of liquid3He @27# and high density QCD with three
flavors @11,30,31#, but the dynamics and the symmetries i
volved are different. Nevertheless, as in BCS~or Eliashberg!
studies ofNf53 QCD or liquid 3He, we find that, in weak
coupling perturbation theory, theB phase is energetically
favored. In analogy with the color-flavor-locked phase
Nf53 QCD we refer to this phase as color-spin locked.

The situation is particularly simple in the nonrelativist
limit. In this case, there is a unique ground state, and
spectrum in the color-spin-locked phase is fully gapped.
the ultrarelativistic limit the situation is more complicate
The order parameter exhibits color-spin locking, but to lea
ing order in the coupling constant there is a continuous fa
ily of states which differ by the mixing angle between th
cRcR2cLcL andcRcL1cLcR components of the order pa
rameter. Except at special points, the spectrum is again f
gapped.

In the color-spin-locked phase the original rotational sy
metry is broken, but there is an unbroken SO~3! symmetry
which is generated by a combination of the original angu
momentum and color generators. The only non-anomal
symmetry which is broken in the color-spin-locked phase
the U~1! of baryon number. This means that the global sy
metries of the color-spin-locked phase agree with what
expect, on phenomenological grounds, for one flavor QCD
low density. We also found that the color-spin-locked pha
has certain other features that are characteristic ofNf51
QCD. In particular, we saw that the color-spin-locked pha
supports low energy spin-3/2 quasiparticles, and that ther
a mechanism for generating quark-antiquark condensa
These observations lead us to conjecture that in one fla
QCD the low and high density phases are continuously c
nected. In the case of one flavor QCD this suggestion is
radical than in the case of three flavors. In particular, it
known that for sufficiently small values of the quark ma
there is no phase transition along the finite temperature
@32#. In this case, we expect the only phase transition in
T-m plane to be the nuclear onset transition.
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THOMAS SCHÄFER PHYSICAL REVIEW D 62 094007
@1# S. C. Frautschi, inProceedings of the Workshop on Hadron
Matter at Extreme Energy Density, edited by N. Cabibbo
~Erice, Italy, 1978!.

@2# B. C. Barrois, Nucl. Phys.B129, 390 ~1977!.
@3# F. Barrois, Ph.D. thesis, Caltech, UMI Microfiche No. 7

04847-mc.
@4# D. Bailin and A. Love, Phys. Rep.107, 325 ~1984!.
@5# M. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B422,

247 ~1998!.
@6# R. Rapp, T. Scha¨fer, E. V. Shuryak, and M. Velkovsky, Phys

Rev. Lett.81, 53 ~1998!.
@7# M. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys.B537,

443 ~1999!.
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