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Unintegrated gluon distribution from the Ciafaloni-Catani-Fiorani-Marchesini equation
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The gluon distribution‘(x,kf ,;?), unintegrated over the transverse momenkymf the gluon, satisfies the
angular-ordered CCFM equation which interlocks the dependence on thégsuaétle the scalew of the probe.
We show how, to leading logarithmic accuracy, the equation can be simplified to a single-scale problem. In
particular we demonstrate how to determine the two-scale unintegrated distrilb(iéd , %) from knowl-
edge of the integrated gluon obtained from a unified scheme embodying both B&¢(l1/x)] and DGLAP
(log ?) evolution.

PACS numbd(s): 12.38.Bx, 13.60.Hb

I. INTRODUCTION from color coherence effecfd1]. It reduces to the leading
order Dokshitzer-Gribov-Lipatov-Altarelli-Paris{fDGLAP)
Deep-inelastic electron-proton scattering is described iformalism at moderatg and it embodies the Balitskifadin-
terms of the scale-dependent parton distributiois, ) Kuraev-Lipatov(BFKL) formalism at smallx. The uninte-
andg(x, u?). For less inclusive processes it is, however, necgrated gluon distributionf (x,k7, %) satisfies the CCFM
essary to consider distributions uanegrated over the transquation[3,4] which interlocks the two hard scalektz(, w?)
verse momentunk; of the parton, which for the gluon, for iy a complicated way. The equation is based on the coherent
example, we denote bf(x,k,x?). These distributions de- radiation of gluons, which leads to an angular ordering of the
pend on two hard scales; and the hard scal@g of the  gluon emissions along the chain. The ordering introduces a
probe. The(conventionagl integrated gluon distribution is scale specifying the maximum angle of gluon emission,
given by which turns out to be essentially the hard scaleof the
5 probe. At moderat& the angular ordering becomes an order-
o [w2dK 2 9 ing in the gluon transverse momenta and the CCFM equation
Xg(X,u )_f Ff(x'kt ). () reduces to DGLAP evolution. At very smatlthe angular
! ordering does not provide any constraint on the transverse
Unintegrated distributions are required to describe measurénomenta along the chain and, in the leading lag(ldp-
ments where transverse momenta are exposed explicitly, fairoximation, f(x,k7,.?) becomes the.-independent distri-
example, to describe th@; spectrum of prompt photons pro- bution which satisfies the BFKL equation. On the other hand,
duced in high energy hadron collisions or for dijets or vectoralthough the dependence on the scalenly enters at sub-
mesons produced at the DESY collider HERA. leading log(1x) level, f does depend op through leading
At very low x, that is, to leading log(k) accuracy, the log u* evolution.
unintegrated distribution becomes independent of the hard The outline of the paper is as follows. The angular-
scaleu, and so from Eq(1) we have ordered CCFM equation is introduced in Sec. Il. In Sec. Il
we simplify this evolution, yet staying within leading loga-
rithmic accuracy, to show that the two-scale distribution
[xg(xA?)\z-ie. (2 f(x,k?,u?) can be obtained in terms of the conventional
one-scalgy(x,1?) distribution. In this way, we are led to a
Clearly Eq.(2) cannot remain true asincreases. Indeed we Procedure for determinin(x, k¢, %) from a unified BFKL-
see that it would give negative values fo”\Aoreover, even DGLAP Single-Scale evolution equation. This is described in
at low x, there are significant subleading corrections which,Sec. IV. Moreover, we are able to extend the formalism to
to some level of approximation, modify E(R) to the form  incorporate important subleading log(}/effects, which are
[1,2] generated by the so-called consistency conditifi2,13
and which subsume the angular ordering constraint atdow
We also extend the formalism to include the contributions
[XQ(X,)\Z)Tg()\,M)]hékE. (3)  due to the quark distributions. For comparison, in Sec. V we
present the pure DGLAP-type approach to determine
whereT, is the Sudakov form factor. In fact E(B) is over- f(x’ktz_"“z)’ in which the 9'“,0” cascgde evolves.according to
simplified. As discussed below, the expression forevolutlpn strongly ordered |ht2. Sgctmn VI'contams sample
f(X,ktz,,uz) is more complicated than E¢B). numerical results for f(x,k;,u“) obtained from the
The natural framework for unifying the small and large
domains is the Ciafaloni-Catani-Fiorani-Marchesi@GiCFM)
formalism based on angular orderif@—10], which follows Icalled the kinematic constraint [12].

f(x,k?, u?)—
(k. p%) dln\?

f(x,kE, u?)~

dln\?
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fully unified approach of Sec. IV. As expected, we have N

some diffusion of the gluon transverse momenta into the". L

region k> . This is in contrast to the pure DGLAP-type B ™ x.ke rtual
approximation in which the distributiof(x,k?, «?) is lim- Xk = toew ! contributions

ited to the domairk;< . Finally, Sec. VII contains a sum-
mary of the procedure that we have used to determine the
unintegrated gluon distributiof(x,k? , u?).

FIG. 1. Schematic representation of the CCFM evolution equa-
tion (4) for the unintegrated gluon distributiof(x,k?,?). The
variableq is defined bygq=q,/(1—2) wherez=x/x" andk{ =k,

The unintegrated gluon distribution satisfies the CCFM+(1-2)q.
evolution equation[3,4] based on angular ordering. In
unfolded form the equation is Z,-10,-1<0, Wwhere 9,=q;,/(1-2z,) (6)

Il. CCFM EQUATION

e (1 d%q and z,=Xx,/x,_1. The angular ordering continues up to a
f(x,kt2 ,MZ):fO(x,kf)Jr _Sf dzf _2®(1—z—q0/q) maximum angle with the limit expressed in terms of the hard
2mJo Tq scale via®(u—q2). Whenz is away from thez~0 andz

2 ~1 domains, angular ordering is equivalent to the striong
_ ot ordering of pure DGLAP leading ord€tLO) evolution. At
X (G P . . .
(2700 (u qz)ktlz @) first sight there appear to be three types of large logarithms
in Eq. (4). First the usual DGLAP logarithms coming from
X
Xf(g,k{z,qz)—zP(z)(@(M—q) the
|ki|=|ki+(1-2)gl<q )
s o | as 1dz [ d%q _ _
Xf(x,ki,q%) | — 2—2ch —f — domain. Second there are the BFKL-type logjl¢ontribu-
& x 2J mq tions originating from the ¥/ part of the real emission term
X in Eq. (4) and the gluon Reggeization contribution. These
X®(q_q0)®(kt2_q2)f(_!kt2 ,q2>, (4)  two terms can be combined together in the function
z
d?q (1dz| kP
wherek; =k +(1—2)q|. For simplicity, as is taken outside  F(x,k?)= E2ch —qz az ! 2f(i,|kt+ q|2,q2)
the integrals, but the scale will be specified carefully in the 2m 7q°Jx Z | |k+q* \Z

final equationgin particular see Eq.23)]. The driving term
fy is of nonperturbative origin and is assumed to contribute a2 avel X k2 a2
nper gl ed to. Ok —q)f| - k?.q
only for k?<q3. The remaining terms contribute in thé z
>q3 domain. The driving term thus gives the nonperturba-
tive starting gluon distribution where we have assumeekl, ink{ of Eq. (7). Finally there
is a danger that in Eq4) we have a large logarithm from the
2 dKk? regionq?< kf. However, we see from Ed@4) that the func-
2y_ [ % 7t 2 : 2 2 : P b2 2
xg(x,qo)—J 2 fo(X,Kp). (5  tion f(x,k?,g?) only extends into the regiok{>q? as a
t result of the BFKL smalk effects, which are subleading at

: ®

finite x. That is, to leading logarithmic accuracy, it can be

shown, in the so-called “single-loop” approximation, that if

the last term in Eq(4) is neglected an® (x—q2) is re-
laced by® (x—q), then the functiorf(x,k?,g?) vanishes
or kt2>q2. Thus we limit the integration regions in E@)

to the strongly ordered domaliﬂ{2<q2 for those contribu-

This angular-ordered equation fér which embodies both
DGLAP and BFKL evolution, is shown schematically in Fig.
1. The first term in the square brackets in E4). describes
real gluon emission with angular ordering imposed. The ter
containingf(x,ktz,qz) is related to the virtual corrections
corresponding to the unfolded Sudakov form factor, while
the last term in Eq.4) represents the virtual corrections

which, when resummed, give rise to gluon Reggeization. The X
latter correspond to the BFKL part of tHenfolded non- h
Sudakov form factor. Angular ordering along the chain, a q”
portion of which is shown in Fig. 2, requires X /
n-

—— -1

°The folded form(which actually is the CCFM equatiof8,4])
contains Sudakov and non-Sudakov form factors, which arise from
the resummation of virtual corrections and screen the singularities FIG. 2. A portion of the evolution chain. Angular ordering re-
asz—1 andz—0, respectively. quiresz,_19,-1<d,, whereq,=0q;,/(1—2z,) andz,=X,/X,_1.

094006-2



UNINTEGRATED GLUON DISTRIBUTION FROM THE . ..

PHYSICAL REVIEW D 62 094006

tions in which the unintegrated gluon is multiplied by the where the BFKL-type log(X) contributionF (x,k?) is given

partE(z) of the splitting functionP(z) which is nonsingular
at low z. That is

2N
P(z)— —.

P(2)= .

9

It should be noted that the BFKL part, E®), of Eq. (4) (for
which this approximation is not justifieds free from singu-

larities asq— 0, since the potential singularity of the real

emission term is canceled by the virtual contribution.

by Eg. (8). The second term on the right-hand side is the
pure DGLAP contribution in the largelimit. It comes from
the strongly ordered configuration

ki ?=k+(1-2)0<q? (13)
in the second term on the right-hand side of E4). In this
configuration the variabley becomesk;/(1—2z). We have
also made the large approximation such that

k
So finally we have just the large logarithms coming from P(Z)@(,u qz)~ P(Z)@(,u q)~ P(z)@)( ! )

either k{ <k, or from z<1. Our aim is to develop an ap-
proximate treatment of the CCFM equation which incorpo-

rates both types of large logarithms.

Ill. SIMPLIFICATION OF THE CCFM EQUATION

To simplify the angular-ordered equatidd), we rear-

range the equation and retain only terms which generate
large logarithms. To achieve this it is convenient to add and

subtract the term
as (1 d?
) T 2

ktz 12 2
XzP(Z)Ff(x,kt ,q°)
t

(1 z—@)@)m DO (K—k/2)

(10

from the right-hand side of Eq4), and to group together
contributions containing the singulaNg /z part of the split-
ting function

11

In this way we obtain the approximate form

2 2 2, s (! Kt
f(Xvkt M ):fO(X!kt)—i_E Odz®(kt_q0)® M 1_2

x [ ki \?
X|P(2)®(z—x) = g( (1 Z))

el

q (1 z—%)@(u DzP(2)

12

I i q
i — ki Z)f(x’ktz-qz)z

&)

12

t

sl q- k )—f(xkz.qz) (q—

+F(x,k?),

K= 1-z
(14

With these approximations we may rewrite the second term
using

K2I(1-2)2 dk{?
k/2

2
O(z— x)P(z)f( k{z,(llfz))

=/

— X (x| k \?
=®(Z—X)P(Z)EQ(E'(E) )

ke \?2
-z P(z)xg( X(E) ) ,

where the upper limik? of the dk; ? integration has, to lead-
ing logu? accuracy, been replaced plg, /(1—2)]°.

Finally, the third term on the right-hand side of EG2)
corresponds to the difference between Ed) and the vir-
tual SudakouDGLAP-type contribution given by the sec-
ond term in the square brackets in H¢), that is, to the
contribution

—zP(z)f(x,kt'z,(1

(15

(1 - %)@(u DzP(2)

L

{2,0%) — f(x.kE 07 |- (16)

t

The first integral is evaluated using the strongly ordered con-
figuration [k{ 2<k?,q~k/(1—2z)], while the second inte-
gration is restricted to the regiaf(1—z)>k;. It should be
noted that forg(1— z) <k, the two terms in the integrand of
Eq. (16) cancel, since thek{ ~k;.

The contribution(16) represents the virtual corrections
which have to be resummed. The resummation is performed
in the Appendix. We obtain

2 2

d dq
(XK, u?)= W[Tg(kt,M)XQ(X,ktzH fk/: —
t

t

Tg(q,,u)

2dk/? gL (x,k/?,q?
XJkt kt ( t q) (17)
q

2 k2 dlng?
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where

_asg

L(x,kZ, u?) 5

5
=

: (18)

1
<kt—qo>Jodz®(u— -

X

— X [X
P(z)@(z—x)zg(z,(

P k)*
—zP(z)xg| X, 17
and where the Sudakov form factor

p2dp* ag(p?) (ke
Tg(qlﬂ)=exp(—fq2—2 oy fo dzZ’z’'P(z') .

P
(19

The cutoffz’ <1—k;/p enters on account of the kinematic

structure of the real emission term, where the upper limit of

the p integration is given by;/(1—2"). Note thatT4(q, u)
therefore implicitly depends ok;. The integration limits

defining the Sudakov form factor should be understood as

arising from the® function constraints
O(1-k/p)O(n—p)O(p—0).

This implies Ty(q,u) =1 if these constraints are not satis-
fied. In particularT4=1 for ky>pu or g>pu.

A nice feature of the resultl?) is that the unintegrated
gluon f(x,kf,,uz) is entirely specified in terms of the inte-

(20

PHYSICAL REVIEW D 62 094006

WhereF(x,ktZ) is defined by Eq(8). Note that the integral in
Eqg. (22) has no singularity close to=1. We can now derive

a relation expressing the two-scale unintegrated gluon distri-
bution f(x,kt2 ,?) in terms of the one-scale distributiorg

(or h). From Eq.(17) we get the following expression for

F(xKE p0):

f(x,kZ, u?) = Ty(ke, w)N(x,kD) + Ty(ke, 1)

1-ki/u
XJ dzz
0

*S T (k Jl_qolk‘d
_E g( t1/"L) 0 Z

ag(kf(1-2)?)
) ——————

2
5 XgOxkD)

@(Z—X)E(Z)

X X 2 2
I-ki/u  ag K¢
<) ‘“%Tg(—l—z'“)

X

=)

X [x
®(Z—X)P(Z)Eg(zv(1—

ke \?
- P(z)zxg{x,(ﬁ) )

where the scale ofig is taken to be the scale of the appro-
priate gluon, except for the second term on the right-hand
side. We may safely set the—1z cutoff q,/k; to zero, but

: (23

grated gluorxg. The next step is to introduce a single-scalenot the cutoffsk, /u.

unified equation, which embodies both BFKL- and DGLAP-

type effects, to determineg.

IV. STRATEGY FOR DETERMINING THE
UNINTEGRATED GLUON

Note that in the leading In(%) approximation we may set
Ty=1 and neglect all the integral terms in EQ3), since
they do not generate Infdy contributions. In this approxi-
mation the unintegrated gluon is simply

f(x,k?, u?) =h(x,k?),

We have emphasized that the angular-ordered equation

(12) is a “two-scale” evolution equation fOlf(X,ktZ,/.Lz).
That is, the scaleskt2 and u? are intertwined by angular

with no dependence on the scale
When obtaining Eq(23) from Eq. (17), we have chosen

ordering. In the previous section we have shown how thdo neglect a contribution coming from the derivative of the

two-scale unintegrated glucfn{x,kt2 ,u?) can be determined
once we know the integrated gluaig. Here we describe the
procedure to obtairg from a unified evolution equation for
a single-scale auxiliary distribution:

J”Zd K
K

If we integrate both sides of E412) over kt2 up to u? and
differentiate with respect to log? then we find that
h(x,u?) satisfies the evolution equation

,0(xg) 9
07,LL2 &,u,z

h(x, u2)=pu f(x,k?, u?)

(21)

ag (1-Go/m

h(x,u?) = 5—

— X [x
dz[@(z—x)P(z)zg(E,,uz)

—zP(2)xg(x,u?) | +F(x,kZ=p?), (22

Sudakov form factorTy(q,u) with respect tok;, which
arises from thek, dependence of the regulator; see Ef).

For this reason the unintegrated gluon of E2f8) does not
precisely integrate tag(x,«?), although the corrections are
subleading in log:2. The discrepancy is indeed negligible at
low x, but can become of the order of 20% or so for large
values ofx=0.1. Rather than complicating E(R3) by in-
cluding the derivative, we eliminate the discrepancy by
changing the regulator in the form fact@r9) from k./p to
g/p; that is, we take the Sudakov form factor

_ p2dp? ag(p?) (1-ap
Tg(q,M)—eXP( —Lz _pz > fo dz’z'P(z")|.
(24)

This approximation is justified since in our case eitlger
=k; or g~Kk;. Within this approximation it is evident that
the unintegrated gluof23) integrates exactly taxg(x,u?);

094006-4



UNINTEGRATED GLUON DISTRIBUTION FROM THE . .. PHYSICAL REVIEW D 62 094006

the sum of the first two terms on the right-hand side of Eq. ag(u?) (1 2dg?
(23) forms the total derivative h(x, 12) = ho(x, u2) + — f dzf” —
Tk XG0, KD 25 S :
taigr ORI x| O(z=x)P()h| 2,0%| ~zP(2)h(x,¢?)
and the integrals of the third and fourth terms cancel each as(u?) 1dz [ dg? .
other. > 2ch 7f — O(k{*—ag)
From Eqg.(21) we see that the integrated gluon distribu- X q
tion g can be expressed in terms lnfnamely, u2 (X X
i Xlﬁh(z,th)_®(,U«2_q2)h(2,#2>}, (29
ke t
xg(x,kf)zxg(x,qS)Jrf2‘—2h(x,,u2). (26)
b K wherek/ 2= |k.+q|? with k?=w?. The driving term, which

Equations(22) and (23), together with Egs(8) and (26), arises frqm the substitution of E6) for xg in Egs.(22)
form a system of coupled equations. If we substifuwéEq. ~ @nd(27), is given by
(23) into the F term on the right-hand side of EQ2), and 2\ 1
take account of Eq26), then we obtain an integral equation ho(X, 12) = as(p )J dz[@(z—x)P(z)gg(g,qg)
0

for h. We may solve this equation for the single-scale auxil- 0 - 27

iary distribution h(x,«?), and then compute the two-scale
; 2

unlntggrated g_Iuori(x,k_t ,,u_z) from_ Eq.(23. . —zP(z)xg(x,qS)]. (30)
It is convenient to simplify the integral equatiod2) for

h(x,u?) using approximations which are valid to leading
logarithmic accuracy. To be precise we simplify the compu-Notice that the strongly ordered contribution 5f(X_:kt2_
tation of F(x,k?) of Eq. (8). First instead of allowing the =) has combined with the residual DGLAP contribution
scaleg? of f to vary, we note that in Eq8) the dominant in Eq. (22) with the effect thatP(z) — P(2).
values ofg? are such thatj?~k?. Moreover, we notice that Equation(29) is the single-scale unified BFKL-DGLAP
in the strongly ordered domaik;? (=|k+q|?)<k?, the equation for the gluon that was proposed in R&#]. There
first term on the right-hand side of E) can be simplified it was shown that it is straightforward to incorporate a major
using part of the subleading order logf)/(or BFKL) effects by
imposing a consistency condition to ensure that the virtuality
of the exchanged gluon is dominated by its transverse mo-
) mentum squared. This is achieved by including the theta
function® (u2—zP) in the real emission contribution in the
last term of Eq(29). Other important subleading terms aris-
X K'2 kz) ing from using the complete DGLAP splitting function and
zt from the running ofag are automatically included in our
framework [14]. This formalism was used to fit to deep-
_ fg(f k2>' 27 inelastic sca}ttering data and the auxiliary functiofx, x?) .
zZ%\z't) was determined14]. It was checked that the corresponding
integrated gluorxg(x,ktz) computed from Eq(22) was com-
see Eq(1). In the remaining contributions 6(x,k{) of Eq.  patible with the gluons obtained in the Martin-Roberts-
(8) we can use Eq23) to approximatd by the first term, Stirling (MRS), CTEQ global parton analys¢$5].
» 5 5 In [14] the contribution of the quark distributions was
f(x,ki,a%)~h(x,kp), (28) included in Eq.(29) for h(x,2). To incorporate the quarks
) s 2 ) in the present analysis we must also include the contribution
noting thatq“~k; andTy(k;,k;)=1. The other terms in EQ. of the singlet quark distributions in Eq. (23) for

(23) give only subleading log(xj contributions to the f(x,k?,1?). That is, we make the replacement
BFKL kernel. Since this contribution tG(x,ktZ) goes be-

yond the strongly ordered part of the kernel, it is also sub- X X [x X X
leading in logu?. After these approximations, Eq2) for P(Z)EQHP(Z)EQl(E,M'Z) +qu(Z)EE<E,M’2)
h(x,u?) for u?>q3 may be written &$ 31)

d?q K2 (x
— —f| = Ik+al2.q?
quzk{z Slketdl®q

~fkt2dk"2f
k/2
t

in the real emission part of the third and fourth terms on the

3n order to be consistent with E¢22), the upper limit of thez ~ fight-hand side of Eq(23), where n” is the appropriate
integration in the second term on the right-hand side of (2) scale. Recall thaP(z)=Py4(2). In the second term and in
should be 1+ qq/q rather than 1. The integrals are, of course, regu-the virtual part of the third and fourth terms, we make the
lar atz=1 and so the discrepancy is subleading indn replacement
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ZP(2)xg—[ZzP(2) +2nzPyg(2) IXg(X, %), (32

wheren; is the number of active flavors, and the scalé

=k? ork?/(1—z)? as appropriate. Finally we have to modify
the Sudakov form factor so that E®4) becomes

J,uza’s( p?) d_pz
q2 2T p2

1-alp
XJ‘
0

Tg(q,m=exp( -

Z/

dz’).

P(z’)+% Pao(Z')

(33

The above procedure allows the determination of the ap-

proximate solutionf(x,kt2 ,u?) of the CCFM equation,
which incorporates both a fulbr so-called “all-loop” [5,6])
resummation of leading In(%) contributions, as well as the
resummation of the leading p* contribution and the inclu-
sion of dominant subleading In{d)/ terms.

V. PURE DGLAP LIMIT

PHYSICAL REVIEW D 62 094006

f(x,kZ, u?) =Ty(ke, w)N(x,k) + Ty(k; 1)

1-k/ k?/(1—2z)?
xf tlLdzzF{z)—aS( tz( /)
0

xg(x,k?)

ag(kd) 1-qg/ky
?Tg(ktaﬂ)ﬁ) dzF(z)

X

X [x )
@(z—x)zg E’kt —zxXgX,Kkp)

I=ki/u  ag K¢
-I-@(,u—kt)JO dZETg 1— M P(z)

=

X

X [X
@(z—x)zg<2,(

]

In the DGLAP limit the first and third terms on the right-
hand side of Eq(35) exactly cancé} they simply represent
the DGLAP equation foh(x,kf) of Eq. (21). Thus Eq.(35)

(39

It is informative to compare the predictions above for thereduces to Eq(34).

unintegrated gluorf(x,k?,4?) with those obtained in the
DGLAP (or so-called “single-loop’[5,6]) approximation, in
which® (w—q2z) in Eq.(4) is replaced by («—q), and the
last term in Eq(4) is neglected. After making these modifi-

VI. NUMERICAL EVALUATION OF THE
UNINTEGRATED GLUON

cations we repeat the procedures of Secs. Ill and IV and In Fig. 3 we show thek; distributions of three different

obtain the DGLAP form

1-ki/u  ad k/(1—2)2
f(X.kt-MZ):f t#dz Jki/( )41

% 2

ke
T 1-z2'#
X (x| ko \? 1—ke/p
XP(Z)EQ(E’(E) )Jrfo dzzR2z)

ad kZ(1-2)?]
X—
21

ke ke |2
“Tol 1= X9 % 1

with f=0 if k;>pu. Apart from the last term, this is the
equation for the unintegrated gluon introduced in Ré&i.

Ty(Ke, ) Xg(X,K?)

: (34

unintegrated gluons at each of four different valuex at a
hard scalew?=100 Ge\?.

(i) The solid curves are the gluori$x,kt2,uz) obtained
from Eq.(23), with the quark terms included, using the aux-
iliary function h(x,k?) of Ref. [14], which was itself ob-
tained from a fit to deep inelastic scattering data using a
unified BFKL-DGLAP equation.(The curves have been
smoothed in the transition regidq~ w.)

(i) The dot-dashed curves shot(x,k?) itself [14],
which is independent ofi?,

(iii) The dashed curves shoﬂ:(/x,kt2 ,w?) calculated from
the pure DGLAP equatiof35) using in this case the auxil-
iary function h(x,k?) obtained in[14] from pure DGLAP
evolution from exactly the same starting distributions
[xg(x,q3), etc] as those found in the unified fit.

Note that the third set of gluons is shown solely to illus-

The last term, which is only nonzero on account of differenttrate the difference between the two types of evolution. The
scales, introduces subleading corrections. Its inclusion imgluons of the third set have not been constrained by a fit to

proves the accuracy of the integrationfcﬁk,kf, u?) to re-
producexg(x,u?); see Eq.(1). Note that the DGLAP or
“single-loop” unintegrated gluon vanishes f&f= u, as in-

the data, so should not be regarded as realistic.
In the pure DGLAP caséii ), we see that the distributions
are confined to the domalq< u«, as anticipated from strong

deed it mus{5,6]. In the results presented below we include ordering. On the other hand, the distributiof,k , x?)

the quark contributions as described in E(gL)—(33).

It is informative to see how the full equatiof23) for
f(x,k?,u) reduces to the DGLAP limit34). A crucial ob-
servation is that in the DGLAP domairk{< ) it is pos-
sible, within leading In(2) and In@?) accuracy, to replace
P(2) by P(z) in Eqg. (23). Thus,provided k<, we obtain
the following more symmetric formula:

obtained in the unified BFKL-DGLAP framework develop a
more and more extensive> u tail asx decreases. At small
k; and lowx the magnitude of the unintegrated gluon calcu-

4Strictly speaking the cancellation is only exact whgp—0 in
Eq. (35).
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lated from the unified scheme is about a factor of 2 less thanot from the virtual term. We see that fer0.01 that there
that of the gluon coming from the pure DGLAP approach ofis about a factor of 2 discrepancy betwelerand the true
case(iii). This is due to the imposition of the consistency unintegrated gluo.

constraint in cas€) which suppresses the magnitude of the

gluon. If this constraint were absent, the distributions of

cases(i) and (iii ) would not be that different. We note that VIl. SUMMARY

the auxiliary functionh of case(ii) remains different from

the unintegrated gluohof case(i) down to very small values de

of x. 2 2 ; .
For ko> we see thaf is greater tharh, whereas the f(x,kf , 1), unintegrated over the gluon transverse momen
/ . : ) tum k;, whereu denotes the hard scale of the probe. In the
DGLAP-driven unintegrated gluon vanishes, as it must. In . L R .
. o : leading log(1X) approximation the distribution is given sim-
this domain inspection of Eq22) and (23) shows thatf v by the derivati £ th . d dl ith
comes purely from the BFKL contribution: Py y the derivative of the unmtegrgte_ gluon with respect
' to its scalex =k; [see Eq(2)] and satisfies the BFKL equa-
f(x,k?, u2) =F(x,k?). (36)  tion. We correct this simple relation by going beyond the
leading log(1X) approximation to include both subleading
On the other handh is smaller tharf due to the negative contributions and DGLAP effects. The final result for
contribution of the integral term in Eq22). The latter is a f(x,kf ,u?) is given in Eq.(23). To obtain this result we use
DGLAP contribution which is ruled out when angular order- the appropriate gluon cascade formalism based on angular
ing is imposed. It is negative because thi¥2z contribution  ordering, which leads to the CCFM equation embodying
has been subtracted from the real emission contribution, buioth BFKL and DGLAP evolution. It is important to note

Here we have addressed the issue of obtaining a reliable
termination of the(scale-dependentgluon distribution
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that the CCFM equation gives a well-defined framework to k2dk 2
calculate the very quantity that we seek: the unintegrated  R(x,k?,q?)= J —f(x, k/?,9%), (A2)
gluon distributionf (X, k2 ,1?). Using this formalism we de- k'? t

vise a procedure to determln‘ez(x kt ,u?) from the inzte- )

grated gluon distributiorxg(x,q<), its derivativeh(x,q<), _ % A1y

and the Sudakov form factdfy(q,1); cf. Eq.(23). An im- Alke, @)= 277Jo dzzR2)0(1-z=k/q).  (A3)
portant ingredient is the solution of(aingle-scalgevolution

equation forh(x,q%) which embodies both BFKL and DG- The functionR(x, kt ,0%) has a simple physical meaning. It
LAP effects. From the low viewpoint it includes sublead- is the gluon distribution for fixed impact parameter 1/,
ing effects from(i) the consistency constraint which limits at scaleq. Note that ifo= 1/q then the distributiorR reduces
the available phase space to the region in which the virtualityo the integrated gluorg(x,q?). Using Eq.(A1) we see that

of the exchanged gluon is dominated by its transverse mogq. (12) can be expressed as an integro-differential equation
mentum squaredji) DGLAP effects generated by that part for R

of the splitting functionP44(z) which is not singular in the

limit z—0, (iii) the inclusion of the quark contribution, and 9 (x,kz 12)
(iv) allowing the couplingxs to run and depend on the local f(x,kt2 ,,uz)skt2 5
scaldés) characteristic of the vertices of the cascade. s

We presented sample results to show that the structure of

the k, distribution of the gluonf(x,k?,u?) can be signifi- =L(X,kt2,,u2)+F(X,k2)—k2i

cantly different from that oth(x,k?), down to very small ak?

values ofx. There are important consequences for the de- o

scription of hadron-initiated hard processes in which khe f g’ 2 2

of the gluon is probed locally. X |, — Ak, DR KT ,0%),  (Ad)

t
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APPENDIX

From Egs.(21) and(22) we see, ifu=k;, that the first two
terms on the right-hand side of EGA5) are justxg(x,k?).
The solution of Eq(A5) may be therefore written as

Equation(17) for the unintegrated gluom(x,k?,u?) is
obtained from Eq(12) by resumming the virtual corrections
given in the third term on the right-hand side of Ed2).
Here we show how the resummation is performed. First we 5

note that this virtual correction term can be written as a de- 2 2\ _ 2 Jﬂqu
R(x,kf , ;u%)=Tqy(ky, w)Xg(X, ki) + —-T4(q,
vative. that is OE 112 = Toke, XKD + |, =5 ol )
as (1 dk's - , 3 [ [iedk?
ZJOdZZF(Z){fk—,tZWkt K'DF(x,k{*,q%) xq a_qz 2 12 9 |, (A6)
K¢ ) K¢ where the Sudakov form factor

2d
Tg(qw«):ex%_"‘; pp A(k¢,p )) (A7)

is in agreement with Eq(19). Equation(23) then follows
where from Eq. (A6) after differentiation bys/d In k2.

—kz(;kz[A(kt,q)R(x ki .a%)]1, (A1)
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