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Unintegrated gluon distribution from the Ciafaloni-Catani-Fiorani-Marchesini equation
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The gluon distributionf (x,kt
2 ,m2), unintegrated over the transverse momentumkt of the gluon, satisfies the

angular-ordered CCFM equation which interlocks the dependence on the scalekt with the scalem of the probe.
We show how, to leading logarithmic accuracy, the equation can be simplified to a single-scale problem. In
particular we demonstrate how to determine the two-scale unintegrated distributionf (x,kt

2 ,m2) from knowl-
edge of the integrated gluon obtained from a unified scheme embodying both BFKL@ log(1/x)# and DGLAP
(log m2) evolution.

PACS number~s!: 12.38.Bx, 13.60.Hb
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I. INTRODUCTION

Deep-inelastic electron-proton scattering is described
terms of the scale-dependent parton distributionsq(x,m2)
andg(x,m2). For less inclusive processes it is, however, n
essary to consider distributions unintegrated over the tra
verse momentumkt of the parton, which for the gluon, fo
example, we denote byf (x,kt

2 ,m2). These distributions de
pend on two hard scales:kt and the hard scalem of the
probe. The~conventional! integrated gluon distribution is
given by

xg~x,m2!5Em2dkt
2

kt
2

f ~x,kt
2 ,m2!. ~1!

Unintegrated distributions are required to describe meas
ments where transverse momenta are exposed explicitly
example, to describe thepT spectrum of prompt photons pro
duced in high energy hadron collisions or for dijets or vec
mesons produced at the DESY collider HERA.

At very low x, that is, to leading log(1/x) accuracy, the
unintegrated distribution becomes independent of the h
scalem, and so from Eq.~1! we have

f ~x,kt
2 ,m2!→ ]

] ln l2
@xg~x,l2!#ul25k

t
2. ~2!

Clearly Eq.~2! cannot remain true asx increases. Indeed w
see that it would give negative values forf. Moreover, even
at low x, there are significant subleading corrections whi
to some level of approximation, modify Eq.~2! to the form
@1,2#

f ~x,kt
2 ,m2!'

]

] ln l2
@xg~x,l2!Tg~l,m!#ul25k

t
2, ~3!

whereTg is the Sudakov form factor. In fact Eq.~3! is over-
simplified. As discussed below, the expression
f (x,kt

2 ,m2) is more complicated than Eq.~3!.
The natural framework for unifying the small and largex

domains is the Ciafaloni-Catani-Fiorani-Marchesini~CCFM!
formalism based on angular ordering@3–10#, which follows
0556-2821/2000/62~9!/094006~9!/$15.00 62 0940
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from color coherence effects@11#. It reduces to the leading
order Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP!
formalism at moderatex and it embodies the Balitskiı˘-Fadin-
Kuraev-Lipatov~BFKL! formalism at smallx. The uninte-
grated gluon distributionf (x,kt

2 ,m2) satisfies the CCFM
equation@3,4# which interlocks the two hard scales (kt

2 ,m2)
in a complicated way. The equation is based on the cohe
radiation of gluons, which leads to an angular ordering of
gluon emissions along the chain. The ordering introduce
scale specifying the maximum angle of gluon emissio
which turns out to be essentially the hard scalem of the
probe. At moderatex the angular ordering becomes an orde
ing in the gluon transverse momenta and the CCFM equa
reduces to DGLAP evolution. At very smallx the angular
ordering does not provide any constraint on the transve
momenta along the chain and, in the leading log(1/x) ap-
proximation, f (x,kt

2 ,m2) becomes them-independent distri-
bution which satisfies the BFKL equation. On the other ha
although the dependence on the scalem only enters at sub-
leading log(1/x) level, f does depend onm through leading
logm2 evolution.

The outline of the paper is as follows. The angula
ordered CCFM equation is introduced in Sec. II. In Sec.
we simplify this evolution, yet staying within leading loga
rithmic accuracy, to show that the two-scale distributi
f (x,kt

2 ,m2) can be obtained in terms of the convention
one-scaleg(x,m2) distribution. In this way, we are led to
procedure for determiningf (x,kt

2 ,m2) from a unified BFKL-
DGLAP single-scale evolution equation. This is described
Sec. IV. Moreover, we are able to extend the formalism
incorporate important subleading log(1/x) effects, which are
generated by the so-called consistency condition1 @12,13#
and which subsume the angular ordering constraint at lowx.
We also extend the formalism to include the contributio
due to the quark distributions. For comparison, in Sec. V
present the pure DGLAP-type approach to determ
f (x,kt

2 ,m2), in which the gluon cascade evolves according
evolution strongly ordered inkt . Section VI contains sample
numerical results for f (x,kt

2 ,m2) obtained from the

1Called the kinematic constraint in@12#.
©2000 The American Physical Society06-1
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fully unified approach of Sec. IV. As expected, we ha
some diffusion of the gluon transverse momenta into
region kt.m. This is in contrast to the pure DGLAP-typ
approximation in which the distributionf (x,kt

2 ,m2) is lim-
ited to the domainkt,m. Finally, Sec. VII contains a sum
mary of the procedure that we have used to determine
unintegrated gluon distributionf (x,kt

2 ,m2).

II. CCFM EQUATION

The unintegrated gluon distribution satisfies the CCF
evolution equation@3,4# based on angular ordering. I
unfolded2 form the equation is

f ~x,kt
2 ,m2!5 f 0~x,kt

2!1
aS

2pE0

1

dzE d2q

pq2
Q~12z2q0 /q!

3FQ~z2x!Q~m2qz!
kt

2

kt8
2

P~z!

3 f S x

z
,kt8

2 ,q2D2zP~z!Q~m2q!

3 f ~x,kt
2 ,q2!G2

aS

2p
2NCE

x

1 dz

z E d2q

pq2

3Q~q2q0!Q~kt
22q2! f S x

z
,kt

2 ,q2D , ~4!

wherekt8[ukt1(12z)qu. For simplicity,aS is taken outside
the integrals, but the scale will be specified carefully in t
final equations@in particular see Eq.~23!#. The driving term
f 0 is of nonperturbative origin and is assumed to contrib
only for kt

2,q0
2 . The remaining terms contribute in thekt

2

.q0
2 domain. The driving term thus gives the nonperturb

tive starting gluon distribution

xg~x,q0
2!5Eq0

2 dkt
2

kt
2

f 0~x,kt
2!. ~5!

This angular-ordered equation forf, which embodies both
DGLAP and BFKL evolution, is shown schematically in Fi
1. The first term in the square brackets in Eq.~4! describes
real gluon emission with angular ordering imposed. The te
containing f (x,kt

2 ,q2) is related to the virtual correction
corresponding to the unfolded Sudakov form factor, wh
the last term in Eq.~4! represents the virtual correction
which, when resummed, give rise to gluon Reggeization. T
latter correspond to the BFKL part of the~unfolded! non-
Sudakov form factor. Angular ordering along the chain
portion of which is shown in Fig. 2, requires

2The folded form~which actually is the CCFM equation@3,4#!
contains Sudakov and non-Sudakov form factors, which arise f
the resummation of virtual corrections and screen the singular
asz→1 andz→0, respectively.
09400
e
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zn21qn21,qn where qn[qtn /~12zn! ~6!

and zn5xn /xn21. The angular ordering continues up to
maximum angle with the limit expressed in terms of the ha
scale viaQ(m2qz). Whenz is away from thez;0 andz
;1 domains, angular ordering is equivalent to the strongkt
ordering of pure DGLAP leading order~LO! evolution. At
first sight there appear to be three types of large logarith
in Eq. ~4!. First the usual DGLAP logarithms coming from
the

ukt8u[ukt1~12z!qu!q ~7!

domain. Second there are the BFKL-type log(1/x) contribu-
tions originating from the 1/z part of the real emission term
in Eq. ~4! and the gluon Reggeization contribution. The
two terms can be combined together in the function

F~x,kt
2!5

aS

2p
2NCE d2q

pq2Ex

1dz

z F kt
2

ukt1qu2
f S x

z
,ukt1qu2,q2D

2Q~kt
22q2! f S x

z
,kt

2 ,q2D G , ~8!

where we have assumedz!1, in kt8 of Eq. ~7!. Finally there
is a danger that in Eq.~4! we have a large logarithm from th
regionq2!kt

2 . However, we see from Eq.~4! that the func-
tion f (x,kt

2 ,q2) only extends into the regionkt
2.q2 as a

result of the BFKL smallx effects, which are subleading a
finite x. That is, to leading logarithmic accuracy, it can b
shown, in the so-called ‘‘single-loop’’ approximation, that
the last term in Eq.~4! is neglected andQ(m2qz) is re-
placed byQ(m2q), then the functionf (x,kt

2 ,q2) vanishes
for kt

2.q2. Thus we limit the integration regions in Eq.~4!
to the strongly ordered domainkt8

2!q2 for those contribu-

m
s

FIG. 1. Schematic representation of the CCFM evolution eq
tion ~4! for the unintegrated gluon distributionf (x,kt

2 ,m2). The
variableq is defined byq[qt /(12z) wherez5x/x8 and kt85kt

1(12z)q.

FIG. 2. A portion of the evolution chain. Angular ordering re
quireszn21qn21,qn , whereqn[qtn /(12zn) andzn5xn /xn21.
6-2
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tions in which the unintegrated gluon is multiplied by th
part P̄(z) of the splitting functionP(z) which is nonsingular
at low z. That is

P̄~z!5P~z!2
2NC

z
. ~9!

It should be noted that the BFKL part, Eq.~8!, of Eq.~4! ~for
which this approximation is not justified! is free from singu-
larities asq→0, since the potential singularity of the re
emission term is canceled by the virtual contribution.

So finally we have just the large logarithms coming fro
either kt8!kt or from z!1. Our aim is to develop an ap
proximate treatment of the CCFM equation which incorp
rates both types of large logarithms.

III. SIMPLIFICATION OF THE CCFM EQUATION

To simplify the angular-ordered equation~4!, we rear-
range the equation and retain only terms which gene
large logarithms. To achieve this it is convenient to add a
subtract the term

aS

2pE0

1

dzE d2q

pq2
QS 12z2

q0

q DQ~m2q!Q~kt
22kt8

2!

3zP~z!
kt

2

kt8
2

f ~x,kt8
2 ,q2! ~10!

from the right-hand side of Eq.~4!, and to group togethe
contributions containing the singular 2NC /z part of the split-
ting function

P~z![ P̄~z!1
2NC

z
. ~11!

In this way we obtain the approximate form

f ~x,kt
2 ,m2!5 f 0~x,kt

2!1
aS

2pE0

1

dzQ~kt2q0!QS m2
kt

12zD
3F P̄~z!Q~z2x!

x

z
gS x

z
,S kt

12zD
2D

2zP~z!xgS x,S kt

12zD
2D G1

aS

2pE0

1

dz

3E dq2

q2
QS 12z2

q0

q DQ~m2q!zP~z!

3F E dkt8
2

kt8
2

Q~kt
22kt8

2! f ~x,kt8
2 ,q2!

q

2

3dS q2
kt

12zD2 f ~x,kt
2 ,q2!QS q2

kt

12zD G
1F~x,kt

2!, ~12!
09400
-

te
d

where the BFKL-type log(1/x) contributionF(x,kt
2) is given

by Eq. ~8!. The second term on the right-hand side is t
pure DGLAP contribution in the largex limit. It comes from
the strongly ordered configuration

kt8
2[ukt1~12z!qu2!q2 ~13!

in the second term on the right-hand side of Eq.~4!. In this
configuration the variableq becomeskt /(12z). We have
also made the largez approximation such that

P̄~z!Q~m2qz!' P̄~z!Q~m2q!' P̄~z!QS m2
kt

12zD .

~14!

With these approximations we may rewrite the second te
using

Ekt
2/(12z)2 dkt8

2

kt8
2 FQ~z2x!P̄~z! f S x

z
,kt8

2 ,S kt

12zD
2D

2zP~z! f S x,kt8
2 ,S kt

12zD
2D G

5Q~z2x!P̄~z!
x

z
gS x

z
,S kt

12zD
2D

2zP~z!xgS x,S kt

12zD
2D , ~15!

where the upper limitkt
2 of thedkt8

2 integration has, to lead
ing logm2 accuracy, been replaced by@kt /(12z)#2.

Finally, the third term on the right-hand side of Eq.~12!
corresponds to the difference between Eq.~10! and the vir-
tual Sudakov~DGLAP-type! contribution given by the sec
ond term in the square brackets in Eq.~4!, that is, to the
contribution

aS

2pE0

1

dzE d2q

pq2
QS 12z2

q0

q DQ~m2q!zP~z!

3F kt
2

kt8
2

f ~x,kt8
2 ,q2!2 f ~x,kt

2 ,q2!G . ~16!

The first integral is evaluated using the strongly ordered c
figuration @kt8

2!kt
2 ,q'kt /(12z)#, while the second inte-

gration is restricted to the regionq(12z).kt . It should be
noted that forq(12z)!kt the two terms in the integrand o
Eq. ~16! cancel, since thenkt8'kt .

The contribution~16! represents the virtual correction
which have to be resummed. The resummation is perform
in the Appendix. We obtain

f ~x,kt
2 ,m2!5

]

] ln kt
2 FTg~kt ,m!xg~x,kt

2!1E
kt

2

m2dq2

q2
Tg~q,m!

3E
q0

2

kt
2dkt8

2

kt8
2

]L~x,kt8
2 ,q2!

] ln q2 G , ~17!
6-3
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where

L~x,kt
2 ,m2!5

aS

2p
Q~kt2q0!E

0

1

dzQS m2
kt

12zD
3F P̄~z!Q~z2x!

x

z
gS x

z
,S kt

12zD
2D

2zP~z!xgS x,S kt

12zD
2D G , ~18!

and where the Sudakov form factor

Tg~q,m!5expS 2E
q2

m2dp2

p2

aS~p2!

2p E
0

12kt /p

dz8z8P~z8!D .

~19!

The cutoff z8,12kt /p enters on account of the kinemat
structure of the real emission term, where the upper limit
the p integration is given bykt /(12z8). Note thatTg(q,m)
therefore implicitly depends onkt . The integration limits
defining the Sudakov form factor should be understood
arising from theQ function constraints

Q~12kt /p!Q~m2p!Q~p2q!. ~20!

This impliesTg(q,m)51 if these constraints are not sati
fied. In particularTg51 for kt.m or q.m.

A nice feature of the result~17! is that the unintegrated
gluon f (x,kt

2 ,m2) is entirely specified in terms of the inte
grated gluonxg. The next step is to introduce a single-sca
unified equation, which embodies both BFKL- and DGLA
type effects, to determinexg.

IV. STRATEGY FOR DETERMINING THE
UNINTEGRATED GLUON

We have emphasized that the angular-ordered equa
~12! is a ‘‘two-scale’’ evolution equation forf (x,kt

2 ,m2).
That is, the scaleskt

2 and m2 are intertwined by angula
ordering. In the previous section we have shown how
two-scale unintegrated gluonf (x,kt

2 ,m2) can be determined
once we know the integrated gluonxg. Here we describe the
procedure to obtainxg from a unified evolution equation fo
a single-scale auxiliary distribution:

h~x,m2![m2
]~xg!

]m2
5m2

]

]m2 S Em2dkt
2

kt
2

f ~x,kt
2 ,m2!D .

~21!

If we integrate both sides of Eq.~12! over kt
2 up to m2 and

differentiate with respect to logm2, then we find that
h(x,m2) satisfies the evolution equation

h~x,m2!5
aS

2pE0

12q0 /m

dzH Q~z2x!P̄~z!
x

z
gS x

z
,m2D

2zP~z!xg~x,m2!J 1F~x,kt
25m2!, ~22!
09400
f

s

on

e

whereF(x,kt
2) is defined by Eq.~8!. Note that the integral in

Eq. ~22! has no singularity close toz51. We can now derive
a relation expressing the two-scale unintegrated gluon di
bution f (x,kt

2 ,m2) in terms of the one-scale distributionxg
~or h). From Eq.~17! we get the following expression fo
f (x,kt

2 ,m):

f ~x,kt
2 ,m2!5Tg~kt ,m!h~x,kt

2!1Tg~kt ,m!

3E
0

12kt /m

dzzP~z!
aS~kt

2/~12z!2!

2p
xg~x,kt

2!

2
aS

2p
Tg~kt ,m!E

0

12q0 /kt
dzFQ~z2x!P̄~z!

3
x

z
gS x

z
,kt

2D2P~z!zxg~x,kt
2!G1Q~m2kt!

3E
0

12kt /m

dz
aS

2p
TgS kt

12z
,m D

3FQ~z2x!P̄~z!
x

z
gS x

z
,S kt

12zD
2D

2P~z!zxgS x,S kt

12zD
2D G , ~23!

where the scale ofaS is taken to be the scale of the appr
priate gluon, except for the second term on the right-ha
side. We may safely set the 12z cutoff q0 /kt to zero, but
not the cutoffskt /m.

Note that in the leading ln(1/x) approximation we may se
Tg51 and neglect all the integral terms in Eq.~23!, since
they do not generate ln(1/x) contributions. In this approxi-
mation the unintegrated gluon is simply

f ~x,kt
2 ,m2!5h~x,kt

2!,

with no dependence on the scalem.
When obtaining Eq.~23! from Eq. ~17!, we have chosen

to neglect a contribution coming from the derivative of t
Sudakov form factorTg(q,m) with respect tokt , which
arises from thekt dependence of the regulator; see Eq.~19!.
For this reason the unintegrated gluon of Eq.~23! does not
precisely integrate toxg(x,m2), although the corrections ar
subleading in logm2. The discrepancy is indeed negligible
low x, but can become of the order of 20% or so for lar
values ofx*0.1. Rather than complicating Eq.~23! by in-
cluding the derivative, we eliminate the discrepancy
changing the regulator in the form factor~19! from kt /p to
q/p; that is, we take the Sudakov form factor

Tg~q,m!5expS 2E
q2

m2dp2

p2

aS~p2!

2p E
0

12q/p

dz8z8P~z8!D .

~24!

This approximation is justified since in our case eitherq
5kt or q;kt . Within this approximation it is evident tha
the unintegrated gluon~23! integrates exactly toxg(x,m2);
6-4
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the sum of the first two terms on the right-hand side of E
~23! forms the total derivative

kt
2 ]

]kt
2 @Tg~kt ,m!xg~x,kt

2!#, ~25!

and the integrals of the third and fourth terms cancel e
other.

From Eq.~21! we see that the integrated gluon distrib
tion g can be expressed in terms ofh, namely,

xg~x,kt
2!5xg~x,q0

2!1E
q0

2

kt
2dm2

m2
h~x,m2!. ~26!

Equations~22! and ~23!, together with Eqs.~8! and ~26!,
form a system of coupled equations. If we substitutef of Eq.
~23! into theF term on the right-hand side of Eq.~22!, and
take account of Eq.~26!, then we obtain an integral equatio
for h. We may solve this equation for the single-scale au
iary distribution h(x,m2), and then compute the two-sca
unintegrated gluonf (x,kt

2 ,m2) from Eq. ~23!.
It is convenient to simplify the integral equation~22! for

h(x,m2) using approximations which are valid to leadin
logarithmic accuracy. To be precise we simplify the comp
tation of F(x,kt

2) of Eq. ~8!. First instead of allowing the
scaleq2 of f to vary, we note that in Eq.~8! the dominant
values ofq2 are such thatq2'kt

2 . Moreover, we notice tha
in the strongly ordered domainkt8

2 ([ukt1qu2)!kt
2 , the

first term on the right-hand side of Eq.~8! can be simplified
using

E d2q

pq2

kt
2

kt8
2

f S x

z
,ukt1qu2,q2D

'Ekt
2dkt8

2

kt8
2

f S x

z
,kt8

2 ,kt
2D

[
x

z
gS x

z
,kt

2D ; ~27!

see Eq.~1!. In the remaining contributions toF(x,kt
2) of Eq.

~8! we can use Eq.~23! to approximatef by the first term,

f ~x,kt
2 ,q2!'h~x,kt

2!, ~28!

noting thatq2'kt
2 andTg(kt ,kt)51. The other terms in Eq

~23! give only subleading log(1/x) contributions to the
BFKL kernel. Since this contribution toF(x,kt

2) goes be-
yond the strongly ordered part of the kernel, it is also s
leading in logm2. After these approximations, Eq.~22! for
h(x,m2) for m2.q0

2 may be written as3

3In order to be consistent with Eq.~22!, the upper limit of thez
integration in the second term on the right-hand side of Eq.~29!
should be 12q0 /q rather than 1. The integrals are, of course, reg
lar at z51 and so the discrepancy is subleading in lnm2.
09400
.

h

-

-

-

h~x,m2!5h0~x,m2!1
aS~m2!

2p E
0

1

dzE
q0

2

m2dq2

q2

3H Q~z2x!P̄~z!hS x

z
,q2D2zP~z!h~x,q2!J

1
aS~m2!

2p
2NCE

x

1dz

z E dq2

q2
Q~kt8

22q0
2!

3H m2

kt8
2

hS x

z
,kt8

2D2Q~m22q2!hS x

z
,m2D J , ~29!

wherekt8
25ukt1qu2 with kt

25m2. The driving term, which
arises from the substitution of Eq.~26! for xg in Eqs. ~22!
and ~27!, is given by

h0~x,m2!5
aS~m2!

2p E
0

1

dzH Q~z2x!P~z!
x

z
gS x

z
,q0

2D
2zP~z!xg~x,q0

2!J . ~30!

Notice that the strongly ordered contribution ofF(x,kt
2

5m2) has combined with the residual DGLAP contributio
in Eq. ~22! with the effect thatP̄(z)→P(z).

Equation~29! is the single-scale unified BFKL-DGLAP
equation for the gluon that was proposed in Ref.@14#. There
it was shown that it is straightforward to incorporate a ma
part of the subleading order log(1/x) ~or BFKL! effects by
imposing a consistency condition to ensure that the virtua
of the exchanged gluon is dominated by its transverse
mentum squared. This is achieved by including the th
functionQ(m22zq2) in the real emission contribution in th
last term of Eq.~29!. Other important subleading terms ari
ing from using the complete DGLAP splitting function an
from the running ofaS are automatically included in ou
framework @14#. This formalism was used to fit to deep
inelastic scattering data and the auxiliary functionh(x,m2)
was determined@14#. It was checked that the correspondin
integrated gluonxg(x,kt

2) computed from Eq.~22! was com-
patible with the gluons obtained in the Martin-Rober
Stirling ~MRS!, CTEQ global parton analyses@15#.

In @14# the contribution of the quark distributions wa
included in Eq.~29! for h(x,m2). To incorporate the quarks
in the present analysis we must also include the contribu
of the singlet quark distributionS in Eq. ~23! for
f (x,kt

2 ,m2). That is, we make the replacement

P̄~z!
x

z
g→ P̄~z!

x

z
gS x

z
,m82D1Pgq~z!

x

z
SS x

z
,m82D

~31!

in the real emission part of the third and fourth terms on
right-hand side of Eq.~23!, where m8 is the appropriate
scale. Recall thatP(z)[Pgg(z). In the second term and in
the virtual part of the third and fourth terms, we make t
replacement

-
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zP~z!xg→@zP~z!12nfzPqg~z!#xg~x,m82!, ~32!

wherenf is the number of active flavors, and the scalem82

5kt
2 or kt

2/(12z)2 as appropriate. Finally we have to modi
the Sudakov form factor so that Eq.~24! becomes

Tg~q,m!5expS 2E
q2

m2aS~p2!

2p

dp2

p2

3E
0

12q/p

z8FP~z8!1(
q

Pqg~z8!Gdz8D .

~33!

The above procedure allows the determination of the
proximate solution f (x,kt

2 ,m2) of the CCFM equation,
which incorporates both a full~or so-called ‘‘all-loop’’ @5,6#!
resummation of leading ln(1/x) contributions, as well as the
resummation of the leading lnm2 contribution and the inclu-
sion of dominant subleading ln(1/x) terms.

V. PURE DGLAP LIMIT

It is informative to compare the predictions above for t
unintegrated gluonf (x,kt

2 ,m2) with those obtained in the
DGLAP ~or so-called ‘‘single-loop’’@5,6#! approximation, in
which Q(m2qz) in Eq. ~4! is replaced byQ(m2q), and the
last term in Eq.~4! is neglected. After making these modifi
cations we repeat the procedures of Secs. III and IV
obtain the DGLAP form

f ~x,kt ,m2!5E
x

12kt /m

dz
aS@kt

2/~12z!2#

2p
TgS kt

12z
,m D

3P~z!
x

z
gS x

z
,S kt

12zD
2D1E

0

12kt /m

dzzP~z!

3
aS@kt

2/~12z!2#

2p FTg~kt ,m!xg~x,kt
2!

2TgS kt

12z
,m D xgS x,S kt

12zD
2D G , ~34!

with f 50 if kt.m. Apart from the last term, this is th
equation for the unintegrated gluon introduced in Ref.@2#.
The last term, which is only nonzero on account of differe
scales, introduces subleading corrections. Its inclusion
proves the accuracy of the integration off (x,kt

2 ,m2) to re-
producexg(x,m2); see Eq.~1!. Note that the DGLAP or
‘‘single-loop’’ unintegrated gluon vanishes forkt>m, as in-
deed it must@5,6#. In the results presented below we inclu
the quark contributions as described in Eqs.~31!–~33!.

It is informative to see how the full equation~23! for
f (x,kt

2 ,m) reduces to the DGLAP limit~34!. A crucial ob-
servation is that in the DGLAP domain (kt,m) it is pos-
sible, within leading ln(1/x) and ln(m2) accuracy, to replace
P̄(z) by P(z) in Eq. ~23!. Thus,provided kt,m, we obtain
the following more symmetric formula:
09400
-

d

t
-

f ~x,kt
2 ,m2!5Tg~kt ,m!h~x,kt

2!1Tg~kt ,m!

3E
0

12kt /m

dzzP~z!
aS~kt

2/~12z!2!

2p
xg~x,kt

2!

2
aS~kt

2!

2p
Tg~kt ,m!E

0

12q0 /kt
dzP~z!

3FQ~z2x!
x

z
gS x

z
,kt

2D2zxg~x,kt
2!G

1Q~m2kt!E
0

12kt /m

dz
aS

2p
TgS kt

12z
,m D P~z!

3FQ~z2x!
x

z
gS x

z
,S kt

12zD
2D

2zxgS x,S kt

12zD
2D G . ~35!

In the DGLAP limit the first and third terms on the righ
hand side of Eq.~35! exactly cancel4; they simply represen
the DGLAP equation forh(x,kt

2) of Eq. ~21!. Thus Eq.~35!
reduces to Eq.~34!.

VI. NUMERICAL EVALUATION OF THE
UNINTEGRATED GLUON

In Fig. 3 we show thekt distributions of three different
unintegrated gluons at each of four different values ofx at a
hard scalem25100 GeV2.

~i! The solid curves are the gluonsf (x,kt
2 ,m2) obtained

from Eq. ~23!, with the quark terms included, using the au
iliary function h(x,kt

2) of Ref. @14#, which was itself ob-
tained from a fit to deep inelastic scattering data using
unified BFKL-DGLAP equation.~The curves have bee
smoothed in the transition regionkt;m.!

~ii ! The dot-dashed curves showh(x,kt
2) itself @14#,

which is independent ofm2,
~iii ! The dashed curves showf (x,kt

2 ,m2) calculated from
the pure DGLAP equation~35! using in this case the auxil
iary function h(x,kt

2) obtained in@14# from pure DGLAP
evolution from exactly the same starting distributio
@xg(x,q0

2), etc.# as those found in the unified fit.
Note that the third set of gluons is shown solely to illu

trate the difference between the two types of evolution. T
gluons of the third set have not been constrained by a fi
the data, so should not be regarded as realistic.

In the pure DGLAP case~iii !, we see that the distribution
are confined to the domainkt,m, as anticipated from strong
ordering. On the other hand, the distributionsf (x,kt

2 ,m2)
obtained in the unified BFKL-DGLAP framework develop
more and more extensivekt.m tail asx decreases. At smal
kt and lowx the magnitude of the unintegrated gluon calc

4Strictly speaking the cancellation is only exact whenq0→0 in
Eq. ~35!.
6-6
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FIG. 3. The solid curves show
the kt dependence of the uninte
grated gluon distributionf (x,kt

2 ,
m2) for m25100 GeV2. For com-
parison we also show the inpu
auxiliary function h(x,kt

2) ~dot-
dashed curves! @14# and thekt de-
pendence coming from pure DG
LAP evolution ~dashed curves!.
ha
o

cy
he
o
t
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en-
he
-
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-
he
g
r
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ng
e

lated from the unified scheme is about a factor of 2 less t
that of the gluon coming from the pure DGLAP approach
case~iii !. This is due to the imposition of the consisten
constraint in case~i! which suppresses the magnitude of t
gluon. If this constraint were absent, the distributions
cases~i! and ~iii ! would not be that different. We note tha
the auxiliary functionh of case~ii ! remains different from
the unintegrated gluonf of case~i! down to very small values
of x.

For kt.m we see thatf is greater thanh, whereas the
DGLAP-driven unintegrated gluon vanishes, as it must.
this domain inspection of Eq.~22! and ~23! shows thatf
comes purely from the BFKL contribution:

f ~x,kt
2 ,m2!5F~x,kt

2!. ~36!

On the other hand,h is smaller thanf due to the negative
contribution of the integral term in Eq.~22!. The latter is a
DGLAP contribution which is ruled out when angular orde
ing is imposed. It is negative because the 2NC /z contribution
has been subtracted from the real emission contribution,
09400
n
f

f

n

ut

not from the virtual term. We see that forx,0.01 that there
is about a factor of 2 discrepancy betweenh and the true
unintegrated gluonf.

VII. SUMMARY

Here we have addressed the issue of obtaining a reli
determination of the~scale-dependent! gluon distribution
f (x,kt

2 ,m2), unintegrated over the gluon transverse mom
tum kt , wherem denotes the hard scale of the probe. In t
leading log(1/x) approximation the distribution is given sim
ply by the derivative of the unintegrated gluon with respe
to its scalel5kt @see Eq.~2!# and satisfies the BFKL equa
tion. We correct this simple relation by going beyond t
leading log(1/x) approximation to include both subleadin
contributions and DGLAP effects. The final result fo
f (x,kt

2 ,m2) is given in Eq.~23!. To obtain this result we use
the appropriate gluon cascade formalism based on ang
ordering, which leads to the CCFM equation embodyi
both BFKL and DGLAP evolution. It is important to not
6-7
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that the CCFM equation gives a well-defined framework
calculate the very quantity that we seek: the unintegra
gluon distributionf (x,kt

2 ,m2). Using this formalism we de-
vise a procedure to determinef (x,kt

2 ,m2) from the inte-
grated gluon distributionxg(x,q2), its derivativeh(x,q2),
and the Sudakov form factorTg(q,m); cf. Eq. ~23!. An im-
portant ingredient is the solution of a~single-scale! evolution
equation forh(x,q2) which embodies both BFKL and DG
LAP effects. From the lowx viewpoint it includes sublead
ing effects from~i! the consistency constraint which limit
the available phase space to the region in which the virtua
of the exchanged gluon is dominated by its transverse
mentum squared,~ii ! DGLAP effects generated by that pa
of the splitting functionPgg(z) which is not singular in the
limit z→0, ~iii ! the inclusion of the quark contribution, an
~iv! allowing the couplingaS to run and depend on the loca
scale~s! characteristic of the vertices of the cascade.

We presented sample results to show that the structur
the kt distribution of the gluonf (x,kt

2 ,m2) can be signifi-
cantly different from that ofh(x,kt

2), down to very small
values ofx. There are important consequences for the
scription of hadron-initiated hard processes in which thekt
of the gluon is probed locally.
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APPENDIX

Equation ~17! for the unintegrated gluonf (x,kt
2 ,m2) is

obtained from Eq.~12! by resumming the virtual correction
given in the third term on the right-hand side of Eq.~12!.
Here we show how the resummation is performed. First
note that this virtual correction term can be written as a
rivative, that is,

aS

2pE0

1

dzzP~z!F E dk8t
2

k8t
2

Q~kt
22k8t

2! f ~x,kt8
2 ,q2!

3
q

2
dS q2

kt

12zD2 f ~x,kt
2 ,q2!QS q2

kt

12zD G
52kt

2 ]

]kt
2 @A~kt ,q!R~x,kt

2 ,q2!#, ~A1!

where
09400
d

ty
o-

of

-

-
.
e

-

t

e
-

R~x,kt
2 ,q2!5Ekt

2dk8t
2

k8t
2

f ~x,kt8
2 ,q2!, ~A2!

A~kt ,q!5
aS

2pE0

1

dzzP~z!Q~12z2kt /q!. ~A3!

The functionR(x,kt
2 ,q2) has a simple physical meaning.

is the gluon distribution for fixed impact parameterb;1/kt
at scaleq. Note that ifb51/q then the distributionR reduces
to the integrated gluonxg(x,q2). Using Eq.~A1! we see that
Eq. ~12! can be expressed as an integro-differential equa
for R:

f ~x,kt
2 ,m2![kt

2
]R~x,kt

2 ,m2!

]kt
2

5L~x,kt
2 ,m2!1F~x,kt

2!2kt
2 ]

]kt
2

3E
kt

2

m2dq2

q2
A~kt ,q!R~x,kt

2 ,q2!, ~A4!

whereL andF are defined by Eqs.~18! and~8!, respectively.
In order to solve Eq.~A4! for R we integrate both sides

overdkt
2/kt

2 up tokt
2 and obtain the following integral equa

tion:

R~x,kt
2 ,m2!5xg0~x!1E

q0
2

kt
2dkt8

2

kt8
2 @L~x,kt8

2 ,m2!1F~x,kt8
2!#

2E
kt

2

m2dq2

q2
A~kt ,q!R~x,kt

2 ,q2!. ~A5!

From Eqs.~21! and ~22! we see, ifm5kt , that the first two
terms on the right-hand side of Eq.~A5! are justxg(x,kt

2).
The solution of Eq.~A5! may be therefore written as

R~x,kt
2 ,m2!5Tg~kt ,m!xg~x,kt

2!1E
kt

2

m2dq2

q2
Tg~q,m!

3q2
]

]q2 S Eq0
2

kt
2dkt8

2

kt8
2

L~x,kt8
2 ,q2!D , ~A6!

where the Sudakov form factor

Tg~q,m!5expS 2E
q2

m2dp2

p2
A~kt ,p!D ~A7!

is in agreement with Eq.~19!. Equation~23! then follows
from Eq. ~A6! after differentiation by]/] ln kt

2 .
6-8
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