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Boltzmann equations for neutrinos with flavor mixings

Shoichi Yamada*
Research Center for the Early Universe (RESCEU), School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,

Tokyo 113-0033, Japan
~Received 27 December 1999; published 12 October 2000!

With a view of applications to the simulations of supernova explosions and protoneutron star cooling, we
derive the Boltzmann equations for the neutrino transport with flavor mixing based on the real time formalism
of the nonequilibrium field theory and the gradient expansion of the Green function. The relativistic kinematics
is properly taken into account. The advection terms are derived in the mean field approximation for the
neutrino self-energy while the collision terms are obtained in the Born approximation. The resulting equations
take the familiar form of the Boltzmann equation with corrections due to mixing both in the advection part and
in the collision part. These corrections are essentially the same as those derived by Sireraet al. for the
advection terms and those by Raffeltet al. for the collision terms, respectively, though the formalism em-
ployed here is different from theirs. The derived equations will be easily implemented in numerical codes
employed in the simulations of supernova explosions and protoneutron star cooling.

PACS number~s!: 14.60.Pq, 11.10.Wx, 97.60.Bw, 97.60.Jd
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I. INTRODUCTION

The neutrino transport plays an important role in so
astrophysical phenomena such as supernova explosions
the following protoneutron star cooling~e.g., Refs.@1–4#,
and references therein!. In their studies, the Boltzmann equ
tion or its approximate versions are commonly employed
describe the temporal variations of neutrino distributions
phase space. These equations are usually derived from
following assumptions@5–7#: ~1! the neutrinos are propaga
ing along the geodesics for a massless particlepmpm50 and
the volume in the phase space occupied by these neutrin
not varied along their world line if there is no reaction;~2!
the variation of the neutrino population due to reactions
described by the so-called collision terms obtained with
Stohszahl ansatz. With the masses nondiagonal in neu
flavor space, the neutrino oscillation occurs among differ
flavors of neutrinos~e.g., Ref.@8#, and references therein!. It
is thus interesting from an academic point of view how t
oscillation phenomenon is described by the generali
Boltzmann equations@9–14#. It is also important from a
practical point of view for those who are interested in t
possible significant consequences the oscillation might g
in astrophysical events@15–18#. In collapse-driven super
nova explosions, for example, this is particularly the cas
the resonance of oscillation occurs near a neutrino sp
where neutrinos are interacting with other particles and t
the oscillation should be treated simultaneously with th
reactions and possibly with the evolution of the matter d
tribution as well. The purpose of this paper is to provide
formulation which can be easily implemented in those n
merical simulations.

In considering the transport equation with the oscillatio
we have to rely on a more formal derivation of the Bolt
mann equation. This might be done in a couple of wa
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Sirera and Pe´rez @14#, for instance, based their derivation o
the relativistic Wigner function approach in the mean fie
approximation. Although they took the relativistic kinema
ics properly into account, they did not obtain the collisio
terms, since it is difficult to go beyond the mean field a
proximation in their formalism. Raffeltet al. @10,11#, on the
other hand, obtained their transport equation via the den
matrix approach. Although they derived the collision term
they did not consider the spatially inhomogeneous system
this paper, we derive the relativistic Boltzmann equation
cluding corrections due to the oscillation both in the adv
tion terms and the collision terms by employing the real tim
formalism of the nonequilibrium field theory@19–21#. In this
approach, the dispersion relation and the collision terms
derived on the same basis, that is, a particular approxima
for the self-energy of neutrinos, which is conveniently re
resented with Feynman diagrams.

The paper is organized as follows. We first derive a g
neric form of the transport equation without specifying pa
ticular equations of motion of fields. Then, the formulation
applied to the neutrino flavor oscillations. In so doing, w
ignore small corrections of the order ofmn

2/En except for the
terms responsible for the flavor conversion, as is usually
case. Heremn andEn are typical mass and energy of neut
nos in the observer’s inertial frame. In this limit, as show
later, the left handed neutrinos are decoupled from the r
handed ones and the difference between Majorana mass
Dirac mass never shows up in the flavor mixing. The gene
relativistic corrections are obtained up to the leading orde
ln /R, whereln is a typical wave length of neutrino andR is
a scale height of the background matter distribution.

II. FORMULATION

A. General derivation of transport equations

In this section we derive general transport equations
multicomponent fields based on the real time formalism
nonequilibrium field theory by Keldysh@19–21#. In this for-
malism, we introduce path-ordered products of operators
the closed time-path, which extends fromt52` to t
51` then back tot52`. In this product, the operator with
a time argument which comes later on the above time pat

ail
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SHOICHI YAMADA PHYSICAL REVIEW D 62 093026
put to the left of other operators whose time arguments co
earlier. Accordingly the path-ordered Green function is d
fined as

iGpi j~ t1 ,t2![^Tpc i~ t1!c j
†~ t2!&. ~1!

HereTp stands for the path-ordered product of the followi
operators. The subscripti j of the Green function denotes th
components of the field. The brackets^•••& represent that
arguments are averaged over the ensemble specified
density operatorr as Tr$•••r%, where Tr is a trace operato
We define a generating functional of the Green function

Z~J,J†![TrH TpFexpS i(
i
E

p
d4x@Ji

†~x!c i~x!

1Ji~x!c i
†~x!# D GrJ

[exp@ iW~J,J†!#. ~2!

The Green function is obtained by the functional derivati

iGpi j~x,y!5
d

idJi
†~x!

d

idJj~y!
Z~J,J†!uJ,J†50 .

The generating functional for the connected Green func
is denoted asW(J,J†). Going to the interaction represent
tion, we obtain

Z~J,J†!5TrH TpFexpS i(
i
E

p
d4x$Ji

†~x!c I i ~x!

1Ji~x!c I i
† ~x!1Lint@c I~x!,c I

†~x!#% D Gr I J
5expF i E

p
d4yLintS d

idJ†
,

d

idJD G
3TrH TpFexpS i(

i
E

p
d4x@Ji

†~x!c I i ~x!

1Ji~x!c I i
† ~x!# D Gr I J , ~3!

where the Lagrangian density for interactions is denoted
Lint and the subscriptI indicates that the variables are give
in the interaction representation. The last factor of the ri
hand side of Eq.~3! is the generating functional for the n
interaction caseZ0(J,J†) and is given as

Z0~J,J†!

5Zvac~J,J†!TrH :expS i(
i
E

p
d4x@Ji

†~x!c I i ~x!

1Ji~x!c I i
† ~x!# D :r I J , ~4!

with the generating functional for vacuum
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Zvac~J,J†!

5expS 2 i(
i j

E E
p
d4xd4yJj~y!Gpi j

0 ~x,y!Ji
†~x! D .

~5!

Here Gpi j
0 (x,y) is the path-ordered Green function fo

vacuum. The normal order product is represented by :•••: in
Eq. ~4!. All the information of the ensemble is included i
the last term of Eq.~4!, Np(J,J†)5exp@iWp

N(J,J†)#. Its con-
nected partWp

N(J,J†) is in general expanded to cumulants

Wp
N~J,J†!5 (

m,n51

`
1

m!n! E •••E
p
d4y1•••d4ynd4x1•••

3d4xmJ~y1!•••J~yn!J†~x1!•••

3J†~xm!Wp
Nmn~x1 ,•••,xmuy1 ,•••,yn!. ~6!

In the following we assume that the expansion is termina
at the quadratic order. This is true, for example, for the th
mal equilibrium and the more general condition for this to
true can be found in the paper by Danielewicz@22#. With this
assumption, we can expand as usual the Green function
the propagator which have corrections originating from
particular ensemble.

The Dyson equations are obtained by the Legendre tra
formations

G~cc ,cc
†!5W~J,J†!2J†

•cc2J•cc
† ~7!

with cc(x)5@d/dJ†(x)#W and cc
†(x)5@d/dJ(x)#W. We

use the abbreviationJ†
•cc5( i*pd4xJi

†(x)cci(x). Then
the following relations hold: dG/dcc(x)
52J†(x), dG/dcc

†(x)52J(x). The Dyson equations
take the integral form on the closed time path as

E
p
d4zGp

c~x,z!Gp~z,y!5E
p
d4zGp~x,z!Gp

c~z,y!5dp~x2y!,

~8!

where the connected Green function and the vertex func
are defined as

iGp
c~x,y!5

d

idJ†~x!

d

idJ~y!
W~J,J†!

andGp(x,y)5d2G/dcc(y)dcc
†(x), respectively. Thed func-

tion is extended on the closed time path as follows:dp(x
2y)5d(x2y) for tx and ty on the positive branch of the
time path extending fromt52` to t51` and dp(x2y)
52d(x2y) for tx and ty on the negative branch of th
time-path that runs fromt51` to t52`. Introducing the
matrix representations for the Green function and the ve
function as
6-2
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BOLTZMANN EQUATIONS FOR NEUTRINOS WITH . . . PHYSICAL REVIEW D62 093026
Ĝ5S GF G1

G2 GF̄
D , Ĝ5S GF G1

G2 G F̄
D , ~9!

we can recast the Dyson equation in a single time repre
tation:

E d4zĜc~x,z!s3Ĝ~z,y!

5E d4zĜ~x,z!s3Ĝc~z,y!5s3d~x2y!. ~10!

In the above equations, the time integration runs fromt
52` to t51`, and s35( 0

1
21

0) is the Pauli matrix. The

subscriptsF andF̄ indicate that the time arguments are bo
on the positive branch and on the negative branch, res
tively, while the subscript1 means that the first argument
located on the positive branch and the second on the neg
branch, and the subscript2 represents the other way aroun
It is clear thatGF is an ordinary Green function defined fro
the chronologically ordered product whileGF̄ is obtained
from the antichronological ordering. From these quantiti
we further define the retarded, advanced and correla
functions as

Gr5GF2G1 , ~11!

Ga5GF2G2 , ~12!

Gc5GF1GF̄ . ~13!

The counterparts for the vertex functions are defined in
analogous way. Using the identityGF1G F̄5G11G2 , we
can expressG ’s in general as

G65 i ~B6A!, ~14!

GF5D1 iB, ~15!

G F̄52D1 iB, ~16!

G r5D1 iA, ~17!

Ga5D2 iA, ~18!

whereA, B, andD are three Hermitian matrices. Solving th
Dyson equations using these quantities, we obtain the g
eral form of the Green functions as

Gr5@D1 iA#21, ~19!

Ga5@D2 iA#21, ~20!

G652 i @D1 iA#21@B6A#@D2 iA#21, ~21!
09302
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GF5@D1 iA#21@D2 iB#@D2 iA#21, ~22!

GF̄52@D1 iA#21@D1 iB#@D2 iA#21. ~23!

The dispersion relation is obtained fromD andA, while the
distribution function is found fromB as shown shortly.

D, A, andB can be represented in turn by the self-ener
Sp which is defined from the two point vertex function as

Gp5Gp02Sp , ~24!

where the free vertex function isGp0(x2y)5S(]x)dp(x
2y). Here the derivative operator is taken from the fr
LagrangianL05c†S(])c. Defining again the matrix compo
nents of the self-energy in the single time representation,
obtain

D5S~]x!d~x2y!2
1

2
~SF2S F̄!, ~25!

A5
1

2
i ~S22S1!, ~26!

B5
1

2
i ~S21S1!. ~27!

The self-energy, on the other hand, is given by the relati

Sp~x,y!5S 2 i ^Tpj ~x! j †~y!&2dp~x2y!

3K d2

dc~y!dc†~x!
LintL D

1PI

, ~28!

where the currents are defined as

j ~x!5
d

dc†~x!
Lint

and j †(x)5dLint /dc(x), and the subscript 1PI means th
one particle irreducible part.

Now we introduce the distribution functionn. First we
define another Hermitian matrixN from B as

Gc52G r
212iBGa

215G r
21N2NGa

21 . ~29!

Then it satisfies the following equation:

ND2DN2 i ~NA1AN!522iB. ~30!

The matrix distribution function is finally defined as

N5172n, ~31!
6-3
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SHOICHI YAMADA PHYSICAL REVIEW D 62 093026
where the upper and lower signs are taken for Fermion
Boson, respectively. It is easily shown that this distributi
function becomes a Fermi- or Bose-distribution function
the thermal equilibrium case. In that case,n can be simulta-
neously diagonalized withD and gives the distribution func
tions of quasiparticles. In general, however,n has nondiago-
nal components even in the representation wh
diagonalizesD. These nondiagonal components are resp
sible for the flavor mixing as discussed below. Equation~30!
gives the equation satisfied byn:

nD2Dn2 i ~nA1An!56 i ~B2A!57S1 . ~32!

Using Eq.~25!, we can rewrite the above equation as

nD2Dn5
1

2
@~17n!~7S1!1~7S1!~17n!#

2
1

2
@nS21S2n#. ~33!

It is already clear that the right hand side of the above eq
tion describes collisional processes among the quasiparti
In fact, (6 iS1) and (2 iS2) can be interpreted as the emi
sion and absorption rates of the quasiparticles.

The transport equation as we know it is obtained by p
forming the so-called gradient expansion for the above eq
tion. The Wigner representation of a quantityF(x,y) is ob-
tained by making Fourier transformation with respect to
relative coordinate as

F~k,X!5E d4~x2y!eik(x2y)F~x,y!, ~34!

with the center of mass coordinateX5(x1y)/2. Thegradi-
ent expansion is performed by taking the Wigner represe
si
or
.

th
.
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tion of both sides of Eq.~33! keeping only the leading orde
of the derivative with respect toX. Thus, we obtain the trans
port equation as

1

2 F ]D~k,X!

]km

]n~k,X!

]Xm
1

]n~k,X!

]Xm

]D~k,X!

]km
G

2
1

2 F ]D~k,X!

]Xm

]n~k,X!

]km
1

]n~k,X!

]km

]D~k,X!

]Xm G
2 i @D~k,X!n~k,X!2n~k,X!D~k,X!#

5
1

2
$@17n~k,X!#@7 iS1~k,X!#1@7 iS1~k,X!#

3@17n~k,X!#%2
1

2
$n~k,X!@ iS2~k,X!#

1@ iS2~k,X!#n~k,X!%. ~35!

It is evident that the first row of the above equation rep
sents ordinary advection terms while the right-hand s
stands for the collision terms. The second row, on the ot
hand, does not appear in the ordinary transport equation
we see below that this term causes the mixing among n
trino flavors. What remains now to do is to give the se
energy which determines not only the collision terms b
also the dispersion relation, that is,D. We do this for the
neutrino mixing in the next section.

B. Neutrino transport equation with flavor mixings

We apply the general formulation obtained so far to t
neutrino transport. The following Lagrangian density is co
sidered:
L5H i

2
c̄Lgm]JmcL2

1

2
c̄L

cM McL2
1

2
c̄LM M

† cL
c1Lint for Majorana n,

i

2
c̄Lgm]JmcL1

i

2
c̄Rgm]JmcR2c̄RMDcL2c̄LMD

† cR1Lint for Dirac n,

~36!
t of
ent

ld
ion
ia-

Eq.
ble

ucle-
of

the
where the Majorana and Dirac masses areM M and MD ,
respectively. The subscriptsL andR stand for the spinor with
left and right handed chirality, respectively, andcL

c5Cc̄L
T

with C the charge conjugation and the superscriptT repre-
senting the transposition. The interaction Lagrangian den
is denoted asLint . In the above equation, the indices f
spinor components and neutrino flavors are suppressed
the following, the flavor is denoted by the superscript and
spinor component by the subscript asc i

a when necessary

The matrix Green functions of interest are^TpcL
i
ac̄L

j
b&,

^TpcL
i
ac̄R

j
b&, ^TpcR

i
ac̄L

j
b&, and^TpcR

i
ac̄R

j
b&. Here and in the

following, cR should be replaced bycL
c for the Majorana
ty

In
e

neutrino. We discuss the advection part and collision par
the Boltzmann equation separately, since we apply differ
approximations to the self-energies included in them.

1. Advection part

Following the common practice, we take the mean fie
approximation for the neutrino self-energy in the advect
part, which is conveniently represented by a Feynman d
gram shown in Fig. 1 and comes from the second term of
~28!. Only scattering processes contribute to this ensem
average. In the supernova core, the scatterings on free n
ons, nuclei, and electrons are important. The former two
them occur only via neutral currents and as a result,
6-4
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BOLTZMANN EQUATIONS FOR NEUTRINOS WITH . . . PHYSICAL REVIEW D62 093026
self-energies corresponding to them are proportional to
unit matrix in the flavor space:

Lint
nsc5(

a,N
2

GF

A2
@c̄L

agm~12g5!cL
a#@c̄Ngm~hN

V2hN
Ag5!cN#,

~37!

SFLL

ab 5dab
GF

A2
gm~12g5!(

N
hN

VrN~X!dm0 , ~38!

SFRR

ab 52dab
GF

A2
gm~11g5!(

N
hN

VrN~X!dm0 , ~39!

SFLR

ab 5SFRL

ab 50, ~40!

where Eq.~39! is true only for the Majorana neutrino an
SFRR

ab 50 for the Dirac neutrino. In the above equations, t
subscriptN runs over neutron and proton, andrN stands for
the nucleon number density. The similar equations are
tained for the scattering on nuclei. Hence, in the followin
the nucleon scattering is considered.

On the other hand, the scattering on electrons give
nontrivial structure to the self-energy in the flavor spa
since the process occurs not only through the neutral cur
but also through the charged current, and the latter is rele
only for the electron-type neutrinos in the matter in whi
electrons are abundant but other charged leptons are no
that case, the interaction Lagrangian density becomes

Lint
esc52

GF

A2
@c̄L

negm~12g5!cL
ne#@c̄egm~ g̃V2g̃Ag5!ce#

1 (
a

nm ,nt

2
GF

A2
@c̄L

agm~12g5!cL
a#

3@c̄egm~gV2gAg5!ce#. ~41!

In the above equation,gV521/212 sin2uW and gA221/2
denote the vector and axial vector coupling constants of
neutral current, while the charged current is also taken
account ing̃V5gV11 andg̃A5gA11. The Weinberg angle
is referred to asuW here. We obtain the self-energy of ne
trino in the mean field approximation as

FIG. 1. The Feynman diagram for the self-energy of neutrino
the mean field approximation. The dashed line stands for the w
interaction and the thick line represents the Green function for
particles indicated in the figure.
09302
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SFLL

ab 5danedbne
GF

A2
gm~12g5!g̃Vre~X!dm0

1danm,tdbnm,t
GF

A2
gm~12g5!gVre~X!dm0 , ~42!

for the unpolarized electrons@23,24#. Here the electron num
ber density is denoted asre . As for the other components o
the self-energy,SFLR

5SFRL
50 common to both types o

neutrinos, andSFRR
52SFLL

with (12g5) replaced with

(11g5) for the Majorana neutrino andSFRR
50 for the

Dirac neutrino. If the electrons are polarized in the magne
field, the neutrino self-energy is modified to@25,26#

SFLL

ab 5danedbne
GF

A2
gm~12g5!$g̃Vre~X!dm02g̃Are

0~X!dmz%

1danm,tdbnm,t
GF

A2
gm~12g5!$gVre~X!dm0

2gAre
0~X!dmz%, ~43!

where the magnetic field is parallel to theZ axis. The elec-
tron number density in the lowest Landau level is rep
sented asre

0 . It is again true that the other components of t
self-energy are zero except forSFRR

52SFLL
with (12g5)

→(11g5) for the Majorana neutrino. It is easily understoo
that neutrino-neutrino scatterings can be treated just in
same way.

Now that we obtain the specific form of the neutrino se
energy, we can apply it to the left hand side of Eq.~35!.
Suppressing the flavor and spinor indices and writing o
the chirality components in matrix form, we obtainD in Eq.
~35! using Eq.~25! as

D5S DLL DLR

DRL DRR
D

5S kmgm2Fg02FBgz 2M†

2M kmgm1F8g01FB8gzD .

~44!

Here the potentials are defined as

F5danedbneA2GFg̃Vre1danm,tdbnm,tA2GFgVre ,
~45!

FB52danedbneA2GFg̃Are
02danm,tdbnm,tA2GFgAre

0 ,
~46!

with F85F and FB85FB for the Majorana neutrino, and
F850 andFB850 for the Dirac neutrino. It is understood i
the above equations thatFB50 in the case of no magneti
field. The dispersion relations for quasiparticles are obtai
from the eigenvalues ofD.

We first make an order estimate of each term in the
vection part. DefiningR as a typical length scale of the ma

n
ak
e

6-5
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SHOICHI YAMADA PHYSICAL REVIEW D 62 093026
ter distribution, the density scale height, for example,En as a
typical energy of neutrino, andDmn

2 as a square mass diffe
ence, we find

]D

]k

]n

]X
;

n

R
, ~47!

]D

]X

]n

]k
;

F

R

n

En
;

Dmn
2

En
2

n

R
, ~48!

Dn;
Dmn

2

En
n;

R

l

n

R
. ~49!

Here l is a wave length corresponding toDmn
2/En :l

;0.1 cm@Dmn
2/1 eV2#21@En /1 MeV#. For the typical

mass difference and energy of neutrino,Dmn
2/En

2;10212.
Hence the second term in the left hand side of Eq.~35!,
which represents the potential force exerted on neutrino
surrounding matter, is much smaller than the first te
which corresponds to the ordinary advection term in
Boltzmann equation. We ignore the former in the followin
discussion.

Next we show that thenLL can be decoupled from th
other components assuming thatDmn

2/En
2 is neglected. We

perform two matrix manipulations forD•n2n•D. ~1! Mul-
tiply the first row with kmgm1F8g01FB8gz from the left
and add to it the second row multiplied withM† from the
left. ~2! Then multiply the first column withkmgm1F8g0

1FB8gz from the right and add to it the second column m
tiplied with M from the right. Taking into account thatnLR

;nRL;(Dmn /En)nLL and F/En;FB /En;Dmn
2/En

2 , we
obtain the equation fornLL as

@kmkm2M22kmgm~Fg01FBgz!

1~f8g01FB8gz!kmgm#nLLkmgm2kmgmnLL

3@kmkm2M21kmgm~F8g01FB8gz!

2~Fg01FBgz!kmgm#. ~50!

The same manipulations are done for]D/]km]n/]Xm

1]n/]Xm]D/]km to obtain

kmgmgn
]nLL

]Xn
ksgs1ksgs

]nLL

]Xn
gnkmgm. ~51!

In the next subsection, it is shown thatnLL can be also sepa
rated from the other components in the collision terms
applying the same procedures.

To the leading order ofDmn /En , nLL is a scalar with
respect to the spinor index. The familiar form of advecti
terms in the Boltzmann equation is obtained by taking
trace with respect to the spinor indices after multiplying E
~50! and ~51! with g0(12g5)/2 from the left:
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km
]nLL

ab

]Xm
1 ik0H S M2ac

2k0
1Fac1

kz

k0
FB

acD nLL
cb

2nLL
acS M2cb

2k0
1Fcb1

kz

k0
FB

cbD J . ~52!

Here the indices of flavor are explicitly included. From th
equation we see that the resultant equation is identical for
Dirac and Majorana neutrinos up to the leading order
Dmn /En and thatD is effectively replaced byDeff in the
flavor space of the left handed neutrinos:

Deff5
1

2
~kmkm2M222k0F22kzFB!. ~53!

The positive and negative zeros ofDeff correspond to the
energies of the neutrino and the antineutrino, respectiv
The transport equation for the anti-neutrino is obtained w
the replacementskm→2km, nLL→2nLL in Eq. ~52!. In
the following, we consider only the transport of on-shell ne
trinos. Since we are not interested in the small differen
;Dmn

2/En of the on-shell energies among different flavo
except in the terms responsible for the flavor mixing, we ta
k05uku in Eq. ~52!.

In order to illuminate the structure of the advection part
the transport equation obtained above, we discuss only
two-flavor case of electron and muon neutrinos. Then
~52! multiplied with i becomes on the flavor basis

ikm
]nab

]Xm
1k0@H,n#ab, ~54!

with

H52
DM2

2k0
2F2

kz

k0
FB

5
1

2k0S D0

2
cos 2u0

D0

2
sin 2u0

D0

2
sin 2u0 2

D0

2
cos 2u0

D
2S A2GFre2

kz

k0
A2GFre

0 0

0 0
D , ~55!

where DM2 is a mass matrix with a diagonal matrix (m1
2

1m2
2)/2•1 subtracted. The eigenvalues ofM2 are m1

2 and
m2

2 with the latter larger than the former, and their differen
is defined to beD05m2

22m1
2. The mixing angle in vacuum

is denoted asu0 and the following relation holds:

M25US m1
2 0

0 m2
2D U†, ~56!
6-6



e

a
-

wn

t

rom

n,

y

f

tic
-

u-

ino
rue
ndi-

ing

trix

on

BOLTZMANN EQUATIONS FOR NEUTRINOS WITH . . . PHYSICAL REVIEW D62 093026
U5S cosu0 2sinu0

sinu0 cosu0
D . ~57!

Equations~54! and ~55! are the same equations as obtain
by Sirera and Pe´rez @14#.

Taking the bases on whichH in Eq. ~55! is diagonalized
at each point in space,

UM
† ~x!H~x!UM~x!52

M̃2~x!

2k0
[

1

2k0 S M̃1
2~x! 0

0 M̃2
2~x!

D ,

~58!

with

UM~x!5S cosuM~x! 2sinuM~x!

sinuM~x! cosuM~x!
D , ~59!

we obtain

UM
† ~x!F ikm

]n

]XmGUM~x!

5 ikm
]ñ

]Xm
2F ñ,UM

† ~x!ikm
]UM~x!

]Xm G , ~60!

5 ikm
]ñ

]Xm
2F ñ,S 0 21

1 0D ikm
]uM~x!

]Xm G .

~61!

Here the mass eigenvalues and mixing angle in matter
denoted asM̃1 , M̃2, anduM , respectively, and the distribu
tion function in this representation is defined asñ. In order to
see the oscillation among different flavors, we write do
each component of the above equation:

ikm
]ñ11

]Xm
2 ikm

]uM~x!

]Xm
~ ñ121ñ21!, ~62!

ikm
]ñ12

]Xm
1 ikm

]uM~x!

]Xm
~ ñ112ñ22!1

DM

2
ñ12, ~63!

ikm
]ñ21

]Xm
2 ikm

]uM~x!

]Xm
~ ñ112ñ22!2

DM

2
ñ21, ~64!

ikm
]ñ22

]Xm
1 ikm

]uM~x!

]Xm
~ ñ121ñ21!, ~65!

where the mass square difference in matter is defined
DM5M̃2

22M̃1
2. Ignoring the collision terms for a momen

and adding Eqs.~62! and ~64!, we obtain the relation

ikm
]

]Xm
~ ñ111ñ22!50, ~66!
09302
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which expresses the number conservation of neutrinos. F
Eqs.~62! and ~63! the following equations are obtained:

ikm
]

]Xm
S ñ121ñ21

2
D 1

DM

2
S ñ122ñ21

2
D

1 ikm
]uM~x!

]Xm
~ ñ112ñ22!50, ~67!

ikm
]

]Xm
S ñ122ñ21

2
D 1

DM

2
S ñ121ñ21

2
D 50. ~68!

Although we can infer the oscillating nature of the solutio
it is better seen by eliminatingñ122ñ21 and taking only the
leading terms ofDmn /En . The resultant equation roughl
becomes

d2

dl2
~ ñ121ñ21!1S DM

2En
D 2

~ ñ121ñ21!1
1

R2
~ ñ112ñ22!;0,

~69!

wherel is the path length andR is the typical scale length o
matter distribution. It is evident thatñ121ñ21 have an oscil-
lating part with an oscillation length ofl215DM /2En and a
nonoscillating part which is negligible when the adiaba
conditionl/R!1 is fulfilled. Hence we can ignore the non
diagonal componentsñ12 and ñ21 of the matrix distribution
function if we are interested only in the variation of the ne
trino population on the length scale much longer thanl and
consider only the mass difference and energy of neutr
which satisfy the above adiabatic condition, as is usually t
for the supernova cores and protoneutron stars. The no
agonal componentsñ12 and ñ21 can be ignored in the colli-
sion terms after taking the average of the rapidly oscillat
terms over the length scale much larger thanl.

In the following, we setñ125ñ2150 and consider the
equations governing the diagonal components of the ma
distribution function for neutrinos. Following Raffeltet al.

@11#, we representñ11 and ñ22 in terms ofnne and nnm, the
diagonal components on the flavor basis. From the relati

UM
† nUM5ñ5S ñ11 0

0 ñ22D , ~70!

we obtain the distribution functions on the flavor basis as

n5S nne 1
2 tan 2uM~nne2nnm!

1
2 tan 2uM~nne2nnm! nnm

D .

~71!

Inversely transforming the equation forñ in this approxima-
tion,

ikm
]ñ

]Xm
5~collision terms!, ~72!
6-7
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we finally obtain the equation forn in the limit of the adia-
batic oscillation between two flavors as

ikm
]n

]Xm
1H tan 2uM~nne2nnm!S 1 0

0 21D 2~nne2nnm!

3S 0 1

1 0D J ikm
]uM~X!

]Xm
5~collision terms!. ~73!

Here the mixing angle in matter is given as tan 2uM

5sin 2u0 /$cos 2u02@2A2GF(re2kz/k0re
0)En#/D0%.

We briefly discuss here the general relativistic correct
terms in the advection part. We take an arbitrary point
space-time and consider a small patch of space-time aro
it of the size ofl which satisfies the conditionR@ l @1/En .
Then we can take a local coordinatesXR in this small region,
which has a Minkowskian metric up to the second order
l /R. We also define an orthonormal tetradeR

i aligned to this
coordinate and use it to project the four momentum of n
trino on it. On this coordinate in the small patch of spa
time, the above derivation for the advection terms in
Boltzmann equation is still valid, that is, we obtain Eq.~52!
or Eq. ~73! for the adiabatic two-flavor mixing with trivia
replacements ofXm with XR

m andkm with kR
m . Thus, there is

no additional mixing due to the general relativistic grav
under the current assumption that the tiny mass differenc
neutrinos is ignored except for the mixing term, that is,
second terms of Eq.~52! or Eq.~73!. All we have to do now
is to make a coordinate transformationXR

m→Xm and an as-
sociated momentum transformationkR

m→km. The latter is, in
fact, induced by the transformation of the tetrads,eR

i →ei , the
latter of which is given globally. Employing the orthogon
transformation between two tetradsei(X)5Tj

i (X)eR
j and the

transformation matrix

S ]Xm

]XR
n

]kj

]XR
n

]Xm

]kR
i

]kj

]kR
i

D 5S ]Xm

]XR
n

2
]Xr

]XR
n

]kR
m

]Xr
~T21!m

j

0 ~T21! i
j

D , ~74!

we can perform the transformation for the advection term
follows:

kR
i eRi

m ]n

]XR
m

5kiei
m ]n

]Xm
2kiei

mkm
]^em•eR

j &

]Xm
^eR j•en&

]n

]kn
,

5kiei
m ]n

]Xm
2v im

n kikm
]n

]kn
. ~75!

In the above equation, the inner product of two vectors
denoted aŝv1•v2& and the component of the connection on
form is designated asv i j

k 5^¹ei
ej•ek& with ¹ei

the covariant

derivative in the direction ofei . The second term of Eq.~75!
09302
n
n
nd

f

-
e
e

of
e

s

s
-

is a familiar correction term due to the general relativ
@5–7#, which accounts for the redshift and ray bending
neutrino in the gravitational field. Since the mixing term a
the collision terms~see below! do not contain spatial deriva
tives, they are unaffected by the above transformation. H
ever,]uM /]XR

m in Eq. ~73! is affected just in the same wa
as ]n/]XR

m shown above. It is noted that this term actua
originates from the advection term]n/]XR

m due to our point-
wise choosing of the local mass eigen state basis. Wha
mains to be done is, thus, to calculate the connection o
form.

2. Collision part

In this section, we derive collision terms in the Born a
proximation for the neutrino self-energy. It is well know
that the approximation of the self-energy for the advect
terms is different from that for the collision terms@27#. The
Born approximation is conveniently represented by the Fe
man diagram shown in Fig. 2. Only the first term of the rig
hand side of Eq.~28! contributes toS6 in the collision part.
As done in the previous section, we evaluate the self-ene
coming from various processes separately in the followin

For the nucleon scattering, the self-energies are obta
as

iS2LL
ab ~x,y!5

GF
2

2
@gm~12g5!iG2LL

ab ~x,y!gn

3~12g5!#SNmn~x,y!, ~76!

iS1LL
ab ~x,y!5

GF
2

2
@gm~12g5!iG1LL

ab ~x,y!gn

3~12g5!#SNnm~y,x!. ~77!

In the above equations, the dynamical structure function
nucleon is defined with the weak neutral current of nucle
JN

m(x) asSN
mn(x,y)5^JN

m(x)JN
n (y)&. The weak neutral curren

for nucleon is given byJN
m5c̄Ngm(hN

V2hN
Ag5)cN . The other

components of the matrix Green function are zero for
Dirac neutrinos. For the Majorana neutrinos,SLR is ob-

FIG. 2. The Feynman diagram for the self-energy of neutrino
the Born approximation.The dashed line stands for the weak in
action and the thick lines represent the Green functions for
particles indicated in the figure. The part with a shaded region
notes the structure functions~see the text for definitions! symboli-
cally.
6-8
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tained, for example, by replacingGLL with GLR and gn(1
2g5) with gn(11g5). Recalling the relationsnLR;nRL
;(Dmn /En)nLL;(Dmn /En)nRR and SLR;SRL
;(Dmn /En)SLL;(Dmn /En)SRR, we find that the
LL-component can be decoupled from the other compon
after the same matrix manipulations as done for the adv
tion part and that the resulting collision terms are identi
for the Dirac and Majorana neutrinos, if we take only t
leading terms ofDmn /En . Note that the exchanged term
are added in the collision part unlike in the advecti
part. From the termn• iS2 , for example, we obtain
@kmgmnLL#@ iS2LLkmgm# as theLL component.

Following the procedures taken for the advection part,
multiply the collision terms withg0(12g5)/2 from the left,
take the trace with respect to the spinor indices and divide
4k0. We then obtain fromn• iS2 , for example, the follow-
ing:

E d4q

~2p!4

1

4k0
TrH g0

12g5

2
krgrnLL

GF
2

2
gm~12g5!iG2LL

3~k2q,X!gn~12g5!ksgsJ SNmn~q,X!. ~78!

Ignoring again the tiny masses of neutrinos andA in deriving
G6 from D, A, andn, we obtain

iG6LL~k!;
12g5

2
kmgm2pd~k2!FQ~k0!H 2nn~k!

12nn~k!
J

1Q~2k0!H 12nn̄~k!

2nn̄~k!
J G . ~79!

In the above equation, it is explicitly indicated that the neg
tive energy contribution to the number density of the ne
trino corresponds to the number density of the antineutr
It is noted that the number density is a function ofk after we
ignored A and imposed an on-shell conditionk250. The
upper ~lower! components in the columns correspond
e

n
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G1 (G2). Inserting this relation to Eq.~78! and recalling
thatn is a scalar with respect to the spinor indices, we obt
the following collision term for the neutrino distributio
function:

E d3k8

~2p!3

1

2k80

1

2
nn~k!@12nn~k8!#

3
GF

2

2
Lmn~k,k8!SNmn~q,X!, ~80!

wherek85k2q is the four momentum of the scattered ne
trino, and the tensorLmn is given as

Lmn~k,k8!5Tr$krgrgm~12g5!ks8gsgn~12g5!%

58$kmk8n1knk8m2gmnkrkr82 i«mnrskrks8 %.

~81!

Here the metric tensor is denoted asgmn and the antisymmet-
ric tensor as«mnrs with «012351. From the termiS2•n we
obtain the collision term which is obtained from Eq.~80! by
replacingnn(k)@12nn(k8)# with @12nn(k8)#nn(k). Just in
the same way we obtain from the term@12n#@2 iS1# the
following collision term:

E d3k8

~2p!3

1

2k80

1

2
@12nn~k!#nn~k8!

3
GF

2

2
Lmn~k,k8!SNnm~2q,X!. ~82!

For the term@2 iS1#@12n# we replace@12nn(k)#nn(k8)
with nn(k8)@12nn(k)# in the above equation. Using the re
lation SNnm(2q)5e2bq0

SNmn(q) for the matter in equilib-
rium, which stands for the detailed balance, we finally obt
the collision terms
E d3k8

~2p!3

1

2k80

1

2 H e2bq0 nn~k8!@12nn~k!#1@12nn~k!#nn~k8!

2

2
nn~k!@12nn~k8!#1@12nn~k8!#nn~k!

2 J GF
2

2
Lmn~k,k8!SNmn~q,X!. ~83!
If the matrix distribution function is diagonal, the abov
equation reduces to the ordinary collision term.

If the mixing occurs adiabatically, the above collisio
term is further simplified. For the two-flavor case (ne and
nm , for example!, we insert the matrix distribution function
given by Eq.~71! into Eq.~83!. Then we obtain the collision
6-9
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SHOICHI YAMADA PHYSICAL REVIEW D 62 093026
term for thene distribution function as

E d3k8

~2p!3

1

2k80

1

2 H e2bq0Fnne~k8!@12nne~k!#

2
1

2
tan 2uM~k8!@nne~k8!2nnm~k8!#

3
1

2
tan 2uM~k!@nne~k!2nnm~k!#G

2Fnne~k!@12nne~k8!#2
1

2
tan 2uM~k!@nne~k!

2nnm~k!#
1

2
tan 2uM~k8!@nne~k8!

2nnm~k8!#G J GF
2

2
Lmn~k,k8!SNmn~q,X!. ~84!

The collision term for thenm distribution function is ob-
tained by replacingnne with nnm in the above equation. It is
noted that the correction terms due to mixing cancel e
other for isoenergetic scatterings, which we commonly
sume for the neutrino-nucleon scattering in the supern
cores and protoneutron stars@3,28,29#.

The collision terms for the neutrino-electron scattering
essentially the same as those obtained for the nucleon
tering. The main difference originates from the fact that
electron weak current has flavor dependence, which g
rise to nontrivial contractions of flavor indices between t
electron structure function and the neutrino distribution fu
tion such asnn

ac(k)@12nn
cb#Se

cb , where the superscript
a,b,c represent flavors. The structure functionSe is an elec-
tron counter part of the nucleon structure functionSN and is
defined asSemn

ab (x,y)5^Jem
a (x)Jen

b (y)&. Here the weak cur-

rent for electron is given asJe
m5c̄eg

m(g̃V2g̃Ag5)ce for the

ne scattering andJe
m5c̄eg

m(gV2gAg5)ce for thenm andnt

scatterings, respectively. As a result, the collision term
the neutrino-electron scattering becomes for the electron
neutrino in the case of the adiabatic two-flavor mixing as

E d3k8

~2p!3

1

2k80

1

2
H @e2bq0

nne~k8!@12nne~k!#2nne~k!

3@12nne~k8!##Semn
nene~q,X!2@e2bq0

21#

3
1

2
tan 2uM~k8!@nne~k8!2nnm~k8!#

1

2
tan 2uM~k!

3@nne~k!2nnm~k!#
Semn

nenm~q,X!1Semn
nmne~q,X!

2
J

3
GF

2

2
Lmn~k,k8!. ~85!

The nm counterpart is obtained by the replacement
ne↔nm in the flavor indices in the above equation.
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Although we assumed in the above derivation that
four momentum transfer is spacelike to describe the sca
ings, it is obvious that the same Feynman diagram repres
the annihilation and creation of neutrino pairs if the tran
ferred four momentum is timelike. As stated above, t
transport equations for the antineutrinos are obtained fr
the negative energy part of the distribution function. in th
case, it is noted that the mixing angleuM should also be
calculated for the negative energy. As is obvious from E
~55! the sign of the potentials is changed for the antineu
nos and the resonance conversion does not occur in this
as is well known. It is noted that neutrino-neutrino scatt
ings are treated just in the same way by substituting
neutrino structure function, which in turn should be eva
ated with the neutrino Green functions, Eq.~79!.

Next we consider the neutrino emission and absorption
nucleons. For the temperature and neutrino energy of cur
interest, the muon is not abundant and only the electron-t
neutrino is involved in this process. The interaction Lagran
ian density is

L int
abs52

GF

A2
@c̄eg

m~12g5!cL
ne#@c̄pgm~gV2gAg5!cn#

1H.c., ~86!

where the coupling constantsgV51.0 and gA51.23, and
H.c. stands for the Hermite conjugate. In the Born appro
mation, the self-energy is given by

iS
2LL
nene~x,y!5

GF
2

2
@gm~12g5!iG2

e ~x,y!gn

3~12g5!#Spnmn~x,y!, ~87!

iS
1LL
nene~x,y!5

GF
2

2
@gm~12g5!iG1

e ~x,y!gn

3~12g5!#Snpnm~y,x!, ~88!

where the Green functions for electrons are denoted asG6
e

and the structure functions for the charged weak current
nucleons are defined, for example, asSpn

mn(x,y)
5^Jpn

m (x)Jnp
n (y)& with the charged current given byJnp

m

5c̄pgm(gV2gAg5)cn . The Green functionsG6
e are essen-

tially the same asG6LL in Eq. ~79! with the self-evident
substitution ofnn with the electron distribution functionf e .
Following the same procedure as shown above and emp
ing the detailed balance relation satisfied by nucleons in th
mal equilibrium,

Snp
nm~2q!5e2b(q01Dmnp)Spn

mn~q!, ~89!

with the difference of the chemical potentialsDmnp5mn
2mp , we obtain the collision term for the emission an
absorption of neutrinos on nucleons as
6-10
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E d3pe

~2p!3

1

2Ee

1

2
$e2b(q01Dmnp) f e~pe!@12nne~k!#2nne~k!

3@12 f e~pe!#%
GF

2

2
Lmn~k,pe!Spn

mn~q!, ~90!

in the adiabatic mixing case. Herepe andEe are the momen-
tum and energy of electrons, respectively, and the tran
four momentum isq5k2pe . Since there is no other com
ponents of self-energy in flavor space than thenene compo-
nent, the resulting term is identical to those with no neutr
mixing.

III. SUMMARY

With a view of application to the simulations of supe
nova explosion and protoneutron star cooling, we have
rived a Boltzmann equation with the neutrino flavor mixin
being taken into account. The derivation is based on the n
equilibrium field theory, and the ordinary gradient expans
has been performed. We assumed that the typical neu
wave length is much shorter than the scale height of
background matter distribution, which is true for the sup
nova cores and protoneutron stars. The neutrino distribu
matrix which is nondiagonal in the neutrino flavor space
introduced. Following the common practice, the advect
part has been obtained in the mean field approximat
where the self-energy of neutrino is nondiagonal in the fla
space. This self-energy gives rise to the term in the advec
part, which is responsible for the neutrino mixing and do
not appear in the ordinary transport equation. The collis
terms, on the other hand, have been calculated in the B
approximation. The collision terms also have corrections
to the mixing. In these derivations, the relativistic kinemat
is taken into consideration. We have further simplified t
Boltzmann equation for the adiabatic flavor mixing, which
a good approximation in the supernova cores and proton
tron stars. The advection terms thus derived are essent
cs

ys

f
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the same as those derived by Sirera and Pe´rez @14#, although
they employed the Wigner function formalism in the me
field approximation and did not give collision terms. Th
collision terms derived here, on the other hand, have
same structure as those found by Raffeltet al. @10,11# in the
nonrelativistic density matrix method. We have also sho
the general relativistic correction term which accounts for
redshift and ray bending in the gravitational field and is co
monly taken into account in the supernova and protoneu
star simulations.

The applications of the Boltzmann equation found he
remain to be done. Since the corrections due to the fla
mixing are rather minor, particularly in the case of the ad
batic mixing, it will be simple to implement them in th
neutrino transport code we have now at our disposal@7#. This
is already underway. Since the mixing angle in matter
dependent on the neutrino energy and the direction of m
mentum with respect to the magnetic field if it exists. In t
analyses of the neutrino flavor mixing in the supernova co
it is usually assumed that the neutrinos are flowing out ra
ally @17,18#. However, they have an angular distribution ne
the neutrino sphere. Different positions of the resonant c
version due to different directions of flight of neutrinos w
lead to the reduction of the neutrino flavor conversion. T
will also be true in the absence of the magnetic field if t
energy distribution of neutrinos and the coupling betwe
neutrinos with different energies are taken into accou
These possibilities and their implications to the mechan
of the supernova explosion, kick velocity of pulsars, a
nucleosynthesis of heavy elements will be studied in
forthcoming papers.
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