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Boltzmann equations for neutrinos with flavor mixings
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With a view of applications to the simulations of supernova explosions and protoneutron star cooling, we
derive the Boltzmann equations for the neutrino transport with flavor mixing based on the real time formalism
of the nonequilibrium field theory and the gradient expansion of the Green function. The relativistic kinematics
is properly taken into account. The advection terms are derived in the mean field approximation for the
neutrino self-energy while the collision terms are obtained in the Born approximation. The resulting equations
take the familiar form of the Boltzmann equation with corrections due to mixing both in the advection part and
in the collision part. These corrections are essentially the same as those derived byeSakrar the
advection terms and those by Raffeltal. for the collision terms, respectively, though the formalism em-
ployed here is different from theirs. The derived equations will be easily implemented in numerical codes
employed in the simulations of supernova explosions and protoneutron star cooling.

PACS numbds): 14.60.Pq, 11.10.Wx, 97.60.Bw, 97.60.Jd

[. INTRODUCTION Sirera and Pez[14], for instance, based their derivation on

the relativistic Wigner function approach in the mean field

The neutrino transport plays an important role in someapproximation. Although they took the relativistic kinemat-
astrophysical phenomena such as supernova explosions alf§ Properly into account, they did not obtain the collision
the following protoneutron star coolinge.g., Refs[1-4], terms, since it is difficult to go beyond the mean field ap-

and references thergirin their studies, the Boltzmann equa- p[ﬁxm;]an%n mb:h_ew ;otrrr]nqh?m. Rafftehet al.t[_lo,l_]], tc;]n tge .
tion or its approximate versions are commonly employed tPther hand, obtained their transport equation via the density

. - . s - matrix approach. Although they derived the collision terms,
gﬁzggbspg]ceeteﬁgzreale\(/qig?itcl)%gsa?fe nuesul}gﬁ]; gésnt\r/'ggt;?gri I?they did not consider the spatially inhomogeneous system. In

follow tiongs—71- (1) th i t Is paper, we derive the relativistic Boltzmann equation in-
ollowing assumption$5—7J: (1) the neutrinos are propagat- ¢|,4ing corrections due to the oscillation both in the advec-

ing along the geodesics for a massless parpéie, =0 and 4 terms and the collision terms by employing the real time
the volume in the phase space occupied by these neutrinosfgymajism of the nonequilibrium field theoft9—271]. In this

not varied along their world line if there is no reactid®  approach, the dispersion relation and the collision terms are
the variation of the neutrino population due to reactions isgerived on the same basis, that is, a particular approximation
described by the so-called collision terms obtained with theor the self-energy of neutrinos, which is conveniently rep-
Stohszahl ansatz. With the masses nondiagonal in neutrin@sented with Feynman diagrams.

flavor space, the neutrino oscillation occurs among different The paper is organized as follows. We first derive a ge-
flavors of neutrinoge.g., Ref[8], and references thergirit neric form of the transport equation without specifying par-
is thus interesting from an academic point of view how thisticular equations of motion of fields. Then, the formulation is
oscillation phenomenon is described by the generalize@pplied to the neutrino flavor oscillations. In so doing, we
Boltzmann equation§9—14). It is also important from a ignore small corrections of the order wf/E, except for the
practical point of view for those who are interested in theterms responsible for the flavor conversion, as is usually the
possible significant consequences the oscillation might givease. Heren, andE, are typical mass and energy of neutri-
in astrophysical eventfl5—18. In collapse-driven super- Nos in the observer’s inertial frame. In this limit, as shown
nova explosions, for example, this is particularly the case ifater, the left handed neutrinos are decoupled from the right
the resonance of oscillation occurs near a neutrino sphefe@nded ones and the difference between Majorana mass and
where neutrinos are interacting with other particles and thu&irac mass never shows up in the flavor mixing. The general

the oscillation should be treated simultaneously with thesé&elativistic corrections are obtained up to the leading order of

reactions and possibly with the evolution of the matter dis-\»/R, where, is a typical wave length of neutrino ailis

tribution as well. The purpose of this paper is to provide the? scale height of the background matter distribution.
formulation which can be easily implemented in those nu-
merical simulations.

In considering the transport equation with the oscillation, A. General derivation of transport equations

we have to rely on a more formal derivation of the Boltz- | this section we derive general transport equations for
mann equation. This might be done in a couple of waysmyiticomponent fields based on the real time formalism of
nonequilibrium field theory by KeldysfHL9—-21. In this for-
malism, we introduce path-ordered products of operators on
*Present address: Institute of Laser Engineerfidge), Osaka the closed time-path, which extends frote=—« to t
University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan. Emaik + « then back td = — . In this product, the operator with
address: syamada@ile.osaka-u.ac.jp a time argument which comes later on the above time path is
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put to the left of other operators whose time arguments come 7 . (J,J")
earlier. Accordingly the path-ordered Green function is de-
fined as

=exp{—i2 ffd4xd4ij(y)Ggij(x,y)JiT(x) .
iGpij(ty,t)=(Tphi(t) ¥ (12). (1) ! P

5
HereT, stands for the path-ordered product of the following ©

operators. The subscrift of the Green function denotes the Here Ggij(xvy) is the path-ordered Green function for
components of the field. The brackets -) represent that acyum. The normal order product is represented-by::in

arguments are averaged over the ensemble specified byggy (4). All the information of the ensemble is included in

densﬂy_operatop as T|{~ . .p},_where Tris a trace operator. the |ast term of Eq(4), Np(J,JJ‘)=eX[[iW,’;‘(J,JT)]. Its con-

We define a generating functional of the Green function aSnected parWN(J J") is in general expanded to cumulants as
p 1

exp(iE fd“x[JiT(x)lpi(x) -
iJp

Z(J,JT)ETr[ T,

1
WE(J’JT):m;ﬂ m!n!J "'jpd4yl"'d4Ynd4X1-~
Ji !
+Ji(X) ¢ (X)]) p] X Ad*pd(y1) - - - Iy IT(xy) - - -
EGXF{|W(\],JT)] (2) XJT(Xm)W'[;lmn(Xli' . 1Xm|ylv' o ryn)' (6)

The Green function is obtained by the functional derivative . oo .
In the following we assume that the expansion is terminated

5 5 at the quadratic order. This is true, for example, for the ther-
iGLi(X,y)=—— —=—2(3,30)|; 5t—0. mal equilibrium and the more general condition for this to be
pif( X Y) =% 5. W )13,3t=0 . . N
i 83/ (x) 163;(y) true can be found in the paper by Danielewi22]. With this

) . . assumption, we can expand as usual the Green functions by
The generating functional for the connected Green functiog,e propagator which have corrections originating from a
is denoted adV(J,J"). Going to the interaction representa- particular ensemble.

tion, we obtain The Dyson equations are obtained by the Legendre trans-
formations

Z(J,JT)=Tr(Tp

exp(iZ f d*x{37(x) i (%)
P T (e ) =W(3,37) = 3T g3y 0
+Ji(x)¢ﬁ(x)+Eim[zﬂ.(x),wfr(X)]})}pl] with ¢(x)=[8/83T(x) W and ¢ (x)=[ 8/ 8I(x)]W. We
use the abbreviationJT~¢C=Eifpd4xJ;r(x)¢ci(x). Then
- 'fd4 L ii
SR et e

the following relations hold: Ol S¢r.(X)
=-J"(x), 5F/5¢I(x)=—J(x). The Dyson equations
exp(iEi J d*X[37 () 44 (x)
p

take the integral form on the closed time path as

xTr[ Tp

de“ng(x,z)Fp(z,y) = fpd“zl“p(x,z)Gg(z,y) = 5p(x—Y),
) (8)

. . : . . where the connected Green function and the vertex function
where the Lagrangian density for interactions is denoted 83re defined as

Li and the subscript indicates that the variables are given
in the interaction representation. The last factor of the right
hand side of Eq(3) is the generating functional for the no

o
- - t is qi iIGS(X,y)=—r— ——W(J,J"
interaction cas&,(J,J") and is given as p(X,Y) 537 (x) 189(Y) (3,99

+Ji<x>w.ﬂ(x>])

P|}: 3

Zy(3,37) .
andl',(x,y) = 82T 6yc(y) &pZ(x), respectively. The func-
tion is extended on the closed time path as followg(x
—y)=4(x—y) for t, andt, on the positive branch of the
time path extending front=—o to t=+o and 5,(x—y)
+ ) =—5(x—y) for t, andt, on the negative branch of the
+Ji(x) :,//,i(x)]) 'p']’ ) time-path that runs fromy= +o to t=—o0. Introducing the
matrix representations for the Green function and the vertex

with the generating functional for vacuum function as

=ZvaC(J,JT)Tr{:exp(iZ Jd“x[JiT(x)wn(x)
T Jp
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(GF G,

I'e r+) Ge=[D+iA] " Y{D-iB][D—iA] 1, (22)
G_. Gg '

rore ©)

o . . Gg=-[D+iA] " Y{D+iB][D—iA] L (23
we can recast the Dyson equation in a single time represen-

tation: The dispersion relation is obtained frotand A, while the
distribution function is found fronB as shown shortly.

4 e A D, A, andB can be represented in turn by the self-energy
f d"zG(x,2)a5I'(2,y) 3., which is defined from the two point vertex function as
=f A4zl (x,2) 53GE(2,y) = 038(x—Yy). (10) [p=Tp—2,, (29)

In the above equations, the time integration runs from where the free vertex function 'EP.O(X_y):S(ﬁX)ﬁP(X
—— % tot=+w. ando :(170) is the Pauli matrix. The -vy). nge the derivative ope_rator is taken frqm the free

. B . LagrangianC,= 'S(d) . Defining again the matrix compo-
subscripts= andF indicate that the time arguments are both yents of the self-energy in the single time representation, we
on the positive branch and on the negative branch, respegtain

tively, while the subscriptr means that the first argument is

located on the positive branch and the second on the negative 1

branch, and the subscript represents the other way around. _ o 5

It is clear thatGg is an ordinary Green function defined from D=S(9,)6(x=y) 2 (2e=25), 9
the chronologically ordered product whil8g is obtained

from the antichronological ordering. From these quantities, 1

we further define the retarded, advanced and correlation A==i(S_-3,), (26)
functions as 2

G,=Gg—G,, (12) 1
Cor B=5i(S_+3,). 27
G,=Gg—G_, (12 L .
The self-energy, on the other hand, is given by the relation
G.=Gg+Gg. (13
The counterparts for the vertex functions are defined in an Ep(x,y)—< {Tpi ()] (Y)) = 6p(x—y)
analogous way. Using the identity.+T'e=I", +T"_, we
can expres$’’s in general as 52
Vownaroo™| 0 *
I'.=i(BxA), (14 y 1PI
where the currents are defined as
I'==D+iB, (15
J (%) > L
— _ H X)=—[.
FF D+|B, (16) ] 6(!}1-()() int
I','=D+iA, (17) and jT(x)= 6L/ 5y(x), and the subscript 1Pl means the
one particle irreducible part.
T,=D—iA, (18) Now we introduce the distribution function. First we

define another Hermitian matriX from B as

whereA, B, andD are three Hermitian matrices. Solving the
Dyson equations using these quantities, we obtain the gen- G.= _r;lziBrglzr;lN_Nrgl_ (29
eral form of the Green functions as

Then it satisfies the following equation;

G,=[D+iA] %, (19
ND—-DN-i(NA+AN)=—2iB. (30)
= —1 -1
Ga=[D—IAT, (20 The matrix distribution function is finally defined as
G.=—i[D+iA] B=A][D-iA] %, (21 N=1%2n, (31
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where the upper and lower signs are taken for Fermion antdon of both sides of E¢(33) keeping only the leading order
Boson, respectively. It is easily shown that this distributionof the derivative with respect t8. Thus, we obtain the trans-
function becomes a Fermi- or Bose-distribution function inport equation as

the thermal equilibrium case. In that casezan be simulta-

neously diagonalized witD and gives the distribution func- 1
tions of quasiparticles. In general, howewvehas nondiago- 5
nal components even in the representation which
diagonalizedD. These nondiagonal components are respon-

sible for the flavor mixing as discussed below. Equati®o) _

dD(k,X) an(k,X) an(k,X) dD(k,X)
Kk, IXM + IXH K,

} dD(k,X) an(k,X) +(?n(k,X) dD(k,X)

gives the equation satisfied oy 2] ox# K, Kk, G
nD-Dn—i(nA+An)=*i(B—A)=F3,. (32 —i[D(k,X)n(k,X)—=n(k,X)D(k,X)]
Using Eq.(25), we can rewrite the above equation as _ 5{[11n(k,X)][Ii2+(k,X)]+[Ii2+(k,X)]

1
nD—Dn=E[(lin)(12+)+(12+)(11n)] 1
X[1Fn(kX)]}= 5 {n(kX)[Z - (k,X)]

1
—§[n2_+z_n]. (33 +[i2_(k,X)In(k,X)}. (39

It is already clear that the right hand side of the above equalt is evident that the first row of the above equation repre-
tion describes collisional processes among the quasiparticlesents ordinary advection terms while the right-hand side
In fact, (+i3,) and (—i2_) can be interpreted as the emis- stands for the collision terms. The second row, on the other
sion and absorption rates of the quasiparticles. hand, does not appear in the ordinary transport equation and

The transport equation as we know it is obtained by perwe see below that this term causes the mixing among neu-
forming the so-called gradient expansion for the above equd¢ino flavors. What remains now to do is to give the self-
tion. The Wigner representation of a quantityx,y) is ob-  energy which determines not only the collision terms but
tained by making Fourier transformation with respect to thealso the dispersion relation, that B, We do this for the
relative coordinate as neutrino mixing in the next section.

F(k,X)= f d*(x—y)e K ME(x,y), (34) B. Neutrino transport equation with flavor mixings

We apply the general formulation obtained so far to the
with the center of mass coordina¥e= (x+y)/2. Thegradi-  neutrino transport. The following Lagrangian density is con-
ent expansion is performed by taking the Wigner representesidered:

i . 1 1 ,
El//L YH0 i — EIPEM ML~ EwLM WS+ L for Majorana v,

L= i i (36)
E‘//L Yo, i+ Ell,Ry#ﬁ/le[/R_ YrMpi — Yy ME g+ Ly for Dirac v,

where the Majorana and Dirac masses Bfg and Mp, neutrino. We discuss the advection part and collision part of
respectively. The subscriptsandR stand for the spinor with  the Boltzmann equation separately, since we apply different
left and right handed chirality, respectively, amﬂ_:cﬂ approximations to the self-energies included in them.
with C the charge conjugation and the superschipepre-
senting the transposition. The interaction Lagrangian density
is denoted asli,;. In the above equation, the indices for  Following the common practice, we take the mean field
spinor components and neutrino flavors are suppressed. Hpproximation for the neutrino self-energy in the advection
the following, the flavor is denoted by the superscript and thepart, which is conveniently represented by a Feynman dia-
spinor component by the subscript &8 when necessary. gram shown in Fig. 1 and comes from the second term of Eq.
The matrix Green functions of interest a(é'plﬁl_?%_,b). (28). Only scattering processes contribute to this ensemble
— — — o average. In the supernova core, the scatterings on free nucle-
(Todiageb), (Tpdrashib), and(Tpypayrr). Here and inthe  ong nyclei, and electrons are important. The former two of
following, & should be replaced by{ for the Majorana them occur only via neutral currents and as a result, the

1. Advection part
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Eab

FLo

Ge -
---------- = 5311195bl/eE 7#(1_ 75)nge(X) 5#0

e, p,n, A

Ge

4 5P 2 Y“(1—7°)g"pe(X) 8,0, (42)

FIG. 1. The Feynman diagram for the self-energy of neutrino in
the mean field approximation. The dashed line stands for the weaf, ihe unpolarized electrori&3,24). Here the electron num-

interaction and the thick line represents the Green function for th%er density is denoted asg . As for the other components of
particles indicated in the figure. the self-energyXg =g, =0 common to both types of

. _ . _ 5 .
self-energies corresponding to them are proportional to thgeutngos, anszRR__ e, W'th. (1—v7) replaced with

Dirac neutrino. If the electrons are polarized in the magnetic
field, the neutrino self-energy is modified [t25,26

Gr — _
£e=2 Loy - )il (- iy, .
' v v F P e
@y 3F =57 "RrA- 72){8"pe(X) 8,0~ 9*p2A(X) 8,2}
52 = 5°Fn(1- 49 hY 38 3o (1= G X05
FLm g (1=7") 2 hipn(X) 8,0, (38) 2 PelR)0u0
~9"pe(X) 8,4}, (43)
G
3P =- 5L yH(1+ %), h¥pn(X)8,0, (39  where the magnetic field is parallel to tEeaxis. The elec-
V2 N tron number density in the lowest Landau level is repre-

sented aqag. It is again true that the other components of the
ngRzzgsz(), (40)  self-energy are zero _except fErFR_R= _E_FLL Wl_th (1—v°)
—(1+ y°) for the Majorana neutrino. It is easily understood
where Eq.(39) is true only for the Majorana neutrino and g::;:sy;;no—neutrmo scatterings can be treated just in the

ab _ ; ; ;
FSR__OtLor the Dirac ne;nrmo. I(;w thet above eqtuat(ljonfs, the Now that we obtain the specific form of the neutrino self-
subscriptN runs over neutron and proton, apg stands for energy, we can apply it to the left hand side of E85).

the nucleon number density. The similar equations are ObSuppressing the flavor and spinor indices and writing only

tained for the scattering on nuclei. Hence, in the 1‘oIIowing,,[he chirality components in matrix form, we obtdiin Eq
the nucleon scattering is considered. 535) using Eq.(25) as ' '

On the other hand, the scattering on electrons gives
nontrivial structure to the self-energy in the flavor space D.. D.r
since the process occurs not only through the neutral current D= ( D D )
but also through the charged current, and the latter is relevant RL ™RR
only for the electron-type neutrinos in the matter in which (kﬂﬂ_q)yo_q)Byz —mT
electrons are abundant but other charged leptons are not. In =

that case, the interaction Lagrangian density becomes —-M kﬂ”“LCD'?’OJFq’é?’Z
(44)
L£855= — G_\/E[Eteyﬂ(l_ ) wfe][leyﬂ(av—é’*f) el Here the potentials are defined as
2 — save shre VvV v, .sbv, . \Y,
D= 5%e5"e\[2GV pe+ 677" 1.\ [2G gV pe,
TG (45)

F—

+ 2 - G-l _

D= — 5%ese\2GEg ps — 6776 n\[2G g g,

X [evu(9¥—g"V) e, (41) (48
with ®'=® and ®g=dg for the Majorana neutrino, and

In the above equatiorg"=—1/2+2 sirf4y andg"~—1/2  ¢'=0 andd,=0 for the Dirac neutrino. It is understood in
denote the vector and axial vector coupling constants of thgye apove equations thdtg=0 in the case of no magnetic

neutral current, while the charged current is also taken intgje|q. The dispersion relations for quasiparticles are obtained
account ing¥=g"+1 andg”"=g”+ 1. The Weinberg angle from the eigenvalues db.

is referred to a®¥),y here. We obtain the self-energy of neu-  We first make an order estimate of each term in the ad-
trino in the mean field approximation as vection part. DefinindR as a typical length scale of the mat-
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ter distribution, the density scale height, for exampgas a onab M 2a¢ K2
typical energy of neutrino, anim? as a square mass differ- ki —=t iko[ ( 5+ P+ —OCDSC nb
ence, we find IxXk K K
2chb KZ
dD on n —n&t + PO+ — PP}, 52
Y (47 HH 2k K ° 52
dk X R
Here the indices of flavor are explicitly included. From this
Don @®n Amin equation we see that the resultant equation is identical for the
ﬁﬁwﬁE_NF R’ (48) Dirac and Majorana neutrinos up to the leading order of
Y v Am,/E, and thatD is effectively replaced byD. in the
flavor space of the left handed neutrinos:
5 Am?2  Rn 49
g AR 49

1
v Deﬁ=§(kﬂkﬂ—M2—2k0q>—2k2q>B). (53
Here N is a wave length corresponding tam?/E,:\
~0.1 cnfAm?/1 eV?] YE,/1 MeV]. For the typical
mass difference and energy of neutrinbm®E2~10"*2
Hence the second term in the left hand side of E),

The positive and negative zeros Dfy; correspond to the
energies of the neutrino and the antineutrino, respectively.
The transport equation for the anti-neutrino is obtained with
, ) 4 the replacementg*— —k*, n —ng . in Eq. (52). In
which represents the potential force exerted on neutrino by, - foIIF())wing, we co:sider onIthh:traanlbort ofqorg—sr)lell neu-

jvl:wrirohuncdlprgsmaﬁger,tls trTucr;disnrgfllerdt/har:i t:et fr'::t"ge;hmtrinos. Since we are not interested in the small difference
ch corresponds o the o y advection te . e~Am2/E,, of the on-shell energies among different flavors
Boltzmann equation. We ignore the former in the following v

discussion. except in the terms responsible for the flavor mixing, we take

0_ -
Next we show that then, | can be decoupled from the k*=1K| in Eq. (52).

other components assuming them/E2 is nealected. We In order to illuminate the structure of the advection part of
P ) ming Vv 9 : the transport equation obtained above, we discuss only the
perform two matrix manipulations fdd-n—n-D. (1) Mul-

. . . PP PR two-flavor case of electron and muon neutrinos. Then Eq.
tiply the first row withk,y*+d"y "+ dpy .fron the left  (5o) multiplied with i becomes on the flavor basis
and add to it the second row multiplied wit " from the

left. (2) Then multiply the first column witH<MyM+<I>’y° ab
+®5y* from the right and add to it the second column mul- ik +Kk[H,n]2", (54)
tiplied with M from the right. Taking into account that g 25
~ng ~(Am,/E,)n,, and ®/E,~Dg/E,~Am?/E2, we _
obtain the equation fon, | as with
2 0 2 z
[k, k¥~ M2k, y*(D 0+ Dgy?) H:_A'V'O _q)_k_oq)B
+(¢' Y2+ Ppyk, v InLLk, v =K,y N 2k K
' , A Ao
X[k kH—=M2+k, y* (D' ¥+ DLy L ?Ocos 26, 7osm 26,
_ 0 z -
(Py +Dgy)k,v]. (50 k0| A Ay
7sm 200 — 7cos 20,

The same manipulations are done faéD/dk,dn/gX*
+dn/9X*dD/ Kk, to obtain N kz\/_ .
2Ggpe— —2G 0

FPe KO FPe , (55)
Y B AL VAL " (51) 0 0
W X oY Koy axﬂ w Y

where AM? is a mass matrix with a diagonal matrixn{
In the next subsection, it is shown that, can be also sepa- +m§)/2- 1 subtracted. The eigenvalues bF? are mf and
rated from the other components in the collision terms bym3 with the latter larger than the former, and their difference
applying the same procedures. is defined to be\o=m3—mZ. The mixing angle in vacuum

To the leading order oAm,/E,, n. is a scalar with s denoted a®, and the following relation holds:
respect to the spinor index. The familiar form of advection

terms in the Boltzmann equation is obtained by taking the m2 0
trace with respect to the spinor indices after multiplying Egs. M2= U( ! 2) ut, (56)
(50) and (51) with y°(1—y°)/2 from the left: 0 m;
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cosf, —siné, which expresses the number conservation of neutrinos. From
= sind, cosf, ) (57 Egs.(62) and(63) the following equations are obtained:
"12, 721 "12_ 721
Equations(54) and (55) are the same equations as obtained ikui n+n A_’V'( n——n )
by Sirera and Rez[14]. G 2 2 2
Taking the bases on whidH in Eq. (55) is diagonalized
int i A0y (X) ~., ~
at each point in space, +ik“_a'\)/l((M ) (R =0, 67
UL OHOUy 0=~ T L (MO
X)H(x X)=— =— - , ~y o~ —~ o~
M M 2|(0 2k0 0 M%(X) Ik#i n12_ I,,|21 +A_M n12+ n21 o (68)
(58 IXH 2 2 2 '
with Although we can infer the oscillating nature of the solution,
o it is better seen by eliminating'>—~n?! and taking only the
UM(X)=<C980M(X) sin 9M(X)>, (59  leading terms ofAm,/E,. The resultant equation roughly
sinfy(Xx)  cosby(x) becomes
we obtain ’ =12 721 AR =12 T21 1 ~11_ 722
ﬁ(n +n )+(2_EV) (n**+n=% + E(n —n<)~0,
T . on
U, (x) Ikﬂﬂ_’“ Upm(X) (69
. wherel is the path length anR is the typical scale length of
e ey dUN(X) matter distribution. It is evident that*?+n?' have an oscil-
=ik#———|n,Upy(x)ik , (60 . ) e T1_
IXH IXH lating part with an oscillation length of A\ /2E,and a
i nonoscillating part which is negligible when the adiabatic
~ T _ condition\/R<1 is fulfilled. Hence we can ignore the non-
oo | (00 =1 90u(X) _ ~10 ~o R
=|k“—M— n, 1 0 ik# Pk diagonal components < and n“* of the matrix distribution
x| X 61) function if we are interested only in the variation of the neu-

Here the mass eigenvalues and mixing angle in matter a
denoted adfl;, M,, and 6, , respectively, and the distribu-
tion function in this representation is definedrasn order to

trino population on the length scale much longer thaand

r%onsider only the mass difference and energy of neutrino
which satisfy the above adiabatic condition, as is usually true
for the supernova cores and protoneutron stars. The nondi-

agonal componenis!? andn?! can be ignored in the colli-

see the oscillation among different flavors, we write downgjg terms after taking the average of the rapidly oscillating

each component of

the above equation:

onit AO(X) ~. ~
ik M jpen Il )(n12+n21), (62)
NG PG
ant2 A0(X) ~ . - Ay~
PR )(nll—n22)+—Mn12, (63)
IXH IXH 2
on?t A0(X) ~ . - Ay~
n ik m( )(nll—nzz)——Mnﬂ, (64)
IXH IXH 2
an?2 A0M(X) ~. . -
ik~ +ik~ u )(n12+n21), (65
NG G

terms over the length scale much larger than

In the following, we seth*®=n?'=0 and consider the

equations governing the diagonal components of the matrix
distribution function for neutrinos. Following Raffedit al.

[11], we represenn'’ andn?? in terms ofn’e andn”«, the
diagonal components on the flavor basis. From the relation

711
t - (0
uinUy=n , (70)

0 ’F]22

we obtain the distribution functions on the flavor basis as

n’e 3 tan 20y (n"e—n"x)

n:
(%tan 20p(N"e—nN"x) n’u
(73)

where the mass square difference in matter is defined as
Ay=M3—M%. Ignoring the collision terms for a moment |nversely transforming the equation forin this approxima-

and adding Eqs(62)

J -~ ~
ikt —(n'+n??=0,

and (64), we obtain the relation

X (66)

tion,

an
ik“ax—ﬂz(collision termg, (72
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we finally obtain the equation far in the limit of the adia-
batic oscillation between two flavors as

0

i an v v 1
|k“ax—M+ tan 26, (n"e—n"r) 0 1

X

10 = (collision terms. (73

0 1)]ikﬂﬂ0M<X>
FIG. 2. The Feynman diagram for the self-energy of neutrino in
Here the mixing ang'e in matter is given as t&nﬂz the Born approximation.The dashed line stands for the weak inter-
= sin 26y /{cos 290_[2\/§GF(pe_ kzlkopg)E,,]/AO}. acti(_)n an_d t_he thigk Iines_ represent the Qreen functions for the
We briefly discuss here the general relativistic correctiorP2ricles indicated in the figure. The part with a shaded region de-
terms in the advection part. We take an arbitrary point innotes the structure functiorisee the text for definitionssymboli-
space-time and consider a small patch of space-time arouncglly'
it of the size ofl which satisfies the conditioR>1>1/E,,.
Then we can take a local coordinadés in this small region,
which has a Minkowskian metric up to the second order o

I/R. We also define an orthonormal tetreglaligned to this the collision termgsee belowdo not contain spatial deriva-

cgordma;e and use It to project the four momentum of neu'uves, they are unaffected by the above transformation. How-
trino on it. On this coordinate in the small patch of space o . o
. o . ; ever,dfy /dXk in Eq. (73) is affected just in the same way
time, the above derivation for the advection terms in the

M : .
Boltzmann equation is still valid, that is, we obtain E§2) 25 anl Xk shown above. It is noted that this term actually

or Eq. (73) for the adiabatic two-flavor mixing with trivial ©riginates from the advection terém/JXg due to our point-
replacements oK* with X andk® with k. Thus, there is wise choosing of the local mass eigen state basis. What re-

no additional mixing due to the general relativistic gravity Mains to be done is, thus, to calculate the connection one-
under the current assumption that the tiny mass difference J rm.
neutrinos is ignored except for the mixing term, that is, the
second terms of Eq52) or Eq.(73). All we have to do now

is to make a coordinate transformatigig— X* and an as- In this section, we derive collision terms in the Born ap-
sociated momentum transformatikfi— k*. The latter is, in ~ proximation for the neutrino self-energy. It is well known
fact, induced by the transformation of the tetragls.~€, the  that the approximation of the self-energy for the advection
latter of which is given globally. Employing the orthogonal €rms is different from that for the collision termi27]. The

transformation between two tetrad§X) =Ti-(X) ég and the Born approximation is conveniently represented by the Feyn-
transformation matrix ! man diagram shown in Fig. 2. Only the first term of the right

hand side of Eq(28) contributes ta . in the collision part.
As done in the previous section, we evaluate the self-energy

is a familiar correction term due to the general relativity
1[5—7], which accounts for the redshift and ray bending of
neutrino in the gravitational field. Since the mixing term and

2. Collision part

IX* gkl coming from various processes separately in the following.
XK gXP IkR - ; i
axy  axy _ R For the nucleon scattering, the self-energies are obtained
v v m
» . =| IXg IXg IXP , (79 as
J Jd .
-1
— — 0 (T H 2

i ab GF yn 5\iab v
22 () =5 [74(1=¥)iG2 L (xY)y
we can perform the transformation for the advection term as

follows: X(1— 75)]5Nw(x,y), (76)
. 9n . an PN an G2
i R 4 P T Y m_* "' R N _ ) E ) v
kRercﬁ.axg ke KK (erire o 53 0y = (L= ¥)IGR (Y)Y
an an X(l_ 75)]SNVﬂ(y|X)' (77)
et N KM
k e'H(;Xu kK ok 79 In the above equations, the dynamical structure function for

nucleon is defined with the weak neutral current of nucleon
In the above equation, the inner product of two vectors isJ(x) asSk"(x,y) =(JIKk(x)Ix(y)). The weak neutral current
denot_ed a$\_/1-v2> and f(he component_of the connection one-for nucleon is given bylfi= iy m(h\rﬁ_ hay®) ¥ . The other
form is designated as;j =(V.€-€) with V, the covariant components of the matrix Green function are zero for the
derivative in the direction o . The second term of Eq75) Dirac neutrinos. For the Majorana neutrinds, g is ob-

093026-8
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tained, for example, by replacinG,, with G g and y"(1 G, (G.). Inserting this relation to Eq.78) and recalling
—~°) with y”(1++°). Recalling the relations\ g~ng, thatnis a scalar with respect to the spinor indices, we obtain
~(Am,/E,)n  ~(Am,/E,)ngr and S r~2r. the following collision term for the neutrino distribution
~(Am,/E))2 . ~(Am,/E,)2rr, we find that the function:
LL-component can be decoupled from the other components
after the same matrix manipulations as done for the advec- 3
tion part and that the resulting collision terms are identical d°k i E _ /
f , : : . n,(K[1-n, (k"]
or the Dirac and Majorana neutrinos, if we take only the (2m)3 Zk,oz
leading terms ofAm,/E,. Note that the exchanged terms
are added in the collision part unlike in the advection G2
part. From the termn-i%_, for example, we obtain X—FL“"(k,k’)SNW(q,X), (80)
[k, y*n J[1% - k,y*] as theLL component. 2

Following the procedures taken for the advection part, wi f )
multiply the collision terms withy®(1— y°)/2 from the left, G‘;’;’ir;ire:n;l(he%ﬁ;gfﬂtog r?\;)emne:Stum of the scattered neu
take the trace with respect to the spinor indices and divide by =~ ' g
4k°. We then obtain frorm-i3 _, for example, the follow-

ing: LA¥(k, k") =Tr{K,y"y*(1— y* )k, ¥"y" (1= ¥°)}

2 = 8{K“K KK - ghrkPk) — e oK K.}

d'qg 1 1-9° Gk .
J (2m)* @Tr{ P ke g (A iG (81

Here the metric tensor is denotedg#s’ and the antisymmet-
H vpo \a i 0123_ 3
X(k—q,X)'yV(l—yS)ko'y‘T]S A0, X). (78)  ric tensor as#**” with £°%%= 1. From the termX _-n we
i obtain the collision term which is obtained from E§0) by
replacingn,(k)[1—n,(k")] with [1—n,(k")]n,(k). Just in
the same way we obtain from the tefrh—n][—iX ] the
following collision term:

Ignoring again the tiny masses of neutrinos &nd deriving
G. from D, A, andn, we obtain

iG. (k)~1_75k y“2776(k2){®(k°)[ _n”(k)] ek 11
=5k 1-n,0 | o g 2 muoIn, )
1-n,(k)
O(—k° : 79 G2
O ){ —ny(K) ” (79 XTFL”V(k,k’)SNW(—q,X). (82

In the above equation, it is explicitly indicated that the nega- )

tive energy contribution to the number density of the neu-For the term[ —i%_ ][1—n] we replacg 1—n,(k)]n,(k’)
trino corresponds to the number density of the antineutrinoWith n,(k")[1—n,(k)] in the above equation. Using the re-
It is noted that the number density is a functiorkadfter we  lation SNW(—q)ze*Bq Snur(Q) for the matter in equilib-
ignored A and imposed an on-shell conditidcf=0. The  rium, which stands for the detailed balance, we finally obtain
upper (lower) components in the columns correspond tothe collision terms

J d3k’ i}[equny(k’)[l—ny(k)]+[1—ny(k)]nv(k’)
(2m)3 2k’ 2 2

—ny (K’ —n, (K’ G
- ORGP IO O, iy s, i0.%0. (63

If the matrix distribution function is diagonal, the above term is further simplified. For the two-flavor case.(and
equation reduces to the ordinary collision term. v, , for example, we insert the matrix distribution function
If the mixing occurs adiabatically, the above collision given by Eq.(71) into Eq.(83). Then we obtain the collision
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term for thew, distribution function as Although we assumed in the above derivation that the
four momentum transfer is spacelike to describe the scatter-
d®k’ 1 1 S , ings, it is obvious that the same Feynman diagram represents
j (2m)° mz[e ne(k’)[1—n"(k)] the annihilation and creation of neutrino pairs if the trans-
ferred four momentum is timelike. As stated above, the
1 transport equations for the antineutrinos are obtained from
— Stan 20y (k") [n"e(k’) —n"x(k")] the negative energy part of the distribution function. in that
case, it is noted that the mixing angtg, should also be
1 calculated for the negative energy. As is obvious from Eq.
X5tan Zﬂm(k)[nv"‘(k)—nv*‘(k)]} (55) the sign of the potentials is changed for the antineutri-
nos and the resonance conversion does not occur in this case
1 as is well known. It is noted that neutrino-neutrino scatter-
”Ve(k)[l_”ve(k’)]_?an 20\ (K)[n"e(k) ings are treated just in the same way by substituting the
neutrino structure function, which in turn should be evalu-
ated with the neutrino Green functions, E@9).

Next we consider the neutrino emission and absorption on
nucleons. For the temperature and neutrino energy of current
GE ) , interest, the muon is not abundant and only the electron-type
7'—” (K,K") SNl X). (84) neutrino is involved in this process. The interaction Lagrang-

ian density is

—nVu(k)]%tan 200 (k" )[n"e(k")

—ns(k')]

The collision term for thev,, distribution function is ob-

tained by replacing’e with n”« in the above equation. It is Ge .

noted that the correction terms due to mixing cancel each £80%=— —[yey*(1—°),°1[ 5 ¥,.(9" — 9*¥®) o]

other for isoenergetic scatterings, which we commonly as- V2

sume for the neutrino-nucleon scattering in the supernova tHe 86)

cores and protoneutron stdi%28,29. e
The collision terms for the neutrino-electron scattering are

essentially the same as those obtained for the nucleon sca¥here the coupling constan’=1.0 andg"=1.23, and

tering. The main difference originates from the fact that theH.c. stands for the Hermite conjugate. In the Born approxi-

electron weak current has flavor dependence, which give®ation, the self-energy is given by

rise to nontrivial contractions of flavor indices between the

electron structure function and the neutrino distribution func- Gﬁ

tion such asn?‘(k)[1—n°"]SS, where the superscripts izzeff(X,YFT[Y“(l— Y)iGE(x,y)y"

a,b,c represent flavors. The structure functigpis an elec-

tron counter part of the nucleon structure functinpand is X(1— y5)]8pnw,(x,y), (87)
defined asSgy (x,y) =(J3,(x)Jg,(y)). Here the weak cur-

rent for electron is given a¥'= y,y*(g"— 9" v°) ¢ for the o G2

ve scattering and’ = ¢, y*(9¥— 9" y°) e for the v, and v, 2.5 E(xy) :7[7#(1_ Y)IGE(xy)y"
scatterings, respectively. As a result, the collision term for

the neutrino-electron scattering becomes for the electron type X(1=7°)1Shpral¥:X), (88)

neutrino in the case of the adiabatic two-flavor mixing as

where the Green functions for electrons are denote@@as

J' 3k’ 1 1 [ [efﬁqon”e(k’)[l—nVe(k)]—n”e(k) and the structure functions for the charged weak currents of

(2m)% 2k'0 2 nucleons are defined, for example, aSiy(x.y)

. =(Jpa(X)Irp(y)) with the charged current given by,
X[1=n"e(k")]]1S;e(a,X) —[e F—1] = 7,(9V—9"¥*) ¢,. The Green function§¢ are essen-
1 1 tially the same asG., in Eqg. (79) with the self-evident

Xitan ggM(k/)[nVe(k')_nvﬂ(kf)]itan 20),(K) substitution ofn, with the electron distribution functiof.

Following the same procedure as shown above and employ-
ing the detailed balance relation satisfied by nucleons in ther-

S, /‘(q,X)+SeZVe(q,X) mal equilibrium,

X [ne(k) —n*u(k)] =

G'2: SK'S( — q) = e_/B(qO-FAan)S{;:(q)' (89)
X LP (k). (89

with the difference of the chemical potentialsu,,=
The v, counterpart is obtained by the replacement of—u,, we obtain the collision term for the emission and
vee> v, in the flavor indices in the above equation. absorption of neutrinos on nucleons as
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J

the same as those derived by Sirera ang:Pie 4], although
they employed the Wigner function formalism in the mean
field approximation and did not give collision terms. The
G2 collision terms derived here, on the other hand, have the
_ _F v same structure as those found by Rafélal.[10,11] in the
X1~ Te(Pe) i Ly (KiPe)Son( @), (%0 nonrelativistic density matrix method. We have also shown
the general relativistic correction term which accounts for the
redshift and ray bending in the gravitational field and is com-
%only taken into account in the supernova and protoneutron

d°pe
(2m)3 2Ee

11
5{e A0 St (o) [ 1 ne(k)] —n7e(K)

in the adiabatic mixing case. Hepg andE, are the momen-
tum and energy of electrons, respectively, and the transf
four momentum isg=k—p,. Since there is no other com- ;,: simulations.

ponents of self-energy in flavor space than tge. COMPO-  he gpplications of the Boltzmann equation found here
nent, the resulting term is identical to those with no neutrind.emain to be done. Since the corrections due to the flavor
mixing. mixing are rather minor, particularly in the case of the adia-
batic mixing, it will be simple to implement them in the
neutrino transport code we have now at our disppaRIThis

is already underway. Since the mixing angle in matter is

With a view of application to the simulations of super- d dent ih i d the directi f
nova explosion and protoneutron star cooling, we have gefependent on the neutnno energy and the direction or mo-

rived a Boltzmann equation with the neutrino flavor mixing mentum with respect to the magnetic T'eld If it exists. In the
being taken into account. The derivation is based on the norfAnalyses of the neutrino flavor mixing in the supernova core,
equilibrium field theory, and the ordinary gradient expansion't is usually assumed that the neutrinos are flowing out radi-

has been performed. We assumed that the typical neutrin ly [17'1_8]' However, they have an _angular distribution near
wave length is much shorter than the scale height of thdhe neutrino sphere. Different positions of the resonant con-

background matter distribution, which is true for the SUIoer_version due to different directions of flight of neutrinos will

nova cores and protoneutron stars. The neutrino distributiol‘?_ad to the reduc.tlon of the neutrino flavor conversion. This
will also be true in the absence of the magnetic field if the

matrix which is nondiagonal in the neutrino flavor space is S . .

introduced. Following the common practice, the advectiort"€rdy d|str!but|o_n of neutrinos and the coup_llng between
part has been obtained in the mean field approximatio eutrinos W_'th_ _d|fferent energies are taken into account.
where the self-energy of neutrino is nondiagonal in the flavor hese possibilities and the|r |mpllcat|ons_ to the mechanism
space. This self-energy gives rise to the term in the advectioﬂf the supermova explosion, kick vequty of puI.sars., and
part, which is responsible for the neutrino mixing and doegtucleosynthesis of heavy elements will be studied in the

not appear in the ordinary transport equation. The collisiodCtcOMINg papers.
terms, on the other hand, have been calculated in the Born
approximation. The collision terms also have corrections due
to the mixing. In these derivations, the relativistic kinematics  This work was partially supported by the Grants-in-Aid of
is taken into consideration. We have further simplified thethe Ministry of Education, Science, Sports and Culture of
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