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Strange quark mass from flavor breaking in hadronic t decays
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The strange quark mass is extracted from a finite energy sum rule~FESR! analysis of the flavor-breaking
difference of light-light and light-strange quark vector-plus-axial-vector correlators, using spectral functions
determined from hadronict decay data. We point out problems for existing FESR treatments associated with
potentially slow convergence of the perturbative series for the mass-dependent terms in the OPE over certain
parts of the FESR contour, and show how to construct alternate weight choices which not only cure this
problem, but also~1! considerably improve the convergence of the integrated perturbative series,~2! strongly
suppress contributions from the region ofs values where the errors on the strange current spectral function are
still large and~3! essentially completely remove uncertainties associated with the subtraction of longitudinal
contributions to the experimental decay distributions. The result is an extraction ofms with statistical errors
comparable to those associated with the current experimental uncertainties in the determination of the CKM
angle,Vus . We findms(1 GeV)5158.6618.7616.3613.3 MeV~where the first error is statistical, the second
due to that onVus , and the third theoretical!.

PACS number~s!: 12.15.Ff, 11.55.Hx, 12.38.2t, 13.35.Dx
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I. INTRODUCTION

The light quark masses,ms , mu1md , are among the
least well determined of the fundamental parameters of
standard model and, as such, have been the subject of m
recent attention, in both the QCD sum rule@1–18# and lattice
@19–22# communities.

Recent attempts to extractmu1md and ms via sum rule
analyses of, in the former case, the light quark (ud) pseudo-
scalar correlator@1# and, in the latter case, the light-stran
(us) scalar @2,3,5,9# or pseudoscalar@8# correlators suffer
from the problem that the relevant spectral functions are
fully determined experimentally in the region required f
the analyses.

Analyses based on vector current correlators involv
various pieces of the light quark electromagnetic~EM! cur-
rent suffer from analogous problems. In the case of Nariso
sum rule based on the difference of the flavor 33~isovector!
and 88 ~hypercharge, or isoscalar! correlators @4#, the
G-parity-based identification of the 33 and 88 contributio
to the EM hadroproduction cross section, which would all
the difference of 33 and 88 spectral functions to be de
mined from experimental data, is valid only in the absence
isospin breaking~IB!. The high degree of cancellation~to the
level of 10–15 %! between the 33 and 88 spectral integr
makes the analysis rather sensitive to the neglect of IB@7#.
This sensitivity is compounded by the fact that a sum r
determination of the corrections required to remove the
contributions from the experimental data shows that, for r
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sons which are easily understood@7#, the dominant correc-
tions, associated with thev contribution to the nominal 88
spectral function@7,23#, are larger than one would naivel
expect.1 The necessity of determining the IB correctio
theoretically thus prevents one from working with a sum ru
whose spectral side is determined solely by experime
data.

A similar problem exists for the sum rule based on t
difference of 33 andss vector current correlators@17#, since
the portion of the EM hadroproduction cross section ass
ated with thess part of the EM spectral function is not a
experimental observable. In Ref.@17#, it is assumed to be
given by the cross section for the production of the variousf
resonances. This approximation, while no doubt a reason
one, is exactly valid only if both~1! the Zweig rule is 100%

satisfied and~2! the f resonances are all pure flavors̄s
states. The close cancellation~to the ;15% level! between
the 33 andss spectral integrals again makes the analy
sensitive to even small~few %! Zweig rule violations
~ZRVs!. To illustrate this sensitivity, let us take the deviatio
from ideal mixing in the vector meson sector as a measur
the natural scale of ZRVs,2 and consider a scenario in whic
ZRVs occur dominantly in the mass matrix and not in t
vacuum-to-vector-meson matrix elements of the vector c

1The central valuems(1 GeV)5176 MeV @17#, obtained neglect-
ing IB corrections, is reduced to 146 MeV when one applies the
corrections obtained in the sum rule analysis of Ref.@23#.

2From Ref. @27# one has that the vector meson mixing angle
either 36° or 39°, depending on whether one uses the linea
quadratic mass formula.
©2000 The American Physical Society23-1
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rents. The strange~light! quark part of the EM current the
couples only to the strange~light! part of any given reso-
nance. If the flavor content of a givenf resonance isa s̄s
1b(ūu1d̄d)/A2 ~with a.1 andb small!, the ratio of the
square of the full EMf decay constant to that of the deca
constant describing the coupling only to thess part of the
EM current is then.12A2b/a. For either the linear or
quadratic versions of mixing this ratio is less than 1; inclu
ing ZRV corrections will thus increase thess spectral func-
tion and hence lower the extracted value ofms . Taking, to
be specific, the case that the radius of the circular part of
finite energy sum rule~FESR! contour is~1.6 GeV)2, we find
that, using an identical method of analysis and identi
higher dimensional condensate values to those employe
Ref. @17# @and including, for completeness, the small
isovector contribution to thef(1020) EM decay constan
determined in Ref.@23##, the central value ofms(1 GeV!
obtained ignoring IB and ZRVs@17# ~196 MeV! is lowered
to 177 MeV ~108 MeV! for the linear~quadratic! cases, re-
spectively. We stress that the point of this exercise is no
attempt a realistic estimate of ZRV corrections but rathe
point out that, given the scale at which such violations
alreadyknownto occur, the uncertainties in the extraction
ms associated with the neglect of ZRVs are large and, mo
over, cannot be significantly reduced without a major i
provement in our theoretical understanding of the prec
nature and magnitude of ZRVs.3

In light of the fact that, in each of the analyses above, i
not possible to work with sum rules for which the hadron
spectral function is determined entirely by experimental da
we will, in this paper, instead construct FESRs based on
flavor-breaking difference between the sum of theud vector
and axial vector correlators and the corresponding sum ous
correlators, for which, up tos5mt

2 , the spectral function can
be taken from experimental hadronict decay data@24,16#.
The rest of the paper is organized as follows. In Sec. II
provide a brief review, and discuss the practical difficult
to be overcome in arriving at a reliable implementation
this approach. In Sec. III we describe a construction wh
leads to FESRs which successfully overcome these diffi
ties, and in Sec. IV we give numerical details and discuss
results.

II. FLAVOR-BREAKING SUM RULES INVOLVING
HADRONIC t DECAY DATA

For a general correlator,P(s), with a cut beginning ats
5sth and running along the timelike real axis, one obta

3In Ref. @17#, the agreement of the 33–88 and 33–ss determina-
tions ofms obtained ignoring IB and ZRVs, respectively, was tak
as evidence against the size of the IB corrections obtained in
@23#. Note, however, that~1! within errors, the latter result is com
patible with either the IB-corrected or -uncorrected 33–88 deter
nation and~2! two inverse moment sum rule determinations of t
6th order chiral low-energy constant,Q, one based on the 33–8

@25# and one on thes̄u-33 correlator difference@26#, are brought
into almost perfect agreement once the IB corrections of Ref.@23#
are applied to the former analysis.
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from Cauchy’s theorem, defining the spectral function,
usual, byr[Im P/p, the general FESR relation

E
sth

s0
dsr~s!w~s!5

21

2p i Rusu5s0

dsP~s!w~s! ~1!

where w(s) is any function analytic in the region of th
contour,C, consisting of the union of the circle of radiuss0
in the complexs plane and the lines above and below t
physical cut, running fromsth to s0.

As is well known, the ratios ofud andus inclusive had-
ronic t decay widths to thet electronic decay width,

Rt
i j [

G@t2→nt hadronsi j ~g!#

G@t2→nte
2n̄e~g!#

, ~2!

where (g) indicates additional photons or lepton pairs, a
i j 5ud,us labels the flavors of the relevant portion of th
hadronic weak current, can be expressed as weighted
grals over the relevant spectral functions. Equation~1! then
allows these ratios to be recast into a form appropriate for
use of techniques based on the operator product expan
~OPE! and perturbative QCD@28–32#. Letting Ji j ;V,A

m be the
usual vector and axial vector currents with flavor contenti j ,
and defining the scalarJ50,1 parts of the correspondin
correlators by

i E d4xeiq•x^0uT„Ji j ;V,A
m ~x!Ji j ;V,A

n ~0!†
…u0&

[~2gmnq21qmqn!P i j ;V,A
(1) ~q2!1qmqnP i j ;V,A

(0) ~q2!,

~3!

one has

Rt
i j 512p2SEWuVi j u2E

0

mt
2 ds

mt
2 S 12

s

mt
2D 2

3F S 112
s

mt
2D r i j

(1)~s!1r i j
(0)~s!G

56pSEWuVi j u2i R
usu5mt

2

ds

mt
2 S 12

s

mt
2D 2

3F S 112
s

mt
2D P i j

(011)~s!22
s

mt
2
P i j

(0)~s!G , ~4!

where P i j
(J)[P i j ;V

(J) 1P i j ;A
(J) , r i j

(J)(s) are the corresponding
spectral functions,SEW51.0194 represents the leading ele
troweak corrections@33#, and Vi j are the usual Cabibbo
Kobayashi-Maskawa~CKM! matrix elements. Sincemt

2;3
GeV2, the second expression in Eq.~4! is amenable to evalu
ation using the OPE. Dividing both the hadronic and O
expressions byuVi j u2, and taking the difference of thei j
5ud andus cases, one arrives at a flavor-breaking FESR

f.

i-
3-2
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E
0

1

dy@wL1T~y!Dr (011)~s!1wL~y!Dr (0)~s!#

5
21

2p i Ruyu51
dy@wL1T~y!DP (011)~s!

1wL~y!DP (0)~s!# ~5!

where y[s/mt
2 , DP (J)[Pud

(J)2Pus
(J) , Dr (J)[rud

(J)2rus
(J) ,

and wL1T , wL refer to the longitudinal-plus-transverse@(J
50)1(J51), or ‘‘L1T’’ # and ‘‘longitudinal’’ @(J50)# ki-
nematic weightswL1T(y)[(12y)2(112y) and wL(y)5
22y(12y)2, respectively. The mass-independent (D50)
piece of the correlator differenceDP (J) on the OPE side of
the sum rule, Eq.~5!, of course vanishes by construction.
the limit that we neglectmu,d

2 andasmu,dms relative toms
2 ,

moreover, theD52 terms in the OPE representation
PV1A; i j

(J) become simply proportional toms
2 . Were the OPE

representations of both theL1T and longitudinal contribu-
tions above to be well converged at scalemt

2 , Eq. ~5! would
thus allow a determination ofms in terms of the difference o
experimental non-strange and strange decay number dist
tions.

The perturbative series for the integratedD52 longitudi-
nal contribution in Eq.~5!, however, turns out not to b
convergent at the scales05mt

2 @11,12#, creating a serious
problem for the analysis in the absence of an experime
separation of transverse and longitudinal spectral contr
tions. This separation is straightforward at lows but experi-
mentally problematic above 1 GeV2.4

Our inability to treat the OPE representation of the lon
tudinal contributions in a reliable manner thus crea
difficult-to-quantify uncertainties for any FESR involvin
significant longitudinal spectral contributions. Existin
analyses are included in this category since, for example
central value for the difference of non-strange and stra
spectral integrals from the analysis of Refs.@14,16#,

D00[
Rt

ud

uVudu2
2

Rt
us

uVusu2
50.39460.137, ~6!

corresponds toL1T, longitudinal and higher dimension con
densate contributions which are 0.184, 0.155 and 0.055
spectively.

4In Ref. @11#, an attempt was made to circumvent this problem
assuming the validity, even in the region of non-convergence,
relation between the integrated longitudinal OPE vector and a
vectorD52 contributions valid in the region of convergence of t
OPE representations of both. If true, this would allow the longi
dinal strange axial integral to be obtained from the longitudi
strange vector integral. The latter can be obtained using the m
strange scalar spectral function of Ref.@5#. Using appropriately-
weighted FESRs for the strange pseudoscalar channel, we have
been able to test this assumption, and demonstrate that it is, in
incorrect.
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Another practical problem is the close cancellation b
tween the rescaledus andud spectral integrals for the sum
rules above, based on the kinematic weights,wL1T andwL .
In the analysis of Refs.@14,16#, for example, the cancellation
is to the;10% level, making the results very sensitive
both small variations in the input parameters and the siza
experimental errors (;20– 30 %) on the strange decay num
ber distribution above theK* region. Two features of the
analysis of Refs.@14,16# illustrate the former sensitivity.
First, Refs.@14,16# employ uVusu50.221860.0016; cf. the
1998 Particle Data Group~PDG98! @27# value 0.2196
60.0023. Though compatible within errors, the squares
the two central values differ by;2%; use of the PDG98
valuedecreasesthe flavor-breaking difference,D00, by 17%.
Since one cannot reliably employ the OPE representatio
the longitudinal contributions, moreover, the longitudin
spectral contribution~which is dominated, at the;80%
level, by theK pole term! must be subtracted; the shift in th
inferred L1T contribution ~used to determinems) is thus
even larger~36%!. Similarly, use of the PDG98 valuef K
5113.061.0 MeV in place of the ALEPH determination
f K5111.562.5 MeV lowers the inferredL1T contribution
to D00 by a further 12%. The combined impact on the cent
value forms is thus extremely large, though the two centr
values are, of course, compatible within the~large! errors
quoted in Refs.@14,16#. The relative size of the residual
statistical errors as a fraction of the resultingD00 is, of
course, also significantly increased by such a decreas
D00. It is thus highly desirable to choose, in place of t
kinematic weights, weights which produce a less close c
cellation between theud andus spectral integrals. The eas
est way to accomplish this goal is to choose weight functio
which fall off more rapidly through the region of the excite
strange resonances. This has the happy consequence o
suppressing contributions from the region where both
errors on the strange spectral distribution are large and
transverse-longitudinal separation is experimentally difficu

The final difficulty to be dealt with is theoretical. Suppo
we are able to solve the longitudinal-transverse separa
problem, and thus work with FESRs involving only theL
1T part of the flavor breaking difference:

P~q2![Pud,V1A
(110) 2Pus,V1A

(110) . ~7!

The leading (D52) ms-dependent terms in the OPE repr
sentation ofP are @10#

@P~Q2!#D5252
3

2p

ms
2~Q2!

Q2

3F11
7

3
a~Q2!1~19.9332!a~Q2!21•••G

[2
3

2p

ms
2~Q2!

Q2 (
k50

gka~Q2!k, ~8!

with a(Q2)5as(Q
2)/p and ms(Q

2) the running coupling
and running strange quark mass, both at scalem25Q2

a
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-
l
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TABLE I. OPE convergence of the ‘‘contour improved’’D52 contributions,gkAk

[wL1T
N ]

(mt
2), as a func-

tion of the contour improved order,k, for the spectral weights,wL1T
N (y)5(12y)N12(112y), assuming

geometric growth of coefficients beyondO(as
2). All entries have been rescaled by the corresponding e

for k50.

Weight k50 k51 k52 k53 k54 k55 k56 k57 k58 k59 k510

wL1T
0 1 0.143 20.007 20.145 20.237 20.286 20.294 20.272 20.233 20.187 20.141

wL1T
1 1 0.209 0.100 20.027 20.143 20.232 20.287 20.308 20.300 20.272 20.233

wL1T
2 1 0.257 0.187 0.076 20.048 20.143 20.260 20.324 20.357 20.359 20.339
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52s, in the modified minimal subtraction (MS) scheme.
The ratio ofO(a) andO(a2) coefficients in Eq.~8! is rather
large ~8.5!, signaling potentially slow convergence@with
as(mt

2)50.334@24#, the ratio of theO(a2) andO(a) terms
is 0.90 atm25mt

2 , and .1 for m2 below ;2.2 GeV#. In
recent analyses@14–16#, this potential problem is brough
under ~apparent! control using the method of ‘‘contour im
provement’’ @31#. In this method, the logarithms inP are
first summed@as has already been done in Eq.~8!# by choos-
ing the renormalization scale equal toQ2 at each point on the
circle usu5s0. The integrals

Ak
[wL1T]

~s0!5
21

2p i Rusu5s0

dsFm~Q2!2

Q2 Ga~Q2!kwL1T~y!,

y5s/s0 , ~9!

are then evaluated numerically, using the known 4-lo
forms for the running mass and coupling. The OPE side
the L1T part of the conventionalt decay sum rule then
reduces to a linear combination of theAk

[wL1T] (mt
2), k

50,1,2, with the indexk giving the ‘‘contour-improved or-
der.’’ Both the convergence and the residual scale dep
dence of the resulting truncated series are significantly
proved by this procedure@12,16#. Since, relative to an
expansion in terms ofa(m2), for some fixed scalem2, con-
tour improvement represents a resummation of the pertu
tive series, it is possible that this improvement is physica
meaningful.

Unfortunately, it turns out that the apparent improvem
is not a general one, but rather the result of an accide
suppression of thek52 integral. To see this, let us, for il
lustrative purposes, imagine that the unknown coefficie
gk , for k>3, in Eq. ~8! grow geometrically, i.e.,gk
5(19.9332)@19.9332/(7/3)#k22, k>3.5 We then evaluate

5Note that Refs.@14–16# employ a form of theL1T FESR in
which the OPE integral has been partially integrated once in o
to re-express it in terms of the difference ofL1T ud andus Adler
functions. The contour-improved series for the Adler function v
sion differs term by term from that based on the direct correla
difference. Though the agreement of the sums of the two version
second order is excellent, the reader should bear in mind tha
relative size of the terms of different order is not the same in
two cases.
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[wL1T
N ]

(s0) for k50, . . . ,10 ands05mt
2 , wherewL1T

N (y)
5wL1T(y)@12y#N, N50,1,2, are the ‘‘spectral weights’
employed in the analyses of Refs.@14–16#. The results of
this exercise, rescaled in each case by the correspondik
50 value, are displayed in Table I. In columns 2–4 we s
the apparently favorable convergence of thek50,1,2 terms
already discussed. The results of the remaining colum
however, show that the smallness of thek52 term is not the
result of a favorable resummation~which would lead also to
improved convergence for the remainder of the series! but

rather a consequence of the fact thatA
k

[wL1T
N ]

(mt
2) has a zero

as a function ofk rather close tok52. The magnitudes of the
k>3 terms are such that truncation of the series atk52
would produce a significant theoretical error, one mu
larger in magnitude than the size of thek52 term.6 The
contour improved analysis employing FESRs based on
spectral weights thus has potentially significant theoret
uncertainties.

In light of the problems discussed above for those FES
based on the spectral weights,wL1T

N , our goal in the next
section will be to construct alternate weights which lead
FESRs which bring these problems under control.

III. CONSTRUCTION OF ALTERNATE WEIGHT
FUNCTIONS

We begin our search for an alternate choice of wei
function by attempting to understand the source of the
tential slow convergence of the contour-improved ser
noted above. The goal will be to find a weight such th
even were the unknowngk , k>3, to grow geometrically, as
assumed above, the tail of the contour-improved se
would be small relative to the known terms, in contrast to
behavior shown in Table I for the series corresponding to
spectral weights,wL1T

N . If we succeed in doing so, the rel
ability of the standard approach, in which the truncation
ror is taken to be given by the size of the last known term~in

er

-
r
to
he
e

6One should bear in mind that, were one to work with the Ad
function version of theL1T FESR, the assumption of geometr
growth of the coefficients of the Adler function difference is not t
same as the assumption of geometric growth of the coefficient
the correlator difference itself. The potential convergence probl
however, may also be demonstrated to exist in the former case
3-4
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this case,k52), will, of course, be improved regardless
the actual behavior of the unknowngk . We will then attempt
to simultaneously impose conditions which reduce the
pact of the experimental errors.

To study the source of the slow convergence of
contour-improved series, it is useful to consider the beha
of the factor f k(Q

2)[m(Q2)2a(Q2)kgk , appearing in the
integrand ofgkAk

[w] (s0), on the contourusu5s0. Let w(y),
y5s/s0, be any analytic function real on the reals axis, and
Q252s0 exp(iw) (w50,p thus correspond to timelike an
spacelike points, respectively!. One then has

gkAk
[w]~s0!5

1

pE0

p

dw Re$ f k~Q2!w„exp~ iw!…%. ~10!

The behavior of Re(f k) and Im(f k) as a function ofw, for
s05mt

2 and k50, . . .,10, is shown in Fig. 1. We observ
that both Re(f k) and Im(f k) have zeros on the circleusu
5mt

2 , and that these zeros move with the orderk. Moreover,
while Re(f k) ~slowly! decreases with increasingk for all
anglesw, the magnitude of Im(f k) is sizable in the region
w>p/2 even fork>5. This slow convergence in the bac
wards~spacelike! direction is the origin of the slow conver
gence of thek>3 tails of the integrated series shown
Table I, since the factor (12y)N12 entering the weight
wL1T

N has maximum modulus at the spacelike point on
contour, and is more and more sharply peaked in the ba
ward direction asN increases. In addition, the behavior
Re(f 2) and Im(f 2) happens to be just such that, combin
with the changes of sign of the real and imaginary parts
wL1T

N , there is a very strong cancellation in the integral ov
w ~particularly so for the caseN50). This strong cancella
tion is the origin of the ‘‘accidental’’ suppression of th
magnitude of thek52 term. As we have already seen
Table I, it is potentially dangerous to use weights for whi
the integralsAk

[w] (s0) are small for a particulark ~or for a
small number of values ofk) only due to such cancellations.
Higher order contributions can then easily be large ag
thereby spoiling the seemingly good convergence of the
few terms of the contour-improved series.

The behavior of the Re(f k) and Im(f k) displayed in Fig. 1
allows one not only to understand the origin of the poten
convergence problem but also to construct alternate
rules which avoid it. From Fig. 1 it is evident that conve
gence can be improved by avoiding weights which are la
in the spacelike direction. The results of Ref.@34# also indi-
cate that, for the FESR framework to be reliable at sca
;mt

2 , it is necessary for the weight function to have a ze
at s5s0 (y51).7

We have found two approaches useful for implement
these constraints. The first involves the use of polynom
with ‘‘shepherd’’ zeros, i.e., zeros either on, or near, t

7Such a zero suppresses contributions from the OPE repres
tion in the region near the timelike real axis where, at scales;mt

2

and below, data show that it breaks down@34#.
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regions of the contour one wishes to suppress. The sec
involves the construction of weights,wp , with Im(wp)
peaked on the contour at anglesw<p/2, thereby avoiding
large contributions from Im(f k), k.1 ~see Fig. 1!. A conve-
nient and effective choice is to take Im(wp) to have a Gauss
ian form on the contour. Choosing the width of the Gauss
to be 10° and the center to bew5wp , good convergence o
thek>3 tail of the integrated series can be obtained for a
20°<wp<90°. Technically, these profiles can be well repr
sented using polynomials of degreeK'20:

wp~y!5(
i 50

K

aiy
i . ~11!

The coefficients ai are determined, upon normalizin
Im(wp) such thatwp(0)51, by the Fourier integrals

ta-

FIG. 1. The real and imaginary parts off k , k50, . . .,10, at
scalemt

2 , wherek labels the power ofas . Here f k is defined ex-
plicitly in the text.
3-5
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TABLE II. OPE convergence of the ‘‘contour improved’’D52 contributions,gkAk
[w] (mt

2), as a function

of the contour improved order,k, for the weights,w10, ŵ10, and w20, assuming geometric growth o
coefficients beyondO(as

2). All entries have been rescaled by the corresponding entry fork50.

Weight k50 k51 k52 k53 k54 k55 k56 k57 k58 k59 k510

w20 1 0.262 0.213 0.143 0.073 0.01820.017 20.033 20.034 20.027 20.016
w10 1 0.232 0.165 0.092 0.03220.008 20.030 20.038 20.038 20.035 20.032

ŵ10
1 0.248 0.193 0.125 0.064 0.01920.009 20.023 20.026 20.024 20.020
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dw Im@wp~w!#sin~kw!, k51, . . . ,K.

~12!

To summarize, given the problems discussed above w
those FESRs involving the spectral weights,wL1T

N (y), we
would like to find, if possible, an alternate weight choic
w(y):

~1! such thatw(y) is strongly suppressed in the regio
aboves;1 GeV2, in order to~a! reduce the degree of can
cellation between theud andus spectral integrals,~b! reduce
the impact of the large experimental errors in theus spectral
distribution above theK* region, and~c! minimize the role
of the longitudinal subtraction which must, at present,
performed theoretically, and

~2! such thatw(y) emphasizes those regions of the co
tour usu5s0 for which the convergence of theD52 series is
favorable.

It is, of course, nota priori obvious that there existw(y)
having the desired properties. We have, however, succe
in constructing several polynomial weights which do.8 Since,
as we will see below, the resulting weights do not cont
wL1T(y) as a factor, the approach is less inclusive than
analysis employingwL1T(y) @12,16#, but it has the advan
tage of being theoretically cleaner.

The strategy involving shepherd zeros can be imp
mented with the zeros either on or off the contour. The fi
weight we have constructed satisfying the criteria above
all zeros on the contour, and is given by

w10~y!5@12y#4@11y#2@11y2#@11y1y2#

512y2y212y52y82y91y10. ~13!

The absence ofO(y3,y4) terms, which suppressesD58,10
contributions, is an additional positive feature of this weig
The fourth order zero aty51 and second order zero aty5
21 provide the desired suppressions of the timelike a

8An important further restriction results from the observation th
in the FESR framework, higher dimension contributions are s
pressed only by inverse powers ofs0; in order to avoid generating
potentially large, and unknown, higher dimension contributio
therefore, the coefficients of the polynomials we construct sho
all be comparable in magnitude to the leading coefficient,a051.
We have chosen to implement this constraint by keeping all c
ficients less than;2 in magnitude.
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spacelike regions. An alternate family of weights still havi
a fourth order zero aty51, but with the remaining zeros
moved off the contour and at a distancer from the origin, is

ŵ~r , cosu1 , cosu2 ,y!

5@12y#4F11
y

r G2F112
y

r
cosu11

y2

r 2G
3F112

y

r
cosu21

y2

r 2G ~14!

(u1 and u2 give the angular positions of the pairs of of
contour complex conjugate zeros corresponding to the
two factors, with respect to the spacelike direction!. The
choice (r , cosu1, cosu2)5(1.2,0.5,0.1) produces a secon
solution to the constraints above, one whose biggest co
cient isa1524/3. We denote this solution by

ŵ10~y!5ŵ~1.2,0.5,0.1,y!. ~15!

In the approach based on weights which have imagin
parts with a Gaussian profile on the contour, we choos
basis of such weights having different centers,fp . As noted
above, as long as all thefp lie in the interval 20°<fp
<90°, all of the corresponding integratedD52 perturbative
series will be under control. We then form linear combin
tions of these weights having differentfp in such a way as
to construct a new weight which not only retains this go
convergence, but at the same time has a zero of sufficie
high order aty51 to strongly suppress contributions to th
spectral integral from the regiony.0.5. The weight of this
type which most successfully satisfies the criteria discus
above has a rapid high-s falloff produced by a 6th order zero
at y51, a largest coefficienta452.087, and is given by

w20~y!5~12y!6@114.2451y19.4682y2114.4155y3

116.4589y4114.6598y5110.2818y615.5567y7

12.1157y810.3520y920.2065y1020.2154y11

20.1040y1220.03040y1320.0045y14#. ~16!

The ~vastly! improved convergence of thek>3 tail of the
integratedD52 series for the weightsw10, ŵ10 andw20 is

,
-

,
ld

f-
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displayed in Table II. The entries, as in Table I, have be
rescaled by the correspondingk50 value, and hence corre
spond to the ratios,gkAk

[w] (mt
2)/A0

[w] . The results also show
that an estimate of the truncation error given by the mag
tude of thek52 term is, for the new weights, almost ce
tainly a very conservative one. We will demonstrate, in
next section, that the suppression of the high-s region of the
spectrum produced by the new weights is also sufficien
significantly reduce the impact of the experimental errors

IV. NUMERICAL ANALYSIS AND RESULTS

In performing the numerical analysis of the FESRs co
structed above, we employ the ALEPH data for the no
strange and strange number distributions9 and PDG98 values
for f K , f p , uVudu and uVusu. As noted above, the weight
have been chosen in such a way that, although theore
input is required in order to subtract the longitudinal con
butions to the experimental number distributions, and he
obtain theL1T spectral functions, the effect of this subtra
tion on the final value ofms is negligible. We will quantify
this statement below. Once theL1T spectral function has
been determined, it is a straightforward matter to evalu
the weightedL1T spectral integrals. The choice of steep
falling weights ensures that the strange spectral integrals
dominated by theK and K* contributions, for which the
experimental errors are much smaller than those of the re
the strange number distribution. This plays a major role
reducing the impact of experimental errors on the final
tracted value ofms . To get a realistic determination of thes
errors it is important to separate correlated and uncorrel
errors and also to take into account the strong correlat
between the spectral integrals involving different weights

The nature of the longitudinal subtraction differs signi
cantly in the low-s and high-s ~;1 GeV! regions. For lows,
thep andK pole subtractions are experimentally unambig
ous. For highs ~the resonance region!, the longitudinal con-
tributions are proportional to (ms6mu)2, (md6mu)2, for
us, ud, respectively, and hence dominated by theus contri-
butions. The longitudinalus vector contribution is inferred
from the strange scalar spectral function of Ref.@5#. This
procedure is consistent provided the value ofms resulting
from the present analysis is compatible with that from
strange scalar channel@9#, which it turns out to be. The lon
gitudinal us axial vector contribution is similarly inferred
from the spectral function of the strange pseudoscalar ch
nel. The latter is obtained by fixing the excited resonan
decay constants of a sum-of-resonances spectral an
through matching of the hadronic and OPE sides of a fam
of ‘‘pinch-weighted’’ FESRs, in analogy to the analysis

9The 1998 tabulation of the nonstrange data receives a small o
all normalization correction as a result of the shift inRt

us between
the preliminary 1998 and final 1999 analyses. We thank Shao
Chen for bringing this point to our attention.
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Ref. @35#.10 The input value ofms required for this analysis
should, in principle, be determined iteratively. We hav
however, employed as input the value ofms obtained from
the strange scalar analysis of Ref.@9#, ms(1 GeV)5159
611 MeV. This turns out to be consistent with our fin
result forms . Moreover, for the steeply falling weights em
ployed in our analysis, the sum of the high-s V andA longi-
tudinal subtractions is at the,0.1% level of theus spectral
integral and, hence, at the,1% level in theud-us differ-
ence. As such, even were our evaluation to be in error
100%, the effect onms would be completely negligible on
the scale of the other errors present in the analysis.

On the OPE side, we retain contributions up to and
cluding D58. The leadingD52 term was given above.

The D54 contribution is@30,10#

@P~Q2!# (D54)5
2

Q4 F ~ml^ l̄ l &2I s!S 12a~Q2!2
13

3
a~Q2!2D

1
3

7p2
ms

4~Q2!S 1

a~Q2!
2

7

12D G , ~17!

where I s is the usual renormalization group~RG! invariant
modification of the non-normal-order strange quark cond
sate@36#, ml is the average of the lightu, d masses, and̂l̄ l &
is the light (u,d) condensate. We use the quark mass ra
determined from the chiral perturbation~ChPT! analyses of
Ref. @37#, the GMO relation 2ml^ l̄ l &52 f p

2 mp
2 , and the

range of values 0.7,^s̄s&/^ l̄ l &,1 @2,3# for the ratio of con-
densates. The contour integration are performed as desc
below.

For theD56 contribution we employ a rescaled versio
of the vacuum saturation approximation~VSA!. From the
results of Ref.@30#, one finds

er-

in

10The corresponding procedure works very well in the isovec
vector channel, where the results can be checked against the
known experimental spectral function@35#. A similar statement is
true even in channels with strongly attractive interactions n
threshold, for which the spectral function will be poorly represen
near thresholdby the tail of a Breit-Wigner resonance form wit
‘‘conventional’’ s-dependent width. For example, using the value
ms obtained from the strange scalar channel analysis as input
redoing the strange scalar channel analysis, using now a sum
resonances spectral ansatz in place of the more realistic ansa
Ref. @5#, one finds that the ansatz of Ref.@5# is well reproduced in
the region of the dominantK0* (1430) peak. One can also use th
approach to check the self-consistency between the assumed l
tudinal contributions and the outputms value in kinematic-weight-
based analysis of Refs.@14,16#. It turns out that the high-s longitu-
dinal contributions assumed are more than a factor of 2 smaller
would be expected based on the extracted value ofms . If one
employs the PDG98 values foruVusu and f K , as discussed above
however, the assumed longitudinal contribution becomes com
ible within the errors assigned to it in Ref.@14,16#.
3-7
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@P~Q2!# (D56)5
64pras

81Q6
@^ l̄ l &22^s̄s&2#, ~18!

where r represents a multiplicative rescaling of the VS
estimate. The analogous rescaling has been determined
pirically for the isovector vector channel and the isosp
breaking vector 38 correlator, and found to be;5 in both
cases@38,23#. For the weights employed in our analysis,
turns out that the integratedD56 contributions are very
small. We are, therefore, able to employ the very conse
tive estimater5565 for the degree of VSA violation with-
out significantly affecting the overall theoretical error. T
combinationras^q̄q&2 in Eq. ~18! is to be understood as a
effective RG-invariant combination for the evaluation of t
OPE contour integrals.

Finally, for theD58 contribution, we assume

@P~Q2!# (D58)5
C8

Q8
. ~19!

For w10 this term does not contribute to the integrated OP
for w20 and ŵ10, the value of the effective RG-invarian
condensate combination,C8, is to be determined as part o
the analysis.

As noted above, the OPE contour integration~for all D)
are performed using the contour improvement prescript
Four-loop versions of the running mass and coupling
employed. To be specific, we have solved analytically for
running mass and coupling using the 4-loop truncated v
sions of theb @39# and g @40# functions, with the value
determined in nonstrange hadronict decays, as(mt

2)
50.33460.022@24#, as input. Following conventional prac
tice, we take the error associated with the truncation of
perturbative series for the Wilson coefficient of theD52
term atO(a2) to be equal to the value of the last@O(a2)#
contribution retained. In light of the discussion above
consider this to represent an extremely conservative e
mate.

From the point of view of uncertainties on the OPE sid
the w10 sum rule is favored over theŵ10 andw20 sum rules
for three reasons:~1! it has noD58,10 contributions,~2! it
has the smallest truncation error, and~3! it has the smalles
errors associated with uncertainties in the input values of
D54 andD56 condensates.11 In Table III we display, as a

11Combining the errors associated with truncation, the conden
input values, and the uncertainty onas(mt

2) in quadrature, the re-

sulting errors inms are 7.7%, 8.2% and 8.4% forw10, ŵ10 andw20,
respectively.

TABLE III. The extracted value ofms(1 GeV2) in MeV as a
function ofs0 for the weightw10 having noD58,10 contributions.

s0 (GeV2) 2.35 2.55 2.75 2.95 3.15
ms(1 GeV2) ~MeV! 153.2 159.0 162.2 163.4 163.2
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function ofs0, the extracted values ofms(1 GeV2) obtained
from thew10 sum rule, analyzed neglecting contributions
dimension 12 and higher. Central values have been used
all input on the OPE side and for the experimental spec
data. For the analysis to be self-consistent, the extra
value ofms should be independent ofs0. This will be true for
s0 sufficiently large that theD>12 contributions are negli-
gible. As s0 is decreased, the extractedms values should
eventually deviate from a constant, signaling the growth
the higher dimension terms. From the table we see that
range 2.75 GeV2,s0,3.15 GeV2 provides an extremely
good window of stability. In view of the falloff begining
arounds0;2.55 GeV2, we will work in the ranges0>2.55
GeV2 in the discussions which follow. It is worth stressin
that the central values obtained fromw20 andŵ10 sum rules,
though having slightly larger theoretical errors, are nonet
less completely consistent with those above: in the wind
2.55 GeV2<s0<3.15 GeV2, one finds that the range of so
lutions for ms(1 GeV2) lies between 156 and 161 MeV fo
w20, 158 and 164 MeV forŵ10, and, as we saw already i
Table III, 159 and 163 MeV forw10. In contrast, thewL1T
sum rule, for which the longitudinal subtraction is importa
and theD52 convergence is not well under control, yields
range between 161 and 184~with, moreover, inconsisten
solutions forC8).

From the point of view of the impact of the errors prese
in existing experimental data, the theoretically favoredw10
weight is, unfortunately, no longer the favored one. The r
son is that, although the impact of the errors in the higs
region of theus spectrum has been strongly suppressed
the rapid falloff of the weights employed, theud-us cancel-
lation is still rather close~e.g., ats05mt

2 , to the level of

6.0% for w10, 6.8% for ŵ10 and 8.6% forw20, to be com-
pared with 3.7%, 6.5% and 9.3% for thewL1T

N , N50,1,2).
Although the dominant errors~those from theK* region of
the us spectrum! are reasonably small, they are still larg
enough that therelative size of the residual statistical erro
grows very rapidly with the increase in the degree of canc
lation. Thus, e.g., ats05mt

2 , the statistical error represen
42%, 36%, 26%, 77%, 38% and 23% of theud-us spectral
difference for thew10, ŵ10, w20, wL1T

0 , wL1T
1 and wL1T

2

sum rules, respectively.12 The present experimental situatio
is, therefore, such that the errors in our final result forms are
minimized by working withw20, rather thanw10.

Working with thew20 sum rule in the window specified
above we find, for our best fit,

ms~1 GeV2!5158.6618.7616.3613.3 MeV, ~20!

which is equivalent to

te

12Because of the high degree of cancellation, reducings0, which
increases the degree of suppression of the~already small! high-s us
contributions, still has a non-trivial effect; e.g., the relative statis
cal error for thew20 sum rule is reduced from 26% to 19% whens0

is lowered frommt
2 to 2.55 GeV2.
3-8
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ms~4 GeV2!5115.1613.6611.869.7 MeV, ~21!

where in both Eqs.~20! and ~21! the first error is statistical
the second is due to the uncertainty onuVusu, and the third
theoretical. The theoretical error has been obtained by c
bining the following in quadrature@where we quote the nu
merical values corresponding to Eq.~20! to be specific#:
65.2 MeV, associated with the error onas(mt

2); 63.6 MeV,

associated with the uncertainty in^s̄s&/^ l̄ l &; 61.6 MeV, as-
sociated with the variation ofms within the window 2.55
GeV2<s0<mt

2 ; 60.6 MeV, associated with the uncertain
in the VSA-violating parameter,r; and611.6 MeV, associ-
ated with truncation of theD52 series. The latter obviousl
remains the dominant source of theoretical error, despite
significant improvement produced by the use of the n
weights. Figure 2 displays the quality of the match betwe

FIG. 2. The agreement between the OPE and hadronic side
the FESR corresponding to the weight,w20(y) for 1.95 GeV2<s0

<mt
2 . The solid line is the OPE side, using the values ofms andC8

obtained in the fitting procedure described in the text. The das
line is the hadronic side, obtained using the ALEPH spectral d
from which the longitudinal component has been subtracted as
scribed in the text.
ys
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the OPE and spectral integral sides of thew20 sum rule cor-
responding to the fit above; the agreement in the previou
established stability window,s0.2.55 GeV2, is obviously
excellent. The divergence of the OPE and spectral inte
curves belows0;2.55 GeV2 is precisely what one would
expect based on the observation above that, for thew10 sum
rule,D.10 contributions, not included in the truncated OP
representation, begin to become important in this region.

The result of Eqs.~20! and~21! is in good agreement with
the strange scalar channel results of Refs.@5# and @9#, the
strange pseudoscalar channel result of Ref.@8#, and the re-
cent hadronict decay analysis of Ref.@15#, but, we believe,
has signficantly reduced theoretical and experimental err
In particular, the statistical error has, at this point, been
duced almost to the level of that associated with the unc
tainty in uVusu.

Improvements in the accuracy of the experimentalus
spectral data, in particular in theK* region, could lead to a
significant improvement in the size of the statistical err
Such an improvement should be possible using BaBar d
@41#. Reduced uncertainties in our knowledge ofuVusu would
also be helpful. On the theoretical side, while significant i
provements in the accuracy of the spectral data would al
one to move from thew20 to thew10 sum rule, the decreas
in the theoretical uncertainty that would result from this sh
would be only;1.3 MeV. Far more likely to lead to a sig
nificant improvement in the size of the theoretical err
would be a computation of theO(a3) coefficient in theD
52 contribution to the flavor-breaking correlator differenc
P.
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@26# S. Dürr and J. Kambor, Phys. Rev. D61, 114025~2000!.
@27# Particle Data Group, C. Casoet al., Eur. Phys. J. C3, 1

~1998!.
09302
@28# Y. S. Tsai, Phys. Rev. D4, 2821~1971!; H. B. Thacker and J.
J. Sakurai, Phys. Lett.36B, 103~1971!; F. J. Gilman and D. H.
Miller, Phys. Rev. D17, 1846~1978!; F. J. Gilman and S. H.
Rhie, ibid. 31, 1066~1985!.

@29# E. Braaten, Phys. Rev. Lett.60, 1606 ~1988!; S. Narison and
A. Pich, Phys. Lett. B211, 183~1988!; E. Braaten, Phys. Rev
D 39, 1458~1989!; S. Narison and A. Pich, Phys. Lett. B304,
359 ~1993!.

@30# E. Braaten, S. Narison, and A. Pich, Nucl. Phys.B373, 581
~1992!.

@31# F. Le Diberder and A. Pich, Phys. Lett. B286, 147 ~1992!;
289, 165 ~1992!.

@32# A. Pich, in Heavy Flavors II, edited by A. J. Buras and M
Lindner ~World Scientific, Singapore, 1997!.

@33# W. J. Marciano and A. Sirlin, Phys. Rev. Lett.61, 1815
~1988!.

@34# K. Maltman, Phys. Lett. B440, 367 ~1998!.
@35# K. Maltman, Phys. Lett. B462, 14 ~1999!.
@36# V. P. Spiridonov and K. G. Chetyrkin, Yad. Fiz.47, 818

~1988! @Sov. J. Nucl. Phys.47, 522 ~1988!#.
@37# H. Leutwyler, Phys. Lett. B374, 163~1996!; 378, 313~1996!;

hep-ph/9609467.
@38# S. Narison, Phys. Lett. B361, 121 ~1995!.
@39# T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, Ph

Lett. B 400, 379 ~1997!.
@40# K. G. Chetyrkin, Phys. Lett. B404, 161 ~1997!; T. Van Rit-

bergen, J. A. M. Vermaseren, and S. A. Larin,ibid. 405, 327
~1997!.

@41# M. Roney~private communication!.
3-10


