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U„1… symmetry and R parity violation
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The patterns ofR violation resulting from the imposition of a gauged U~1! horizontal symmetry on the
minimal supersymmetric standard model are systematically analyzed. We concentrate on a class of models
with integer U~1! charges chosen to reproduce the quark masses and mixings as well as charged lepton masses
exactly or approximately. The U~1! charges are further restricted by the requirement that very large bilinear
lepton number violating terms should not be allowed in the superpotential. It is shown that this leads to
severely constrained patterns of trilinear interactions. Specifically, the only choice compatible with phenom-
enological restrictions is the one in which all the trilinearl i jk8 and all but at most two trilinearl i jk couplings
vanish or are enormously suppressed. The U~1! symmetry can allow the effective generation of bilinear lepton
number violating parameters through terms in the Ka¨hler potential. The resulting models are identified and the
structure of neutrino masses in some of these is briefly discussed.

PACS number~s!: 14.60.Pq, 11.30.Hv, 12.60.Jv
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I. INTRODUCTION

One of the attractive ways to understand the mysteri
hierarchy among quark and lepton masses is to postulate
existence of a U~1! symmetry broken spontaneously at
scale much larger than that of weak interactions@1#. Most
fermion masses and the entire Cabibbo-Kobayashi-Mask
~CKM! matrix arise in this approach due to the breaking
the U~1! symmetry and are determined in terms of a para
eter l;^u&/M and the U~1! charges of the fermions. Her
^u& determines the scale of U~1! breaking andM is some
higher scale which could be the Planck scaleM P or the
string scale if U~1! arises from an underlying string theor
The l is usually identified with the Cabibbo angle;0.22
and all the fermion mass matrices are represented as po
of l. Although this mechanism is quite general, it becom
quite attractive to combine the virtues of this U~1! symmetry
with that of the minimal supersymmetric standard mo
~MSSM! @2–8#. In this case, the U~1! can give information
not only about the quark spectrum but also about theR parity
violating couplings which can determine the neutrino mas
through the pattern ofR violation it dictates@6,7,9–11#.

Lepton number violation in the MSSM is generated due
the presence of the supersymmetric partners of quarks
leptons. This can be characterized by the followingR violat-
ing terms in the superpotential of the model:

WR” p
5l i jk8 LiQjDk

c1l i jkLiL jEk
c1e iL iH2 . ~1!

A priori, this involves 39 independent parameters. Each
these can contribute to the mass matrix for the three l
neutrinos. It is desirable to restrict the number of allow
couplings from some symmetry principle and the U~1! sym-
metry can play a crucial role. By requiring that the U~1!
charges of the MSSM field should be such that it leads
correct quark and charge lepton masses as well as the C
matrix, one could considerably reduce the freedom in cho
ing the U~1! charges. A set of charges so determined wo
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lead to definite patterns of theR violating couplings appear
ing in Eq. ~1!. This in turn leads to specific structure fo
neutrino masses.

The purpose of this paper is to systematically search
all possible allowed patterns for theR violating couplings of
Eq. ~1! which result from U~1! charge assignments consiste
with the successful predictions in the quark sector in case
integer U~1! charges for all fields. In a large class of su
models@4,7,10,11#, the U~1! symmetry tends to lead to ver
large and phenomenologically unacceptable values for
coefficiente i of the bilinear terms in Eq.~1!. Requiring that
this not happen restricts the allowed set of models in a st
gent manner. We find a remarkable result that in all th
restricted models, almost all the trilinear couplings in Eq.~1!
are either zero, are highly suppressed, or their predicted m
nitudes are inconsistent with phenomenology. Specifica
all the models we analyzed require zerol i jk8 and at most one
or two nonzerol i jk if they are to be phenomenologicall
consistent. The resulting theory still possesses lepton num
violation since a significant amount of bilinear couplings c
be generated through couplings in the Ka¨hler potential using
the mechanism proposed by Giudice and Masiero~GM! @12#.
The neutrino mass patterns in this case get restricted in te
of only three or four independent lepton number violati
parameters, making U~1! symmetry a very predictive schem
not only for descriptions of the quark spectrum but also
neutrino masses and mixing.

We start in the next section with a discussion of o
framework and the basic assumptions and highlight the pr
lem of the generation of largee i parameters within this
framework. In the next section, we discuss the structure
trilinear interactions and their consistency with phenomen
ogy in models which can explain the quark spectrum. S
tion IV contains a specific discussion of the consequence
models allowed on phenomenological grounds and we s
marize the main results in the last section.

II. U „1… SYMMETRY AND THE e PROBLEM

Let us consider the MSSM augmented with a gaug
horizontal U~1! symmetry. The standard superfield
©2000 The American Physical Society20-1
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(Li , Qi , Di
c , Ui

c , Ei
c , H1 , H2) are assumed to carr

charges (l i , qi , di , ui , ei , h1 , h2), respectively, withi
running from 1 to 3. The U~1! symmetry is assumed to b
broken at a high scale by the vacuum expectation va
~VEV! of one gauge singlet superfieldu with U~1! charge
normalized to21 or with two such fieldsu,ū with charges
21 and 1, respectively. It is normally assumed that only
third generation of fermions has renormalizable couplin
invariant under U~1!. The rest of the couplings arise in th
effective theory from higher dimensional terms@1#:

C iC jHS u

M D ni j

,

whereC i is a chiral superfield,H is the Higgs doublet,M is
some higher mass scale which could be the Planck scaleM p ,
and ni j 5c i1c j are positive numbers representing t
charges ofC i , C j under U~1!, respectively. A similar term
is absent in case of a negativeni j due to the holomorphic
nature ofW @2#. For positiveni j , one gets ani j th entry of
orderlni j in the mass matrix for the fieldC. The identifica-
tion l;0.22 and proper choice of U~1! charges leads to
successful quark mass matrices@3–5#.

A priori, the model has 15 independent U~1! charges for
matter and 2 charges for Higgs fields. Of these, all but f
can be fixed from different requirements discussed in
literature which we list below@5#.

~1! The fermions in the third generation are assumed
have the following couplings invariant under U~1!:

WY5b tQ3U3
cH21bbQ3D3

cH1S u

M D x

1btL3E3
cH1S u

M D x

.

~2!

This is possible if

q31u31h250, q31d31h15 l 31e31h15x. ~3!

This determinesh252q32u3 and h152q32d31x with
tanb;lx(mt /mb). The phenomenological requirement
tanb>O(1) implies 0<x<2. b-t unification has been im
plicitly assumed in writing Eq.~3!.

~2! The charge differencesqi3[qi2q3 , ui3[ui2u3,
and di3[di2d3 ( i 51,2) are determined by requiring tha
the quark masses and the CKM matrix come out to be
actly or approximately correct. Various possible values
these differences have been classified in@5# and we shall use
these results.

~3! The U~1! symmetry being gauged is required to
anomaly free. It has been shown@4# that all relevant U~1!
anomalies cannot be zero in models with a singleu if one is
to require the correct structure for the quark and lep
masses. These anomalies then needs to be canceled b
Green-Schwarz~GS! mechanism@13#. This requirement im-
poses three nontrivial relations among the U~1! charges.

~4! The prediction of an approximately correct hierarc
among the charged lepton masses requires

l 131e1354 or 5, l 231e2352. ~4!
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After imposing the above-listed requirements, the succes
model is fixed in terms of the four independent charges. E
choice of these charges would imply different patterns foR
violation. Since the U~1! is capable of predicting orders o
magnitudes of various couplings, it is not guaranteed tha
the patterns ofR violation predicted in this way would be
phenomenologically consistent. In fact very few can meet
constraints from phenomenology. The most stringent c
straint on possible choice ofR charges is provided by the
parameterse i . The U~1! symmetry can lead to the following
term in W:

MLiH2S u

M D l i1h2

. ~5!

This leads to

e i;M S ^u&
M D l i1h2

;Ml l i1h2. ~6!

Unless the chargesl i1h2 are appropriately chosen, the pr
dicted value fore i can grossly conflict with~a! the scale of
SU(2)3U(1) breaking which would require a sneutrin
VEV <O(MW) and ~b! neutrino masses. A bilinear param
etere would imply a neutrino mass@14# of order @15#:

mn;S e

m D 2 MZ
2

MSUSY
sin2f. ~7!

Here, sin2f is O~1! if supersymmetry~SUSY! breaking is
not characterized by the universal boundary conditions a
high scale. In the converse case, this factor gets enormo
suppressed due to the fact thate i can be rotated away from
the full Lagrangian in the limit of vanishing down quark an
charged lepton couplings. This issue is discussed in num
of papers@16#. A typical order of magnitude estimate o
sin2f is @17#

sin2f;S 3hb
2 ln

mX
2

mZ
2

16p2
D 2

;1027. ~8!

These equations are very rough estimates. The exact va
depend upon the MSSM parameters. But these rough
mates are sufficient to show that the phenomenologically
quired e i are grossly in disagreement with typical predi
tions, for, e.g., even with sinf2;1027, mn,1 eV would
neede;1 GeV for m;MSUSY;100 GeV.

In order to prevent very largee i from being generated
one must ensure one of the following.

~a! l i1h2 is bounded by

l i1h2*24. ~9!

This can lead toe i in the GeV range and neutrinos wit
mass in the eV range in the case of models with unive
boundary conditions andM;1016GeV. In models without
universal boundary conditions, the required magnitude
l i1h2 would be even larger.
0-2
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~b! U~1! is broken by only one superfieldu and l i1h2 is
negative. The terms in Eq.~6! are then not allowed inW by
the U~1! symmetry and by the analyticity ofW.

~c! l i1h2 is fractional, forbidding coupling of the bilinea
term tou.

~d! Impose some additional symmetry, e.g., modular
variance which may prevent the occurrence of danger
terms@18#.

Note that models containing twou-like fields with oppo-
site U~1! charges would lead to largee i independent of the
sign of l i1h2. Thus these models can be made phenome
logically consistent only by choosing fractional or unna
rally high values foru l i1h2u. We shall therefore not conside
these models and concentrate only on models with a singu
and also assume only integer U~1! charges. Thene i can be
suppressed either through~a! or through~b! if no other sym-
metry is imposed.

Although the structure ofR violating interactions follow-
ing from a U~1! symmetry alone has been discussed in
number of papers@4,7,9–11#, the requirement that the U~1!
symmetry should not generate largee i has not always been
imposed@4,7,10#. It is argued customarily thate i are un-
physical as they can be rotated away by redefining the
H1 as a linear combination of the originalH1 andLi appear-
ing in Eq.~1!. This, however, changes the originalm param-
eter to (m21e i

2)1/2. Thus, if the models do allow largee i ,
then rotating them away generates equally largem which is
also phenomenologically inconsistent. One must therefore
low only U~1! charge assignments corresponding to zero
suppressede i in W.

III. STRUCTURES OF TRILINEAR COUPLINGS

In this section, we shall enumerate possible U~1! models
leading to the correct quark mass spectrum and investi
structures for the trilinear couplings in these models, keep
the phenomenological constraints in mind.

After imposing Eqs.~3!, the quark mass ratios and th
CKM mixing angles are determined in terms of the qua
charge differences. A systematic search for the poss
charge differences led to the eight models@5,7# reproduced
in Table I.

Model I exactly reproduces the quark mass ratios and

TABLE I. We present here all the possible models which ge
erate correct quark and lepton mass hierarchies as well as the C
matrix.

Models l 131e13 l 231e23 q13 q23 u13 u23 d13 d23

IA 4 2 3 2 5 2 1 0
IIA 4 2 4 3 4 1 1 -1
IIIA 4 2 4 3 4 1 -1 -1
IVA 4 2 -2 -3 10 7 6 5

IB 5 2 3 2 5 2 1 0
IIB 5 2 4 3 4 1 1 -1
IIIB 5 2 4 3 4 1 -1 -1
IVB 5 2 -2 -3 10 7 6 5
09302
-
s

o-
-

a

w

l-
r

te
g

le

ll

three CKM mixing angles. Since the predictions of U~1!
symmetry are exact only up to coefficients ofO(1), one has
to allow for models which may deviate from the exact pr
dictions by a small amount. The charge differences in m
els II, III, and IV represent models which deviate from th
exact predictions byO(l) @5#. The leptonic mixing analo-
gous to the CKM matrix is still arbitrary in these models b
the charged lepton masses are required to satisfyme /mt
;l4, mm /mt;l2 in models A andme /mt;l5, mm /mt
;l2 in models B.

The U~1! charges are still subject to the anomaly co
straint. The anomalies generated due to the presence o
extra U~1! are as follows:

@SU~3!#2U~1!X : A35(
i 51

3

~2qi1ui1di !,

@SU~2!#2U~1!X : A25(
i 51

3

~3qi1 l i !1h11h2 ,

@U~1!Y#2U~1!X : A15(
i 51

3 S 1

3
qi1

8

3
ui1

2

3
di1 l i12ei D

1h1 ,1h2

U~1!Y@U~1!#X
2 : A185(

i 51

3

~qi
222ui

21di
22 l i

21ei
2!

2h1
21h2

2 . ~10!

These can be canceled in string theory through the Gre
Schwartz mechanism@13# by requiring

A25A35 3
5 A1 , A1850. ~11!

The above constraints onA1 ,A2 ,A3 can be solved to give

h[h11h25(
i 51

3

~qi31di3!2(
i 51

3

~ l i31ei3!,

l 25m2~ l 11 l 319q314h23x!, ~12!

where

m5(
i 51

3

~ui31di32qi3!. ~13!

Also, from Eqs.~3!,

u35x22q32d32h. ~14!

Note that the parameterh determines whether them term is
allowed inW. Positiveh will result in too largem unlessh is
also correspondingly large.1 Negativeh does not allow them
term in W but a phenomenologically consistent value can

1See, however, Ref.@18# which imposes additional modular in
variance.

-
M
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generated through GM mechanism in this case.h50 allows
arbitrarym in W. The anomaly constraint determinesh com-
pletely in terms of the charge differences fixed by the mod
in Table I and is insensitive to the overall redefinition of t
U~1! charges. It is seen that all except model IIA lead to z
or negativeh and thus are phenomenologically consisten

The magnitudes and structure of the trilinear couplin
are determined by the following equations:

l i jk8 5u~ci1njk
d !lci1njk

d
,

l i jk5u~ci1njk
l !lci1njk

l
, ~15!

whereci5 l i1x1h22h, njk
d 5qj 31dk3 , njk

l 5 l j 31ek3 with
njk

d ,njk
l being completely fixed for a given model displaye

in Table I. Note that some of the trilinear couplings may
zero if the corresponding exponent is negative. They m
still be generated due to a nonminimal contribution to
kinetic energy term of different fields@5–7#. Such contribu-
tions do not, however, affect the order of magnitudes
those couplings which are nonzero to start with@6#.

After imposing the constraints of Eqs.~11!, one is still left
with four independent parameters includingx. One would
thus expect considerable freedom in the choice ofl i jk8 ,l i jk .
Typically, more than one such couplings are allowed to
nonzero simultaneously in various models. Thus they lea
flavor violating transitions which are known to be eno
mously suppressed. It is these constraints on the produ
trilinear couplings which lead to stringent restrictions on t
allowed U~1! charges. It turns out that the constraint follow
ing from theK02K̄0 mass difference alone is sufficient
rule out the presence of nonzero trilinear couplings in m
models. TheK02K̄0 mass difference constrains the produ
l i128 l i218 to be <1029 @19# for slepton masses ofO~100
GeV!. Allowing for some variation in these masses, we sh
use the following conservative limit:

l i128 l i218 <l12;1.331028. ~16!

We now analyze the magnitudes of the product in Eq.~16!
predicted by models of Table I, when one imposes the a
tional requirement that thel i1h2 be negative or have th
large value given in Eq.~9!. These requirements result i
zero or suppressede i , respectively. But they would also lea
to zero or suppressed trilinear interactions as we now
cuss. Let us consider these two cases separately.

A. l i¿h2œ24

In this case,e i are artificially forced to be small by choos
ing a very large value ofl i1h2 as in Eq.~9!. But the large
value of these charges also results in an enormous sup
sion in the allowed magnitudes of the trilinear coupling
This is easily seen from Eqs.~15!. Sinceh is zero or negative
for all allowed models andx<2, it follows that

ci5 l i1h21x2h> l i1h2>22.
09302
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It follows from Table I that thenjk
d,l are positive or small

negative numbers in all models. As a consequence, all tr
ear couplings are<l19;10212 in this case. This value is too
small to have any phenomenological consequence.

B. l i¿h2Ë0

We shall first show that the most preferred model IA c
be phenomenologically consistent in this case only when
l i jk8 are zero and then generalize this result to other ca
The l i jk8 are explicitly given as follows in this model:

l i jk8 5l l i1h21xF l4 l3 l3

l3 l2 l2

l 1 1
G , ~17!

where it is implicit that some element is zero if the corr
sponding exponent is negative@2#. The matrix in the above
equation~17! coincides withe2x(Md) jk . Hence, for nega-
tive l i1h2, it follows thatl i jk8 is either larger than the matrix
element (Md) jk or is zero for everyi. In the former case, one
cannot easily meet the phenomenological requirement in
~16!. Specifically, the equation forci gets translated to

ci[ l i1h21x,23 or >3. ~18!

This condition ensures thatl i128 l i218 either satisfies Eq.~16!
~when ci.3) or is identically zero whenci,23. But ci
>3 is untenable sincel i1h2<0 and tanb;lx(mt /mb)
>O(1) needsx<2 leading toci<2. As a result one mus
restrictci to less than23 for all i . It can be easily seen tha
ci524 is also ruled out. As follows from Eq.~17!, all l i jk8

TABLE II. Here we display the allowed models where the fo
lowing constraints have been imposed:~a! the requirement of cor-
rect quark and lepton mass hierarchies as per model IA in Tab
~b! GS anomaly cancellations,~c! f i5 l i1h2<0, ~d! phenomeno-

logical constraints fromK0-K̄0 mixing on l i jk8 couplings, and~e!
uq3 ,u3 ,d3 ,l i u<10.

No. x q3 u3 d3 l 1 l 2 l 3 f 1 f 2 f 3 If l i jk allowed

1 0 2 1 -5 -6 -3 -6 -9 -6 -9 No
2 0 2 1 -5 -5 -5 -5 -8 -8 -8 No
3 0 2 1 -5 -4 -7 -4 -7 -10 -7 No
4 0 2 1 -5 -3 -9 -3 -6 -12 -6 l132;4.831022

5 0 2 2 -6 -10 -4 -1 -14 -8 -5 l231;5.131024

6 0 3 2 -8 -10 -4 -10 -15 -9 -15 No
7 0 3 2 -8 -9 -6 -9 -14 -11 -14 No
8 0 3 2 -8 -8 -8 -8 -13 -13 -13 No
9 0 3 2 -8 -7 -10 -7 -12 -15 -12 No
10 2 3 2 -6 -7 -3 -8 -12 -8 -13 No
11 2 3 2 -6 -6 -5 -7 -11 -10 -12 No
12 2 3 2 -6 -5 -7 -6 -10 -12 -11 No
13 2 3 2 -6 -4 -9 -5 -9 -14 -10 No
14 2 4 3 -9 -9 -8 -10 -16 -15 -17 No
15 2 4 3 -9 -8 -10 -9 -15 -17 -16 No
0-4
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TABLE III. Same as Table II, but for values given by model IB.

No. x q3 u3 d3 l 1 l 2 l 3 f 1 f 2 f 3 If l i jk allowed

1 0 2 2 -5 -6 -3 -2 -10 -7 -6 l131;1.0, l231;1022

2 0 3 2 -7 -4 -6 -10 -9 -11 -15 No
3 1 3 2 -6 -3 -5 -9 -8 -10 -14 No
4 0 3 3 -8 -10 -1 -9 -16 -7 -15 l231;1.0
5 0 3 3 -8 -8 -6 -6 -14 -12 -12 No
6 1 3 3 -7 -8 -4 -5 -14 -10 -11 l231;1.0
7 1 3 3 -7 -6 -9 -2 -12 -15 -8 No
8 2 3 3 -6 -8 -2 -4 -14 -8 -10 l121;1.0, l231;2.331023

9 1 4 4 -10 -10 -7 -9 -18 -15 -17 No
10 2 4 4 -9 -10 -5 -8 -18 -13 -16 No
11 2 4 4 -9 -8 -10 -5 -16 -18 -13 No
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exceptl i118 are zero in this case to start with. But the mixin
of superfields in kinetic terms can regenerate otherl i jk8 .
Specifically, one gets

l i128 5V12
D l i118 ;l,

l i218 5V12
Q l i118 ;l,

l i128 l i218 ;l2, ~19!

whereVc rotates the matter fieldC i to bring kinetic terms to
canonical form@6#:

C i→Vi j
c C j ,

Vi j
c ;S ^u&

M D uc i2c j u

. ~20!

It follows from the above that one must requireci,24
for all i. One concludes from Eq.~17! that the only phenom-
enologically viable possibility in model IA is to require van
ishingl i jk8 for all values ofi , j ,k. We emphasize that a non
trivial role is played in the above argument by th
requirement of zero or negativel i1h2 and by the value ofh
determined from the anomaly constraints.

The above argument also serves to restrict the trilin
couplingsl i jk . Defining the antisymmetric matrices (Lk) i j
[l i jk , one could rewriteLk as follows:

~L1! i j 5l4S 0 lc2 lc3

2lc2 0 lc31 l 22 l 1

2lc3 2lc31 l 22 l 1 0
D ,

~L2! i j 5l2S 0 lc1 lc31 l 12 l 2

2lc1 0 lc3

2lc31 l 12 l 2 2lc3 0
D ,

~L3! i j 5S 0 lc21 l 12 l 3 lc1

2lc21 l 12 l 3 0 lc2

2lc1 2lc2 0
D , ~21!
09302
r

whereci are the same coefficients defined in the context
l8 and are required to be,24 as argued above. It the
immediately follows from Table I that alll i jk except
l123,l231, and l312 are forced to be zero. Moreover,l312
andl231 cannot simultaneously be zero. Thus one reache
important conclusion that model IA can be consistent w
phenomenology only if alll i jk8 and all l i jk except at most
two are zero. We have not made use of one of the anom
equations, namely,A1850. Use of this does not allow eve
onel i jk to be nonzero in a large number of models.

Essentially the same argument can be repeated also in
case of other models. The structure ofl i jk8 is determined in
these models by

l i jk8 ;lci1qj 31dk3, ~22!

whereci[ l i1h21x2h; The main difference compared t
an earlier model is that theh appearing inci is not forced to
be zero but is given by Eq.~12! and can take values21
~model IB, model IIIA, model IVB! or 22 ~model IIIB!. The
h50 for model IIB and the above argument made in the c
of model IA also remain valid in this case. Becauseh<0 in
these models, they allow somewhat larger values forci com-
pared toci<2 in the case of model IA. These larger valu
of ci result in an extreme case corresponding tol i1h250
andx52. It is possible to satisfy the constraint coming fro
DmK in these extreme cases; e.g., for model IB,l i1h250,
x52 lead2 to

~l i8! jk'S l7 l6 l6

l6 l5 l5

l4 l3 l3
D . ~23!

This structure is consistent with Eq.~16! as well as all other
constraints onl i jk8 . This possibility cannot be therefore rule
out purely on phenomenological grounds. But as we w
show, A1850 plays an important role and does not allo
these marginal cases.

2Similar marginal cases are also found for models IIIB,IVB.
0-5
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IV. MODELS

Let us now discuss specific models which successf
meet all the phenomenological constraints. An important r
is played in categorizing these models by the anomaly c
straintA1850 which has been not yet imposed. Imposition
this further constrains the model.

It is possible to give a general solution of all anoma
constraints for all models listed in Table I. We outline t
solution for theA1850 condition in the Appendix. We hav
numerically looked for integer solutions of the anomaly co
straints satisfying the criteria~1! l i1h2<0, ~2! ci are chosen
to satisfy the constraint Eq.~16!, e.g.,ci,24 in the case of
model IA, and~3! the absolute values ofq3 ,u3 ,d3 ,l 1 ,l 2 ,l 3
are restricted to be less than or equal to 10. The last requ
ment is imposed for simplicity. Moreover, in practice, high
values of these charges will generically result in suppres
R violating couplings which may not be of phenomenolo
cal interest. Although all U~1! couplings can be specifie
using only four parameters, we have displayed values
x, q3 , u3 , d3 , l i , andl i1h2 in Tables II–VIII. We draw
the following conclusions from the tables.

~1! None of the models displayed allow the valuel i1h2
50, ruling out the marginal models displayed in Eqs.~23! at
least for the ranges of parameters considered here.

~2! While all l i jk8 are forced to be zero, some of the mo
els allow one or two nonzerol i jk . We have shown this in
the last column which also gives the order of magnitude
the allowedl i jk . This need not always be compatible wi
phenomenology particularly after taking care of the mixi
of kinetic energy terms. Thus some of the models displa
in the tables would not be allowed.

~3! Although the termLiH2 is not directly allowed, it can
be generated from the Kahler potential through the mec
nism proposed by GM@12# in order to explain them param-
eter. The order of magnitudes ofe i is given in this case by

e i;m3/2l
u l i1h2u, ~24!

wherem3/2 is the gravitino mass. This can be read off fro
the tables in all cases. The uniformly large magnitudes
l i1h2 found in the tables imply thatR violation through the
effective bilinear term is also quite suppressed but it can
be of phenomenological relevance.

TABLE IV. Same as Table II, but for values given by mod
IIB.

No. x q3 u3 d3 l 1 l 2 l 3 f 1 f 2 f 3 If l i jk allowed

1 0 2 2 -6 -3 -8 -9 -7 -12 -13 No
2 0 2 3 -7 -8 -5 -7 -13 -10 -12 No
3 0 2 3 -7 -6 -10 -4 -11 -15 -9 No
4 1 2 3 -6 -8 -2 -7 -13 -7 -12 l231;1.0
5 1 2 3 -6 -6 -7 -4 -11 -12 -9 No
6 2 2 3 -5 -6 -4 -4 -11 -9 -9 l231;1.0
7 1 3 4 -9 -9 -10 -7 -16 -17 -14 No
8 2 3 4 -8 -9 -7 -7 -16 -14 -14 No
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~4! We did not impose baryon parity in the above ana
sis. A look at the solutions presented in the tables, howe
shows that the operatorUi

cD j
cDk

c carries large negative
charge in all models. Thus baryon number violating ter
are automatically forbidden from the superpotential. The
terms will be generated from the effective U~1! violating D
term

1

M P
S u*

M D uqi jk u

~Ui
cD j

cDk
c!,

whereqi jk is the negative U~1! charge of the combination
Ui

cD j
cDk

c . This leads to baryon number violating coupling

l i jk9 ;
m3/2

M P
l uqi jk u,

which are extremely suppressed,<O(10215) for m3/2
;1 TeV. Thus proton stability gets automatically explain
in all the models.

~5! Trilinear lepton number violating terms are not a
lowed in the superpotential from analyticity. But they will b
effectively generated in the same way asl9 discussed above
Their magnitudes will also be enormously suppress
<10215, depending upon the model.

It follows from the forgoing discussions that consisten
implemented U~1! symmetry allows very simpleR violating
interactions, namely, three bilinear terms and at most
trilinear couplingsl i jk . The constraints coming from th
K02K̄0 mass difference were instrumental in arriving at th
conclusion. It is worth emphasizing that the effective biline
interactions generated from the GM mechanism in this c
are not subject to such stringent constraint from the fla
violating process.A priori, the bilinear terms can be rotate
away in favor of trilinearl8 andl interactions. It turns out
that one does not generate dangerous flavor violating te
in the process. Specifically, one finds, for the flavor struct
@17#,

TABLE V. Same as Table II, but for values given by mod
IIIA.

No. x q3 u3 d3 l 1 l 2 l 3 f 1 f 2 f 3 If l i jk allowed

1 0 2 3 -6 -7 -2 -9 -12 -7 -14 No
2 0 2 3 -6 -6 -4 -8 -11 -9 -13 No
3 0 2 3 -6 -5 -6 -7 -10 -11 -12 No
4 0 2 3 -6 -4 -8 -6 -9 -13 -11 No
5 0 2 3 -6 -3 -10 -5 -8 -15 -10 l132;1.0
6 1 2 3 -5 -6 -2 -7 -11 -7 -12 No
7 1 2 3 -5 -5 -4 -6 -10 -9 -11 No
8 1 2 3 -5 -4 -6 -5 -9 -11 -10 No
9 1 2 3 -5 -3 -8 -4 -18 -13 -9 l132;1.0
10 1 2 3 -5 -2 -10 -3 -7 -15 -8 l132;2.331023

11 2 2 3 -4 -4 -4 -4 -9 -9 -9 No
12 2 2 3 -4 -3 -6 -3 -8 -11 -8 l132;1.0
0-6
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TABLE VI. Same as Table II, but for values given by model IIIB.

No. x q3 u3 d3 l 1 l 2 l 3 f 1 f 2 f 3 If l i jk allowed

1 0 2 3 -5 -2 -5 -7 -7 -10 -12 No
2 0 2 4 -6 -7 -3 -4 -13 -9 -10 l231;0.22
3 0 2 4 -6 -5 -8 -1 -11 -14 -7 l131;1.0, l132;1.0
4 2 3 4 -6 -3 -4 -10 -10 -11 -17 l123;1.0
5 0 3 5 -9 -8 -6 -9 -16 -14 -17 No
6 1 3 5 -8 -9 -3 -8 -17 -11 -16 No
7 1 3 5 -8 -7 -8 -5 -15 -16 -13 No
8 2 3 5 -7 -8 -5 -4 -16 -13 -12 l231;1.0
9 2 3 5 -7 -6 -10 -1 -14 -18 -9 l131;1.0, l132;0.22
10 2 4 6 -10 -9 -8 -9 -19 -18 -19 No
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tanu3

^H1&
@~OL

T!3aLa#~mb
l Lbeb

c 1mi
DQidi

c!, ~25!

where all the fields are in the physical, i.e., the mass, ba
(OL

T) represents a mixing matrix determined solely by t
ratios ofe i and tanu35A(( ie i

2)/m anda,b run overe,m,t.
It is seen that the resulting trilinear interactions are fla
diagonal and thus the parameterse i are not severely
constrained.3 The major effect of the bilinear terms is t
generate the neutrino masses and leptonic Kobaya
Maskawa matrix.

The neutrino masses in the presence of bilinear te
alone have been discussed in many papers@16#. A large
number of these concentrated on universal boundary co
tions since they provide a natural means to understand
smallness of neutrino masses even when the bilinear pa
eters are not suppressed@16,17#. The soft SUSY breaking
terms are also subject to U~1! symmetry and need not follow
a universal structure@18#. But the smallness of the neutrin
masses follows here from the U~1! symmetry itself without
invoking universal boundary conditions since the allow
values ofu l i1h2u in various tables are large, leading to su
pressede/m and hence neutrino masses, Eq.~7!. The detailed
structure of neutrino masses and mixing will be more mo
dependent here than in the case of universal boundary
ditions. It seems possible to obtain a reasonable mixing
masses in some of the models. As an example, cons
model 2 in Table III. This is characterized by three biline
terms of equal magnitudes. Thus in the absence of any fi
tuning one can expect to get large mixing angles natura
The heaviest neutrino would have mass of the order of

mn;l18
MZ

2

MSUSY
;1021 eV,

which is in the right range for solving the atmospheric ne
trino anomaly. The other mass gets generated radiati
through Eq.~25! and would be suppressed compared to
above mass. The detailed predictions of the neutrino sp

3The same conclusion was also drawn in Ref.@5# by using a
different leptonic basis.
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trum would depend upon the structures of soft symme
breaking terms which themselves would be determined
the U~1! symmetry. We shall not discuss it here.

V. SUMMARY

The supersymmetric standard model allows 39 lep
number violating parameters which are not constrained th
retically. We have shown in this paper that the U~1! symme-
try invoked to understand fermion masses can play an
portant role in constraining these parameters. We restric
ourselves to integer U~1! charges and considered differe
U~1! charge assignments compatible with the fermion sp
trum. We have shown that the only phenomenologically c
sistent possibility in this context is that all the trilinearl i jk8
and all but twol i jk couplings are zero or extremely small o
O(10215). While the patterns ofR violation have been ear
lier discussed in the presence of U~1! symmetry the system
atic confrontation of these patterns with phenomenolo
leading to this important conclusion was not made to the b
of our knowledge. In fact, some works@11# which neglected
the important constraint ofl i1h2<0 concluded to the con
trary that it is possible to obtain phenomenologically cons
tent and nonzero trilinear couplings.

Our work is restricted to only U~1! symmetry which is by
far most popular and to integer U~1! charges. Use of othe
horizontal symmetries can allow nonzero trilinear intera
tions and still be consistent with phenomenology. An e
ample of this can be found in@20#. Our work is closely
related to and complements the analysis presented in@9#. It

TABLE VII. Same as Table II, but for values given by mod
IVA.

No. x q3 u3 d3 l 1 l 2 l 3 f 1 f 2 f 3 If l i jk allowed

1 0 6 -3 -9 -10 -4 -7 -13 -7 -10 l231;1.0
2 0 6 -3 -9 -9 -6 -6 -12 -9 -9 No
3 0 6 -3 -9 -8 -8 -5 -11 -11 -8 No
4 0 6 -3 -9 -7 -10 -4 -10 -13 -7 No
5 2 7 -2 -10 -8 -6 -10 -13 -11 -15 No
6 2 7 -2 -10 -7 -8 -9 -12 -13 -14 No
7 2 7 -2 -10 -6 -10 -8 -11 -15 -13 No
0-7



th
a
ng
ha
lity

t
gs
es

en
en

of

od-
f
is

el

JOSHIPURA, VAIDYA, AND VEMPATI PHYSICAL REVIEW D 62 093020
was assumed in this paper that bilinearR violating interac-
tions come from the GM mechanism and are absent in
superpotential. Assuming that there are no trilinear inter
tions in the superpotential it was shown that flavor violati
transitions in the model are adequately suppressed. We
systematically shown that this is the only allowed possibi
except for the occurrence of one or two trilinearl i jk cou-
plings. This way, U~1! symmetry is shown to require tha
only 4 or 5 of the total 39 lepton number violating couplin
could have magnitudes in the phenomenologically inter
ing range.

APPENDIX

Here we give the most general solutions for the Gre
Schwarz anomaly conditions in terms of the four indep
dent charges. The constraintsA35A2 andA35 3

5 A1 give us
Eq. ~12!. The conditionA1850 can be solved to give

l 35Ad31Bq31Cl11Dx1E, ~A1!

where

TABLE VIII. Same as Table II, but for values given by mod
IVB.

No. x q3 u3 d3 l 1 l 2 l 3 f 1 f 2 f 3 If l i jk allowed

1 0 6 -2 -9 -8 -5 -4 -12 -9 -8 l231;0.22
2 2 7 -1 -10 -8 -5 -7 -14 -11 -13 No
3 2 7 -1 -10 -6 -10 -4 -12 -16 -10 No
ys
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A5
21

k2
S (

i
~di312ui3!2h1k11k22m13xD ,

B5
21

k2
S (

i
~qi314ui3!27h1k1110k22m19xD ,

C5
21

k2
~k22k1!,

D5
21

k2
S 5h24(

i
~ui3!23~k21x! D ,

E5S (
i

~di3
2 1qi3

2 22ui3
2 1ki

2!25h212k2~4h2m! D
~A2!

and

k15 l 131e13,

k25 l 231e23. ~A3!

In the above we have takenq3 , d3 , l 1, andx as four inde-
pendent parameters andl 3 has been expressed in terms
them.m andu3 are, respectively, given by Eqs.~13!,~14! of
the text and remaining charges by Table I defining the m
els. This way all U~1! charges get fixed in terms o
q3 , d3 , l 1 and x once a model displayed in the table
chosen.
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