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Neutrino oscillations in structured matter
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A layered material structure in a monochromatic neutrino beam produces interference effects that could be
used for the measurement of features of the neutrino mass matrix. The phenomenon would be most useful at
high energies.

PACS numbdrs): 14.60.Pq, 12.15.Ff

The Mikheyev-Smirnov-WolfensteiMSW) effect[1,2] Pﬁa(t)zsinz 26sir? ¢, (1.3
describes how electron neutrinos in matter propagate differ-
ently from other neutrinos, and from electron neutrinos inwhere the anglep is determined by the energy difference
vacuum. This effect is an element in the interpretation of
recent experiment§3—6] that have explored the neutrino 1 m2
mass spectrum. The phenomenon also describes the effects o= E(Ez_El)XE 2E S (1.4
of the presence of boundaries between different media on

neutrino propagation and oscillation. As recent wprk-9 with Am2= mg—mf. The approximation refers to the limit

has shown, the boundaries introduce the possibility of inter- hich th gif CAM i hi than th
ference between different amplitudes for neutrino propaga'—n which thé mass differencam IS much 1ess than the mo-

tion. Indeed, the presence of boundaries within the earth he@entum of the beam, a limit that will be of interest to us. The

implications[7,8] for the interpretation of the data of Ref. °Scillation lengthi (E) is the distance tgat corresponds to a

[3]. change Il’kp.t.)y ; that |sI(E)=£}wE{Am . F|naIIy'note that
Here we point out that an arrangement of layers of mateth® Probability for nonconversion, i.e., that- g, is

rials, containing many boundaries, can provide another angle

on the interference between the propagation modes. In addi-

tion to describing the basic mechanism for a two-family neu-

trino structure, we briefly address the question of where this Propagation in matterin the presence of matter, each
effect could be most profitably employed. neutrino specie may have a different potenti@h normal
matter it is only the electron neutrinos for which there is a

potential associated with rescattering from electrons in the
material) In particular, suppose that the potential difference
of the two neutrino species ¢y, wherek labels the mate-

) o rial. Then the effect of the matter on the propagation param-
Neutrino oscillation occurs because the electrowealgiers s described by

eigenstates are not the mass eigenstates. Let us consider two
famllles of neutrinos, with electrov_veak labedsand o (ge- AmzeAmﬁzAmz\/(cos 20— £)2+sir? 26,
nerically Greek lettensand mass eigenstate labels 1 and 2,
with 1 labeling the lightest neutrino. The mattix[the lep-

Ppp=C0S @+COS 20sif =1—Ppg,. (1.5

I. REVIEW OF MSW AND BOUNDARY
INTERFERENCE EFFECTS

2
tonic Cabibbo-Kobayashi-Maskaw@KM) matrix] connects _ Amy
/ ©— Qg Xk » (1.6)
these states according to 4E
sinf 26
Va)= Ua' Vi), 1.1 i — _
| > izzl,z I| I> ( ) 0—)0KDS|r]220k (COSZH—gk)Z-i—SIrTZZG'
whereU takes the generic form where
cosf sinf 1o 2EVy
" |—sin® cosb|’ (12 &= Am? @7
with 6 such that cos(@ is positive. The value ofE for which &=cos 2 is referred to as the

Starting with a pure beam of, sayg, with definite mo- MSW resonance; for that value the anglé; Zoes through
mentum (assumed throughoytthe time evolution is gov- /2. For general values of, total conversion in a single
erned by the mass eigenstates and gives after the neutritieickness of any medium, including vacuum, is not possible,
beam has traveled a distancet a beam containing a mix- but it can occur for an appropriate thickness of medium at
ture of each type of neutrino in the usual fashion. In particuMSW resonance. The expression f#rabove is equivalent
lar the probability for the conversiof— « is to the form given in Ref{2]: namely,
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tan 26 on mixing is in fact extensive, beginning perhaps with a
tan 26‘_1—(477E/I0Am2)sec29 (1.8)  discussion of neutron-antineutron oscillations in a nonuni-
form magnetic field 11], then continuing with work on neu-
with the replacemerity=2=/V;. trinos by Ermilovaet al. [12] and later by Akhmedov and

Let us use the labed for the material(carrying informa-  others[13] in a series of papers. Subsequent widr#] con-
tion not only on the composition through the neutrino poten-centrates on making application to possible neutrino transi-
tials but on the layer thickness as wellhen the generic tions within the Earth. The early referendds] describe the
amplitude Agg that ap neutrino enters and a neutrino phenomenon of parametric amplification; in fact the work of
leaves layerk} is given for the two neutrino types and 3 Refs.[7-9] can be seen as a special case of this treatment
by [15]. However, the approaches taken in Réf-9] and in
this paper are oriented in a fashion sufficiently different to
Al = cosgy+i cos 2, singy, make them worth independent consideration.
w9 . . Let us consider two layers oriented perpendicular to a
Az 4= COS@—i COS 2y Singy, (1.9 neutrino beam, the first labelddl} and the secon(®}. Then,
KAk ) as pointed out in Refl7], the amplitudeA,,; for passage
Aup=Rpe="18IN20, SNy through two successive layefs} and{2} (what we refer to

Since we shall mainly be concerned with total conversiorS & bilayer contains two terms, and these terms can inter-

it is useful for later comparison to give here the lengthfor ere.
maximum conversion in a single layer of matetalimme-

diately found from the last of these equations. The maximum
possible conversion is realized for a leng¢p such that the

factor sing,==*1, i.e., ¢,=(2j+1)w/2, wherej=0,+1,

=Ala{2l L A1 a{2}
Aap=AGpALE T AGA

aa’af

=sin(260,—261)sing, Sing,

+2,....Then —i{sin 26, sinp, cosg,
o AE (2j+D)m  Am? (2j+1)w +5in 26, COS@; Sing,), (1.11
“amZ2 2 KAmE Vi

One can see immediately that the structure of this amplitude
( is not that of the single layer; for example, the third of Egs.
&—(2j+1) far below MSW, (1.9 is purely imaginary. In particular it is possible for this
Vi amplitude to have magnitude one—total conversion—over a
T wide range of the parameter space.
={ cot20—(2j+1) at MSW, (1.10 The work of Ref.[7] approaches total conversion for a
Vi two-channel problem, with a beam initially of typepassing
T through a double layer, through the probability condition
—(2j+1) far above MSW. |AaB|2=1. In a rather involved calculation it is shown using
L Vi this condition that total conversion occurs for layer thick-

The maximum conversion probability is 426, which is  N€sses such that
sir? 26 far below MSW, unity at MSW, and st26/&, as-

ymptotically small, far above MSW. For the minimum dis- y2=tarf ¢, = cos 2, ,

tance at which these conversion probabilities hold, we Ccos 20, co26,—26,)

choosej =0. (1.12
The smallest value of energy and hencepfeads to the —C0s 20,

2
R : =tarf ¢,= ,
smallest lengthX, . At the same time, it is easiest to detect Y2 #27 cos 20, c09260,—26,)
energetic neutrinos. It is therefore helpful to have some idea _ ) ) _
of the energies that are involved for neutrinos. We note thal regions of¢; and 6, where the right hand sides are posi-

when we use the numbaf,=6x10"%cm appropriate for tive. (Note our definitiony;=tan¢;).

Earth[2], then In the two-channel problem Ed1.12) is in fact more
simply approached through the amplitude conditiap,
£=[E/(Amc®)?]x2.5x10 BevV. =0. This amplitude is given by

For Amc=0(10"%) eV, & is on the order of 1 forE  A,,=AllAZ + AlUAL
=0(4 MeV). One can think of this energy as roughly the

dividing line for whether one is below or above MSW en- =C0S¢; COSp,—C0g26,—26;)sing, sing,

ergy, although of course the precise MSW energy depends _ ) )

not only on @ but on the correct value afim? as well, and —i{cos 20; sing; COSp,+COS 20, COS@; SiN @y}

the latter number is not yet fully understofptd]. (1.13

Propagation through layersWhen there are layers of
matter with differing densities, then interference is possibleThis amplitude is zero when both its real and imaginary parts
The history of the effects of passage through repeated layersanish, representing two conditions for the two angigs
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and ¢, and hence for the layer thicknesses if all other physi-bilayers isn=[N/2], where the square bracket indicates the
cal parameters are given. One can see immediately from Edargest integer inN/2. We found no especially interesting
(1.13 that these conditions are simply written as conditionssolutions for the odd\ case and will make only passing

for y, andy,, namely,
Real par0: 1-y;y,co0926,—26,)=0, (1.14a

Imaginary part0: y; cos 20, +Y,cos 26,=0.
(1.14b

From these equations, quadratic in the one immediately

arrives at the solutions given in Eq4..12. These equations

are present in Ref8] as Eq.(28) of that reference.

Il. PASSAGE THROUGH MULTIPLE LAYERS

The amplitudeA,, for the survival of neutrino typex

comments on it.

For evenN, we have in mind ultimately a situation in
which the first member of a bilayer is vacuum and the second
is a given thickness of a dense material, but we treat the
more general situation of a separate potential difference for
each layer. In this case\mi=Am3=Ami=---; Amj
=Amj=--+; @;=¢3="--; and so forth, so that we have
only the subscripts 1 and 2. The two conditions for real and
the imaginary part will now determing, andy,.

We give a series of explicit results for the conditions for
total conversion for multiple bilayers in the appendix. We
remark here that the>22 matrix A that gives the amplitude
for the passage throughbilayers can be written as a factor

through multiple layers is developed in a straightforward(COS¢; COSg,)" times a remaining matriA’. Since the con-

way from the single-layer amplitudes of E€L.9). In the
two-family problem, this amplitude is an element of x 2

ditions refer to the vanishing only of thew component of,
we derive the(necessary and sufficiontonditions from

matrix resulting from the multiplication of two primitive A,,=0. These are the conditions given in the Appendix.

(single layey 2 X 2 matrices. The generalization to more than

The calculations presented in the Appendix reveal two

two layers is straightforward. We give here the cases of threénportant features that we shall assume to be general: First,
and four layers as examples; in each case we give the cotthe imaginary part of the amplitud&/,, contains a single

ditions forA,,=0.

factor of the combination

For three layers, the conditions that the real and imaginary

parts ofA,,=0 are, respectively,

yiyjcog26;—26;)=0, (2.13

3
2 Yi COS 20,—y1Y,y3€08260,—26,+265)=0. (2.1b
=1
For four layers the respective conditions are
yiy;co426,—26;)

+Y1Y2Y3Ya €020, —20,+2605—26,)=0,
(2.2a9

4 4
iZl Yy COS 26i_i j;:]_ yiyjykcoi20i—201+26k)=0.

i<j<k

(2.2b

These two examples are sufficient to understand the mo
general cases. The only important feature to note here is thd

for more than two layers the two conditions ti#gt, vanish

are insufficient to determine uniquely tlye and hence the

layer thicknesses.

F=y,c0s20,+y,cos 20,. (2.3
This will turn out to be quite useful, as we shall see below.
Second, aside from this single factor, the modified mixing
anglesé; appear inA/,, only in the combinatiors defined by
6=26,—20,. (2.9

Conditions for total conversionin the case of the single
bilayer, the imaginary part in particular vanishes only if the
factor F defined by Eq.2.3) vanishes. For more than one
bilayer, eitherF or its coefficient could vanish. Let us con-
sider the latter possibility for some low order examples.

Forn=2, the imaginary part of the amplitude is given by
Eqg. (A2b), and we want to consider the possibility that the
second term vanishes, i.e., that ¥,y, cosé=0. This gives
y>=(y; cosd) "%, and when this is substituted into the real
part, Eq.(A2a), we find the condition

1 N 1 o
cos's yjcods

1+ys+

%ut each term on the right side of this expression is positive,

p we do not have a solution.

For n=3, we consider the possibility that imaginary part
vanishes because the expression in curly brackets of Eq.
(A3b) vanishes. But three times the curly bracket in Eq.
(A3b)+the left side of Eq(A3a) (the real part fom=3) is

Repeated layersA solvable case is that of alternating
layers with every other layer identical to its partners. In other
words, we have exactly repeating layer pairs or repeating
layer pairs plus a last layer identical to the first. If we laRel
as the total number of layers, then these possibilities corre-
spond toN even andN odd, respectively. The number of and, as for its analogue im= 2, this quantity cannot vanish.

yacog 6+1

2
- +1) =
30yrtd) y;cog &
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Although once again we do not have a general proof, itis The pair of conditions thaF and cosfi) each vanish
reasonable that the only way for the imaginary part of theprovide us with two equations for the angles and¢,, i.e.,
amplitudeA,, , to be zero is with the condition th& van-  for the layer widths; andx,. We shall describe the solution
ishes. Using this condition we can make an arbitraigen-  to these equations in the next section.
eralization for the form of the amplitude at the total conver-

sion point. To do so we write the amplitude for passage . TOTAL CONVERSION IN A REPEATED
through a single bilayer in canonical form, namely, MULTILAYER SYSTEM
e'®eacosy €“aBsing We apply the simultaneous conditioRs=0 and cos\n

(2.9 =0 to determiney;=tan¢; here. TheF=0 condition deter-
minesy, in terms ofy,. The quantityy, is determined in

The parameters of this “unit cell” amplitude are determinedterms of the angle; by the inversion of Eq(2.7), which is a

B=| . . . .
e'“sasiny e'“ABcosy

by comparison to the explicit result quadratic equation foy, in terms of cosy. Since cosizy is
an nth order polynomial in cog, there are 8 solutions for
B=ALAZ, y,. BecauseN=2n, this matches the number of solutions

coming from theNth order polynomial fory, coming from
where the single layer amplitudés“ are given by Eq(1.9).  the original real part equations, as described below Egs.
Using Eq.(1.9), we find thatB has the more restrictive form (2.10. Thus we find all the solutions in this way. Because

we would like to minimize the thickness of the material lay-

e'®«a cosy e'“assiny ers, we shall be interested in smgjl solutions, and we shall
B= —e 1%apsing e e cosy (26 see that thi§ corresponds to small valuesof
If we define
with the three bilayer parameters of this expressipw ., ,
andw,z given in terms of the single layer parameters by zj=Y;Ccos 20; (3.9
then the condition th&f vanish readg, +z,=0. In turn this
cosy= (1-y1y,cosé) means that
Vyi+1)(yz+1)
2__ 2
=C0S¢p; COSPH(1—Y1Y,COSS), 2.7 z=2,=2". (3.2
Yy, C0S 20, +Y, cos 20, Equation(2.7) now becomes
tanw,,= , (2.8
1-y,y,C0S86 L
] , cosy=
_ y1sin26;+y,sin 26, V(Z2+cos 26,)(2%+cos 26,)
tanw,z=— . (2.9
y1YoSind

X (C0S 20, cOS 20,+ 7% C0S6). (3.3

This expression simplifies further if we apply the condi- ) _
tion that forn bilayers the factor of Eq(2.3) is zero at the One can see quickly that for smaji for which cosp—1,

total conversion point: Eq. (3.3 becomes homogeneousif, and so has solutions
at z2=0. For more detail, we consider separately different
wq,=0 for total conversion. (2.10 regimes of the MSW parametér. In doing so it is simplest

to treat the layer labeled 1 as a layer of vacuun<0). It
[The denominator of Eq2.8) is not independently zero ex- is straightforward to generalize to a bilayer consisting of two

cept for the single bilayer cage. different materials each with nonzero valuesépf
With this condition, then bilayer amplitude with total &, small (below MSW resonance)/e treaté, as a small
conversion of thex beam becomes perturbation, withAms=Am? and 6,= 6. We have
cosny e'®«tsinny —1_ 2 i
B _ (2.1 cosd=1—(1/2)&5sirn? 26,

—e '“apsinny  cosny
and hence Eq3.3) becomes to leading order &}
In turn, we see immediately that for total conversion

y5(1+y5co20)tarf 26

cognzn)=0. (2.12 f=1-cosy= 215y2)2 &5.
2

In turn Eq.(2.12) gives
With the definitiona=£5/2f, this equation reads

2m+1)«w
7= "5 — m=01..np-1. (213 y3(1+y3cod20)atarf 20=(1+y3)2. (3.4
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The right side of this quadratic equation fpi is O(1) or
larger, so there are no solutions unless-O(1), i.e., f
=0(£2). But by comparison with Eq2.13), we see that for
small values oim/n,

_1(2m+1)2q?

2 4n? (3.5

By choosingn large enough, or more particulanig/n small
enough, we can imagine choosiag=0(1). The equation
for y§ will then have small positive solutions.

The formal solution of Eq(3.4) is

, *sif260\Ja(a—4cos20)—2cos20+asin 20
Yau= 2 co€26(1—asir?26) '
(3.6
We see immediately that there is riea) solution unless
a>4 co$26. The suitable(both small and positiesolu-
tions correspond to the minus brangh_, and it is this so-

PHYSICAL REVIEW D362 093009

8wE
Xl—m— Xs. (37)
The first term on the right side of this expression, which is
the oscillation length in vacuum, is not necessarily small.
The multiple bilayer arrangement offers no advantages be-
low MSW.

& at MCW resonance We have ;=60 and ¢;
=(AmM?/4E)x, . For medium 2¢,=cos ¥, and sin 2,=1 or
260,=/2 and cos B,=0. (In fact we shall assume that we
are a little above MSW resonance, so that a@sig small
and negative. This helps to clarify limitjsThe angle ¢,
= (AmMZ/4E)x,=(Am? sin 20/4E)x,. We also haves= /2
—26 and cosb=sin 20. In this limit the relation between
y, and 5 of Eq. (3.3) becomes

lution that we look at henceforth. The solutions are smoothrpe relevant solution to Ed3.9) is
as we pass through the point where the denominator factor

1—sir26=0 and are simple for greater than or equal to
O(1) for the #=0.7 case that we use below for illustration.

Indeed, in this range we can use the very accurate approx®', sincey,=tane,,

mation

2

cot 26 cot 26

a

2

y5_ = +(2—co< 26)

all the way to small values aof. That is because the expan-
sion is in cof 26/a, something that follows from the fact that

it is « tar? 260 that appears in the original equation. Thus we

can write our solution in the form

7 cot 26
2né&, -’

cot 26
y2= -
Ja
where in the last step we have chosen a largelution with

m=0. Under the assumption that cat® small enough, we
can replacey, by ¢,, and solve forx,:

o
——cot 26.

X:
27 nv,

The total amount of materiax, is less than the correspond-
ing amount of a single layer of materia[Eq. (1.10] only in
the circumstance that cotds very small.

There is a second problem in this region&gf Once we
have foundy,, theny,, and hence the thickness of layer 1,
is determined through the condition

0=y, cos 20,+Yy,Cos 20,
But in this regionf,= 6,= 6. We would then requirg/,=

—Y,, or, assuming that, is sufficiently small thate,
=tang; =Ys,

er=tan *(—p,).

Since the distances, must be positive, the only way we can
satisfy this condition is to take;=2m— ¢,, or, in other
words,

1
cosy= . 3.8
(R 0
y,=tan. (3.9
m(2m+1)
P2= T o (3.10

Since cos B, is small and negativey, is satisfactorily posi-
tive and is also small:

y1=Y,|cos 26,|/cos 24. (3.11

When we calculate the layer thicknesses we see why this
case is of no special interest. Red&ll. (1.10] that at MSW
resonance a single layer of thickness= (7/V,)cot 26 of
material 2 gives total conversion. In comparison, E310
shows us that the minimum value @f, for an n-bilayer
system occurs form=0, in which case we havep,
=/(2n), or

m 4E

X2 =50 A2 (3.12
Thus the total amounhx, of material 2 is exactly the
amount needed for the single layer. Moreover in the MSW
limit, cos 26, is zero, so that from Eq3.11) y; and hence
the total thickness of vacuumx; vanishes. The entire sys-
tem limits to a single layer of material 2. We have been able
to find no quantity associated with bilayers that scales to
any experimental advantage in the MSW limit.

&, large (above MSW resonancédgain we assume that
the medium labeled 1 is vacuuré;=0. For &,>cosé and
sin 6,sir? 26,=sir? 26/&—0, with sin2, positive and
cos %, approximately —1. The fact that sin& is small
means[Eq. (1.9)] that one can at best have very little con-
version in a single layer of material 2. Thus the very possi-
bility of total conversion makes this limit interesting.

The relation(3.3) betweeny, and  gives solutions inde-
pendent ofé, in the largeé, limit, namely,
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sin7 cos 20 We haveAm3=Am?¢, in this limit. We also choose the
Yoo =71= . minimum valuer/(2n) for », and expand for smaly. Then
Vlcog 26— cos 7 we compute from our results fgr; andy, the total amounts
The positivey, solution is then simply of material 2 and of vacuum space to be, respectively,
_ |siny|cos 29 - -
Y2= Jco220—co2 |’ (3.13 nx2:V—200t20 and nx1=V—2§20302n9. (3.1

Before we deal with the issue of many bilayers, let us
consider the case of a single bilayer. We show here that totdlhese numbers should be compared to the length of material
conversion may not be possible in the single bilayer, al-X needed formaximumconversion in the large, limit,
though it will always be possible far=2. The original total namely,[Eq.(1.10] X=/V,. We see that if the amount of
conversion conditions for the single bilayer are given by Eqsmaterial is the controlling issue one can gain considerably, in
(1.14. If we takey, from the second of these equations andthat one may havax,<X. However,nx;> X, so that if the
substitute into the first, we find an equation for, namely, total length of the experiment is the controlling issue this
limit is not useful. We should also recall that the maximum

2 C0S 20, C0826—20,) ~0 (3.14  conversion in a single layer of widtK is small, so the very

2 cos 2 ' ' possibility of total conversion is an attractive feature of the

Well above MSW, &,=w—¢, and expanding to leading multiple bilayer arrangement.
order ing gives

2 1 IV. NUMERICAL EXAMPLE
V2= T otan2s’ 319 o - | -
As indicated by the discussion of the previous section, the
For this equation to have a valighositive) solution, one  most interesting cases to look at are those for whiclputs
requires thats tan 29>1, and this will not always hold; in- one above the MSW resonance. We present two numerical
deed it can hold only in a decreasing domain éfs E jllustrations here, each for the arbitrary valuetsf 0.7, cor-
becomes largers(—0). This situation is illustrated in the responding to a large degree of mixing. Our bilayer consists
numerical example of the next section. It is not difficult to of a layer of vacuum followed by a layer of a material 2 for
show that there will always be a total conversion solution inwhich the potential is given by,=6x10"°cm[2]. In the
this limit for two or more bilayers. first example we assume the energy and masses are such that
Let us turn next to the case of many bilayers. Given thabne is slightly above MSW and in the second example one is
we are interested in the case of smalland supposing that far above MSW. Our strategy is to first allow the possibility
cos & is much larger than sip, we can replace the denomi- of total conversion by fixing the thickness of the first layer
nator in this expression by sif2and our solution becomes in terms of the second layer through the condition faas
_ ; defined in Eq(2.3), vanish, i.e., through Eq3.11). We then
y2=cot2sinz. (3.19 plot the probability for nonconversion as a function of the
In turn, Eq.(3.11) gives us thegsmal) value ofy;, namely, total width X,=nx, of the material layers for various num-
y1=Y-|cos X,|/cos D=sin n/sin 26. (In the numerical ex- bersn of bilayers, including the single bilayer.

ample treated in the next section, we ch@se0.7, in which For the first example, we suppose that we are slightly
case cot2=0.17, while sin 2=0.98) above MSW resonance 2= w/2+0.02. Figure 1 shows the
¥ lo.o8
FIG. 1. The total length of ma-
terial, in units of 16 cm, in a mul-
0.823 tiple bilayer system consisting of
n alternating slices of vacuum and
0.6875 material versus the probability of
nonconversion. Total conversion
0.3 is a zero in this plot. The material
has the density of the earth, and
the relative width of the layers is
0.4125 determined so that the factér of
Eq. (2.3 is zero, which guarantees
0.2735 the possibility of complete con-
version. The energy of the neu-
6.1395 trino beam is such that we are
slightly above MSW resonance,
20,=mw/2+0.02. Plots are drawn
0.1873 0.375 0.3625 0.73 0.9373 1.125% 1.3125 1.3 forn=1, 2, 3, and 6.
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¥

odazs . : - - /—\ FIG. 2. The total length of ma-

n= terial, in units of 16 cm, in a mul-

0825 . . . . . , . tiple bilayer system consisting of
\ n alternating slices of vacuum and
material versus the probability of

06875 nonconversion. Total conversion
\ is a zero in this plot. The material
055 : : : : : , has the density of the earth, and
b\ #=! n=3 the relative width of the layers is

0alzs ) i * . \ . . . determined so that the factérof

‘~\ Eq. (2.3 is zero, which guarantees

\ the possibility of complete con-

0235 : ‘ ' ) ) ' ) version forn>1. The energy of
n=2 the neutrino beam is such that we
0.1375 . . > . . . . . are far above MSW resonance,
. \ 20,=7—0.02. Plots are drawn

N i " forn=1, 2, 3, and 6.
0.4375 0.875 1.3128 178 2.1875 2.628 3.0628 35
total length of material versus the probability of nonconver- ACKNOWLEDGMENTS

sion (i.e., total conversion is a zero in this pldor n=1, 2,
3, and 6. There is very little dependence on the number of
layers. For the parameters used one can directly locate t
first largen zero[Eq. (3.12)], and it matches the numerical
value on the plot precisely. We have also made a variatio
on this calcglgtlon, in which we have shifted from the. Department of Energy under Grant No. DEFGO2-
zero-determining value, and we have observed the zero fill iy
o o S 7TER41027.

as the shift increases, verifying that the conversion is no
longer total.

As a second example we suppose that we are far above APPENDIX

MSW, 26,=m—0.02. Figure 2 again shows the probability  Here we work through a series of cases of total conver-
of nonconversion fon=1, 2, 3, and 6 as a function of the sjon in n bilayers in order to develop insight to the most
total amount of material used. In this case the single bilayegenerm case. Far=1, Egs.(1.14 apply, although it is use-
does not give total conversion. One can see the zero move {{) to repeat them here. Through=4 we find the conditions
the left(less materiglasn increases, with the overall pattern for total conversion(the a and b equations refer, respec-
quite distinctly dependent om tively, to the real and imaginary parts

n=1:
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V. COMMENTS
1-y,y,c086=0, (Ala)
We have concentrated here on the possibility of total con-
version of neutrinos in multilayer systems. It would appear Y1 COS 26, +Yy, cos 20,=0. (Alb)
that the technique is more interesting at high energies. If
these effects are ever to play a role in experiments it will be1=2:
important to understand several features that we have not

looked at, including in particular the implications of a real- 1-yi—y3—4y1y,C0S6+yiy5coq28)=0, (A2a)
istic energy spread and, less importantly, the generalization

to three families. The three family calculation in principle 2[y1 €08 20+, COS 25][1 Y1y, C0S]=0.

has a richer variety of possible outcomes for conversion ex- (A2b)
periments.

n=3
The neutraK system presents another well-known case of

oscillation. It differs radically from the neutrino system;

1-3y?—3y2+3y2y2—3y,y, cosd[ 3—y2—y2]
among other differences materials in the kaon beam produce YimSYa T YNy yimya

absorption as well as forward scattering. This system may be +6y2y2co9248)—yly3 cog36)=0, (A3a)
interesting to think about from the point of view taken here.
Finally we remark that there is another class of effects [y1€0S 201 +Y, cos 20,]{3—yi—y5+yiy;
that exploits the fact that the order of layers matters in con- 5 5
version probabilities. We shall discuss this elsewhere. —8y1y, cosé+2y1y; cog26)}=0. (A3b)
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n=4:
1-6y7—6y5+y1+Ys+ 16y5y5—2y7y5(yi+y3)
—8Y1y,C0S8[ 2 2yi—2y5+yiy3]
+4yiy5coq28)[5-yi-y3]

—8y3y3cog36)+yjyscod46)=0, (Ada)
—2[y, COS 20, +Y, oS 20,]{ — 2+ 2y3
+2y53-4y3y3
+Y1Y2 0S8 10— 2y3 — 2y5+yiy3]
—By2y2cog24)+yly3 cod36)}=0. (A4b)

We can also write systematically pieces of termsAip,

PHYSICAL REVIEW D 62 093009

(y1y2)" cogné), (A5)

while the terms in the real part that are proportionayto 2
are

sin(nd)  yi+y3sif(n—1)4]
sind + 2 sinéd

n(y1y2)" i y1ya
(A6)

The terms proportional tgN~?! in the imaginary part are

(Y1y2)"[y1 COS 201 +y, COS 26, ]. (A7)
These terms are thargestpowers ofy possible in both the
real and imaginary parts. The real part contains even powers
only, with the largest powey™; the imaginary part contains
odd powers only, with the largest powgt 1.

for generaln. As examples, the terms in the real part that are  Finally, we can also develop systematically low powers of

proportional toy™ (by yP we mean in generayJy5 %, q
positive take the form

Real part, constant terms: 1;

Real part, y? terms: (n/2)[2ny,y, cosé+(n—1)(yi+y3)];

Real part,y* terms: T

Imaginary part,y* terms: n[y; cos 26, +Yy, cos 26,];

. 3 n(n—1)
Imaginary part,y* terms:

n(n—1)( 2n(n+1)y7y3 cos 25+4n(n—2)y;y,(y;+y3)cosd|
+(n=2)[(n=3)(y{+y5)*+2(n+3)yly5] |’

—3—[¥1€08 201 +y, CoS 26,][ 2(n+1)y1y, OS5+ (N—2)(yi +Y3)].

y in the imaginary and real parts for arbitrafharge n. A
few examples are

(A8)

(A9)

(A10)

(A11)

(A12)

We have worked out such terms all the way throughythéerms. We have not, however, found a way to generalize every

term.
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