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Hidden dimensions of the large scale universe and isotropy of the cosmic microwave
background radiation

Alexander Bershadskii
ICAR, P.O. Box 31155, Jerusalem 91000, Israel

~Received 28 February 2000; published 25 September 2000!

It is suggested to resolve the contradiction between the two main cosmological observations of the high
isotropy of the cosmic microwave background and fractal structure of the large-scale universe by consideration
of a hidden support dimension of the multifractal space-luminous distribution of visible matter in the Perseus-
Pisces redshift survey. It is shown that while a simple set given by the galaxy space positions has a support
dimensionD0.2 inclusion of the galaxy mass~luminosity! leads to a multifractal distribution which can be
characterized by two differentsupportdimensions. One of them~corresponding to comparatively rare visible
matter! is close to two, whereas the second~corresponding to comparatively dense visible matter! is close to
three. The crossover between these two states can be considered as a morphological phase transition.

PACS number~s!: 98.80.Cq, 98.70.Vc, 98.80.Hw
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I. INTRODUCTION

The high isotropy of the cosmic microwave backgrou
radiation~CMBR! and fractal nature of galaxy distribution i
the large scale universe are among the main facts in mo
cosmology from an experimental point of view. For som
recent three-dimensional catalogues the space distributio
galaxies and clusters demonstrates stable value of the s
support dimensionD.2 up to the largest space scales~see
for a review Ref.@1#!. Since the basic space properties of t
cosmic microwave backgrownd radiation~CMBR! are re-
lated to those of galaxy distribution in the large scales~see
for instance Refs.@2,3#, and references therein! we have a
significant contradiction between these two main cosmolo
cal observations. Hypothetic dark matter could be a mean
resolve this contradiction. One can merely assume that
dark matter is uniformly distributed in the universe@1#.
However, before using this ‘‘panacea’’ one may try to find
solution in the properties of visible matter itself. In fact, t
observed valueD.2 corresponds to a simple set given
the galaxy space positions. It is clear, however, that inte
tion between visible matter and CMBR depends not only
the galaxy space positions but also on the galaxy masse
is recently shown@1# that the inclusion of the galaxy mas
~luminosity! leads to a distribution with well definedmulti-
fractal properties. It will be shown below that while th
spacesupportdimension of the multifractal space-luminosi
measure,D0, is still close to two, there exists a hiddensup-
port dimensionDh ~corresponding to high dense visible ma
ter!, which is approximately equal to three.

While the high value of the hiddensupport dimension
corresponds to high dense visible matter or~in multifractal
terms! to high order generalized dimensions, the high or
generalized dimensions themselves are comparatively s
(Dq decreases withq, see Fig. 1!. The highest fluctuations
are supposed to be located in the largest clusters. Th
actually what happens for elliptical galaxies which are
cated in the cores of the largest clusters. Given this situa
one expects that elliptical galaxies are more ‘‘strongly cl
tered’’ than field galaxies~or spirals!. Such a situation cor-
responds to small ‘‘fractal dimensions’’ for elliptical galax
0556-2821/2000/62~8!/087303~4!/$15.00 62 0873
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ies than for field galaxies. Therefore the question is: W
dimension: the effective~hidden! support dimension or cor
respondingDq dimensions, represents the high dense visi
matter in its interaction with the CMBR? This rather no
trivial and crucial question inquires a physical theory d
scribing interaction of the CMBR with visible matter, whil
the above described result is obtained using only anal
properties of the observed space-luminosity measure~see
also the Appendix!. Nevertheless we hope that the observ
tion represented in Fig. 1 can be considered as a step tow
the matching of the two crucial experimental facts. Mor
over, coexistence of the two support dimensions could b
reason of the weak anisotropy observed in the CMBR@4,5#.

Finally, it should be noted that different methods are us
for fractal calculations related to cosmological catalogs a
for different ranges of scales in these catalogs~see for a
review Ref.@1#!. A vigorous discussion about applicabilit
of these methods has taken place in the recent decade.

FIG. 1. The generalized dimensionDq againstq ln q/(q21) for
the Perseus-Pisces redshift survey~data taken from Ref.@12#!. The
solid straight line indicates agreement between the data and re
sentation~20! with Dh.3.
©2000 The American Physical Society03-1



ri
e
e

tic
ng
d
o
d
n

an
ve

a

p

n

be
ce

en

.

n

e

ha
l
s
e

m
e

e
-

ips
ure
y-

n

py

m-

r-

se

BRIEF REPORTS PHYSICAL REVIEW D 62 087303
homogeneity is considered by several authors as a crite
of a fair cosmological sample. But, as shown in recent pap
discussed in Ref.@1#, to consider a sample as a fair one w
only need enough number of points to derive some statis
properties unambiguously. Moreover, using of weighti
schemes and treatment of boundary conditions can lea
misinterpretation of the data, in particular in respect of h
mogeneity. In the present paper, we use the data obtaine
Ref. @12# for the Perseus-Pisces survey without using a
weighting scheme or treatment of boundary conditions,
only a limiting effective depth of the Perseus-Pisces sur
~which was estimated in Ref.@12# to be ;30 Mpc/h! is a
restriction for applicability of this analysis~authors of Ref.
@12# eliminated from the statistics the points for which
sphere of radiusr .30 Mpc/h is not fully included within the
sample boundaries!. Tests were also performed to check a
plicability of this analysis to be considered samples@1,12#
and this data can be considered among the best 3D data
available.

II. ANALYTIC PROPERTIES OF MULTIFRACTAL
MEASURE

For multifractal distribution, the scaling properties can
different for different regions of the system. Let us introdu
the multifractal measure following Ref.@1#. Suppose that the
total volume of the sample consists of a cube sizeL. The
density distribution of visible matter is described by

r~x!5(
i 51

N

mid~x2xi ! ~1!

wheremi is the mass of the galaxy~proportional to its lumi-
nosity!, N is the number of points in the sample, andd(x) is
the Dirac delta function. The dimensionless normalized d
sity function is then defined as

m~x!5(
i 51

N

m id~x2xi ! ~2!

with m i5mi /M , whereM is the total mass of the sample
We divide the volume into boxes of linear sizel and label
each box by the indexi. Then we can construct the functio

m i~r !5E
i th box

m~x!dx ~3!

where dimensionless variabler 5 l /L. The definition of the
box-counting fractal dimensiona is

lim
r→0

m i~r !;r a(x) ~4!

wherea(x… is constant~fractal! dimensionD0 in all the oc-
cupied boxes in the case of a simple fractal. This expon
fluctuates widely with the positionx in the case of multifrac-
tal. In general we will find several boxes with a measure t
scales with the same exponenta. These boxes form a fracta
subset with dimensionf 5 f (a). Hence the number of boxe
that have a measurem that scales with exponent in the rang
@a,a1da# varies withr as
08730
on
rs

al

to
-
in

y
d
y

-

ow

-

nt

t

N~a,r !da5r~a!r 2 f (a)da ~5!

wherer(a) is some function ona but not onr. The function
f (a) is usually a single humped function with the maximu
at maxa f(a)5D0, whereD0 is the dimension of the spac
support. In the case of a single fractal, the functionf (a) is
reduced to a single pointf (a)5a5D0.

One can also introduce the partition function@6#

Zq5(
i 51

N

m i
q . ~6!

It follows from Eqs.~3!–~6! that

Zq5E r~a!r qa2 f (q)da. ~7!

In the multifractal caseZq scales as

Zq;r t(q). ~8!

In the limit r→0 the sum~7! is dominated by the term
emina[qa2f(a)]. Then from Eqs.~7! and ~8! one obtains

t~q!5min
a

@qa2 f ~a!#. ~9!

Thus, thet(q) is obtained by Legendre transforming th
f (a). When f (a) and t(q) are smooth functions, the rela
tionship ~9! can be rewritten in the following way

t~q!5qa2 f ~a!,
d f

da
5q. ~10!

The thermodynamic interpretation of these relationsh
means@6# thatq can be interpreted as an inverse temperat
q5T21 and the limit r→0 can be seen as the thermod
namic limit of infinite volume@V5 ln(1/r )→`#. Then by
identifying a i5 ln mi /ln(1/r ) to the energyEi ~per unit vol-
ume! of a microstatei, one can rewrite the partition functio
under the familiar form

Zq5(
i

exp~2qEi !. ~11!

From the definition: f (a)5 ln Na(r)/ln(1/r ), the function
f (a) plays the role of the entropy~per unit volume!.

One can use expansion of the multifractal entro
f @a(q)# in power series~the high-temperature expansion!

f ~q!5 f ~0!1qS d f

dqD U
q50

1
1

2
q2S d2f

dq2D U
q50

1•••.

~12!

It is known that entropy can have singularities in the co
plex temperature plane~see, for instance, Refs.@7–9#, and
references therein!. If the multifractal entropyf (q) has sin-
gularities in the complexq-plane, then the radius of conve
gence of thereal Maclaurin series expansion~12! is deter-
mined by the distance from the pointq50 to a nearest
singularity of f (q) in the complex plane. One can then u
3-2
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BRIEF REPORTS PHYSICAL REVIEW D 62 087303
the standard procedure of analytic continuation to obt
power series expansions beyond the circle of convergenc
the expansion~12!

f ~q!5 f ~q0!1~q2q0!S d f

dqD U
q5q0

1
1

2
~q2q0!2S d2f

dq2D U
q5q0

1••• ~13!

where q0 is the modulus of the nearest to pointq50
complex-temperature singularity.

If one takes finite number of terms in the series~13!: N,
then one could also rewrite the series in a form similar
~12!

f ~q!5a01a1q1•••1aNqN. ~14!

The coefficientsa0 , a1 , . . . ,aN depend onN. Since the
Maclaurin expansion~12! in the interval 0,q,q0 is unique,
the coefficientsan must diverge for sufficiently largeN. If,
however, finite

lim
n→`

a05 f ~q0!2q0

d f

dqU
q5q0

1
1

2
q0

2 d2f

dq2U
q5q0

1•••

~15!

do exist, then this value (lim
n→`

a0) could be interpreted

geometrically as a hidden support dimensionDh @cf. Eq.~12!
and recall thatf (0)5D0#. Moreover, ifq0.1, then this hid-
den support dimension corresponds to the localized a
with high density@10# of the visible matter. In the case whe
finite lim

n→`
a15A,` also exists one can use approxim

tion

f ~q!.Dh1Aq ~16!

in some vicinity ofq0.
Using Eq.~10! it is easy to show thatt(q) corresponding

to Eq. ~16! is

t~q!.2D01~C2A!q1Aq ln q ~17!

whereC is some constant.
The generalized dimension spectrumDq can be defined as

follows @11#:

Dq5 lim
r→0

ln Zq

~q21!ln r
. ~18!

Then

Dq5
tq

~q21!
~19!

and from Eqs.~17!,~19! we obtain

Dq.Dh1A
q ln q

~q21!
~20!

in some vicinity ofq5q0. If D0,Dh and both of them are
integers, then we have a morphological phase transition
08730
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III. COMPARISON WITH 3D DATA AND DISCUSSION

Figure 1 shows the generalized dimensions spectrumDq
againstq ln q/(q21) computed using Perseus-Pisces reds
survey@12#. The solid straight line indicates agreement b
tween these data and representation~20! for sufficiently large
q. Intersection of this line with the vertical axis indicates th
Dh.3 for this case. On the other hand, one can see fr
Fig. 1 thatD0.2 ~see also Ref.@1#!, and therefore, we can
expect the morphological phase transition from the tw
dimensional distribution of comparatively rare lumino
matter to distribution which hassupportdimension approxi-
mately equal to 3 for comparatively dense luminous mat
And indeed, the data behavior in this figure seems to
consistent with this expectation.

Possibility of dynamical character of the space dimens
related to mass distribution has been discussed in the s
theory ~see, for instance,@2,13–15#, and references therein!.
The relation between the background radiation and distri
tion of the visible matter requires a complex theory@1,2# and
the above obtained result can be considered as a step to
reconciliation between these two cosmological observatio
high isotropy of the CMBR and the valueD0.2 for the
space support dimension. Moreover, the observed weak
isotropy of the CMBR could be related to coexistence of
two differentsupportdimensions~2 and 3! for visible matter.
The problem with elliptical galaxies discussed in the Intr
duction shows, however, that significant theoretical and
perimental efforts should be made to perform complete r
onciliation between these two basic observations.
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APPENDIX

To show more clear appearance of the hidden dimens
let us consider multifractality of a strange attractor of t
baker map for which analytical results are available. T
transformation is defined as

@xn11 ,yn11#5@ l 1xn ,yn /h#, yn,h, ~A1!

@xn11 ,yn11#5@ 1
2 1 l 2xn ,~yn2h!/~12h!#, yn.h.

~A2!

The attractor of this map consists of an infinite number
lines in they direction which intersect a horizontal line i
two interwoven Cantor sets. These sets are characterize
contraction ratesl 1 andl 2, and are visited with probabilityh
and 12h, respectively. The dimension spectrumDq of the
cross section follows from

hq

l 1
(q21)Dq

1
~12h!q

l 2
(q21)Dq

51. ~A3!

If we introduce the following definitions
3-3
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hq5a, ~12h!q5b, l 2
(q21)Dq5G,

and lnl1 /ln l25k, then we can rewrite Eq.~A3! as the follow-
ing equation:

Gk2bG(k21)2a50. ~A4!

From this equation one obtains

dG

dq
5

da/dq1~db/dq!G(k21)

kG(k21)2b~k21!G(k22)
.

HencedG/dq has a singularity whenG5b(k21)/k. Sub-
stituting this relationship into Eq.~A4! we obtain value of
q5q0 for which dG/dq has a singularity

q05
ln c

ln@h/~12h!k#
~A5!

where

c52
~k21!(k21)

kk
. ~A6!

The constantc.0 only when (k21)521/n, where n
53,5,7, . . . . Forthese specific values ofk the values ofq0
are real numbers and,dG/dq ~and, consequently,dDq /dq)
have singularities on the real axis. If we take into acco
that

f ~q!5Dq1q~q21!
dDq

dq
~A7!

then we can claim that the entropyf (q) of the baker map has
real singularities at these specific values ofk. In the general
case, however, these singularities are complex.

Let us consider an example with concrete values oh
50.6, l 150.25, andl 250.4. For this case we obtain from
Eqs.~A5! and~A6! a complex value ofq0.21.11 i3.6 and,
consequentlyuq0u.3.8. This is a value of the radius of con
vergence of the high-temperature Taylor series expan
~12! for the baker map. The corresponding radius of conv
’’

08730
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gence of the finite-temperature Taylor series expansion~13!
is R.5.8, so that the interval of applicability of the finite
temperature expansion is approximately 0,q,10. For the
first order approximation we should exclude a narrow vic
ity of the pointq50 from this interval. Figure 2 shows a se
of valuesDq for this situation. The axes on this figure a
chosen for comparison with the first order approximation
the finite-temperature expansion~20!. The straight line in
this figure corresponds to this approximation and one can
good agreement between the data and the approxima
~20!. The hidden support dimensionDh has also been indi-
cated in this figure.

It is clear that there can also exist multifractals witho
complex-temperature singularities, and in each concrete
we can check the presence of the complex-temperature
gularities analytically~if it is possible!, or by using graphical
representationDq versusq ln(q)/(q21) as is shown in Figs. 1
and 2.

FIG. 2. The generalized dimensionsDq againstq ln q/(q21) for
a strange attractor of the baker map. The solid straight line indic
agreement between the data and representation~20!.
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