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Hidden dimensions of the large scale universe and isotropy of the cosmic microwave
background radiation
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It is suggested to resolve the contradiction between the two main cosmological observations of the high
isotropy of the cosmic microwave background and fractal structure of the large-scale universe by consideration
of a hidden support dimension of the multifractal space-luminous distribution of visible matter in the Perseus-
Pisces redshift survey. It is shown that while a simple set given by the galaxy space positions has a support
dimensionDy=2 inclusion of the galaxy madsuminosity) leads to a multifractal distribution which can be
characterized by two differerstupportdimensions. One of therftorresponding to comparatively rare visible
matte) is close to two, whereas the secofdrresponding to comparatively dense visible matteclose to
three. The crossover between these two states can be considered as a morphological phase transition.

PACS numbd(s): 98.80.Cq, 98.70.Vc, 98.80.Hw

I. INTRODUCTION ies than for field galaxies. Therefore the question is: What
dimension: the effectivéhidder) support dimension or cor-

The high isotropy of the cosmic microwave backgroundrespondingD, dimensions, represents the high dense visible
radiation(CMBR) and fractal nature of galaxy distribution in matter in its interaction with the CMBR? This rather non-
the large scale universe are among the main facts in modetfivial and crucial question inquires a physical theory de-
Cosmo|ogy from an experimenta| point of view. For SomeSCfibing interaction of the CMBR with visible matter, while
recent three-dimensional catalogues the space distribution §t€ above described result is obtained using only analytic
galaxies and clusters demonstrates stable value of the spaggPPerties of the observed space-luminosity meassee
support dimensio =2 up to the largest space scalese e}lso the AppendQ( Ngvertheless we hppe that the observa-
for a review Ref[1]). Since the basic space properties of thetion represented in Fig. 1 can be considered as a step toward

cosmic microwave backgrownd radiatid@MBR) are re- the matchi_ng of the two crucial experi_mentgl facts. More-
lated to those of galaxy distribution in the large scalese over, coexistence of the two support dimensions could be a

for instance Refs[2,3], and references therginve have a reason of the weak anisotropy observed in the CMBIE].

significant contradiction between these two main cosmologiz Finally, it should be noted that different methods are used
?r fractal calculations related to cosmological catalogs and

cal observations. Hypothetic dark matter could be a means t i : f les in th tald ;
resolve this contradiction. One can merely assume that thg" diiferent ranges of scales in these calaiegse lor a
review Ref.[1]). A vigorous discussion about applicability

aacl)rvl\(levmearttgreflsreuggzrgrrllziSq!;t;r?:égg,'|2nt6h:anal;/ntl;/; géf]md aof these methods has taken place in the recent decade. The

solution in the properties of visible matter itself. In fact, the

observed valu® =2 corresponds to a simple set given by 3 T T T
the galaxy space positions. It is clear, however, that interac-
tion between visible matter and CMBR depends not only on
the galaxy space positions but also on the galaxy masses.

is recently showrj1] that the inclusion of the galaxy mass
(luminosity) leads to a distribution with well defineahulti-

fractal properties. It will be shown below that while the
spacesupportdimension of the multifractal space-luminosity DU s | * _
measurepD,, is still close to two, there exists a hiddenp-

port dimensionD,, (corresponding to high dense visible mat-
ter), which is approximately equal to three.

While the high value of the hiddesupport dimension 15 .
corresponds to high dense visible matter(ior multifractal
termg to high order generalized dimensions, the high order
generalized dimensions themselves are comparatively sma
(Dq decreases witly, see Fig. 1 The highest fluctuations ! 0 0f5 " 1f5 2
are supposed to be located in the largest clusters. This i q In(q)/(q—1)
actually what happens for elliptical galaxies which are lo-
cated in the cores of the largest clusters. Given this situation F|G. 1. The generalized dimensi@y, againstq In ¢/(q—1) for
one expects that elliptical galaxies are more “strongly clus+the Perseus-Pisces redshift surydgta taken from Ref12]). The
tered” than field galaxiegor spiralg. Such a situation cor- solid straight line indicates agreement between the data and repre-
responds to small “fractal dimensions” for elliptical galax- sentation(20) with D,,=3.
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homogeneity is considered by several authors as a criterion N(a,r)da=p(a)r‘f(“)da (5)

of a fair cosmological sample. But, as shown in recent papers

discussed in Ref.1], to consider a sample as a fair one we wherep(«) is some function o but not onr. The function
only need enough number of points to derive some statisticdi( «) is usually a single humped function with the maximum
properties unambiguously. Moreover, using of weightingat max, f(a)=D,, whereD, is the dimension of the space
schemes and treatment of boundary conditions can lead tupport. In the case of a single fractal, the functi¢r) is
misinterpretation of the data, in particular in respect of horeduced to a single poirfi( a) = a=D,.

mogeneity. In the present paper, we use the data obtained in One can also introduce the partition functidi

Ref. [12] for the Perseus-Pisces survey without using any N

weighting scheme or treatment of boundary conditions, and 7 — 2 q 6)
only a limiting effective depth of the Perseus-Pisces survey = M-

(which was estimated in Ref12] to be ~30 Mpc/h is a

restriction for applicability of this analysigauthors of Ref. It follows from Egs.(3)—(6) that

[12] eliminated from the statistics the points for which a

sphere of radius>30 Mpc/h is not fully included within the Z,= f p(a)rde— gy, 7
sample boundarigsTests were also performed to check ap-

plicability of this analysis to be considered sampjésl2] .

and this data can be considered among the best 3D data n(;\r/]v the multifractal cas@, scales as

available. Zy~r7@, (8)
Il. ANALYTIC PROPERTIES OF MULTIFRACTAL In the limit r—0 the sum(7) is dominated by the term
MEASURE eMnalde=f@)] Then from Eqs(7) and(8) one obtains
For multifractal distribution, the scaling properties can be (o) =minfga—f(a)]. 9)

different for different regions of the system. Let us introduce
the multifractal measure following Réfl]. Suppose that the
total volume of the sample consists of a cube dizeThe
density distribution of visible matter is described by

Thus, ther(q) is obtained by Legendre transforming the
f(a). Whenf(«) and 7(q) are smooth functions, the rela-
tionship (9) can be rewritten in the following way

N
_ ey df
pOO= 2, m;o(x=x) @ fg)=da—f(a), 5-=a. (10

wherem, is the mass of the galaxproportional to its lumi- The thermodynamic interpretation of these relationships

nosﬂy}, Nis the numper of po'r!ts n the sample, aﬁ@) IS meang 6] thatq can be interpreted as an inverse temperature
e Dic defa uncten, The dmensioniessnormalized 407 ang to fmit 0 can be seen a the hermody-
namic limit of infinite volume[V=In(1/r)—«]. Then by
N identifying «;=1In ;/In(1/r) to the energyE; (per unit vol-
,u(x)=21 i O(X—X;) (20 ume of a microstate, one can rewrite the partition function
1=

under the familiar form

with u;=m;/M, whereM is the total mass of the sample.
We divide the volume into boxes of linear sizend label Zq=2 exp —qE). (11
each box by the indek Then we can construct the function i

From the definition: f(a)=InN,(r)/In(1/r), the function
f(a) plays the role of the entrop§per unit volume.

One can use expansion of the multifractal entropy
where dimensionless variabte=1/L. The definition of the f[«(q)] in power seriegthe high-temperature expansjon

box-counting fractal dimensioa is
df) L 2( de)
— _q —
dq 4=0 2 dq2
where a(x) is constantfracta) dimensionDy, in all the oc-

lim g(r)~re® 4 f(@)=1(0)+q
r—0
cupied boxes in the case of a simple fractal. This exponent is known that entropy can have singularities in the com-
fluctuates widely with the positiox in the case of multifrac- plex temperature planésee, for instance, Ref§7-9|, and
tal. In general we will find several boxes with a measure thateferences therejnlf the multifractal entropyf(q) has sin-
scales with the same exponentThese boxes form a fractal gularities in the complexj-plane, then the radius of conver-
subset with dimensiofi=f(«). Hence the number of boxes gence of thereal Maclaurin series expansiofi2) is deter-
that have a measuye that scales with exponent in the range mined by the distance from the poigt=0 to a nearest
[a,a+da] varies withr as singularity of f(q) in the complex plane. One can then use

pi(r)= f o @3

T a
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the standard procedure of analytic continuation to obtain Ill. COMPARISON WITH 3D DATA AND DISCUSSION
power series expansions beyond the circle of convergence of

the expansior{12)
1 d2
(q do)?
do?

+oe (13)

Figure 1 shows the generalized dimensions specym
againstq In g/(g—1) computed using Perseus-Pisces redshift
survey[12]. The solid straight line indicates agreement be-
tween these data and representat@0) for sufficiently large

9=dg g. Intersection of this line with the vertical axis indicates that

D,,=3 for this case. On the other hand, one can see from

Fig. 1 thatD,=2 (see also Ref[1]), and therefore, we can

where g is the modus of he nearest o poia=0. £XP2CL e morBilagial prase vandtion from e tuo-

complex-temperature singularity. TR . : : )
b P g y matter to distribution which hasupportdimension approxi-

If one takes finite number of terms in the ser{@$): N, . )
then one could also rewrite the series in a form similar tomately equal to 3 for comparatively dense luminous matter.

df
f(q)=f(qo)+(q—qo)<d—q)

q=dg

(12) And indeed, the data behavior in this figure seems to be
consistent with this expectation.
f(a)=ag+ayg+---+ayq". (14 Possibility of dynamical character of the space dimension
o ) related to mass distribution has been discussed in the string
The coefficientsag, a,, ....ay depend onN. Since the  heory(see, for instancd?2,13—15, and references thergin

Maclaurin expansiofil2) in the interval 0<q<qp is unique,  The relation between the background radiation and distribu-
however, finite the above obtained result can be considered as a step toward

df 1 dzf reconciliation between these two cosmological observations:
lim ap=f(0o) —do=— _qo high isotropy of the CMBR and the value,=2 for the
n—o dqg 4=, dq space support dimension. Moreover, the observed weak an-

(15) isotropy of the CMBR could be related to coexistence of the
two differentsupportdimensiong?2 and 3 for visible matter.
do exist, then this value (lim ag) could be interpreted The problem with elliptical galaxies discussed in the Intro-
duction shows, however, that significant theoretical and ex-
perimental efforts should be made to perform complete rec-
a&nciliation between these two basic observations.

geometrically as a hidden support dimensimn[cf. Eq.(12)
and recall thaf(0)=D]. Moreover, ifgy>1, then this hid-
den support dimension corresponds to the localized are
with high density[10] of the visible matter. In the case when
finite im__ a; =A< also exists one can use approxima- ACKNOWLEDGMENTS
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_ encouragement, to the Machanaim Centirusalery and
f(q)=Dn+Aqg (18 5 the Graduate School of Science and Engineering of the
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Using Eq.(10) it is easy to show that(q) corresponding

to Eq.(16) is APPENDIX
7(q)=—Dy+(C—A)g+Aqlnqg (17) To show more clear appearance of the hidden dimension
let us consider multifractality of a strange attractor of the
whereC is some constant. baker map for which analytical results are available. This
The generalized dimension spectriig can be defined as transformation is defined as
follows [11] [Xns1Yne1=0aXa Yol 7l Yo<n, (A1)
InZ,
Dg=lim m (18 [Xnt1.Yne1]=[3 12X, (Y= /(1= 0)],  yo>7.
r—0 (Az)
Then The attractor of this map consists of an infinite number of

lines in they direction which intersect a horizontal line in
0= (199 two interwoven Cantor sets. These sets are characterized by
(a-1) contraction rate; andl,, and are visited with probability

and from Eqs(17),(19) we obtain and 1- », respectively. The dimension spectrudy of the
q ' cross section follows from
qlnq

G=1) (20) 74 (1—n)4

[(@=1bq " |@1Dq
. L 1 2
in some vicinity ofq=qq. If Dy<D;, and both of them are
integers, then we have a morphological phase transition. If we introduce the following definitions

Tq

Dg=Dp+A——

(A3)
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ni=a, (1-p)d=b, 197 HPa=g,

and Inl;/In I,=k, then we can rewrite EA3) as the follow-
ing equation:

G*~bGkN—-a=0. (A4)
From this equation one obtains

dG  da/dg+(db/dg)G* )
dg  kGKk-D—p(k—1)Gk-2"

HencedG/dq has a singularity whes=b(k—1)/k. Sub-
stituting this relationship into EqA4) we obtain value of
g=q, for which dG/dq has a singularity

B Inc (A5)
o (1— )"
where
k—1)(- D)
c=-— % (AB)

The constantc>0 only when k—1)=-1/n, where n
=3,5,7 ... . Forthese specific values &fthe values ofy,
are real numbers andG/dq (and, consequentlydD,/dq)
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FIG. 2. The generalized dimensiobg, againstq In ¢/(q—1) for
a strange attractor of the baker map. The solid straight line indicates
agreement between the data and represent&idn

gence of the finite-temperature Taylor series expangiGn

is R=5.8, so that the interval of applicability of the finite-
temperature expansion is approximatelt @<10. For the
first order approximation we should exclude a narrow vicin-

have Singularities on the real axis. If we take into aCCOUﬂ‘ty of the pointqzo from this interval. Figure 2 shows a set

that
dD,
f(Q)=Dq+Q(q—1)d—q (A7)

then we can claim that the entropgq) of the baker map has
real singularities at these specific valueskofn the general
case, however, these singularities are complex.

Let us consider an example with concrete valuesypof
=0.6, 1,=0.25, andl,=0.4. For this case we obtain from
Eqgs.(A5) and(A6) a complex value ofjp=—1.1+13.6 and,
consequentlyqy|=3.8. This is a value of the radius of con-

of valuesD, for this situation. The axes on this figure are
chosen for comparison with the first order approximation of
the finite-temperature expansid@0). The straight line in
this figure corresponds to this approximation and one can see
good agreement between the data and the approximation
(20). The hidden support dimensidd,, has also been indi-
cated in this figure.

It is clear that there can also exist multifractals without
complex-temperature singularities, and in each concrete case
we can check the presence of the complex-temperature sin-
gularities analytically(if it is possible, or by using graphical

vergence of the high-temperature Taylor series expansiorepresentatiod, versusg In(q)/(q—1) as is shown in Figs. 1

(12) for the baker map. The corresponding radius of conver

and 2.
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