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Inflationary universe in higher derivative induced gravity
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In an induced-gravity model, the stability condition of an inflationary slow-rollover solution is shown to be
f0]f0

V(f0)54V(f0). The presence of higher derivative terms will, however, act against the stability of this
expanding solution unless further constraints on the field parameters are imposed. We find that these models
will acquire a nonvanishing cosmological constant at the end of inflation. Some models are analyzed for their
implication to the early universe.

PACS number~s!: 98.80.Cq
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In a scale-invariant model, all dimensionful paramet
are functionals of the scalar field. Therefore, scale invaria
provides a natural way of resolving the physical origin
these dimensionful parameters.

Scale invariance is also known to be important in vario
branches of physics. For example, QCD@1# and many other
inflationary models have been studied in the literature@2–5#.
Note that inflation resolves many problems of the stand
big bang cosmology@4,5#. These problems include the fla
ness, monopole, and horizon problems. In addition, lo
scale~or Weyl! symmetry has been suggested to be relate
the missing Higgs problem in electroweak theory@6#. Weyl
symmetry has also been the focus of many recent activ
@7,8#. Scale-invariant effective theory is also suggested to
important for the physics near fixed points of the renorm
ization group trajectory@7#.

In addition, higher derivative terms should be importa
for physics near the Planck scale@9,10#. For example,
higher-order corrections derived from quantum gravity
string theory have been considered in the study of the in
tionary universe@11#. Higher derivative terms also arise a
quantum corrections to the matter fields@11#. Moreover, the
stability analysis of the pure higher-derivative models w
shown in Ref.@10#. It is hence interesting to extend th
stability analysis to different models. In an induced-grav
model, it turns out that stability conditions of an inflationa
solution are that the scalar field must obey a set of sc
invariant conditions under the slow-rollover approximatio
We will also study the implication of this constraint to th
inflationary universe in this paper.

We will focus on the induced-gravity model with anR2

coupling @12# given by

S5E d4xAg$2 1
2 ef2R2 1

2 gmn]mf]nf2V~f!2aR2/3%

~1!

in this paper. Heree anda are dimensionless coupling con
stants.V(f) is any possible symmetry-breaking potenti
Note that there are additional fourth-derivative terms in
most general higher derivative theory. They are related to
R2 term, due to the Euler constraint and the fact that
Weyl tensor vanishes in the Friedmann-Robertson-Wa
~FRW! spaces@13#, in four-dimensional spaces.
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We will define sV0[4V02f0]fV(f0) with s denoting
the scaling factor,f0 denoting the initial condition of the
inflaton f, andV0[V(f0). In addition, the case thats50
will be referred to as the scaling condition in this paper. No
that the scaling condition will be shown to be a direct co
sequence of the slow-rollover approximation. Hence the
tial data has to be close to the scaling condition. We
going to show, however, that the induced-gravity mod
tends to stabilize the inflationary phase. This is true if init
conditions of the inflaton are close to the scaling conditio
The presence of the higher derivative term~HDT! will fur-
ther impose strong constraints on field parameters and sc
potentials. These constraints are required to generate a s
inflationary phase. Otherwise, this theory cannot permit
exponentially expanding solution under the scaling condit
in the presence of the HDT.

Note that our universe is homogeneous and isotropic
very high degree of precision@14#. Such a universe is de
scribed by the well-known FRW metric@15#. Therefore, we
will work on the FRW metric that can be read off direct
from the following equation:

ds2[gmndxmdxn52dt21a2~ t !S dr2

12kr2 1r 2dV D . ~2!

Here dV is the solid angledV5du21sin2 u dx2 and k50,
61 stand for a flat, closed, and open universe, respectiv

The Friedmann equation can be shown to be@16#

3ef2S H21
k

a2
12H

ḟ

f D 5V1
1

2
ḟ21K. ~3!

Here K[12a@2HḦ16H2Ḣ2Ḣ222H2k/a21k2/a4# de-
notes the contribution from the HDT. Moreover, the Eule
Lagrange equation forf is

f̈13Hḟ1
]V

]f
56efS Ḣ12H21

k

a2D . ~4!

Note that the HDT does not affect thef equation directly as
shown above.

One will analyze the inflationary solution under the slo
rollover approximation such thatuḟ/fu!H, and uf̈/fu
!H2 for a brief period of time. The slow-rollover approx
mation will also be shown to be consistent with field equ
tions. Assuming thatf5f0 andH5H01dH, one can per-
©2000 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW D 62 087301
turb the Friedmann equation and the scalar field equat
These perturbed equations can be employed to study the
bility of the inflationary solution. Accordingly, one can sho
that leading-order perturbation equations give

3ef0
2H0

25V0 , ~5!

f0

]V

]f
~f5f0!512ef0

2H0
2 . ~6!

Therefore, the initial data satisfies the scaling condition
this approximation. In addition, linear-order perturbati
equations give

4adḦ112aH0dḢ2ef0
2dH50, ~7!

dḢ14H0dH50. ~8!

Therefore, one has

dH;exp~24H0t !, ~9!

ef0
2516aH0

2 . ~10!

Equation~7! will not be present without the HDT. Therefore
one will not have the constraint~10! accordingly. Moreover,
Eq. ~9! indicates that inflation tends to stabilize the inflatio
ary phase under the scaling condition. Note that Eq.~10! is
the extra constraint derived from the HDT. This indicat
that the gravitational constant (ef0

2/2) is related to the
Hubble constantH0 during the inflationary phase. Therefor
a physically acceptable inflationary induced-gravity mo
will be affected significantly by the HDT.

In addition, the first-order perturbation equation sho
that the inflationary solution is indeed stable against the p
turbationdH. Therefore, inflation will remain effective for a
least a brief moment whilef changes slowly. Note also tha
the f equation states thatf̈13H0ḟ;0 during the period
whenH;H0. This gives

f;f01
ḟ0

3H0
@12exp~23H0t !#. ~11!

Therefore, the slow-rollover approximation is indeed cons
tent with field equations. Consequently, if the initial da
satisfies the scaling condition, the system will undergo
strong inflationary process and remain stable for a long
riod of time under the scaling condition. Therefore, we w
focus on the case that the initial data of the effective the
obeys thes50 condition.

Note that leading-order perturbation equations give u
few constraints on the field parameters according to

4V05f0

]V

]f
~f5f0!512ef0

2H0
25192aH0

4 . ~12!

This is equivalent to

H0
25ef0

2/16a, ~13!
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4V05f0

]V

]f
~f5f0!5

3e2

16a
f0

4 . ~14!

Therefore, there are indeed strong constraints on the pos
form of the scalar field potential according to Eq.~14!. These
constraints also relate the field parameters in a nontri
way. We will come back to this point later and study th
constraint equation for some extendedf4 models.

If the scaling condition is not obeyed closely, the infl
tionary solution will not be strictly stable. This will act in
favor of the graceful-exit process. In such cases, the sc
field will obey the following equation:

f̈13Hḟ1ḟ2/f1@]fV24V/f#/~116e!

5@K̇14HK#/~116e!f ~15!

which can be derived from differentiating Eq.~3! and com-
paring it with Eq.~4!. Note further that Eq.~15! is equivalent
to the Gi j component of the Einstein equation. Even th
equation is redundant, it is still very useful for our analys
In summary, the inflationary solution cannot be stable unl
~i! the scaling condition is closely obeyed and~ii ! a is con-
strained by Eq.~10!. In such cases, the dynamics of the sc
lar field can be depicted from Eq.~15!. We are about to show
that the case~ii ! will be violated in the conventionalf4

spontaneous symmetry breaking~SSB! potential. Therefore,
the system will follow the evolutionary process similar to t
one described in Refs.@4,5#. On the other hand, the physic
will be different when the initial data falls too close to th
scaling condition.

For comparison, the equation of motions will become

3~H21k/a212Hḟ/f!5V1 1
2 ḟ21K, ~16!

f̈13Hḟ1]V/]f50 ~17!

for the R2-corrected Einstein theory given byL52R/2
2(a/3)R21Lf . Hence the scaling constraint no long
holds here since thef-equation does not couple to theR2

term directly. Indeed, one can show thatH0
25V0/3 from the

zeroth-order perturbation equation. Note that the perturba
is done with respect toH5H01dH under the slow-rollover
approximationuf̈u!Huḟu and H@uḟu. One can also show
that the first-order perturbation equation gives Eq.~8! after
setting ef0

2[1. Therefore, the effect of theR2-corrected
Einstein theory is different from the induced-gravity mod
Hence the scale-invariant initial condition is a very uniq
property of induced-gravity models.

For a physical application, we will consider the followin
effective symmetry-breaking potential

V5 1
4 l1~f22v2!21 1

4 l2f42L. ~18!

We are about to show that the apparent cosmologi
constant termL has to be non-vanishing in order to admit
consistent inflationary solution. In addition, it reduces to t
standardf4 SSB potential ifl25L50. Therefore, neither
scale-invariant potential nor standardf4 SSB potential can
1-2
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BRIEF REPORTS PHYSICAL REVIEW D 62 087301
provide a physically acceptable inflationary solution und
the influence of the HDT. Hence one has to introduce
alternative asymmetric potential in order to generate an
flationary solution.

Indeed, one can solve Eq.~14! and show that

f0
25v22

4L

l1v2 5
16al1v2

16a~l11l2!23e2 . ~19!

Therefore, one can derive

L5
l1

4
v4F 16al223e2

16a~l11l2!23e2G . ~20!

Writing l[l11l2, one can further show that the extend
f4 SSB potential reads

V5
l

4
f42S l

2
2

3e2

32a Df0
2f21S l

4
2

3e2

64a Df0
4 . ~21!

This is the form of the most general extendedf4 SSB po-
tential that could admit an inflationary solution. One can a
show that the minimum of this potential isVm[V(fm)
5(3e2/16a)@1/423e2/64al#f0

4 when f25fm
2 [(1

23e2/16al)f0
2 . In addition, one has Vm

5(3e2/16al)V(0) whereV(0)[V(f50) is the maximum
of V. Note also thatVm,V(0) is consistent with the equa
tion f25fm

2 [(123e2/16al)f0
2 . This implies that

3e2/16al,1. Hence one hasa.0 because thatV0

53ef0
2H0

253e2f0
4/64a.0. In addition, one expectsl.0

since V9(fm)52lfm
2 .0 for a local minimum atfm .

Therefore, one shows thatVm53e2f0
2fm

2 /64a.0.
Moreover, the effective gravitational constant observed

the post-inflationary phase is related tof0 by the identity
1/4pG5efm

2 5(123e2/16al)ef0
2 . In addition, the effec-

tive cosmological constant observed in the post-inflation
phase isVm53H0

2/2. Here we have setefm
2 /251 in Planck

unit. If the scale factora(t) is capable of expanding some 6
e-fold in a time interval of roughlyDT;108 Planck unit, the
Hubble constant should be of the orderH0

2;1026 in Planck
unit. Therefore, one ends up with a rather big cosmolog
constant of the order 1026 if the extendedf4 model is in
effect.

One can now show that the caseL5l250 is problem-
atic. Indeed,L50 implies thatl253e2/16a from Eq. ~20!.
Hencee/a50 if l250. This is apparently inconsistent wit
our assumption thata is small ande is finite. In fact, the
case thate50 will lead to an infinite gravitational constan
Hence it should be ruled out. Therefore, the case thaL
5l250 can not support an inflationary phase if the HDT
present.

Note that the expansion rateH05Aef0
2/16a can be ad-

justed to accommodate 60e-fold expansion rather easily@4#.
Note also that smalla, hence small higher-order correctio
will act in favor of the inflationary process. In addition, th
slow-rollover approximation is taken care of automatica
by the higher-order term. Therefore, the only constraint
f0 is that it should be small according to Eq.~11!.
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Once the scalar field rolls down toward the minimum
potential state, inflation will come to an end. In addition, t
soft-expansion era in the post-inflationary phase will
dominated by another lower-order induced-gravity mo
@7#. Therefore, the reheating process will be taken over
that lower-order effective induced-gravity model@4#. Hence
the HDT, acting in favor of the inflation process, plays
important role during the inflationary phase. It is still tru
even if the higher-order correction is small, namely,a!1.
Note, however, that this model implies a nonvanishing c
mological constant. This may have to do with the field co
tents of the early universe@17#.

In other words, the smallness of the cosmological co
stant is not resolved by this approach. Something else ha
help resolving the cosmological-constant problem. One p
sibility already mentioned earlier is that this induced-grav
theory remains effective, only during the inflationary era,
an collective effect of the physics in the early universe@7#.
This effective induced theory will no longer be held respo
sible for the physics after inflation is completed.

In addition, one can also consider the followin
symmetry-breaking Coleman-Weinberg potential from rad
tive correction@18#

V5 1
4 l1f4 ln~f/v !41 1

4 l2f42L. ~22!

Note that we will use the same notation forV, l i , L, etc.,
for simplicity although we are working on a different mode
One can show that the first constraint in Eq.~14! gives L
52l1f0

4/4. The second one givesV053e2f0
4/64a. This

implies thatf05v exp@3e2/64al12(l11l2)/4l1#. There-
fore, one can put the potential as

V5
l1

4
f4 lnS f

f0
D 4

1
3e2

64a
f42

l1

4
~f42f0

4!. ~23!

In addition, one can show that the minimum state occ
when f5fm5f0 exp@23e2/64al1#. Furthermore, one can
show thatVm5(l1f0

4/4)$12exp@23e2/16al1#%. Therefore,
inflation can be achieved rather easily. On the other ha
one can show thatVm depends on the choice of the param
etersx[e2/l1 andy[3/16a according to

Vm5~exy21!/x. ~24!

One can hence show thatVm increases asx decreases ory
increases. This is proved by showing that]xVm is always
negative and]yVm is always positive definite. Hence b
choosing smallerl1, larger a, or largere would lead to a
smallerVm . In practice, one should choosexy!1 such that
Vm→3/16a. In addition, the conditionxy!1 is equivalent to
the condition l1@3e2/16a5e2Vm(xy!1). Therefore,a
has to be very large in order to pushVm toward 0. This is
somewhat inappropriate asa, related to the particle content
during inflation, can be computed from their quantum c
rections in curved space@15#. Therefore, one expectsa to be
small. Hence it is not likely that one can tune field para
eters in order to pushVm to the limit of observation in this
theory. Note further that one hasa.0 becauseV0
1-3
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53ef0
2H0

253e2f0
4/64a.0. In addition, one expectsl.0

since V9(fm)54lfm
2 .0 where fm is a local minimum.

Hence one hasVm.0 if al1.0.
Note that the scaling condition is derived from the slo

rollover approximation. It was shown that the initial data h
to be close to the scaling condition. We have, howev
shown that a stable inflationary solution exists only when~i!
scaling condition is closely obeyed and~ii ! a is constrained
by Eq. ~10!. We also show explicitly that two different ex
tended models are not able to produce a universe wit
vanishing cosmological constant all alone. Therefore, in
d.

08730
-
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traditionalf4 SSB model under the scaling condition, infl
tionary solution does not favor a stable inflationary soluti
in the presence of the HDT. Accordingly, the tradition
slow-rollover inflationary solution will soon fall off the scal
ing limit even if it started out close to the scaling conditio
Hence, one does not need to worry about whether the sc
field will be frozen to the scaling condition. Therefore, th
effect of the HDT will act in favor of the graceful-exit pro
cess.
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