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Inflationary universe in higher derivative induced gravity
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In an induced-gravity model, the stability condition of an inflationary slow-rollover solution is shown to be
¢00¢0V(¢0):4V(¢0). The presence of higher derivative terms will, however, act against the stability of this
expanding solution unless further constraints on the field parameters are imposed. We find that these models
will acquire a nonvanishing cosmological constant at the end of inflation. Some models are analyzed for their
implication to the early universe.

PACS numbd(s): 98.80.Cq

In a scale-invariant model, all dimensionful parameters We will define sVy=4V,— ¢qd,V(¢) with s denoting
are functionals of the scalar field. Therefore, scale invariancéhe scaling factorg, denoting the initial condition of the
provides a natural way of resolving the physical origin of inflaton ¢, andV,=V(¢). In addition, the case that=0
these dimensionful parameters. will be referred to as the scaling condition in this paper. Note

Scale invariance is also known to be important in varioushat the scaling condition will be shown to be a direct con-
branches of physics. For example, Q€O and many other sequence of the slow-rollover approximation. Hence the ini-
inflationary models have been studied in the literaf@e5].  tial data has to be close to the scaling condition. We are
Note that inflation resolves many problems of the standargoing to show, however, that the induced-gravity model
big bang cosmology4,5]. These problems include the flat- tends to stabilize the inflationary phase. This is true if initial
ness, monopole, and horizon problems. In addition, locatonditions of the inflaton are close to the scaling condition.
scale(or Weyl) symmetry has been suggested to be related tdhe presence of the higher derivative te(dDT) will fur-
the missing Higgs problem in electroweak thep8}. Weyl  ther impose strong constraints on field parameters and scalar
symmetry has also been the focus of many recent activitiepotentials. These constraints are required to generate a stable
[7,8]. Scale-invariant effective theory is also suggested to bénflationary phase. Otherwise, this theory cannot permit an
important for the physics near fixed points of the renormal-exponentially expanding solution under the scaling condition
ization group trajectory7]. in the presence of the HDT.

In addition, higher derivative terms should be important Note that our universe is homogeneous and isotropic to a
for physics near the Planck scal®,10]. For example, very high degree of precisiofil4]. Such a universe is de-
higher-order corrections derived from quantum gravity orscribed by the well-known FRW metr{d5]. Therefore, we
string theory have been considered in the study of the inflawill work on the FRW metric that can be read off directly
tionary universq11]. Higher derivative terms also arise as from the following equation:
qguantum corrections to the matter fieldd|. Moreover, the
stability analysis of the pure higher-derivative models was
shown in Ref.[10]. It is hence interesting to extend this
stability analysis to different models. In an induced-gravity
model, it turns out that stability conditions of an inflationary Here d() is the solid angled()=d¢*+sir? 6dy* andk=0,
solution are that the scalar field must obey a set of scalex 1 stand for a flat, closed, and open universe, respectively.
invariant conditions under the slow-rollover approximation. ~The Friedmann equation can be shown to bé]

We will also study the implication of this constraint to the .
inflationary universe in this paper. H24 £+2H f

We will focus on the induced-gravity model with &¢ a2 ¢

coupling[12] given by

2

1—kr?

ds’=g,, dx*dx"= —dt?+a’(t)

+r2dQ). (2

3egp? =V+%¢2+K. (3)

Here K=12a[2HH+6H2H—H?%—2H?k/a’+k%a*] de-
S=f d*x\Jo{— 3 €¢?R— 39”79, 9, — V() — «R? 3} notes the contribution from the HDT. Moreover, the Euler-
1) Lagrange equation fos is
in this paper. Here and a are dimensionless cpupling con- Bd+3HG+ ﬂzGeq& _ (4)
stants.V(¢) is any possible symmetry-breaking potential. d¢
Note that there are additional fourth-derivative terms in the ) .
most general higher derivative theory. They are related to thdlote that the HDT does not affect thieequation directly as
R? term, due to the Euler constraint and the fact that thesShown above. o _
Weyl tensor vanishes in the Friedmann-Robertson-Walker ©One will analyze the mﬂatlonary.soluuon under the slow-
(FRW) spaceg13], in four-dimensional spaces. rollover approximation such thate/¢|<H, and |/ |
<H? for a brief period of time. The slow-rollover approxi-
mation will also be shown to be consistent with field equa-
*Email address: wfgore@cc.nctu.edu.tw tions. Assuming thatp= ¢, andH=Hy+ 6H, one can per-
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H+2H2+¥
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turb the Friedmann equation and the scalar field equation. oV €2 .

These perturbed equations can be employed to study the sta- 4Vo= ¢’o%(¢: $0)= 765 Po- (14

bility of the inflationary solution. Accordingly, one can show

that leading-order perturbation equations give Therefore, there are indeed strong constraints on the possible

form of the scalar field potential according to Ef4). These
constraints also relate the field parameters in a nontrivial
Py way. We will come back to this point later and study the
Po— (= o) = 12ep2H3. (6)  constraint equation for some extendgti models. _

o If the scaling condition is not obeyed closely, the infla-

tionary solution will not be strictly stable. This will act in

Therefore, the initial data satisfies the scaling condition i, ot the graceful-exit process. In such cases, the scalar
this approximation. In addition, linear-order perturbationgq 4 will obey the following equation: '

equations give

3edpaH3=V,, (5)

b+3Hp+ ¢ p+[0,V—4VI$/(1+6€)

A4asH+12aH6H — ep36H =0, 7)
_ =[K+4HK]/(1+6€) ¢ (15)
SH+4Hy5H=0. (8)
which can be derived from differentiating E() and com-
Therefore, one has paring it with Eq.(4). Note further that Eq(15) is equivalent
to the G;; component of the Einstein equation. Even this
SH~exp(—4H,t), ©) equation is redundant, it is still very useful for our analysis.
5 ) In summary, the inflationary solution cannot be stable unless
€¢y=16aHg. (10 (i) the scaling condition is closely obeyed afiid « is con-

i ) , strained by Eq(10). In such cases, the dynamics of the sca-
Equatllon(7) will not be present without thg HDT. Therefore, |5 field can be depicted from E(L5). We are about to show
one will not have the constraiii10) accordingly. Moreover, that the caseii) will be violated in the conventionai?
Eq. (9) indicates that inflation tends to stabilize the inflation- spontaneous symmetry breakit@SB potential. Therefore
ary phase under the scaling condition. Note that @9) is  {he system will follow the evolutionary process similar to the
the extra constraint derived from the HDT. This indicates;na gescribed in Ref§4,5]. On the other hand, the physics

. . 2 . Ty . 1
that the gravitational constante$y/2) is related to the i pe different when the initial data falls too close to the
Hubble constani, during the inflationary phase. Therefore, scajing condition.

a physically acceptable inflationary induced-gravity model For comparison, the equation of motions will become
will be affected significantly by the HDT.

In addition, the first-order perturbation equation shows 3(H2+k/a2+ 2H ¢l )=V + L p?+K, (16)
that the inflationary solution is indeed stable against the per-
turbationsH. Therefore, inflation will remain effective for at b+ 3H ¢+ NIdd=0 (17)

least a brief moment while changes slowly. Note also that

the ¢ equation states thap+3Ho4~0 during the period  for the R2-corrected Einstein theory given bg=—R/2
whenH~H,. This gives —(a/3)R*+L4. Hence the scaling constraint no longer
holds here since the-equation does not couple to th?
0 term directly. Indeed, one can show th#§=V,/3 from the
¢~ ot 3H0[1_exIi ~3Hob)]. (11 zeroth-order perturbation equation. Note that the perturbation
is done with respect tél =Hy+ éH under the slow-rollover
Therefore, the slow-rollover approximation is indeed consisypproximation| | <H|¢| and H>|$|. One can also show
tent with field equations. Consequently, if the initial datanat the first-order perturbation equation gives EB). after
satisfies the scaling condition, the system will undergo &etting 6¢(2)El_ Therefore, the effect of th&2-corrected

strong inflationary process and remain stable for a long pPeginstein theory is different from the induced-gravity model.
riod of time under the scaling condition. Therefore, we will Hence the scale-invariant initial condition is a very unique

focus on the case that the initial data of the effective theo%roperty of induced-gravity models.
obeys thes=0 condition. For a physical application, we will consider the following

Note that leading-order perturbation equations give US &¢factive symmetry-breaking potential
few constraints on the field parameters according to

Py V=3 (*—v?) %+ 3N 0" — A, (18
2142 4
4Vo= ¢°%(¢_¢0)_126¢0H0_192aH0' 12 We are about to show that the apparent cosmological-
constant term\ has to be non-vanishing in order to admit a
This is equivalent to consistent inflationary solution. In addition, it reduces to the
) ) standard¢* SSB potential if\,=A =0. Therefore, neither
Ho= e/ 16a, (13 scale-invariant potential nor standagd SSB potential can
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provide a physically acceptable inflationary solution under Once the scalar field rolls down toward the minimum-
the influence of the HDT. Hence one has to introduce ampotential state, inflation will come to an end. In addition, the
alternative asymmetric potential in order to generate an insoft-expansion era in the post-inflationary phase will be

flationary solution. dominated by another lower-order induced-gravity model

Indeed, one can solve E(L4) and show that [7]. Therefore, the reheating process will be taken over by
that lower-order effective induced-gravity modél. Hence

4A 16a\v? the HDT, acting in favor of the inflation process, plays an

22 —
¢0 v )\11)2 16&()\1+)\2)_362 (19)

important role during the inflationary phase. It is still true
even if the higher-order correction is small, namely<1.
Therefore, one can derive Note, however, that this model implies a nonvanishing cos-
mological constant. This may have to do with the field con-
tents of the early univerdd 7.

In other words, the smallness of the cosmological con-
stant is not resolved by this approach. Something else has to
Writing A=\ ;+\,, one can further show that the extendedhelp resolving the cosmological-constant problem. One pos-
¢* SSB potential reads sibility already mentioned earlier is that this induced-gravity

theory remains effective, only during the inflationary era, as

Ao, (N 3é€2 2.0 [N 3¢? 4 an collective effect of the physics in the early univefgg

V= Z‘f’ "2 324 bod”+ 4 6da bo- (21 This effective induced theory will no longer be held respon-
sible for the physics after inflation is completed.

This is the form of the most general extendgti SSB po- In addition, one can also consider the following
tential that could admit an inflationary solution. One can alsssymmetry-breaking Coleman-Weinberg potential from radia-
show that the minimum of Tis potential Mmz\/2(¢>m) tive correction[18]
=(3€%/16a)[ 1/4—3€%/64aN]py  when  ¢*=¢pi=(1
—3€%16aN\)$3. In  additon, one has Vi V=301t In(hlv)+3N24" - A (22)
=(3€%/16a\)V(0) whereV(0)=V(¢=0) is the maximum
of V. Note also thav/,,<V(0) is consistent with the equa-
tion ¢?=¢p2=(1—3€*16aN)p;. This implies that
3€%/16aN<1. Hence one hasa>0 because thatV,
=3ediH3=3€2¢3/64a>0. In addition, one expects>0
since V"(pm)=2\$2>0 for a 2I0<2:al2 minimum  at¢,. fore, one can put the potential as
Therefore, one shows th&t,=3e“ ¢y, /64a>0.

Moreover, the effective gravitational constant observed in Ay é
the post-inflationary phase is related ¢g by the identity V= Z¢4|n(¢j
1/47G= edp?,=(1—3€%16a\)eh3. In addition, the effec- 0
tive co;mologiczgl constant observed inzthe po;t—inflationary In addition, one can show that the minimum state occurs
phase isV,=3H/2. Here we have sty /2=1 in Planck  \yhen ¢= ¢, = ¢, ex —3€¥/64a\,]. Furthermore, one can
unit. If the scale factoa(t) is capable of expanding some 60 shoy thatv,,= (A1 $4/4){1— exd —3¢2/16a,]}. Therefore,
e-fold in a time interval of roughhyA T~ 10° Pla_nﬁck unit, the jnflation can be achieved rather easily. On the other hand,
Hubble constant should be of the ordé§~10 °in Planck  one can show tha¥,, depends on the choice of the param-
unit. Therefore, one ends up with a rather big cosmologicaptersx= €2/, andy=3/16« according to
constant of the order 16 if the extended$* model is in
effect. V= (e9-1)/x. (24)

One can now show that the cagde=\,=0 is problem-
atic. Indeed A =0 implies that\,= 3€?/16a from EqQ.(20).  One can hence show thaf, increases ag decreases oy
Hencee/a=0 if N,=0. This is apparently inconsistent with increases. This is proved by showing thay,, is always
our assumption that is small ande is finite. In fact, the negative andd,V,, is always positive definite. Hence by
case thate=0 will lead to an infinite gravitational constant. choosing smallei, larger «, or largere would lead to a
Hence it should be ruled out. Therefore, the case that smallerV,,. In practice, one should choogg<1 such that
=\,=0 can not support an inflationary phase if the HDT isVv _,— 3/16«. In addition, the conditiomy<1 is equivalent to
present. the condition X ;>3€2%/16a= €?V(xy<1). Therefore, a

Note that the expansion raté,= \/6¢02/16a can be ad- has to be very large in order to pust, toward 0. This is
justed to accommodate @Sfold expansion rather easify]. somewhat inappropriate as related to the particle contents
Note also that smallr, hence small higher-order correction, during inflation, can be computed from their quantum cor-
will act in favor of the inflationary process. In addition, the rections in curved spadd5]. Therefore, one expectsto be
slow-rollover approximation is taken care of automaticallysmall. Hence it is not likely that one can tune field param-
by the higher-order term. Therefore, the only constraint oreters in order to pusk,, to the limit of observation in this
¢y is that it should be small according to Ed.1). theory. Note further that one haa>0 becauseV,

A
A= ZU

16a\,— 3€?
16a(N 1+ \p)—3€?

4

. (20

Note that we will use the same notation fér \;, A, etc.,
for simplicity although we are working on a different model.
One can show that the first constraint in Efi4) gives A
=—\1¢/4. The second one gived,=3e2¢y/64a. This
implies that ¢o=v exd3¢/64aX;— (A1+ \,)/4\,]. There-

4 362 )\1 4
+ %W‘— Z(¢4_ bo). (23
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=3egiHa=362¢y/64a>0. In addition, one expecta>0
since V”(¢m)=4)\¢,2n>0 where ¢, is a local minimum.
Hence one ha¥,,>0 if a\x,>0.
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traditional ¢* SSB model under the scaling condition, infla-
tionary solution does not favor a stable inflationary solution
in the presence of the HDT. Accordingly, the traditional

Note that the scaling condition is derived from the slow-slow-rollover inflationary solution will soon fall off the scal-
rollover approximation. It was shown that the initial data hasing limit even if it started out close to the scaling condition.
to be close to the scaling condition. We have, howeverHence, one does not need to worry about whether the scalar

shown that a stable inflationary solution exists only wkign
scaling condition is closely obeyed afif) « is constrained
by Eq. (10). We also show explicitly that two different ex-
tended models are not able to produce a universe with

field will be frozen to the scaling condition. Therefore, the
effect of the HDT will act in favor of the graceful-exit pro-
cess.
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