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We construct unstable classical solutions of Yang-Mills theories and their dual unstable states of type IIB on
anti—de Sitter (Ad§) space. An example is the unstable DO-brane of type IIB located at the center of AdS
space. This has a field theory dual which is a sphaleron in gauge theor@sxdh We argue that the two are
dual because both are sphalerons associated with the topology of the instanton or D-instanton. This agreement
provides a non-supersymmetric test of the AdS-conformal field theory duality. As an illustration, many aspects
of Sen’s hypothesis regarding the unstable branes can be seen easily in the weakly coupled dual field theory
description. In Euclidean AdS space the DO-branes are dual to gauge theory merons. This implies that the two
ends of a DO-brane world-line carry half the charge of a D-instanton. Other examples involve unstable strings
in the Coulomb phase.

PACS numbegs): 11.25-w, 11.15.Tk

[. INTRODUCTION By varying the parameter, one starts and ends at the vacuum,
and at the middle point there will be an unstable solution to
Like any other strong-weak duality which cannot bethe equations of motion. It sits at the top of a non-
proven directly, the anti-de Sitter—conformal-field-theorycontractible loop in the space of field configurations. This is
(AJS/CFT) duality [1] was tested using Bogomol'nyi- the sphaleron. 5
Prasad-SommerfielBPS configurations. Such configura- It was recently argued by Harvey, Hafa, and Kraug6]
tions are protected by supersymmetry and can be tracd@at unstable D-branes of string thedi;8] are sphalerons.

while interpolating from weak to strong coupling. Non-BPS For example, the type 1IB DO-brane can decay to the
configurations are not protected and in general any resufacuum, butits existence is dictated by the same topology as

obtained using the duality is considered to be a predictioh® D-instanton, whose charge is classifiedkbsheory[9].

rather than a test. One can construct a one parameter family of static configu-
In this paper we study some non-BPS states of gaugEtions whose topology is that of the D-instanton. The DO-

theories at weak and strong coupling. The configurations wérane sits at the top of the loop. _

discuss are unstable classical solutions which sit at the top of ThiS will serve as our first example. We consider the con-

non-contractible loops in configuration spatsphalerons  figuration of a DO-brane at the center of AdS space. This is a

[2-5]. massive, n.on.—BPS object in the larfjeand large coupling
Let us remind the reader what a sphaleron is. Say therglassical limit of the theory. In global AdS space

exists a one parameter family of field configurations that

form a non-contractible loop. One should think of all homo-

topically equivalent loops and find the point with maximal

energy along each loop. Now consider the minimum of all

those energies; since the loops are not contractible, that en-

ergy has to be greater than zero, and the corresponding field

configuration is a saddle point—the sphaleron. In practice,

once one understands the topology, it is usually easy to find

the loop going through the sphaleron. A schematic picture is

given in Fig. 1.
If there is ad-dimensional topologically charged object in

the theory, then in general there would be a

(d+1)-dimensional sphaleron. A simple example is a theory

which has an instanton. Then consider the one parameter

family of static field configurations where the extra param- FIG. 1. The existence of a non-contractible loop, as illustrated in

eter replaces the Euclidean time. This family of field con-the picture, proves that there is an unstable saddle point. It is

figurations has the same topological charge as the instantomarked by the point in the picture.
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geometry, where the topology of the boundargis R, this  objects were named merof&2]. The singularity at the ori-
is a static, spherically symmetric, configuration. gin and at infinity are replaced with half an instanton, inter-
A similar configuration exists at weak 't Hooft coupling. polating between the vacuum and the meron.
It is explained in detail in Sec. Il, let us just say now that it ~ This has an exact analog in Euclidean AdS space, where a
is a “half pure gauge” configuration. If one considers the DO-brane appearing out of the vacuum, propagating and an-
SU(2) instanton[10], this is the configuration half-way hihilating is dual to the meron. The DO-brane follows a geo-
through the tunneling process, which is at the top of thedesic in AdS space, and its action depends logarithmically on
potential. That is why it is a solution of the equations of the separation of the two end points. The same logarithmic
motion with one unstable mode. This gauge theory sphalerohehavior(up to a coefficient which depends on the 't Hooft
has many properties similar to the DO-brane in AdS space. lgoupling shows up on the gauge theory side. Because of the
is static, spherically symmetric and has a single tachyoni€ntropy of those configurations, they might dominate the
mode. We will argue that it is dual to the DO-brane in AdS path integral for largeyy y .

space. We also find duals of the configuration vkittoinci- We will also argue that each of the two end points of the
dent DO-branes, which hav€® unstable modes, in string DO-brane carries half a unit of D-instanton charge. The DO-
theory and in the gauge theory. brane serves as a flux tube carrying half a unit of flux from

It is rather perplexing at first that we are able to find aone end to the other, thus preserving the Dirac quantization
dual description for a non-BPS object. But there is, in fact, acondition of D-instanton charge. A similar story applies to
good reason for that. The DO-brane sits in the middle of ghigher dimensional branes, so the unstable D-branes can be
non-contractible loop with the same topology as theregarded as D-merons. Unlike AdS space, where the action
D-instanton, while the gauge theory solution is at the middleof the DO-brane is logarithmic, in flat space it is linear, there-
of a loop with the topology of the gauge theory instantonfore it would not be dynamically favorable for D-branes to
which is dual to the D-instantons. break by this mechanism.

Put differently, the instanton describes a tunneling process The paper is organized as follows. We describe the details
under a potential barrier, and the sphaleron sits at the top ¢ff the sphaleron oi$*x R and the DO-brane in Lorentzian
the potential. The mass of the sphaleron is the maximunfAdS space in Sec. Il. In Sec. Il we describe the meron
height of the potential. In the dual theory, the D-instantonconfigurations. We review the old construction in the gauge
also describes a tunneling event, and the sphaleron is againtaeory, and then we describe its dual. We interpret the un-
the top of the potential barrier. The mass of the DO-brane istable branes as D-merons in Sec. IV. In Sec. V we consider
the height of the potential. Since the Yang-Mi(l¢M) in-  another example of a duality between unstable classical so-
stanton and D-instanton are dual, they describe the same tulwions. We show that gauge theories in the Coulomb phase
neling process in the dual pictures. The shape of the potenti@dmit unstable string solutions which do not carry gauge
is altered by quantum corrections, but there is always amnvariant magnetic or electric fluxes. We describe the AdS
unstable point in the middle. dual of this solution. The unstable string can also serve as a

It is very simple to calculate the potential through which meron, and we explain how a monopole can be separated
the instanton tunnels, it is given by a quartic of the field. Theinto two halves as long as they are connected by one of those
potential of string theory is much more complicated, under-strings.
standing this potential is crucial to proving the brane anti-
brane annihilation procedure, which is in the heart of Sen’s

construction, and the classification of D-brane charge& by Il. SPHALERON PARTICLE

theory. This issue was addressed recently by using level . . i ) ) )
truncation in string field theorf1] with impressive results. In this section we consider sphaleron particles in four di-
Our dual description fits neatly with Sen’s conjecture. mensionalU(N) Yang-Mills theory, and their AdS duals.

One should contrast this with other strong-weak dualitiesSiNce Yang-Mills theory is a conformal theory the4re are no
It is more typical for the topological excitations of one Static finite energystable or unstabjesolutions onk™ sim-
theory to become the elementary excitations of the duaPly because ther_e is no scale to fix t_he mass of the _solut|on.
theory. For example, the kinks of the sine-Gordon modefiowever, there Isa sphaleron particle if we consider the
become the fermions in the dual Thirring model. The same i§auge theory 08”XR. In that case the size of the sphefRe,
true in the S-duality ofV=4 Yang-Mills (and type 1B, IS the_ on.Iy scale in the theory and so the mass of any static
where the topologically charged monopole goes over to th&olution is~1/R. _ o
W-boson which is the elementary excitation. Here we find We consider first the perturbative YM description, and
that one topologically charged object goes to another topothen the AdS dual. While the duality is true only for the
logically charged object, and therefore there are sphalerori@€ory with theA’=4 matter content, in perturbation theory
associated with those topologies. Roughly speaking, théhe particle exists already in the pure gauge theory.
AdS-CFT duality is special since it is a strong-weak duality
with respect to the 't Hooft coupling, while the solitons’
masses are of the order ofgf/, .

These “half pure gauge” configurations were considered The topology that supports a stable particle in four dimen-
in the past onR*. They are singular at the origin and at sions is the map from th§? at spatial infinity to the fields.
infinity, but the singularities can be smoothed out. Thosd-or U(N) pure gauge theory the only relevant topology is

A. Gauge theory description
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7,(U(N))=0. Hence this theory does not admit any topo- 372
logically charged stable particlgsn eitherR* or Rx S%). Mgy=——. (6)
However, since gymR

m+1(U(N))=7, for I<N, (1) A non-contractible loop of static field configurations going

between the two vacua and through the sphaleron is given by
there are unstable solutions to YM theory. These solutionsgq. (2) with
which we describe below, sit at the top of a non-contractible
S? 1 in configuration space. f(N=a, O0<a<l. (7
We start by considering the simplest casé oflL. In that
case we have a non-contractible loop in the configuratiorEquation(2) implies that for constarftwe getA, =0 (on R%)
space ofSU(2) gauge theory which we embed 8U(N).  and hencé\,=0 (on S*x ) and thatA, does not depend on
The topology of the non-contractible loop is the same as the. ThereforeF,,=0 (whered represents th&® coordinates
instanton topology. It is useful to recall the instanton solu-This has important implications for the non-contractible
tion, given by the ansatz loop. First, the field configurations along the entire non-
. t contractible loop(7) do not depend ori, and can be de-
A,=—if(r)g,UU’, scribed in terms of the three dimensional theoryS3n Sec-
“ . ond, even though the conformal map with Lorentzian
Uz % Xo X0 12232432 (2)  Signature(see e.g[14]) is different from the Euclidean con-
, 0 i . R K .
r r formal map(4), the Wick rotation to the Lorentzian signature
(on S*XR) is trivial along the entire non-contractible loop.
This is not the case for the instanton solution, which depends
onr. Finally,

whereg; are the Pauli matrices ang,x; the four Euclidean
directions. The Yang-Mills action now yields

1
4Q$M

® r 2
S= j dr96m2 Ef’2+ Ffz(l—f)2 . €]
0

. 6
TrFF=0, while TrF2=Q¢0. ®

The equations of motions have three constant solutions ) ]
=0, f=1 andf=1/2. f=0,1 are stable solutions which These features will prove to be important for the dual de-

correspond to two vacua. The instanton solutidiff)  Scription, as we shall see in the next section.

—r2/(a2+r?), interpolates betweeh=0 at the origin and Next we turn to the cases wheér 1. In those cases the

f=1 at infinity. The configuration witti=1/2 is an unstable Selution exists only forSU(N) with N>2. Finding all

solution, it solves the second-order equation of motion, bugPhaleron solutions fo8U(N) gauge theory is beyond the

unlike the two vacua and the instanton solution, does nogCopPe of the paper. However, there is a very simple construc-

solve the first-order BPS equation. tion which yields sphalerons related to arbitrarily high homo-
On R* we see from Eq(2) that f=1/2 is a non-static topy groups. Those are dual to the coincident DO-branes in

singular solution. It was first discussed[it8] and was stud- AdS space. _ , _

ied further in[12]. Those are the merons which we will  We can generalize the spherically symmetric an&3jtzo

discuss in the next section. (83X R however, the solution larger gauge groups by replacing the Pauli matrices and the

is static, regular and completely delocalizemh S3. To see  identity by

this, note that the conformal transformation that takés .

withzmetzric d2§=dr2+r2dQ§ to S®XR with metric ds? A,=—it(na,uu’, U= X 7u1 )

=dt*+R°dQ3 is r

r=expt/R). (4 where they’s satisfy the algebray, y}+v,v!,=24,,. We

] ] use the simple choice
Therefore the action of the sphaleron 8t R is

s fwd LA (5) (E)M .
= r = . g ..

0 g%Mr g%MR - Yﬂ:0ﬂ®lk: . :” .. . ’ (10)
We see that the action does not dependt@nd that the 0O 0 --- ¢

. m
sphaleron mass is

wherel is the identity matrix of rank. It is easy to see that
this is still a solution of the equations of motion fif= 1/2.
ISince the solution is smeared over the enffe it could be  The action simply scales as the rank,,.Z)f the matricesy,, .
considered a tachyonic vacuum, rather than an unstable particid.herefore the mass of thesphaleron is

Since the space is compact, it is hard to distinguish between the two
notions. M =KkMg,. (12
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This sphaleron solution ha€ unstable modes, which corre- /"’_\
spond to each of the>22 entries in the matrix in Eq.10).
The number of unstable modes alone does not fix the topol- K_/

ogy of the non-contractible loops associated with the sphale-
ron. For example, the fact that we hak® unstable modes

does not mean that the sphaleron sits at the tdé(zofThis
would be inconsistent withr,2(U(N))=0 for evenk. In fact

the topology is exactly that dfJ(k). The sphaleron sits at
the point— 1, in the group, which is opposite to the idenfity
Thek? unstable modes are the tangent vectors in the algebra
of U(k). Since the groupJ(k) has non-contractibl&?' ~*

for all 0<I<k, there are such loops going through the
sphaleron. So we can choose to classify the tangent direc- /—_\

tions by those spheres. All together there are indeed 1 v

+...+2k—1=k? unstable directions. The sphaleron sits,

therefore, at the tOp_Cﬁl_,Ss, e ,Sm_(_l- In the next section FIG. 2. An unstable DO-brane in the center of Adpace. The
we shall see that .thIS flt$ neatly with the F§SU|tS[@ﬂf vertical direction is time, and the radial direction is the radial coor-
Let us show this explicitly fok=2. Consider dinate of AdS space. The boundary of global Adsace isS®
X R.
_ T
A,=—i3,UUTgH, (12)

In the simplest case, adding the parametdo S° allows
whereU is of rank two, as defined in Eq2), andH is any  Us to build ansS*, on which there are configurations with the
2X 2 Hermitian matrix. We can parametrize topology of the instanton.

1 1 B. Supergravity side—unstable DO-branes in AdSX S°
H=—(1+a)|2+—,8i0'i. (13) i . )

2 2 The AdS-CFT duality is a strong or weak duality and as
such it takes classical configuration of one description into a

The sphaleron is at=;=0, which hasH=%1,. Two  quantum excitation of the other description. Therefore, it is
vacua are given bg=+1, 8;=0, so thaH=0,1. Thereis V€Y hard to trace a generioon-BP3 cllas.5|cal solution of _
another family of vacua, at=0, |8|=1, those are param- weakly coupled SYM to the AdS description. A sphaleron is
etrized by anS?, the direction ofB;. Those vacua givél & NON-supersymmetric solution sitting at the top of a non-
with one eigenvalue equal to zero and the other equal to ongontractible loop in thelassicalconfiguration space. There-
Identifying the two vacua at the end of the intervall fore, itis natural to suspect that the quantum corrections will
<a=<1 gives the non-contractibl&l. The parameterss, blur the non-contractible loop, and, that by the time the 't
(with | 8|<1) take values in the baB2. Identifying all the Hooft coupling is large there will be no trace of the non-

boundary points gives a non-contractilg® contractible loop and the sphaleron. .
The parameter in Eq. (7) gives a one-dimensional fam- However, as we saw, the non-contractible loop associated

ily of configurations inSU(2). In theprevious paragraphs with the sphaleron of the previous subsection is described by

and B; gave a one and a three dimensional family of Con-th(? topology pf the instanton. The_ dual of.the Instanton IS a
D-instanton in AdS space, which carries a charge in

figurations inSU(4). Those are actually related to the non- K-theory. So we should look for a non-contractible loop with

trivial 75 of SU(2) and to the non-triviakr; and 5 of . .
SU(4) '3rhis < tEU()a in general, To see thisgwe havse 0 in.the topology of the D-instanton. Such non-contractible loops
clude fhe spatial manifol6? ) in flat space-time were constructed[i8]. There it was ar-

The parameters:, 8 and the higher dimensional ones gued that the sphaleron at the top of the loop is the type IIB
live in B2~ 1 At evéry Ipoint there is a static field configu- DO-brane. We claim, therefore, that the dual of the solution
ration onS3 .So we have a® for every point inB2 L, At of the previous section are the unstable DO-branes located at

. : Lo the origin of AdS space. This is illustrated in Fig. 2.
the bounda_ry .Of t_h_e ball thge field configuration is the Let us mention a few properties of the unstable DO-branes
vacuum, which is trivial on th&”, so we can take the sphere

to shrink to a point. This fibration o8* over BZ~1 gives and how they fit into the claim that they are dual to the field

: theory sphalerons.

2| 42

S™%. Now recall the. well known fact that if the gauge A DO-brane(or k coincident DO-brangswhich are located
group has a non-triviakry .1 then there is a non-trivial

. at the center of AdS space are static objects with respect to
gauge bqqdle OVéB.ZHZ (the map froms? Tizto the group is the global time. There?ore they corresp()Jnd to static orlJJjects
the transition function on the equator §f *2). in the gauge theory. The center of AdS space corresponds to
the extreme infrared of the gauge theory, so the energy is
uniformly distributed oveiS®.

2We described the sphaleron as the point in the algebta(&j From the closed string theory point of view the low en-
with f=31,, in the group that corresponds to exp{®=—Iy. ergy supergravity fields which are excited by the DO-branes
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are the NS-NS graviton and dilaton. The RR-fields are nonY4g2,,R=1/g3 s, and the width is of ordel,. Since the
excited. That would correspond, using the dictionary ofaction of the D-instanton is the same as the gauge theory
[15,16, to TIFF=0 and to TF?#0, in agreement with the instanton, the area is the same, but the shape is altered.

field theory result$8). Note that the mass of DO-branesd We see therefore, that indeed the field theory sphaleron is
TrF?) do receive quantum corrections for they are not produal to the unstable DO-branes in AdS space. It is important
tected by supersymmety, to emphasiz¢6] that the DO-branes areot sphalerons of the
\/— U4 low energy supergravity. That is, there is no supergravity
Mo — 2 4 27\ (14) solution associated with the non-BPS D-branes which sits at
po™ \/_,_ 2 n the top of a non-contractible loop of field configurations of
gsVa Ovm

the classical supergravity. The unstable branes are sphalerons
of the full string theory including all the quantum corrections

In [6] it was shown that the type IIB DO-branes are sphalefo the sigma model. Since the full string theory on AdS space
rons of string theory. That is, in flat space-time they sit at thecontains all the information about the dual super Y8 M)
top of a non-contractible loop in the configuration space oftheory it is not surprising thain principle the field theory
string theory. Since for large 't Hooft coupling the “center” sphalerons can be described by string theory on AdS space.
of AdS space can be approximated by flat space-time, on#/hat is remarkable is that the description is so simple.
can simply embed the construction ] in AdS space. A natural question that arises is whether the dual weakly
There is also a global way to construct the DO-branes in AdSoupled description sheds new light on the diagonél)U
space. Starting with a system of D1-brane—anti-D1-bran@roblem associated with the unstable DO-branes. Unfortu-
stretching all the way to the boundary of AdS space, just likenately, even though we can trace the DO-branes to the
in flat space-time, this system contains a complex tachyoeakly coupled region, we cannot trace the gauge theory
mode which can support an unstable DO-brane. living on them to the weakly coupled description. Thus, as
It was furtzher argued ii6] thatk coincident DO-branes, 5 a5 we can tell, the dual description does not lead to any
which havek® tachyonic modes correspond to sphalerons at,q,, insight on the (1) problem. It is worth mentioning that

1 o3 k-1 ; o
the top ofS,S°, ... .S™ "~ in U(k). This is exactly what g hroplem of tracing the gauge theory living on the brane
we found from the field theory side. It is worth while to note ;- . weakly coupled description is not special to DO-

that in both descriptions the_mgss |s.p.roport|onalk.to branes. For example, we know that the dual of a D1-brane
The NS sector of the excitations living on the DO-branes ; .
contains a real scalar tachyonic mode. According to Sen’Stret.Chlng all the way to. the boundary is the BPS. monc_)pole.
conjecture at the bottom of the tachyon potential the negativ ut ;]n weakly CIOUpI(;ql f|eLd thgory t]riere are nr? f|eld|§ !lvmg
energy cancels the tension of the brane and we are left wit" the monopoie, while there s af. gauge theory ving
the vacuum. This was tested, to a good accuracy, via than Dl-braqes in AdS space. Thel reason is that the size of the
level truncation method in string field theofy1,18,19. On  D1-brane is larger than the string scale only for large 't
the field theory side, we see that indeed the bottom of th&looft coupling and so for small coupling the excitations
potential[ f=0, 1 in Eq.(3)] is the vacuum. While calculat- Which were supposed to live on the monopole cannot be
ing the tachyon potential in string theory is complicated, inseparated from the other excitations.

the field theory it is just a quarti(3). It is interesting to note that when we halk®0-branes the
Since the tachyon is real, the potential can support dull topology of the non-contractible lood)(k), with its
stable lower dimensional brane, D-instantons in our caselon-contractibles!,S3, ... S?1, can be interpolated from

Again, the energy of such a configuration was calculated irthe weakly to the strongly coupled region. TB&is “pro-
string field theory with impressive agreement with expectatected” by the instanton which is BPS. It should be interest-
tions [18]. On the field theory side the instanton indeed in-ing to understand why the other spheres are “protected” as
terpolates between the two minima of the potential. well.

Of all the instanton solutions oR*, the one of radiufR We would like to end this section with a comment on
centered around the origin is special when translating®o finite N. Our construction of the field theory solution which
X R. It goes over to a spherically symmetric solution®h s dual tok coincident DO-branes is valid fae<N/2. Equa-

In that theory, this instanton can be described as a quantugyp, (1) implies that a dual solution should be found at up to
mechanical tunneling process between the two minima of thg _ N presumably, a more complicated ansatz will indeed
quartic potential in Eq(3). The gauge theory sphaleron sits yield the right solution. It should be interesting to see if the

at the middle of the potential. The width of the potentiakis mass is still linear wittk. Another question is what happens

and the height, which is the mass of the sphaleron, is pro- : .
. . . ) >N.
portional to 1¢%,,R. The action of the instanton is the area whenk=>N. In the field theory side we get out of the stable

. ) . regime. Is there any stringy exclusion principle associated
under the potential. In string theqry the same Is true, pnIXNith that? Recall that the global constructionkob0-branes
that R is replaced byls. The height of the potential is , ags space involvesk D1-branes and anti-D1-branes
stretched all the way to the boundd(this is a simple gen-
eralization of the discussion if6]). Now, whenk=N the
3The origin of they?2 is the fact that the open strings living on an D1-branes can end on a NS-brane which wr&p$20,21.
unstable brane carry two Chan-Paton factoasd o, [17]. So it seems that the existence of a baryon vertex in AdS
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space is the underlying mechanism which bounds the num-
ber of coincident DO-branes in AdS spaceNo Clearly, it
would be helpful to understand this better.

IIl. MERONS IN GAUGE THEORIES AND IN AdS

In Sec. Il A we studied the field configuration of “half
pure gauge” orS®X R, and interpreted it as a sphaleron. As
we mentioned, those same configurations can be considered
in the Euclidean theory oft*, they are still classical solu-
tions, but there is a singularity at the origin and at infinity.
By smoothing out the singularities one gets a configuration
that solves the equations of motion almost everywhere and
has finite action. Those are the mer¢ag].

We give a brief review of the merons in gauge theories
and then will find analogous configurations in string theory
on AdS space.

A. Short review of merons

Let us write again the instanton ans&®;
FIG. 3. (8 The meron configuration. Region | is half an instan-

A,=—if (I’)(?#UUT, ton, region Il is the meron with exactly half a pure gauge transfor-

mation, and region Il is another half instanton. By a large confor-

xXto,  XotiXjo; 0 2, .2 mal transformation that takes the point at infinity to finite distance
U= r r v I=XotXi, (15) and region IIl to a finite sphere this can be mapped to the two

meron configuratiortb).
wheref=0,1 are vacuum solutions, arig- 3, the meron, is

an unstable solution which is singularrat 0,c. The action
(5) is logarithmically divergent

372 [=dr

_giM ST (16)

Since classical YM theory is conformally invariant, we can
use a large gauge transformation to map region Il to a
sphere at finite distance. The new configuration is shown in
Fig. 3(b). Regions | and Il each carry half the topological
charge of the instanton, so at infinity this configuration is
pure gauge.

One can, of course, replace the meron with an anti-meron,
To regularize this divergence consider the following configu-where instead of half an instanton there is half an anti-
ration: instanton. The meron anti-meron pair will have zero topo-
logical charge and two anti-meronsl topological charge.

([ r? The interaction between a meron and anti-meron is the same
m' r<Ru, as that between two merons.
The action of a meron grows with the distance. Thus a
f(r)= E R, <r<R,, 17) first guess is that the contribution of merons to the partition
2 function is negligible. However, the action grows only loga-
r2 rithmically so it can be compensated by a large entropic
———, Ry<r. factor? The entropy contribution to the partition function
\F+R; goes likeL*, hence the partition function associated with a

. . meron is
This is the meron foR;<r<R,, glued to half an instanton

at the origin and half at infinity. This carries the same topo- 1 5

logical charge as the instanton, but it is broken in two parts. Z~L%exp — ——InL | =L"" 10w, (19
If one takesR; =R,, the instanton solution is recovered. For Y

R;# R, this is a solution of the equations of motion every- __ . . 1 .
where but at the spheres which separate the three regionsThIS suggests a phase transition Q%MBZ' wherein the

This is illustrated in Fig. @). Region | and IIl are the half Meron charges that made up the instanton dipole are liber-

instantons near the origin and infinity. Region Il is the meron
which connects the two. The action can be easily calculated,
and is equal to “In thermodynamics this is, of course, common. At finite tempera-

ture one has to minimize the free energys E— STrather than the

87 37 R, energy. Thus a phase transition between minimiZingnd maxi-
=— + Z—In R (18) mizing the entropy can take place. Here the coupling constant plays
9ym OGym 1 the role of the temperature.
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ated. In the non-supersymmetric theories it was suggested U=
that the appearance of this new phase at large coupling, or

large scale size, is closely related to confinement, where the

merons play the role of the three dimensional instantons in

Polyakov's mechanism for confineme#2]. However, the

full story is much more complicated for one has to consider

a gas of merons and their interactions. This, as well as the a.
fact that the coupling runs, made it very hard to estimate the ~ ---cccooooooooo o ___ U=0
relevance of merons to confinement.

Even though the coupling does not run f&f=4, the U=co

main problem of understanding the interactions among the

merons is still very complicated. In fact, in thé=4 theory,

because of the fermions and scalars and the fact that a meron

breaks all supersymmetry, it is probably even more compli-

cated. We however cannot resist the temptation of speculat-

ing that meron physics might be a clue for understanding b.

N=4 theory at the self-dual poingy=47). e U=0

FIG. 4. Two examples of unstable DO-branes created and anni-
) ) ] hilated in Euclidean AdS space. The boundary of AdS spacetime is
We would now like to describe merons in the strong cou-marked by the solid line at=c. Between the creation and anni-
pling limit of the field theory, using string theory on AdS hilation point the particle travels along a geodesic.
space. We saw in Sec. |l that the sphaleron solution of the
gauge theory 083X R is described in the dual theory by an

B. Merons in AdS space

/
unstable DO-brane. Since the meron is the same field con- _ 8_772 42\
. . . ; S= + In(L/R). (22)
figuration as the sphaleron, only dtf, it is also described Q\Z(M Q\Z(M
by a DO-brane in Euclidean AdS space. Here we use the
metric
The fact that the logarithmic term is now proportional to
d¢ W U2 \Y4g2,,, rather than just B%,, as in the weakly coupled
7= qu + \/—de . (200 theory seems to imply that the entropy contribution cannot

compete with the energy in strong coupling. That is,

Consider a DO-brane which is created at some pbipt

propagates tilU, (and the same point iR*) and annihilates. A4

This is the AdS dual of the configuratiail7) which was z~L* exp{ - g—ln(L)).
illustrated in Fig. 8a). By the UV-IR relation, forU;>U,, s
the internal circle has a radil®,= J\/U; and the external
circle R,=\/U,. So a phase transition gt~ 1 is very unlikely for largex.

The action of this configuration is

(23

20 \/E)\l/A U, IV. UNSTABLE BRANES AS D-MERONS
S= SD(*1)+TDOJ ds=—+ (21)

In—, . . . . .
Os Os U, In the previous section we studied DO-branes in Euclidean

AdS space. Since they are unstable they can appear out of the
where the first term 2/gs=8m?/g%,, is equal to the instan- vacuum, propagate some distance and disappear again. This
ton action and is related to the creation of the brane and it¢as dual to the meron in the gauge theory which connects
annihilation, like in the gauge theory. This contribution will two regions where there are half instantons. Since the AdS
be justified in the next section. Comparing this to the gaugejual of the instanton is the D-instanton, it is natural to sus-
theory result(18), the constant part of the action is un- pect that at each end of the DO-brane sits half a D-instanton.
changed, but the coefficient of the log is renormalized by a We reached that conclusion by studying DO-branes in
factor proportional toA' like the sphaleron mas&l4).  AdS space, but this is true in any string theory background,
Again, one should not be surprised, since this is a non-BP&nd the argument does not have to rely on the AdS-CFT
configuration. correspondence. After all, the DO-brane is a sphaleron at the

Just as was explained in the previous section a conformabp of a non-contractible loop with the same topology of the
transformation will take this geodesic into a DO-brane whichD-instanton. Therefore the entire event of a DO-brane cre-
is created and annihilated at the same valué&Jpbut at a  ation, propagation and annihilation can carry a unit of
distancel on R4, this is the AdS dual of the configuration in D-instanton charge. In fact, it can carry 1, 0,-ed units of
Fig. 3(b). The size of the two half instantons is simg®  D-instanton charge.
=\/U. Those two configurations are shown in Fig. 4. Itis  The creation or annihilation of a DO-brane is an event that
not surprising, therefore, that the corresponding action is carries half(or minus a half of D-instanton charge. This
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+

D1

D=

+

[

D1

FIG. 5. An unstable D2 brane of type IIB can end on two half
D1-branes. a. b.

might seem to contradict the charge quantization condition.

The product of the charge of a single D7-brane and the FIG. 6.(a) The 't Hooft—Polyakov monopoléb) The sphaleron
charge of a single D-instanton is@m2 so how can a string is very similar to cutting the monopole in the middle and
D-instanton break in two? The answer is that the two halve§mearing it in the<_3 direction.. The width of the string is of order
of the D-instanton are connected by a DO-brane, which must/V: Where there is a non-trivis U(2) flux.

carry half a unit of D-instanton flux. ) . . -
This is analogous to a bar magnet, or a solenoid irfiguration space and the unstable string sitting at the top of

electro-magnetism. Outside the magnet the magnetic fielf’® l0op can be found ih23,24. Those papers considered
looks like that of two separated, oppositely charged, monot€ theory in three dimensions, where the monopole is an
poles. But the monopole charge need not satisfy the Dira@s'ga_nton a_nd the spha_leron isa particle. We are mt_erested in
quantization condition, as the magrier solenoid, carries  UPlifting this to four dimensions. We shall not review the
the flux from one to the other. explicit construction but rather deduce the relevant properties
It is amusing to push this analogy further. Just as thd"om general arguments. _ _
magnetic field in a magnet is created by the angular momen- 1h€ m(5)nopole solutiof25] yields a radialu(1) mag-
tum of the electric charges, the DO-brane can be regarded &§tic field,
a very thin solenoid in which a current of D7-brane charge
produces a dual flux, connecting the one-halflp charges. Fo=— ié__ X (24)
It would be interesting to pursue this analogy even further. L
Since the unstable DO-branes connect pairs of 1/2
D-instantons, they could be called D-merons. To construct the non-contractible loop associated with this
Thus far we considered only DO-branes, but the same igolution we have to consider configurations which are invari-
true for hlgher dimensional branes as well. A D1-brane Ccarjynt under translation in one direction, SRy, Then we re-
break into two halves with an unstable D2-brane in thepjace the coordinate with a parameter in configuration space
middle. That is the same as saying that the boundary of @._.tana. This is pictured in Fig. 6. Note that to get con-
Euclidean D2-brane could carry half-D1-brane charge. Likefigyrations which are independent of thg coordinate one
wise in type IIA, a DO-brane can break in two with an un- has to perform amx dependent gauge transformation. This
stable D1-brane in the r_nlddle, an_d so on. A D2-brane endingges not change the topology of the loop, but it does change
on two half D1-branes is shown in Fig. 5. __ the action. Therefore one cannot simply replage with
In AdS space the action of the DO-brane is logarithmic,ia+ in the solution.
hoyvever in flat space it W.I|| bg linear. Therefore half_ After the gauge transformation, the sphaleron string is
D-instantons are clearly confined in flat space. The same igjyen by
true for the higher dimensional half-branes.

A=T(X) €apXp03, P=0(X)X502, (25)
V. UNSTABLE STRINGS IN THE COULOMB PHASE

In previous sections we discussed how the existence o\?’ith a,b=1,2. For more details s4@3,24.
the instanton implies that there is a point like sphaleron so- For =0 we sedlfrom Fig. 6, Eq.(24) or [23,24] that

; . , there is a solution localized in thé,x? plane with no mag-
lution. By the same logic, the 't Hooft—Polyakov monopole ~ . ; ;
o i o """ netic flux in the plane. Thus we have an unstable string so-
implies the existence of a string-like sphaleron solution in

gauge theories in the Coulomb phase. We discuss the ﬁelléiltlon (stretched along the, direction). The string does not

theory construction of the string and its supergravity dual. carry gauge mvanangU (.1) fI.ux, bl.ﬂ I dpes carrySU(Z}
magnetic flux in thex® direction. Dimensional analysis im-

plies that the tension of such a string is
A. Field theory description

We first study the unstable string in tf®U(2) gauge
theory broken tdJ(1) by an adjoint Higgs. The details of Swe remind the reader that thé(1) components of th&U(2)
the construction, the relevant non-contractible loop in conare defined with respect to the Higgs fiefd,,=F? W2,
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W2 “““““““““““““ D3
gym

whereW is the Higgs expectation value. Far£0 there is a
U(1) magnetic field and the full non-contractible loop
—ml2<a<mw/2 describes a transition which changes the
total magnetic flux of the vacuum by one unit. Note that in
the Coulomb phase this does not cost any energy as the flux
expands to infinity and we are still in the vacoum. "~~~ """~ """ TTTToommmm T T D3

Put differently, as one starts from _the vacuum:= FIG. 7. A D1-brane(solid line) right in between two AdS-like
— /2 and goes around the non-contractible loop through th?egions in the double-centered AdS geometry.
sphaleron,a=0 back to the vacuuna= 7/2, one unit of
magnetic flux is added in thg; direction. Thus the non-
contractible loop goes between vacua with different Cher

D1

direction to get a finite mass objecThe field theory tension
' such a string is calculated with respect to the field theory

numbers. coordinates and is therefore
B. Su i ipti
pergravity descr!ptlon | m
The AdS-CFT correspondence is not useful to describe To1=—f—. (28
SU(2) broken toU(1). Instead, we describ®U(2N) gauge 2ma’gs
symmetry broken tof U(N)XU(N)]/U(1) by the Higgs
mechanism. The relevant supergravity backgrourid js From Eq.(27) we see that the tension vanishes on the branes
(U=0 and U=W) and that the string would like to fall

towards one of the branes.
There is one exception, the string located precisely in the

a’' 1 1 -
\/4779 N( —+ T) middle U=W/2. It solves the classical equation of motion,
u* |Ju-w* however it is unstable. Any perturbation along such a string

will eventually lead to eithet=0 or U=W. This is the
1 1 . instability of the string in the AdS description.
+ \/4mgN ——|dU (27

dsz_ 1

dxﬁ

@Jr 10— W|* The tension of such a D1-brane is

whereW is the vector that represents the Higgs expectation T W2
value. 2 I
; : . gymVA
Since the dual of the monopole is a D1-brane in the
direction and since the sphaleron associated with the D1- o ) )
brane charge is the unstable D2-brdié it is natural to  Agdain, we see that because this is not a BPS configuration,
suspect that the dual of the unstable string is a D2-branthe tension is not protected as one interpolates from the
along thexy,x; and U directions. However, unlike iik'°, ~ weakly coupled regiori26). _ _ .
where the boundary conditions are set at infinity, there is Such a D1 string carries magnetic flux in the diagonal
nothing holding the D2-brane to the horizon. One can easily (1) (which decouples from the bulk degrees of freediom
see that such a D2-brane will not solve the equations ofut not in the relativeJ(1). If it falls towards one of the
motion with free boundary conditions. Therefore, the un-collections of branes, a flux is turned on in the relative gauge
stable D2-brane cannot be the dual of the unstable gauggoup. We see that if we start with a string @t=0 and

theory string. _ ~ move it toU=W we go back to the vacuum, but we changed
To resolve this puzzle we should find another objectthe flux in the relative gauge group by one. This is the topo-
From the discussion in Sec. IV, the D2-brane can carry halfogical structure of the non-contractible loop and the con-
a unit of D1-brane charge at each end. Another configurati0ﬂguration at the middle is a sphaleron.
with the same charge is a D1-brafia the xo, X3 direc- One can, of course, consider the configuration with a fun-
tions). To preserve the symmetry betweéh=0 and U damental string along thwe,, x5 direction. Such a string car-
=W, the D1-brane should sit precisely at the center ries an glectric flux a_nd has th(_e same instability_. However,
—\W/2. This is shown in Fig. %. on the flelld.theory side there is no dual electric unstable
string. This is an example of the case where a sphaleron of
the strongly coupled theory does not have a weakly coupled
analog. The reason is that the BPS configuration which is
supposed to guarantee its existence isWiboson. But un-
like the monopole, th&V-boson is an elementary excitation
S0ther strings in this geometry were considered28]. in the weakly coupled theory, and not a classical solution,

(29

Indeed, suppose that we place a D1-brane alongxhe
direction at some value dfi (we could compactify the®
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————————————————————————— D3
D1
a.
———————————————————————— D3
———————————————————————— D3
D1 ' FIG. 9. The unstable string can end on half a monopole. Here
we draw the string with a half monopole at one end and half an
anti-monopole at the other. From far away it looks likdJ&1)
b. dipole, but near the core, at distances of ord&v,14 non-Abelian
“““““““““““““ D3 flux is carried by the string.

FIG. 8. A D-string stretched between one horizon and the center
point is half a monopole. This configuration cannot exist on its own,  Notice that, unlike the meron case, the energy of the con-
but the unstable string can connect two half-monoptdesr a half ~ figuration is linear with the distance between the 1/2 mono-
monopole and a half anti-monopa(l). poles and hence it will not contribute to the partition function
for any value of the coupling constant.

and there is no related topological charge. This is related to Half a monopole seems to contradict the Dirac quantiza-
the fact that the fundamental string does not carry a charge ifion condition. Again there is a magnet connecting the two
K-theory. half monopoles. One might wonder how this works, since we
argued that this string does not carry adyl) flux. The
resolution of the puzzle is simple. Recall that the thickness of

the string is~1/W, so the string is in the region of unbroken
In Secs. lll and IV we showed that the unstable DO-brangyauge symmetry. The flux is carried, therefore Sti(2).

is a meron connecting two half D-instantons. In this subsecsee Fig. 9.

tion we generalize the construction of merons to the

't Hooft—Polyakov monopole. Consider a D1-brane in the

double center of the AdS solutid@7) which follows one of ACKNOWLEDGMENTS
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