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Sphalerons, merons, and unstable branes in AdS space
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We construct unstable classical solutions of Yang-Mills theories and their dual unstable states of type IIB on
anti–de Sitter (AdS5) space. An example is the unstable D0-brane of type IIB located at the center of AdS
space. This has a field theory dual which is a sphaleron in gauge theories onS33R. We argue that the two are
dual because both are sphalerons associated with the topology of the instanton or D-instanton. This agreement
provides a non-supersymmetric test of the AdS-conformal field theory duality. As an illustration, many aspects
of Sen’s hypothesis regarding the unstable branes can be seen easily in the weakly coupled dual field theory
description. In Euclidean AdS space the D0-branes are dual to gauge theory merons. This implies that the two
ends of a D0-brane world-line carry half the charge of a D-instanton. Other examples involve unstable strings
in the Coulomb phase.

PACS number~s!: 11.25.2w, 11.15.Tk
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I. INTRODUCTION

Like any other strong-weak duality which cannot
proven directly, the anti–de Sitter–conformal-field-theo
~AdS/CFT! duality @1# was tested using Bogomol’nyi
Prasad-Sommerfield~BPS! configurations. Such configura
tions are protected by supersymmetry and can be tra
while interpolating from weak to strong coupling. Non-BP
configurations are not protected and in general any re
obtained using the duality is considered to be a predic
rather than a test.

In this paper we study some non-BPS states of ga
theories at weak and strong coupling. The configurations
discuss are unstable classical solutions which sit at the to
non-contractible loops in configuration space~sphalerons!
@2–5#.

Let us remind the reader what a sphaleron is. Say th
exists a one parameter family of field configurations t
form a non-contractible loop. One should think of all hom
topically equivalent loops and find the point with maxim
energy along each loop. Now consider the minimum of
those energies; since the loops are not contractible, tha
ergy has to be greater than zero, and the corresponding
configuration is a saddle point—the sphaleron. In pract
once one understands the topology, it is usually easy to
the loop going through the sphaleron. A schematic pictur
given in Fig. 1.

If there is ad-dimensional topologically charged object
the theory, then in general there would be
(d11)-dimensional sphaleron. A simple example is a the
which has an instanton. Then consider the one param
family of static field configurations where the extra para
eter replaces the Euclidean time. This family of field co
figurations has the same topological charge as the instan
0556-2821/2000/62~8!/086007~11!/$15.00 62 0860
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By varying the parameter, one starts and ends at the vacu
and at the middle point there will be an unstable solution
the equations of motion. It sits at the top of a no
contractible loop in the space of field configurations. This
the sphaleron.

It was recently argued by Harvey, Horˇava, and Kraus@6#
that unstable D-branes of string theory@7,8# are sphalerons
For example, the type IIB D0-brane can decay to t
vacuum, but its existence is dictated by the same topolog
the D-instanton, whose charge is classified byK theory @9#.
One can construct a one parameter family of static confi
rations whose topology is that of the D-instanton. The D
brane sits at the top of the loop.

This will serve as our first example. We consider the co
figuration of a D0-brane at the center of AdS space. This
massive, non-BPS object in the largeN and large coupling
classical limit of the theory. In global AdS spac

FIG. 1. The existence of a non-contractible loop, as illustrated
the picture, proves that there is an unstable saddle point. I
marked by the point in the picture.
©2000 The American Physical Society07-1
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geometry, where the topology of the boundary isS33R, this
is a static, spherically symmetric, configuration.

A similar configuration exists at weak ’t Hooft coupling
It is explained in detail in Sec. II, let us just say now that
is a ‘‘half pure gauge’’ configuration. If one considers th
SU(2) instanton @10#, this is the configuration half-way
through the tunneling process, which is at the top of
potential. That is why it is a solution of the equations
motion with one unstable mode. This gauge theory sphale
has many properties similar to the D0-brane in AdS spac
is static, spherically symmetric and has a single tachyo
mode. We will argue that it is dual to the D0-brane in Ad
space. We also find duals of the configuration withk coinci-
dent D0-branes, which havek2 unstable modes, in string
theory and in the gauge theory.

It is rather perplexing at first that we are able to find
dual description for a non-BPS object. But there is, in fac
good reason for that. The D0-brane sits in the middle o
non-contractible loop with the same topology as t
D-instanton, while the gauge theory solution is at the mid
of a loop with the topology of the gauge theory instant
which is dual to the D-instantons.

Put differently, the instanton describes a tunneling proc
under a potential barrier, and the sphaleron sits at the to
the potential. The mass of the sphaleron is the maxim
height of the potential. In the dual theory, the D-instant
also describes a tunneling event, and the sphaleron is aga
the top of the potential barrier. The mass of the D0-bran
the height of the potential. Since the Yang-Mills~YM ! in-
stanton and D-instanton are dual, they describe the same
neling process in the dual pictures. The shape of the pote
is altered by quantum corrections, but there is always
unstable point in the middle.

It is very simple to calculate the potential through whi
the instanton tunnels, it is given by a quartic of the field. T
potential of string theory is much more complicated, und
standing this potential is crucial to proving the brane an
brane annihilation procedure, which is in the heart of Se
construction, and the classification of D-brane charges bK
theory. This issue was addressed recently by using le
truncation in string field theory@11# with impressive results
Our dual description fits neatly with Sen’s conjecture.

One should contrast this with other strong-weak dualiti
It is more typical for the topological excitations of on
theory to become the elementary excitations of the d
theory. For example, the kinks of the sine-Gordon mo
become the fermions in the dual Thirring model. The sam
true in the S-duality ofN54 Yang-Mills ~and type IIB!,
where the topologically charged monopole goes over to
W-boson which is the elementary excitation. Here we fi
that one topologically charged object goes to another to
logically charged object, and therefore there are sphale
associated with those topologies. Roughly speaking,
AdS-CFT duality is special since it is a strong-weak dua
with respect to the ’t Hooft coupling, while the soliton
masses are of the order of 1/gY M

2 .
These ‘‘half pure gauge’’ configurations were consider

in the past onR4. They are singular at the origin and
infinity, but the singularities can be smoothed out. Tho
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objects were named merons@12#. The singularity at the ori-
gin and at infinity are replaced with half an instanton, inte
polating between the vacuum and the meron.

This has an exact analog in Euclidean AdS space, whe
D0-brane appearing out of the vacuum, propagating and
nihilating is dual to the meron. The D0-brane follows a ge
desic in AdS space, and its action depends logarithmically
the separation of the two end points. The same logarith
behavior~up to a coefficient which depends on the ’t Hoo
coupling! shows up on the gauge theory side. Because of
entropy of those configurations, they might dominate
path integral for largegY M .

We will also argue that each of the two end points of t
D0-brane carries half a unit of D-instanton charge. The D
brane serves as a flux tube carrying half a unit of flux fro
one end to the other, thus preserving the Dirac quantiza
condition of D-instanton charge. A similar story applies
higher dimensional branes, so the unstable D-branes ca
regarded as D-merons. Unlike AdS space, where the ac
of the D0-brane is logarithmic, in flat space it is linear, the
fore it would not be dynamically favorable for D-branes
break by this mechanism.

The paper is organized as follows. We describe the det
of the sphaleron onS33R and the D0-brane in Lorentzia
AdS space in Sec. II. In Sec. III we describe the mer
configurations. We review the old construction in the gau
theory, and then we describe its dual. We interpret the
stable branes as D-merons in Sec. IV. In Sec. V we cons
another example of a duality between unstable classical
lutions. We show that gauge theories in the Coulomb ph
admit unstable string solutions which do not carry gau
invariant magnetic or electric fluxes. We describe the A
dual of this solution. The unstable string can also serve a
meron, and we explain how a monopole can be separ
into two halves as long as they are connected by one of th
strings.

II. SPHALERON PARTICLE

In this section we consider sphaleron particles in four
mensionalU(N) Yang-Mills theory, and their AdS duals
Since Yang-Mills theory is a conformal theory there are
static finite energy~stable or unstable! solutions onR4 sim-
ply because there is no scale to fix the mass of the solut
However, there is a sphaleron particle if we consider
gauge theory onS33R. In that case the size of the sphere,R,
is the only scale in the theory and so the mass of any st
solution is;1/R.

We consider first the perturbative YM description, a
then the AdS dual. While the duality is true only for th
theory with theN54 matter content, in perturbation theor
the particle exists already in the pure gauge theory.

A. Gauge theory description

The topology that supports a stable particle in four dime
sions is the map from theS2 at spatial infinity to the fields.
For U(N) pure gauge theory the only relevant topology
7-2
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SPHALERONS, MERONS, AND UNSTABLE BRANES IN . . . PHYSICAL REVIEW D62 086007
p2„U(N)…50. Hence this theory does not admit any top
logically charged stable particles~on eitherR4 or R3S3).
However, since

p2l 11„U~N!…5Z, for l ,N, ~1!

there are unstable solutions to YM theory. These solutio
which we describe below, sit at the top of a non-contracti
S2l 21 in configuration space.

We start by considering the simplest case ofl 51. In that
case we have a non-contractible loop in the configura
space ofSU(2) gauge theory which we embed inSU(N).
The topology of the non-contractible loop is the same as
instanton topology. It is useful to recall the instanton so
tion, given by the ansatz

Am52 i f ~r !]mUU†,

U5
xmsm

r
5

x01 ix is i

r
, r 25x0

21xi
2 , ~2!

wheres i are the Pauli matrices andx0 ,xi the four Euclidean
directions. The Yang-Mills action now yields

S5
1

4gY M
2 E

0

`

dr96p2S r

2
f 821

2

r
f 2~12 f !2D . ~3!

The equations of motions have three constant solutionf
50, f 51 and f 51/2. f 50,1 are stable solutions whic
correspond to two vacua. The instanton solution,f (r )
5r 2/(a21r 2), interpolates betweenf 50 at the origin and
f 51 at infinity. The configuration withf 51/2 is an unstable
solution, it solves the second-order equation of motion,
unlike the two vacua and the instanton solution, does
solve the first-order BPS equation.

On R4 we see from Eq.~2! that f 51/2 is a non-static
singular solution. It was first discussed in@13# and was stud-
ied further in @12#. Those are the merons which we w
discuss in the next section. OnS33R however, the solution
is static, regular and completely delocalized1 on S3. To see
this, note that the conformal transformation that takesR4

with metric ds25dr21r 2dV3
2 to S33R with metric ds2

5dt21R2dV3
2 is

r 5exp~ t/R!. ~4!

Therefore the action of the sphaleron onS33R is

S5E
0

`

dr
3p2

gY M
2 r

5
3p2

gY M
2 R

E
2`

`

dt. ~5!

We see that the action does not depend ont and that the
sphaleron mass is

1Since the solution is smeared over the entireS3, it could be
considered a tachyonic vacuum, rather than an unstable par
Since the space is compact, it is hard to distinguish between the
notions.
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3p2

gY M
2 R

. ~6!

A non-contractible loop of static field configurations goin
between the two vacua and through the sphaleron is give
Eq. ~2! with

f ~r !5a, 0<a<1. ~7!

Equation~2! implies that for constantf we getAr50 ~onR4)
and henceAt50 ~on S33R) and thatAu does not depend on
t. Therefore,Ftu50 ~whereu represents theS3 coordinates!.
This has important implications for the non-contractib
loop. First, the field configurations along the entire no
contractible loop~7! do not depend ont, and can be de-
scribed in terms of the three dimensional theory onS3. Sec-
ond, even though the conformal map with Lorentzi
signature~see e.g.@14#! is different from the Euclidean con
formal map~4!, the Wick rotation to the Lorentzian signatur
~on S33R) is trivial along the entire non-contractible loop
This is not the case for the instanton solution, which depe
on r. Finally,

Tr FF̃50, while TrF25
6

R4
Þ0. ~8!

These features will prove to be important for the dual d
scription, as we shall see in the next section.

Next we turn to the cases whenl .1. In those cases the
solution exists only forSU(N) with N.2. Finding all
sphaleron solutions forSU(N) gauge theory is beyond th
scope of the paper. However, there is a very simple const
tion which yields sphalerons related to arbitrarily high hom
topy groups. Those are dual to the coincident D0-brane
AdS space.

We can generalize the spherically symmetric ansatz~2! to
larger gauge groups by replacing the Pauli matrices and
identity by

Am52 i f ~r !]mUU†, U5
xmgm

r
, ~9!

where theg ’s satisfy the algebragmgn
†1gngm

† 52dmn . We
use the simple choice

gm5sm ^ I k5S sm 0 ••• 0

0 sm ••• 0

A A � A

0 0 ••• sm

D , ~10!

whereI k is the identity matrix of rankk. It is easy to see tha
this is still a solution of the equations of motion iff 51/2.
The action simply scales as the rank, 2k, of the matricesgm .
Therefore the mass of thek sphaleron is

Mk5kMSp. ~11!

le.
o
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This sphaleron solution hask2 unstable modes, which corre
spond to each of the 232 entries in the matrix in Eq.~10!.
The number of unstable modes alone does not fix the to
ogy of the non-contractible loops associated with the sph
ron. For example, the fact that we havek2 unstable modes
does not mean that the sphaleron sits at the top ofSk2

. This
would be inconsistent withpk2„U(N)…50 for evenk. In fact
the topology is exactly that ofU(k). The sphaleron sits a
the point2I k in the group, which is opposite to the identity2.
Thek2 unstable modes are the tangent vectors in the alg
of U(k). Since the groupU(k) has non-contractibleS2l 21

for all 0, l<k, there are such loops going through t
sphaleron. So we can choose to classify the tangent d
tions by those spheres. All together there are indeed 113
1•••12k215k2 unstable directions. The sphaleron si
therefore, at the top ofS1,S3, . . . ,S2k21. In the next section
we shall see that this fits neatly with the results of@6#.

Let us show this explicitly fork52. Consider

Am52 i ]mUU†
^ H, ~12!

whereU is of rank two, as defined in Eq.~2!, andH is any
232 Hermitian matrix. We can parametrize

H5
1

2
~11a!I 21

1

2
b is i . ~13!

The sphaleron is ata5b i50, which hasH5 1
2 I 2. Two

vacua are given bya561, b i50, so thatH50,1. There is
another family of vacua, ata50, ubu51, those are param
etrized by anS2, the direction ofb i . Those vacua giveH
with one eigenvalue equal to zero and the other equal to

Identifying the two vacua at the end of the interval21
<a<1 gives the non-contractibleS1. The parametersb i
~with ubu,1) take values in the ballB3. Identifying all the
boundary points gives a non-contractibleS3.

The parametera in Eq. ~7! gives a one-dimensional fam
ily of configurations inSU(2). In theprevious paragraphsa
and b i gave a one and a three dimensional family of co
figurations inSU(4). Those are actually related to the no
trivial p3 of SU(2) and to the non-trivialp3 and p5 of
SU(4). This is true in general. To see this we have to
clude the spatial manifoldS3.

The parametersa, b i and the higher dimensional one
live in B2l 21. At every point there is a static field configu
ration onS3. So we have anS3 for every point inB2l 21. At
the boundary of the ball the field configuration is t
vacuum, which is trivial on theS3, so we can take the spher
to shrink to a point. This fibration ofS3 over B2l 21 gives
S2l 12. Now recall the well known fact that if the gaug
group has a non-trivialp2l 11 then there is a non-trivia
gauge bundle overS2l 12 ~the map fromS2l 11 to the group is
the transition function on the equator ofS2l 12).

2We described the sphaleron as the point in the algebra ofU(k)
with f 5

1
2 I k , in the group that corresponds to exp(2pif )52Ik .
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In the simplest case, adding the parametera to S3 allows
us to build anS4, on which there are configurations with th
topology of the instanton.

B. Supergravity side—unstable D0-branes in AdS5ÃS5

The AdS-CFT duality is a strong or weak duality and
such it takes classical configuration of one description int
quantum excitation of the other description. Therefore, it
very hard to trace a generic~non-BPS! classical solution of
weakly coupled SYM to the AdS description. A sphaleron
a non-supersymmetric solution sitting at the top of a no
contractible loop in theclassicalconfiguration space. There
fore, it is natural to suspect that the quantum corrections
blur the non-contractible loop, and, that by the time the
Hooft coupling is large there will be no trace of the no
contractible loop and the sphaleron.

However, as we saw, the non-contractible loop associa
with the sphaleron of the previous subsection is described
the topology of the instanton. The dual of the instanton i
D-instanton in AdS space, which carries a charge
K-theory. So we should look for a non-contractible loop wi
the topology of the D-instanton. Such non-contractible loo
in flat space-time were constructed in@6#. There it was ar-
gued that the sphaleron at the top of the loop is the type
D0-brane. We claim, therefore, that the dual of the solut
of the previous section are the unstable D0-branes locate
the origin of AdS space. This is illustrated in Fig. 2.

Let us mention a few properties of the unstable D0-bra
and how they fit into the claim that they are dual to the fie
theory sphalerons.

A D0-brane~or k coincident D0-branes! which are located
at the center of AdS space are static objects with respec
the global time. Therefore they correspond to static obje
in the gauge theory. The center of AdS space correspond
the extreme infrared of the gauge theory, so the energ
uniformly distributed overS3.

From the closed string theory point of view the low e
ergy supergravity fields which are excited by the D0-bran

FIG. 2. An unstable D0-brane in the center of AdS5 space. The
vertical direction is time, and the radial direction is the radial co
dinate of AdS space. The boundary of global AdS5 space isS3

3R.
7-4
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SPHALERONS, MERONS, AND UNSTABLE BRANES IN . . . PHYSICAL REVIEW D62 086007
are the NS-NS graviton and dilaton. The RR-fields are
excited. That would correspond, using the dictionary
@15,16#, to TrFF̃50 and to TrF2Þ0, in agreement with the
field theory results~8!. Note that the mass of D0-branes~and
Tr F2) do receive quantum corrections for they are not p
tected by supersymmetry,3

MD05A 2

gs
Aa8

5
4A2pl1/4

gY M
2 R

. ~14!

In @6# it was shown that the type IIB D0-branes are spha
rons of string theory. That is, in flat space-time they sit at
top of a non-contractible loop in the configuration space
string theory. Since for large ’t Hooft coupling the ‘‘center
of AdS space can be approximated by flat space-time,
can simply embed the construction of@6# in AdS space.
There is also a global way to construct the D0-branes in A
space. Starting with a system of D1-brane–anti-D1-br
stretching all the way to the boundary of AdS space, just l
in flat space-time, this system contains a complex tach
mode which can support an unstable D0-brane.

It was further argued in@6# that k coincident D0-branes
which havek2 tachyonic modes correspond to sphalerons
the top ofS1,S3, . . . ,S2k21 in U(k). This is exactly what
we found from the field theory side. It is worth while to no
that in both descriptions the mass is proportional tok.

The NS sector of the excitations living on the D0-bran
contains a real scalar tachyonic mode. According to Se
conjecture at the bottom of the tachyon potential the nega
energy cancels the tension of the brane and we are left
the vacuum. This was tested, to a good accuracy, via
level truncation method in string field theory@11,18,19#. On
the field theory side, we see that indeed the bottom of
potential@ f 50, 1 in Eq.~3!# is the vacuum. While calculat
ing the tachyon potential in string theory is complicated,
the field theory it is just a quartic~3!.

Since the tachyon is real, the potential can suppor
stable lower dimensional brane, D-instantons in our ca
Again, the energy of such a configuration was calculated
string field theory with impressive agreement with expec
tions @18#. On the field theory side the instanton indeed
terpolates between the two minima of the potential.

Of all the instanton solutions onR4, the one of radiusR
centered around the origin is special when translating toS3

3R. It goes over to a spherically symmetric solution onS3.
In that theory, this instanton can be described as a quan
mechanical tunneling process between the two minima of
quartic potential in Eq.~3!. The gauge theory sphaleron si
at the middle of the potential. The width of the potential isR
and the height, which is the mass of the sphaleron, is p
portional to 1/gY M

2 R. The action of the instanton is the are
under the potential. In string theory the same is true, o
that R is replaced byl s . The height of the potential is

3The origin of theA2 is the fact that the open strings living on a
unstable brane carry two Chan-Paton factorsI ands1 @17#.
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l1/4/gY M
2 R51/gY M

2 l s , and the width is of orderl s . Since the
action of the D-instanton is the same as the gauge the
instanton, the area is the same, but the shape is altered

We see therefore, that indeed the field theory sphalero
dual to the unstable D0-branes in AdS space. It is import
to emphasize@6# that the D0-branes arenot sphalerons of the
low energy supergravity. That is, there is no supergrav
solution associated with the non-BPS D-branes which sit
the top of a non-contractible loop of field configurations
the classical supergravity. The unstable branes are sphale
of the full string theory including all the quantum correctio
to the sigma model. Since the full string theory on AdS spa
contains all the information about the dual super YM~SYM!
theory it is not surprising thatin principle the field theory
sphalerons can be described by string theory on AdS sp
What is remarkable is that the description is so simple.

A natural question that arises is whether the dual wea
coupled description sheds new light on the diagonal U~1!
problem associated with the unstable D0-branes. Unfo
nately, even though we can trace the D0-branes to
weakly coupled region, we cannot trace the gauge the
living on them to the weakly coupled description. Thus,
far as we can tell, the dual description does not lead to
new insight on the U~1! problem. It is worth mentioning tha
this problem of tracing the gauge theory living on the bra
to the weakly coupled description is not special to D
branes. For example, we know that the dual of a D1-br
stretching all the way to the boundary is the BPS monopo
But in weakly coupled field theory there are no fields livin
on the monopole, while there is a 111 gauge theory living
on D1-branes in AdS space. The reason is that the size o
D1-brane is larger than the string scale only for large
Hooft coupling and so for small coupling the excitatio
which were supposed to live on the monopole cannot
separated from the other excitations.

It is interesting to note that when we havek D0-branes the
full topology of the non-contractible loop,U(k), with its
non-contractibleS1,S3, . . . ,S2k21, can be interpolated from
the weakly to the strongly coupled region. TheS1 is ‘‘pro-
tected’’ by the instanton which is BPS. It should be intere
ing to understand why the other spheres are ‘‘protected’
well.

We would like to end this section with a comment o
finite N. Our construction of the field theory solution whic
is dual tok coincident D0-branes is valid fork<N/2. Equa-
tion ~1! implies that a dual solution should be found at up
k5N. Presumably, a more complicated ansatz will inde
yield the right solution. It should be interesting to see if t
mass is still linear withk. Another question is what happen
whenk.N. In the field theory side we get out of the stab
regime. Is there any stringy exclusion principle associa
with that? Recall that the global construction ofk D0-branes
in AdS space involvesk D1-branes and anti-D1-brane
stretched all the way to the boundary~this is a simple gen-
eralization of the discussion in@6#!. Now, whenk5N the
D1-branes can end on a NS-brane which wrapsS5 @20,21#.
So it seems that the existence of a baryon vertex in A
7-5



um

lf
s

e
-
ty
io
an

ie
ry

u

o
rts
or
y-
ns

o
te

n
a
in

al
is

ron,
nti-
o-

ame

a
ion
a-
pic
n
a

ber-

ra-

lays

n-
or-
or-
ce

two

NADAV DRUKKER, DAVID J. GROSS, AND N. ITZHAKI PHYSICAL REVIEW D 62 086007
space is the underlying mechanism which bounds the n
ber of coincident D0-branes in AdS space toN. Clearly, it
would be helpful to understand this better.

III. MERONS IN GAUGE THEORIES AND IN AdS

In Sec. II A we studied the field configuration of ‘‘ha
pure gauge’’ onS33R, and interpreted it as a sphaleron. A
we mentioned, those same configurations can be consid
in the Euclidean theory onR4, they are still classical solu
tions, but there is a singularity at the origin and at infini
By smoothing out the singularities one gets a configurat
that solves the equations of motion almost everywhere
has finite action. Those are the merons@12#.

We give a brief review of the merons in gauge theor
and then will find analogous configurations in string theo
on AdS space.

A. Short review of merons

Let us write again the instanton ansatz~2!

Am52 i f ~r !]mUU†,

U5
xmsm

r
5

x01 ix is i

r
, r 25x0

21xi
2 , ~15!

where f 50,1 are vacuum solutions, andf 5 1
2 , the meron, is

an unstable solution which is singular atr 50,̀ . The action
~5! is logarithmically divergent

S5
3p2

gY M
2 E

0

`dr

r
. ~16!

To regularize this divergence consider the following config
ration:

f ~r !55
r 2

r 21R1
2 , r ,R1 ,

1

2
, R1,r ,R2 ,

r 2

r 21R2
2 , R2,r .

~17!

This is the meron forR1,r ,R2, glued to half an instanton
at the origin and half at infinity. This carries the same top
logical charge as the instanton, but it is broken in two pa
If one takesR15R2, the instanton solution is recovered. F
R1ÞR2 this is a solution of the equations of motion ever
where but at the spheres which separate the three regio

This is illustrated in Fig. 3~a!. Region I and III are the half
instantons near the origin and infinity. Region II is the mer
which connects the two. The action can be easily calcula
and is equal to

S5
8p2

gY M
2

1
3p2

gY M
2

ln
R2

R1
. ~18!
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Since classical YM theory is conformally invariant, we ca
use a large gauge transformation to map region III to
sphere at finite distance. The new configuration is shown
Fig. 3~b!. Regions I and III each carry half the topologic
charge of the instanton, so at infinity this configuration
pure gauge.

One can, of course, replace the meron with an anti-me
where instead of half an instanton there is half an a
instanton. The meron anti-meron pair will have zero top
logical charge and two anti-merons21 topological charge.
The interaction between a meron and anti-meron is the s
as that between two merons.

The action of a meron grows with the distance. Thus
first guess is that the contribution of merons to the partit
function is negligible. However, the action grows only log
rithmically so it can be compensated by a large entro
factor.4 The entropy contribution to the partition functio
goes likeL4, hence the partition function associated with
meron is

Z;L4 expS 2
1

gY M
2

ln L D 5L (421/gY M
2 ). ~19!

This suggests a phase transition atgY M
2 > 1

4 , wherein the
meron charges that made up the instanton dipole are li

4In thermodynamics this is, of course, common. At finite tempe
ture one has to minimize the free energy,F5E2ST rather than the
energy. Thus a phase transition between minimizingE and maxi-
mizing the entropy can take place. Here the coupling constant p
the role of the temperature.

FIG. 3. ~a! The meron configuration. Region I is half an insta
ton, region II is the meron with exactly half a pure gauge transf
mation, and region III is another half instanton. By a large conf
mal transformation that takes the point at infinity to finite distan
and region III to a finite sphere this can be mapped to the
meron configuration~b!.
7-6
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ated. In the non-supersymmetric theories it was sugge
that the appearance of this new phase at large coupling
large scale size, is closely related to confinement, where
merons play the role of the three dimensional instanton
Polyakov’s mechanism for confinement@22#. However, the
full story is much more complicated for one has to consi
a gas of merons and their interactions. This, as well as
fact that the coupling runs, made it very hard to estimate
relevance of merons to confinement.

Even though the coupling does not run forN54, the
main problem of understanding the interactions among
merons is still very complicated. In fact, in theN54 theory,
because of the fermions and scalars and the fact that a m
breaks all supersymmetry, it is probably even more com
cated. We however cannot resist the temptation of specu
ing that meron physics might be a clue for understand
N54 theory at the self-dual point (gY M

2 54p).

B. Merons in AdS space

We would now like to describe merons in the strong co
pling limit of the field theory, using string theory on Ad
space. We saw in Sec. II that the sphaleron solution of
gauge theory onS33R is described in the dual theory by a
unstable D0-brane. Since the meron is the same field c
figuration as the sphaleron, only onR4, it is also described
by a D0-brane in Euclidean AdS space. Here we use
metric

ds2

a8
5

Al

U2
dU21

U2

Al
dx2. ~20!

Consider a D0-brane which is created at some pointU1,
propagates tillU2 ~and the same point inR4) and annihilates.
This is the AdS dual of the configuration~17! which was
illustrated in Fig. 3~a!. By the UV-IR relation, forU1.U2,
the internal circle has a radiusR15Al/U1 and the externa
circle R25Al/U2.

The action of this configuration is

S5SD(21)1TD0E ds5
2p

gs
1

A2l1/4

gs
ln

U1

U2
, ~21!

where the first term 2p/gs58p2/gY M
2 is equal to the instan

ton action and is related to the creation of the brane and
annihilation, like in the gauge theory. This contribution w
be justified in the next section. Comparing this to the gau
theory result~18!, the constant part of the action is un
changed, but the coefficient of the log is renormalized b
factor proportional tol1/4, like the sphaleron mass~14!.
Again, one should not be surprised, since this is a non-B
configuration.

Just as was explained in the previous section a confor
transformation will take this geodesic into a D0-brane wh
is created and annihilated at the same value ofU, but at a
distanceL on R4, this is the AdS dual of the configuration i
Fig. 3~b!. The size of the two half instantons is simplyR
5Al/U. Those two configurations are shown in Fig. 4. It
not surprising, therefore, that the corresponding action is
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S5
8p2

gY M
2

1
4pA2l1/4

gY M
2

ln~L/R!. ~22!

The fact that the logarithmic term is now proportional
l1/4/gY M

2 , rather than just 1/gY M
2 as in the weakly coupled

theory seems to imply that the entropy contribution can
compete with the energy in strong coupling. That is,

Z;L4 expS 2
l1/4

gs
ln~L ! D . ~23!

So a phase transition atgs;1 is very unlikely for largel.

IV. UNSTABLE BRANES AS D-MERONS

In the previous section we studied D0-branes in Euclide
AdS space. Since they are unstable they can appear out o
vacuum, propagate some distance and disappear again.
was dual to the meron in the gauge theory which conne
two regions where there are half instantons. Since the A
dual of the instanton is the D-instanton, it is natural to s
pect that at each end of the D0-brane sits half a D-instan

We reached that conclusion by studying D0-branes
AdS space, but this is true in any string theory backgrou
and the argument does not have to rely on the AdS-C
correspondence. After all, the D0-brane is a sphaleron at
top of a non-contractible loop with the same topology of t
D-instanton. Therefore the entire event of a D0-brane c
ation, propagation and annihilation can carry a unit
D-instanton charge. In fact, it can carry 1, 0, or21 units of
D-instanton charge.

The creation or annihilation of a D0-brane is an event t
carries half~or minus a half! of D-instanton charge. This

FIG. 4. Two examples of unstable D0-branes created and a
hilated in Euclidean AdS space. The boundary of AdS spacetim
marked by the solid line atU5`. Between the creation and ann
hilation point the particle travels along a geodesic.
7-7
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might seem to contradict the charge quantization condit
The product of the charge of a single D7-brane and
charge of a single D-instanton is 2p, so how can a
D-instanton break in two? The answer is that the two hal
of the D-instanton are connected by a D0-brane, which m
carry half a unit of D-instanton flux.

This is analogous to a bar magnet, or a solenoid
electro-magnetism. Outside the magnet the magnetic fi
looks like that of two separated, oppositely charged, mo
poles. But the monopole charge need not satisfy the D
quantization condition, as the magnet~or solenoid!, carries
the flux from one to the other.

It is amusing to push this analogy further. Just as
magnetic field in a magnet is created by the angular mom
tum of the electric charges, the D0-brane can be regarde
a very thin solenoid in which a current of D7-brane char
produces a dual flux, connecting the one-half D~-1! charges.
It would be interesting to pursue this analogy even furthe

Since the unstable D0-branes connect pairs of
D-instantons, they could be called D-merons.

Thus far we considered only D0-branes, but the sam
true for higher dimensional branes as well. A D1-brane c
break into two halves with an unstable D2-brane in
middle. That is the same as saying that the boundary
Euclidean D2-brane could carry half-D1-brane charge. Li
wise in type IIA, a D0-brane can break in two with an u
stable D1-brane in the middle, and so on. A D2-brane end
on two half D1-branes is shown in Fig. 5.

In AdS space the action of the D0-brane is logarithm
however in flat space it will be linear. Therefore ha
D-instantons are clearly confined in flat space. The sam
true for the higher dimensional half-branes.

V. UNSTABLE STRINGS IN THE COULOMB PHASE

In previous sections we discussed how the existence
the instanton implies that there is a point like sphaleron
lution. By the same logic, the ’t Hooft–Polyakov monopo
implies the existence of a string-like sphaleron solution
gauge theories in the Coulomb phase. We discuss the
theory construction of the string and its supergravity dua

A. Field theory description

We first study the unstable string in theSU(2) gauge
theory broken toU(1) by an adjoint Higgs. The details o
the construction, the relevant non-contractible loop in c

FIG. 5. An unstable D2 brane of type IIB can end on two h
D1-branes.
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figuration space and the unstable string sitting at the top
the loop can be found in@23,24#. Those papers considere
the theory in three dimensions, where the monopole is
instanton and the sphaleron is a particle. We are intereste
uplifting this to four dimensions. We shall not review th
explicit construction but rather deduce the relevant proper
from general arguments.

The monopole solution@25# yields a radialU(1) mag-
netic field,5

Fi j 52
1

er3
e i jkxk ,. ~24!

To construct the non-contractible loop associated with t
solution we have to consider configurations which are inva
ant under translation in one direction, sayx3. Then we re-
place the coordinate with a parameter in configuration sp
x3→tana. This is pictured in Fig. 6. Note that to get con
figurations which are independent of thex3 coordinate one
has to perform ana dependent gauge transformation. Th
does not change the topology of the loop, but it does cha
the action. Therefore one cannot simply replacex3 with
tana in the solution.

After the gauge transformation, the sphaleron string
given by

Aa5 f ~x!eabxbs3 , F5g~x!xasa , ~25!

with a,b51,2. For more details see@23,24#.
For a50 we see@from Fig. 6, Eq.~24! or @23,24## that

there is a solution localized in thex1,x2 plane with no mag-
netic flux in the plane. Thus we have an unstable string
lution ~stretched along thex3 direction!. The string does not
carry gauge invariantU(1) flux, but it does carrySU(2)
magnetic flux in thex3 direction. Dimensional analysis im
plies that the tension of such a string is

5We remind the reader that theU(1) components of theSU(2)
are defined with respect to the Higgs field,Fmn5Fmn

a Wa.

f

FIG. 6. ~a! The ’t Hooft–Polyakov monopole.~b! The sphaleron
string is very similar to cutting the monopole in the middle a
smearing it in thex3 direction. The width of the string is of orde
1/W, where there is a non-trivialSU(2) flux.
7-8
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T;
W2

gY M
2

, ~26!

whereW is the Higgs expectation value. ForaÞ0 there is a
U(1) magnetic field and the full non-contractible loo
2p/2<a<p/2 describes a transition which changes t
total magnetic flux of the vacuum by one unit. Note that
the Coulomb phase this does not cost any energy as the
expands to infinity and we are still in the vacuum.

Put differently, as one starts from the vacuum,a5
2p/2 and goes around the non-contractible loop through
sphaleron,a50 back to the vacuuma5p/2, one unit of
magnetic flux is added in thex3 direction. Thus the non-
contractible loop goes between vacua with different Ch
numbers.

B. Supergravity description

The AdS-CFT correspondence is not useful to desc
SU(2) broken toU(1). Instead, we describeSU(2N) gauge
symmetry broken to@U(N)3U(N)#/U(1) by the Higgs
mechanism. The relevant supergravity background is@1#

ds2

a8
5

1

A4pgNS 1

UW 4
1

1

uUW 2WW u4D
dxuu

2

1A4pgNS 1

UW 4
1

1

uUW 2WW u4
D dUW 2, ~27!

whereWW is the vector that represents the Higgs expecta
value.

Since the dual of the monopole is a D1-brane in theU
direction and since the sphaleron associated with the
brane charge is the unstable D2-brane@6# it is natural to
suspect that the dual of the unstable string is a D2-br
along thex0 ,x3 and U directions. However, unlike inR10,
where the boundary conditions are set at infinity, there
nothing holding the D2-brane to the horizon. One can ea
see that such a D2-brane will not solve the equations
motion with free boundary conditions. Therefore, the u
stable D2-brane cannot be the dual of the unstable ga
theory string.

To resolve this puzzle we should find another obje
From the discussion in Sec. IV, the D2-brane can carry h
a unit of D1-brane charge at each end. Another configura
with the same charge is a D1-brane~in the x0 , x3 direc-
tions!. To preserve the symmetry betweenUW 50 and UW

5WW , the D1-brane should sit precisely at the centerUW

5WW /2. This is shown in Fig. 7.6

Indeed, suppose that we place a D1-brane along thex3

direction at some value ofUW ~we could compactify thex3

6Other strings in this geometry were considered in@26#.
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direction to get a finite mass object!. The field theory tension
of such a string is calculated with respect to the field the
coordinates and is therefore

TD15
Ag00g11

2pa8gs

. ~28!

From Eq.~27! we see that the tension vanishes on the bra
(UW 50 and UW 5WW ) and that the string would like to fal
towards one of the branes.

There is one exception, the string located precisely in
middle UW 5WW /2. It solves the classical equation of motio
however it is unstable. Any perturbation along such a str
will eventually lead to eitherUW 50 or UW 5WW . This is the
instability of the string in the AdS description.

The tension of such a D1-brane is

T;
W2

gY M
2 Al

. ~29!

Again, we see that because this is not a BPS configurat
the tension is not protected as one interpolates from
weakly coupled region~26!.

Such a D1 string carries magnetic flux in the diagon
U(1) ~which decouples from the bulk degrees of freedom!,
but not in the relativeU(1). If it falls towards one of the
collections of branes, a flux is turned on in the relative gau
group. We see that if we start with a string atUW 50 and
move it toUW 5WW we go back to the vacuum, but we chang
the flux in the relative gauge group by one. This is the top
logical structure of the non-contractible loop and the co
figuration at the middle is a sphaleron.

One can, of course, consider the configuration with a f
damental string along thex0 ,x3 direction. Such a string car
ries an electric flux and has the same instability. Howev
on the field theory side there is no dual electric unsta
string. This is an example of the case where a sphalero
the strongly coupled theory does not have a weakly coup
analog. The reason is that the BPS configuration which
supposed to guarantee its existence is theW-boson. But un-
like the monopole, theW-boson is an elementary excitatio
in the weakly coupled theory, and not a classical soluti

FIG. 7. A D1-brane~solid line! right in between two AdS-like
regions in the double-centered AdS geometry.
7-9
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and there is no related topological charge. This is relate
the fact that the fundamental string does not carry a charg
K-theory.

C. 1Õ2 monopole configuration

In Secs. III and IV we showed that the unstable D0-bra
is a meron connecting two half D-instantons. In this subs
tion we generalize the construction of merons to
’t Hooft–Polyakov monopole. Consider a D1-brane in t
double center of the AdS solution~27! which follows one of
the trajectories indicated in Fig. 8. Such a brane will so
the equations of motion everywhere along the trajectory
cept for the two turning points. From the field theory si
this corresponds to a monopole broken into two half mo
poles.

FIG. 8. A D-string stretched between one horizon and the ce
point is half a monopole. This configuration cannot exist on its ow
but the unstable string can connect two half-monopoles~a! or a half
monopole and a half anti-monopole~b!.
s.
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Notice that, unlike the meron case, the energy of the c
figuration is linear with the distance between the 1/2 mo
poles and hence it will not contribute to the partition functi
for any value of the coupling constant.

Half a monopole seems to contradict the Dirac quanti
tion condition. Again there is a magnet connecting the t
half monopoles. One might wonder how this works, since
argued that this string does not carry anyU(1) flux. The
resolution of the puzzle is simple. Recall that the thickness
the string is;1/W, so the string is in the region of unbroke
gauge symmetry. The flux is carried, therefore, inSU(2).
See Fig. 9.
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FIG. 9. The unstable string can end on half a monopole. H
we draw the string with a half monopole at one end and half
anti-monopole at the other. From far away it looks like aU(1)
dipole, but near the core, at distances of order 1/W, a non-Abelian
flux is carried by the string.
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