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DO-brane(D-particle and D1-brane actions possess first and second class constraints that result in local
symmetry. Thex symmetry of the D-particle and the D1-brane is extended here into a larger symmetry (
andk ) in a larger phase space by turning second class constraints into first class constraints. Different gauge
fixings of these symmetries result in different presentations of these systems while a “unitary” gauge fixing of
the newk, symmetry retrieves the original action wikh. = « symmetry. For a D1-brane our extended phase
space makes all constraints into first class constraints in the case of a vanishing world sheet electric field
[namely, (0,1) string

PACS numbeps): 11.25-~w, 04.60.Ds, 11.30.Pb

[. INTRODUCTION Ref.[15]. Another possibility to restore the symmetry is to
include a proper Wess-Zumino term in the action, as is the
An important ingredient in the study of D-brapg] dy- case with the DO-brang7—10]. This is physically more in-
namics is their local fermionic symmetry on the world- teresting, but contains in addition to the first class con-
volume, thex symmetry. The history of this symmetry goes straints, second class constraints that correspond to the re-
back to the superparticle actid@] where it was identified stored x symmetry. When considering the massless limit,
[3,4] and applied to the superstriri§]. It was used also in one finds the need to avoid these second class constraints
the study of supep-braneg 6] in different dimensions. The since also here the Dirac brackets become singular in the
role of thex symmetry was further emphasized in the studymassless limit. The restoration of symmetry with no second
of the D-branes embedded in flat 10D space-time in Refsclass constraints, gives the full advantage of working within
[7,8]. The symmetry is generated by 16 irreducible first classa system with local symmetry. In particular a covariant wave
fermionic constraints. These constraints are accompanied Myinction can be formulated also in the massless Ijm].
another set of 16 second class fermionic constraints which dpor this purpose, it is usually useful to turn the second class
not correspond to any local symmetry. The covariant separazonstraints into first class. This formulation offers a flexibil-
tion of the two types of constraints in the brane action wasty to allow various gauge fixings which are physically
emphasized in Ref$9,10] and enabled the covariant quan- equivalent. At the same time, the newly introduced first class
tization of the DO- and D1-branes. constraints generate a gauge symmetry which may give more
It has been found difficult to quantize covariantly the insight into the geometrical structure of the system which is
massless superparticle, as is the situation also with thimteresting in its own right.
Green-Schwarz formulation of the superstriid, since in Several other different approaches to this issue share in
both systems first and second class constraints cannot lkemmon the idea of adding extra dynamical degrees of free-
separated in a covariant manner. This is a long lasting probdom while extending the symmetry of the system in different
lem and many attempts have been made to sol/&lif12.  manners. In the geometrical-superembedding approach, su-
In the massive superparticle action theymmetry is explic- perbrane dynamics are manifestly supersymmetric on the
itly broken. Its first class constraints are replaced now byworldvolume as well as in target superspadé] and the
solvable second class constraints and the system can bexiliary commuting spinors superpartners have twistorlike
quantized covariantly by means of Dirac brackets since all itand Lorentz harmonics properties. This approach, which has
constraints are second class. Since the massive superpartielevide range of applications in several physical systems, has
can be quantized covariantly, one may be tempted to corbeen developed for supgrbranes and D-branes as well.
sider the massless limit of the massive case as a substitute f@ther treatments of second class constraints include ex-
the covariant quantization of the massless superparticléended phase space variables in R&7] and, more recently,
However, the Dirac brackets become singular in fife  auxiliary commuting twistorlike spinor variables and tenso-
=m?—0 limit. The restoration of the brokes symmetry of  rial central charge coordinates were used in RES)]. Intro-
the massive system in an extended phase sfE®d4 by  ducing Liouville mode while solving the second class con-
adding extra fermionic degrees of freedom was considered istraints left a final action with only first class constraints in
Ref. [19]. Other related approaches can be found in Refs.

[20,21].
*Email address: moshe@physics.technion.ac.il In the first part of this paper we suggest a new symmetric
"Email address: nsakai@th.phys.titech.ac.jp system for the D-particle in which the second class con-
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straints are turned into first class in an extended phase space One possible modification by which the logal symme-
which includes extra fermionic degrees of freedom. We deiry can be restored is extending its phase spac®l+o2
fine a system that containg, ,,, the original fermionic while adding an appropriate Wess-Zumino term:
degrees of freedom of the DO-brane to which extra fermionic B B

degrees of freedord, ,p, are added {,,,p, are Majorana- ox,=iol, 60, 60+=(>'<”—i6FV'0)1“,,K, ,

Weyl spinors whileé,,m, are only Majorana The new
system has, in addition to the original= «_ symmetry a
new localx, symmetry. The system can be gauge fixed in
many different ways while one of these gauge fixifigmi- 1
tary” gauge retrieves the original DO-brane. The rest of the L=— —(XF—i0*0)2+ lem?+L,. (5)
paper presents, along the same lines, the D1-brane with an 2e

extendedx _ and «, local symmetry. We consider the case

of a vanishing electric field in the Born-Infeld-Nambu-Goto Hereé#=~0.+6_ (¢ is a Majorana spinor and, and¢._ are
action. Majorana-Weyl spinors of opposite chiralitand 56_ and

L, are to be determined below. From Hd) one finds

se=4ied, x_ (4)

Il. SUPERPARTICLE AND D-PARTICLE 2i . . 2i . .
_ , SL=—(x*—i0I*0)%0, k_— —(x*—i6l ,0)
The N=1 massless superparticle actionds 10 space- e e
time dimensiong [2,5]): . L
X OTH(660, +60_)+2iem?0,k_+6L,. (6)

f 1~ 1. — .
S=f L(r)d7=— > dTg(X"— i0.T*0,)> (1)  5£=0 for a properly chosert,. A possible solution of the
i i form

is invariant under the locat symmetry: SL,=A, 50 +B_60, )

O%,=10.1,60,, 80,=(x"=10.I"0,)l' k., givesA, = —2im'§+ , B_=2im6_ and50_—emx_ (up to

L a rescalingA, —A, /a, B_.—B_a and6_— 60_a)
oe=4iel k_ (2
. d —
x*(u=0,1, ...,9) arespace-time coordinates ardl. is a SLy=1md( 91“119)—|ma(591“119) ®
Majorana-Weyl spinor with positivéor negativé chirality.
The spinorx_ has the opposite chirality of, ande(7r) is  where
the “einbein” of local reparametrization symmetry. The 32
X 32I'* matrices =0,1,2...,9) are built out of the con- 1 O
ventional spin(8) matrice$ and satisfy{T'#,I"*} =27*" and [H=g* 1= ( 0 - 1>, {rtr«=o
p'=diag{—+++ ...}
The system has eight fermionic first class constraints anglz is the 16 16 identity matriy. Thus,
eight fermionic second class constraints and thus its phase
space has (322xX8—8) eight independent fermionic de-
grees of freedom.
Local k symmetry is explicitly broken in th&l=1 mas-
sive superparticle action id=10 dimensiong15]:

L(7)=—3e {(x*—i6T*0)°+ semP—imoT  (9)

has a restore@d_ symmetry. The system has now not only
16 first class constraints but also 16 second class constraints
and the number of independent degrees of freedom in phase
S:fffﬁ(T)dT:fodT( —i(k“—i§+l"“'0+)2+1emz _ space is the same as tiNe=1 massive superparticle (64
” 2e 2 —2X16—16=16). Indeed, when compared to the massive
(©)) N=1 superparticle action in Eq3), the added negative
] chirality 6_ degrees of freedonB2 degrees of freedom in
Here, using Eq(2), one findsdL=2ien?d,x_+#0. All 16  phase spacef_ and their canonical conjugate,) can be
constraints are second class and its phase space has (§Ruged away once the restored symmetry is gauge fixed
—16=)16 independent fermionic degrees of freedom. (6_=0). One is left, after gauge fixing, back wiit{7) of
the massiveN=1 superparticle in Eq(3).
A very appealing point of view orC(7) of Eq. (9) is
1our conventions ard™=cl® ", m=12,...9,°=—is2 obtained when one starts with the massless superparticle ac-
o7, M= 037, (I T# =0, F“z(‘;ﬂ ;g), 4=012. .9 7" tion in d=11 dimensions which is given by[2-5])
={-1,} y*={147, 1=12,... 9% (k=1,2,...8 are 16
X 16 spin8) matrices, y2=II{=8/, {y™y"}=26™", m,n=1, S_J

7

¢ 1 (7 A A
me v L(r)dr=—=| dre }{(x™—iol'mg)?> (10
2, Y Yyt = Ry =292 u,v=0,1,2 ... 9. i

2],

7
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where xm(ﬁ1=0,1 ... 10) are the space-time coordinateswheremw, is the momentum, canonical conjugateff(right
and 0,=0,,+6_,(a=1,2,...,32) are the corresponding handed derivatives are used when taking a derivative with
fermionic coordinates which can be regarded as twqespect tod,,).
Majorana-Weyl spinors of opposite chiralities, if viewed as  The momentum is
spinors in ten dimensions.
When one of the space directions is compactifizg] to a [ >'<M— i?rﬂ'e }
Pu= ;

-1__
V—(x,—i60r,0)?2

radius of R=m~'=Z7"1 the d=11 massless superparticle
the Hamiltonian isHy=0. Using the Poisson brackets

action result§9,10] in the DO brane action:

S:foﬁ(r)dT —
7 [X..p"]=6,, [0%mz]=05; all others=0. (14)

7 1 . — . 1 — .. .
=J fdr[—E(x#—i49r#0)2+§ezz—izar“a One finds
| [T Tpl=2i("%(p+2I), (19
+ Z[xo ) = Xao 7). (11) g g
and we have
wherep;o was set top;p=m=2Z, I''? is defined ad"** and z 3
p=01L...9. - . . ¢+ZF“=( ) (B+2ZIM2=(p?+2%)* T
The DO brane action in Eq11) is the same action ob- p —-Z

tained in Eq.(9) and its Wess-Zumino terd6I'*'9 estab- (16)

lishes the locak - symmetry, which _is the qriginal symme- éhere,I is the 3232 identity matriy
try of thed=11 massless superparticle action. Thus, insteal
of 32 second class constraints as in e 2, d=10 massive defI'%(p+zI''h]=(p2+z2)*=0. (17
superparticle action, the DO has 16 first class constraints and
16 second class constraints which is the same number &f the 32<32 matrix ['°(p+ZI'"), each of its 1616
constraints as the massleNs-2, d=10 superparticle and blocks has a nonzero determinant, ah®(p+ZzI''") has
here too the 16 first class constraints resuh'(-msymmetry_ rank 16. The first and second class constraints can be cova-
An important difference between the DO action and thefiantly separated by definin®,10]
massless superparticle is the fact that in the DO case the first 11
and second class constraints can be separated in a covarialﬁ?lz?(p+zrll)( 1-Tr ) =7 p—Zm, +i0,(p*+2Z?)
manner[9,10]; this cannot be done for the massléés 2, 2
d=10 superparticle.

We would like to treat now the DO system in a more
symmetrical manner by turning also its remaining 16 second o ‘<1+1~11

T

and

class constraints into first class. The resulting system will T,=
have in addition to the originat_ symmetry, ax , symme-

try generated by the new first class constraints. Among allg seen from the following Poisson brackets relations:
possible different gauge fixing of the new. symmetry, one

=m_+i6.p+izo_ (18)

should also be able to retrieve the original DO system, by _ P 1
appropriately gauge fixin¢‘unitary” gauge fixing) the ex- [Tie. T1pl=—2i(p+Z9)| I bl
tended symmetric system. ap
After implementing thex, extended symmetry into the 1_ri
system, the number of independent degrees of freedom [Toy,T> ]=2i<I‘° p)
a B 2
should not change. Thus, one has to extend the phase space apB
of the new, symmetric system by adding extra fermionic de- "
grees of freedom to account for the increase of symmetry. In = = o o o[ edtT
the following we define and summarize the properties of the [T1a:Topl=—2i(p™+ 29| I"— (19
K, ,k_ symmetric system. From Eql1) (ignoring the “h
boundary termor from where we used
. _ - — 1+
s=—zf dr{N—(x*—ior#9)%+iortte} (12 [0sa mzpl=|— (20
Tj aﬁ

The generator ok symmetry and reparametrization is given

one finds the constraints in terms of the parameters_ and e, by

T =7, +i(0p),+iZ(6r),=0, p?+2?=0 (13 G=3e(P?+2Z%)+ Ty . (2D)
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As mentioned above, the DO-brane has a total of 16 independsing the extended phase space Poisson brackets if2@q.
dent fermionic degrees of freedom in phase sp&8®x2  and Eq.(26) one finds the Poisson brackets of two chiral
—(2X 16+ 16)] as reflected by the 16 first class and 16 secimultiplets of first class constraints :
ond class fermionic constraints in Ed.9). o

In an extended phase space where the system is described[ T, ,,Tz]l= —2i(p?+2?)
by extra degrees of freedom, second class constraints can be
turned into first clas§13,14]. One denotes the second class % {FO
constraints Poisson bracket by

1+t

4 N A N B
ap

- . -ru o 1+
[TZaaTZ,B]:Zl(FO b) =Voyo,Vsg. (22 [T.w T.g]=—2i(p?+2?) FO( 5 ) (30)
af ap
V,.p constructs the Becchi-Rouet-Stora-TyotlBRST) op-  The total extended phase space Hamiltonian is
erator in the extended symmetric system ang is used in o o
order to define a linear combination of extra 32 fermionic HT=HO+§)\p(p2+ Z2)+T N _+T/ N,
degrees of freedom in phase space. We liapeo similarity
transformations oy in the symplectic structure of ER2)]: Ho=—3e(p2+2Z?) (31
o1-Irt 2i[(1+Tt The generator ok_ andx_ gauge symmetries and reparam-
Vap=| T 2 p|  wap=- p2 2 r etrization is
aff ap
(23)

€ J— — —
G=e€. ot —2(p2+Z2)+{m_p—Zm. +i6 2472
We define the linear combination: emet 5 (P JHm-p ++10:(p )
— - - e +{m +i0,p+iZ6_—ip +C, 32
q)fa:_%pfa—i_waBngB:_%pfa_l%(ngp)a (24) {77 +'é P g+p}K+ ( )
and the phase space action is
where we used

- A [1-T - 1+ szf fdr(pMk#+weé+?+é_+¥_'a++F_'g+
Wap= —1 E I 2 b s W oy 3= T . 7
af a(825) e
+E(pz—i-Zz)—)\eﬂ'e—%)\p(p2+22)—T+)\,—T'J\+ .
p_ and{, are a canonical pair of Majorana-Weyl spinors
representing extra 32 fermionic degrees of freedom whose (33
Poisson bracket is The k_ and k. transformations generated by the generator
- 14T G in Eq. (32) are given by
[paing,B]:( 2 ) (26) — i — — _
afB X, =(m_I',+2ip, 0, )k _+(10,+{ ) Kk,
The linear combination in Eq24) of the extra degrees of 8p,=0, 80,=px_+k,, 80_=—Zk_,
freedom® _, have the Poisson bracket
- U (1-T1 Sm.=—Zik,, m_=—i(p*+Z)k_+ik.p,
[q)*aiq)fﬁ]:_waﬁ:ii 1"0 2 )lb . (27) . — —
aB 0l =—lKky, Op_=K.p. (34
One defines now, in the extended phase space, the followirphe action in Eq.(33) is invariant under these transforma-
constraints, which are first class: tions if supplemented also by
?LQZ?ZQ-F(I_),B(»BVVW, [?’,a,?’,[;]zo (28) 5)\*:’-<*1 5)\+:’-<+7
Thus, the dynamics in the extended phase space are de- SNp=4i(K_Ny— K N_+K_P\_)
fined by the two opposite chirality sets of constraifits, T" ) ) o
and their Poisson bracket: as well as invariant under reparametrization

- - OX,= , op,=0, de=¢€,, 6m.=0,
To=T, =7 p—Zm. +i0,(p?+22), n=Pucpr Py fer e

- - ONe=€a, ONp=€ot €y, €(7)=€y(7)=0.
T =m_+i0,p+iZo_—ip_+.p. (29) e Cer Mp= et ep, T =EplTe (35)
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In Eq. (33) the bosonic X¢,\,) Lagrange multipliers and the T o=
Majorana-Weyl § _,\,) Lagrange multipliers are associ- ~ ¢
ated with the bosonic and fermionic first class constraints
me=p2+2%2=0,T_=T,=0. T —T.4i2
One notices that in the new phase space action of 3. Fa 07
only the linear combination-ip_+ ¢, p of new fermionic
degrees of freedom appears. The orthogonal combination

Toat® pwp V=1 +i0,p+iZ0 —ip +{.p

=]

=7 _p—Zm, +i0,(p>+Z2)+{ (p?+Z?)

1+171
2

p2+ ZZ
p2

: (39

2

T T -Z 2 2
[TL, Tigl=—2i F (p=+29)

does not appear in the action and is thus decoupled from any
dynamics of the system. This “Batalin-Fradkin decoupling”
(see Refs[13-15) assures that the correct independent de- — [p?+Z?
grees of freedom defines the extended symmetric system. —ip-p p?
Namely, we started with (6416xX2—16=)16 fermionic
degrees of freedom in phase space, 32 degrees of freedom
were added and the, symmetry was introduced. We have These constraints satisfy the following Poisson bracket rela-
now (64+32—16x2—16X2=16+16)16 independent de- tions:
grees of freedom as in the original system while the other 16
are the “Batalin-Fradkin decoupled” degrees of freedom. In 1
the extended symmetry system, in addition to the possible F°<1+F )4
gauge fixing(e.g.,[9,10]) that eliminates the_ degrees of 2 aB,
freedom by fixing thex_ gauge, other gauge fixings are
acceptable as well. Clearly, as seen in Efl), a properly [?’, T 1=0, [?; T 1=0. (39)
chosen gauge fixing‘unitary” gauge fixing) of the newx . « P ok
symmetry will eliminate the linear combination of the new
fermionic degrees of freedomrip_+{p. For example a  We note in thep?>Z? limit, T, and T, are functions
possible unitary gauge fixing is of (w,,6_) and (m_—ip_,6,.—iZ.) only. It is expected,
in this limit, that the system behaves as the2 massless
- — superparticle—a system with 16 independent fermionic de-
¢-=0 and—ip_+{,p=0. (36)  grees of freedom in its phase space, as seen also directly
from the action in Eq(10). Indeed, one notes that not only
This results in the same gauge fixed system that was used f-_@nd ¢+ appear only in the linear combinations.
Ref. [9]. A different and interesting gauge fixing that elimi- +i{.p but now alsor_+i6.p is the only linear combina-
nates the old degrees of freedom and leaves only the new Xn of #_ andé, that appears in the constraints. Thus, after
degrees of freedom is simply, taking into account the decoupling of their orthogonal linear
combination and the fact that the fermionic degrees of free-
dom in phase space are now constrained by 16 first class
9-=0 andf,=0. (37) constraints T_,) while (T ,) are now second class only
(sincep?+ Z2+0), one finds indeed in thg?>Z? limit only
The gauge fixed DO system is given in this gauge in terms of6 independent fermionic degrees of freedom as forNhe
—ip 47, b only. As in the case of the unitary gauge in E =2 massless superparticle. Namely, 63— 16X2—16
pP-T6+ _ y: — y gaug 9 — 16+ 16+ 16 where the last 1616 fermionic degrees of
(36), the Poisson bracket matrT .., x-z] between the freedom are decoupled in the same sense as the “Batalin-
constraintsT.,,T" , and the gauge fixing conditiong_  Fradkin decoupling”(do not appear in the constraints or in
=6_,x,=#0, is not singular since?+Zz2=0. Of course, the Hamiltonian of the extended system
other combinations ok _ and «, gauge fixings are also The path integral formulatioh22] of the system in Egs.
possible. (30) and(31) with x_ andk, symmetry which has only first
An interesting set of constraints is defined by class constraints is given by

Szf fdr{p#kf%?m+?'0++F'§++;HX+Ri\++wpxp+'é7>+7>'c+?2_+7'>+ﬁ(?+“CT7'3+
— _ _ " _ _ — _
+P,C+—HO+pr+77)\,)(++77)\+)(,—?p(p2+22)—T+)\,—T,)\++C+[)(,,T+]C,

0 [xs T 1C—PP-P,P_—P P, —4PN_pC_+4ZP(N_Cs—N.C_)}. (40)
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Here,C. and ﬁ: are canonical pairs of bosonic ghosts with the same Chirality, andk are Pauli matrices acting on
and P. andC- are canonical pairs of bosonic antighosts, NdicéSA=1,2. The Lagrangian can be rewritten as

associated with the fermionic constrairfis andT_. The Llo)=—T(/GZ —GG— F2.+b 4
Majorana-Weyl, . ,7,_ are the canonical conjugates of (o) VG0~ GodBu1~ Fortbou(ra)}. (47
the Lagrange multipliers _ ,\ .. The bosonicm, is the ca- The canonical momenta for the world sheet gauge field is

nonical conjugate of the Lagrange multipliep, associated given by the electric fieldE*
with the constrainp®+Z?=0 andy. ,x. are gauge fixings.

The fermionic ghost and its canonical conjugate are denoted E°:£:0 Elzﬁz TFn 49
by C %ndP, and the canonical pairs of fermionic anti-ghosts Ao oA, \/G%rGooGu— F2
asP,C . _

The last three lines in Eq40) are given by—[¥,Q] The canoni_cal momenta, and p,, are defined ford, and
where the BRST operatd® is given by x™, respectively:

GllHOm_ GOll_llm
VG2~ GoGri— F2

_ — — — C -~ — ~
O=Pmy+P,m +P_m+T,C +T C,+ E(pz-l—Zz) Pm=Pm— O Ted10, pPm=T

+27)C?pc*+227)(c*c+_c+c*) (41) ;Z;V[lTE—_ﬂEH-(;Fmﬁlﬁ)(EFmTE), TE:E17'3+T7'1.
and the gauge fixing is given by (49)
v= —7’7\—%#\-—7;—)\++5)(+5_+X—+5_—X+ . We will suppress the indiceA=1,2 of 0’2 when it is easily

(42) recognized. From Eq(47) one finds the fermionic con-

The abovex_ ,x. symmetric DO defined in the extended straints®”
phase spaced(. ,7+,{. ,p_) is physically equivalenttothe __ _ _ _
ordinary DO with k_ symmetry of Eq.(11). This, as men- ®,=m,+(0p),— (6I'"Tg) ,(d1Xm)+ (6T ™910) (' TE),
tioned, is demonstrated by choosing the “unitary” gauge
fixing x+ in Eq. (36) that sets the extended phase space =0 (50
variablesp_+i{ p to zero. On the other hand the above which satisfy the Poisson bracket relations:
symmetric system accepts many different gauge fixings o o
giving different presentations of the DO braffer example, [q>a(g),q)ﬁ(g’)]:2[(r%)aﬁ—(FomlTE)aﬁ] S(o—0a').

Eq. (37)]. (51)

IIl. D1-BRANE WITH k_ AND k4 EXTENDED In addition to the fermionic constraints in E¢G0) one
SYMMETRY finds from Eq.(47) also the bosonic first class constraints :

Following along similar lines we present now the exten- P2+ Gy (E3+T2)=0, p,lT=0. (52

sion of this derivation to the case of a D1-brane. It results in
a system withk _ and«, symmetry which will be discussed The constraints in Eq50) can be separated covariantly
below. into first class and second class constrajgtq]:
The action of the D1-brane consists of the Born-Infeld- 1
= | — T3
el
(53

E\I;jlmbu-Goto term and the Chern-Simons two fdiy term ﬂaz[q_)(?ﬁ—]?ITE)( 1';7'3)
— 2 2 —

5= f L(o)dPa= T[ f Po=de(G,,+ F,p)+ f Qz] Ihe Poisson brackeTs, 71,1 vanishes on the con

(43)  straints hyperplane.

These 16 first class constraintg, generate the locat
symmetry of the D1-brane. On the other hand

a

where G, is the supersymmetric induced world-volume
metric and 7,, is the supersymmetric Born-Infeld field

strength: [Tow T2p]=2(T°P7_) pb(a— ") (54
GW=HEH,,m, HIT:&MXm— or"g,0, w,v=0,1, where
m=012....9 44 p =Pt EMI =Pt 01 nTed1 0+ EL(91Xm— O 1 6).
For=For~boi(7s),  Fuu=d,A,= AL, (49 Since P?=p?+2E,(pll;) +E{Gy=—T?Gyy on the
_ " I _ constraints hyperplane, we obtain a nonvanishing
— m —_— —_—
boi(7i) = — OF m7i{ do 0117 — 91 0115+ 3[ 9 6( O™, 6) defT,,,Tos] (apart from the cas&,,=0) implying that
—ala(FFmaoa)]} (46) T, are 16 second cl_ass congtraints. The condiGgp# O is _
essential for separating the first and second class constraints
where 0’;, a=1,2,...,32 are twdMajorana-Weyl spinors and the covariant quantization of the D1 system. In R&f.
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it has been emphasized that in the static ga(vgeere x* We note from Eq(48) that settingE'=0 means also that

=¢g* for ©=0,1) indeedG,;#0. The implications of this Fy;=0 which results in the Lagrangian of E¢47) to be

fact on the ground state spectrum and on the relation to theery similar to the Green-Schwat@S) string.

work of Ref.[7] on the type IIB fundamental string have  The GS string is described by the actids]

been cleared there. Both Refg] and[9] discuss the prop- -

erties of the static gauge and elucidate its physics content. «_ 2 _ | 42 ap 2

Since the static gauge is a natural gauge for D1, we follow S f Hoydo 2] ¢ vhh G“ﬁ+f Lo,

this point of view. (58
We define now a new system in an extended phase space _ _

that includes in addition to the 64 fermionic degrees of free- L£2=—Te*9,X™('T 36"~ 6T nd 56°)

dom ¢ and 7% extra fermionic 32 degrees of freedom

a _ aB/ plrm 1\( 92 2
[13,14) that satisfy Te®(6°T79,6°)(6°T mdpt?)
[;A(o_)'gz(o_/)]: 5(0__ 0_/)7,685 5 (55) = _T[aoxm(;Fngé’la)_alxm(EFng&oe)]
_ T — T
The constraints of the new systerj(x,p, 6,,¢,p) are — 5 O 73000 (6T a1 0°) + 5 (07"730,0)
obtained from the constraints in E&3) in a similar way the -
constraints in the extended phase space in (28 were X (0T mdo0™). (59

. _ . T7A
obla:ned for th.eD particle. - Namely, Ty,(x,p,6,,Z,p) This can be compared to thw,(7,) of Eq. (46) which can
=T1.(X,p,0,) is left unchanged and does not depend ony, \yritten also as

(¢,p), whereas the other constraif, is modified as . o
—a — E—— o bo1( i) =[IoX™(OT 1791 0) — I1X™(OT 1y 700 6) ]
T/a(X’plgiﬂ-!g!p):T a(Xip!GIW)_pa+(§ P)aT— — — —
’ i (56 + 30T ™1y 300) (AT oy 64) — 3 (0T ™71 6)

which depends on{(p) and satisfies the Poisson bracket X(OMT 1o 0). (60)

relatiorf: Thus £,= —Thyy(73) compared to- Thy,(7) in the Wess-

= = 4 1 , oem = Zumino term of the D1-brane. Similarly, using the equation
[T2a:T2p]= —2E"8(0—0")[2(T"T™) (5({T'm7-910) of motion forh®? one notices that the D1 action in Eg3)
—m — with E;=0 (namely F,,=0) is identical to the Green and
~ (T o(92LTm7-) 6] Schwarz action whem:is replaced byr; [10]. Since we are
135(0_(,/) = using the static gauge as a natural gauge for D)1 the
oo Ml mT-)p. (57 massless modes are projected out. This relation between the
physics of the type 11B fundamental string and the D1 system
in the static gauge has been noted in Ref.
We also note that the electric fiel! is quantized and
/ . : epresents the number of fundamental string bound to the
indi\?gr-:—zt; ' trsjzii)t:\éier:ﬁt;uejy:??rlc iyjten;n%kfl\gsispac 1-brane pr.oducingr(, m) string[24,25. Therefore we have
9 y i w(0), T4 )’/_’a(_ ), ¢plo) succeeded in extending the system where all the second class
where the number of independent fermionic degrees of fre€sgnsiraints are turned into first class constraints at least for
dom has not been changed. Namely, we started W82 e case of the (0,1) string, namely the genuine D1-brane
—2X 16— 16=16 independent fermionic degrees of freedomyyithout F1 provided the massless modes which are projected

in phase space and in the extended phase space we have,g by using, for instance, the static gauge.
X 32—2X32=16+16 (BF) degrees of freedom where the

—2E

In the case ofE!=0 the new system has only first class
constraints and local symmetries and«, generated by,

16 (BF) degrees of freedom are “Batalin-Fradkin decou- ACKNOWLEDGMENTS
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2In deriving Eq. (57), the following relations for Majorana;
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