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D0- and D1-branes withkÀ and k¿ extended symmetry
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D0-brane~D-particle! and D1-brane actions possess first and second class constraints that result in localk
symmetry. Thek symmetry of the D-particle and the D1-brane is extended here into a larger symmetry (k2

andk1) in a larger phase space by turning second class constraints into first class constraints. Different gauge
fixings of these symmetries result in different presentations of these systems while a ‘‘unitary’’ gauge fixing of
the newk1 symmetry retrieves the original action withk25k symmetry. For a D1-brane our extended phase
space makes all constraints into first class constraints in the case of a vanishing world sheet electric field
@namely, (0,1) string#.

PACS number~s!: 11.25.2w, 04.60.Ds, 11.30.Pb
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I. INTRODUCTION

An important ingredient in the study of D-brane@1# dy-
namics is their local fermionic symmetry on the worl
volume, thek symmetry. The history of this symmetry goe
back to the superparticle action@2# where it was identified
@3,4# and applied to the superstring@5#. It was used also in
the study of superp-branes@6# in different dimensions. The
role of thek symmetry was further emphasized in the stu
of the D-branes embedded in flat 10D space-time in R
@7,8#. The symmetry is generated by 16 irreducible first cla
fermionic constraints. These constraints are accompanie
another set of 16 second class fermionic constraints which
not correspond to any local symmetry. The covariant sep
tion of the two types of constraints in the brane action w
emphasized in Refs.@9,10# and enabled the covariant qua
tization of the D0- and D1-branes.

It has been found difficult to quantize covariantly th
massless superparticle, as is the situation also with
Green-Schwarz formulation of the superstring@5#, since in
both systems first and second class constraints canno
separated in a covariant manner. This is a long lasting p
lem and many attempts have been made to solve it@11,12#.
In the massive superparticle action thek symmetry is explic-
itly broken. Its first class constraints are replaced now
solvable second class constraints and the system ca
quantized covariantly by means of Dirac brackets since al
constraints are second class. Since the massive superpa
can be quantized covariantly, one may be tempted to c
sider the massless limit of the massive case as a substitut
the covariant quantization of the massless superpart
However, the Dirac brackets become singular in thep2

5m2→0 limit. The restoration of the brokenk symmetry of
the massive system in an extended phase space@13,14# by
adding extra fermionic degrees of freedom was considere
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Ref. @15#. Another possibility to restore thek symmetry is to
include a proper Wess-Zumino term in the action, as is
case with the D0-brane@7–10#. This is physically more in-
teresting, but contains in addition to the first class co
straints, second class constraints that correspond to the
stored k symmetry. When considering the massless lim
one finds the need to avoid these second class constr
since also here the Dirac brackets become singular in
massless limit. The restoration of symmetry with no seco
class constraints, gives the full advantage of working with
a system with local symmetry. In particular a covariant wa
function can be formulated also in the massless limit@15#.
For this purpose, it is usually useful to turn the second cl
constraints into first class. This formulation offers a flexib
ity to allow various gauge fixings which are physical
equivalent. At the same time, the newly introduced first cl
constraints generate a gauge symmetry which may give m
insight into the geometrical structure of the system which
interesting in its own right.

Several other different approaches to this issue shar
common the idea of adding extra dynamical degrees of fr
dom while extending the symmetry of the system in differe
manners. In the geometrical-superembedding approach
perbrane dynamics are manifestly supersymmetric on
worldvolume as well as in target superspace@16# and the
auxiliary commuting spinors superpartners have twistorl
and Lorentz harmonics properties. This approach, which
a wide range of applications in several physical systems,
been developed for superp-branes and D-branes as we
Other treatments of second class constraints include
tended phase space variables in Ref.@17# and, more recently,
auxiliary commuting twistorlike spinor variables and tens
rial central charge coordinates were used in Ref.@18#. Intro-
ducing Liouville mode while solving the second class co
straints left a final action with only first class constraints
Ref. @19#. Other related approaches can be found in Re
@20,21#.

In the first part of this paper we suggest a new symme
system for the D-particle in which the second class c
©2000 The American Physical Society04-1
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straints are turned into first class in an extended phase s
which includes extra fermionic degrees of freedom. We
fine a system that containsua ,pa , the original fermionic
degrees of freedom of the D0-brane to which extra fermio
degrees of freedomza ,ra are added (za ,ra are Majorana-
Weyl spinors whileua ,pa are only Majorana!. The new
system has, in addition to the originalk5k2 symmetry a
new localk1 symmetry. The system can be gauge fixed
many different ways while one of these gauge fixings~‘‘uni-
tary’’ gauge! retrieves the original D0-brane. The rest of t
paper presents, along the same lines, the D1-brane wit
extendedk2 andk1 local symmetry. We consider the cas
of a vanishing electric field in the Born-Infeld-Nambu-Go
action.

II. SUPERPARTICLE AND D-PARTICLE

The N51 massless superparticle action ind510 space-
time dimensions~ @2,5#!:

S5E
t i

t fL~t!dt52
1

2Et i

t f
dt

1

e
~ ẋm2 i ū1Gmu̇1!2 ~1!

is invariant under the localk symmetry:

dxm5 i ū1Gmdu1 , du15~ ẋn2 i ū1Gnu̇1!Gnk2 ,

de54ieu̇̄1k2 ~2!

xm(m50,1, . . . ,9) arespace-time coordinates andu1 is a
Majorana-Weyl spinor with positive~or negative! chirality.
The spinork2 has the opposite chirality ofu1 ande(t) is
the ‘‘einbein’’ of local reparametrization symmetry. The 3
332Gm matrices (m50,1,2. . . ,9) are built out of the con
ventional spin~8! matrices1 and satisfy$Gm,Gn%52hmn and
hmn5diag$2111 . . . %.

The system has eight fermionic first class constraints
eight fermionic second class constraints and thus its ph
space has (32223828) eight independent fermionic de
grees of freedom.

Local k symmetry is explicitly broken in theN51 mas-
sive superparticle action ind510 dimensions@15#:

S5E
t i

t fL~t!dt5E
t i

t f
dtH 2

1

2e
~ ẋm2 i ū1Gmu̇1!21

1

2
em2J .

~3!

Here, using Eq.~2!, one findsdL52iem2u̇̄1k2Þ0. All 16
constraints are second class and its phase space ha
2165)16 independent fermionic degrees of freedom.

1Our conventions areGm5s1
^ gm, m51,2, . . . 9, G052 is2

^ I, G115s3
^ I, $G11,Gm%50, Gm5(gm 0

0 ḡm
), m50,1,2, . . . 9 ḡm

5$21,g l%, gm5$1,g l%, l 51,2, . . . 9gk $k51,2, . . . 8% are 16
316 spin~8! matrices, g95Pk51

k58gk, $gm,gn%52dm,n, m,n51,

2, . . . 9ḡmgn1ḡngm5gmḡn1gnḡm52hmn,m,n50,1,2, . . . 9.
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One possible modification by which the localk2 symme-
try can be restored is extending its phase space toN52
while adding an appropriate Wess-Zumino term:

dxm5 i ūGmdu, du15~ ẋn2 i ūGnu̇ !Gnk2 ,

de54ieu̇̄1k2 ~4!

L52
1

2e
~ ẋm2 i ūGmu̇ !21 1

2 em21L2 . ~5!

Hereu5u11u2 (u is a Majorana spinor andu1 andu2 are
Majorana-Weyl spinors of opposite chirality! and du2 and
L2 are to be determined below. From Eq.~4! one finds

dL5
2i

e
~ ẋm2 i ūGmu̇ !2u̇̄1k22

2i

e
~ ẋm2 i ūGmu̇ !

3 u̇̄Gm~du11du2!12iem2u̇̄1k21dL2 . ~6!

dL50 for a properly chosenL2. A possible solution of the
form

dL25A1du21B2du1 ~7!

givesA1522imu̇̄1 , B252imu̇̄2 anddu25emk2 ~up to
a rescalingA1→A1 /a, B2→B2a anddu2→du2a)

dL25 imd~ u̇̄G11u!2 im
d

dt
~dūG11u! ~8!

where

G115s3* I5S 1 0

0 21D , $G11,Gm%50

(I is the 16316 identity matrix!. Thus,

L~t!52 1
2 e21~ ẋm2 i ūGmu̇ !21 1

2 em22 imūG11u̇ ~9!

has a restoredk2 symmetry. The system has now not on
16 first class constraints but also 16 second class constr
and the number of independent degrees of freedom in ph
space is the same as theN51 massive superparticle (6
22316216516). Indeed, when compared to the mass
N51 superparticle action in Eq.~3!, the added negative
chirality u2 degrees of freedom~32 degrees of freedom in
phase space;u2 and their canonical conjugatep̄1) can be
gauged away once the restoredk2 symmetry is gauge fixed
(u250). One is left, after gauge fixing, back withL(t) of
the massiveN51 superparticle in Eq.~3!.

A very appealing point of view onL(t) of Eq. ~9! is
obtained when one starts with the massless superparticle
tion in d511 dimensions which is given by~ @2–5#!

S5E
t i

t fL~t!dt52
1

2Et i

t f
dte21~ ẋm̂2 i ūGm̂u̇ !2 ~10!
4-2
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D0- AND D1-BRANES WITH k2 AND k1 EXTENDED . . . PHYSICAL REVIEW D 62 086004
where xm̂ (m̂50,1 . . . 10) are the space-time coordina
and ua5u1a1u2a(a51,2, . . .,32) are the correspondin
fermionic coordinates which can be regarded as t
Majorana-Weyl spinors of opposite chiralities, if viewed
spinors in ten dimensions.

When one of the space directions is compactified@23# to a
radius of R5m215Z21, the d511 massless superpartic
action results@9,10# in the D0 brane action:

S5E
t i

t fL~t!dt

5E
t i

t f
dtH 2

1

2e
~ ẋm2 i ūGmu̇ !21

1

2
eZ22 iZ ūG11u̇J

1Z@x10~t f !2x10~t i !#, ~11!

wherep10 was set top105m5Z, G10̂ is defined asG11 and
m50,1, . . . 9.

The D0 brane action in Eq.~11! is the same action ob
tained in Eq.~9! and its Wess-Zumino termZūG11u̇ estab-
lishes the localk2 symmetry, which is the original symme
try of the d511 massless superparticle action. Thus, inst
of 32 second class constraints as in theN52, d510 massive
superparticle action, the D0 has 16 first class constraints
16 second class constraints which is the same numbe
constraints as the masslessN52, d510 superparticle and
here too the 16 first class constraints result ink2 symmetry.
An important difference between the D0 action and
massless superparticle is the fact that in the D0 case the
and second class constraints can be separated in a cov
manner@9,10#; this cannot be done for the masslessN52,
d510 superparticle.

We would like to treat now the D0 system in a mo
symmetrical manner by turning also its remaining 16 sec
class constraints into first class. The resulting system
have in addition to the originalk2 symmetry, ak1 symme-
try generated by the new first class constraints. Among
possible different gauge fixing of the newk1 symmetry, one
should also be able to retrieve the original D0 system,
appropriately gauge fixing~‘‘unitary’’ gauge fixing! the ex-
tended symmetric system.

After implementing thek1 extended symmetry into th
system, the number of independent degrees of freed
should not change. Thus, one has to extend the phase s
of the new, symmetric system by adding extra fermionic
grees of freedom to account for the increase of symmetry
the following we define and summarize the properties of
k1 ,k2 symmetric system. From Eq.~11! ~ignoring the
boundary term! or from

S52ZE
t i

t f
dt$A2~ ẋm2 i ūGmu̇ !21 i ūG11u̇% ~12!

one finds the constraints

T̄a5p̄a1 i ~ ūp” !a1 iZ~ ūG11!a50, p21Z250 ~13!
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wherep̄a is the momentum, canonical conjugate ofua ~right
handed derivatives are used when taking a derivative w
respect tou̇a).

The momentum is

pm5ZH ẋm2 i ūGmu̇

A2~ ẋn2 i ūGnu̇ !2
J ;

the Hamiltonian isH050. Using the Poisson brackets

@xm ,pn#5dm
n , @ua,p̄b#5db

a all others50. ~14!

One finds

@ T̄a ,T̄b#52i „G0~p”1ZG11!…ab ~15!

and we have

p”1ZG115S Z p”̄

p” 2Z
D , ~p”1ZG11!25~p21Z2!* I

~16!

~here,I is the 32332 identity matrix!

det@G0~p”1ZG11!#5~p21Z2!1650. ~17!

In the 32332 matrix G0(p”1ZG11), each of its 16316
blocks has a nonzero determinant, andG0(p”1ZG11) has
rank 16. The first and second class constraints can be c
riantly separated by defining@9,10#

T̄15T̄~p”1ZG11!S 12G11

2 D5p̄2p”2Zp̄11 i ū1~p21Z2!

and

T̄25T̄S 11G11

2 D5p̄21 i ū1p”1 iZ ū2 ~18!

as seen from the following Poisson brackets relations:

@ T̄1a ,T̄1b#522i ~p21Z2!S G0
11G11

2
p” D

ab

,

@ T̄2a ,T̄2b#52i S G0
12G11

2
p” D

ab

@ T̄1a ,T̄2b#522i ~p21Z2!S G0
11G11

2 D
ab

~19!

where we used

@u6a ,p̄7b#5S 16G11

2 D
ab

. ~20!

The generator ofk symmetry and reparametrization is give
in terms of the parametersk2 andep by

G5 1
2 ep~p21Z2!1T̄1k2 . ~21!
4-3
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MOSHE MOSHE AND NORISUKE SAKAI PHYSICAL REVIEW D62 086004
As mentioned above, the D0-brane has a total of 16 indep
dent fermionic degrees of freedom in phase space@3232
2(2316116)# as reflected by the 16 first class and 16 s
ond class fermionic constraints in Eq.~19!.

In an extended phase space where the system is desc
by extra degrees of freedom, second class constraints ca
turned into first class@13,14#. One denotes the second cla
constraints Poisson bracket by

@ T̄2a ,T̄2b#52i S G0
12G11

2
p” D

ab

5VagvgdVdb . ~22!

Vab constructs the Becchi-Rouet-Stora-Tyotin~BRST! op-
erator in the extended symmetric system andvgd is used in
order to define a linear combination of extra 32 fermion
degrees of freedom in phase space. We have@up to similarity
transformations ofv in the symplectic structure of Eq.~22!#:

Vab5S G0
12G11

2
p” D

ab

, vab52
2i

p2 F S 11G11

2 D p”G0G
ab

.

~23!

We define the linear combination:

F̄2a52 1
2 r̄2a1ṽabz1b52 1

2 r̄2a2 i 1
2 ~ z̄1p” !a ~24!

where we used

ṽab52 i
1

2 FG0S 12G11

2 D p” G
ab

, vagṽgb5S 11G11

2 D
ab

.

~25!

r2 and z1 are a canonical pair of Majorana-Weyl spino
representing extra 32 fermionic degrees of freedom wh
Poisson bracket is

@ r̄2a ,z1b#5S 11G11

2 D
ab

. ~26!

The linear combination in Eq.~24! of the extra degrees o
freedomF2a have the Poisson bracket

@F̄2a ,F̄2b#52ṽab5 i
1

2 FG0S 12G11

2 D p” G
ab

. ~27!

One defines now, in the extended phase space, the follow
constraints, which are first class:

T̄2a8 5T̄2a1F̄2bvbgVga , @ T̄2a8 ,T̄2b8 #50. ~28!

Thus, the dynamics in the extended phase space are
fined by the two opposite chirality sets of constraintsT̄1 ,T̄28
and their Poisson bracket:

T̄1[T̄15p̄2p”2Zp̄11 i ū1~p21Z2!,

T̄28 5p̄21 i ū1p”1 iZ ū22 i r̄21 z̄1p” . ~29!
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Using the extended phase space Poisson brackets in Eq.~20!
and Eq.~26! one finds the Poisson brackets of two chir
multiplets of first class constraints :

@ T̄1a ,T̄1b#522i ~p21Z2!

3FG0S 11G11

2 D p” G
ab

, @ T̄2a8 ,T̄2b8 #50

@ T̄1a ,T̄2b8 #522i ~p21Z2!FG0S 11G11

2 D G
ab

. ~30!

The total extended phase space Hamiltonian is

HT5H01 1
2 lp~p21Z2!1T̄1l21T̄28 l1 ,

H052 1
2 e~p21Z2! ~31!

The generator ofk2 andk1 gauge symmetries and reparam
etrization is

G5eepe1
ep

2
~p21Z2!1$p̄2p”2Zp̄11 i ū1~p21Z2!%k2

1$p̄21 i ū1p”1 iZ ū22 i r̄21 z̄1p” %k1 ~32!

and the phase space action is

S5E
t i

t f
dt H pmẋm1peė1p̄1u̇21p̄2u̇11 r̄2ż1

1
e

2
~p21Z2!2lepe2 1

2 lp~p21Z2!2T̄1l22T̄28 l1J .

~33!

The k2 andk1 transformations generated by the genera
G in Eq. ~32! are given by

dxm5~p̄2Gm12ipmū1!k21~ i ū11 z̄1!Gmk1 ,

dpm50, du15p”k21k1 , du252Zk2 ,

dp̄152Zik̄1 , dp̄252 i ~p21Z2!k̄21 i k̄1p” ,

dz152 ik1 , dr̄25k̄1p” . ~34!

The action in Eq.~33! is invariant under these transforma
tions if supplemented also by

dl25k̇2 , dl15k̇1 ,

dlp54i ~ k̄2l12k̄1l21k̄2p”l2!

as well as invariant under reparametrization

dxm5pmep , dpm50, de5ee , dpe50,

dle5 ėe , dlp5ee1 ėp , ep~t i !5ep~t f !50.
~35!
4-4
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In Eq. ~33! the bosonic (le ,lp) Lagrange multipliers and the
Majorana-Weyl (l2 ,l1) Lagrange multipliers are assoc
ated with the bosonic and fermionic first class constra
pe5p21Z250,T̄25T̄150.

One notices that in the new phase space action of Eq.~33!

only the linear combination2 i r̄21 z̄1p” of new fermionic
degrees of freedom appears. The orthogonal combina
does not appear in the action and is thus decoupled from
dynamics of the system. This ‘‘Batalin-Fradkin decoupling
~see Refs.@13–15#! assures that the correct independent
grees of freedom defines the extended symmetric sys
Namely, we started with (64216322165)16 fermionic
degrees of freedom in phase space, 32 degrees of free
were added and thek1 symmetry was introduced. We hav
now (641322163221632516116)16 independent de
grees of freedom as in the original system while the other
are the ‘‘Batalin-Fradkin decoupled’’ degrees of freedom.
the extended symmetry system, in addition to the poss
gauge fixing~e.g.,@9,10#! that eliminates theu2 degrees of
freedom by fixing thek2 gauge, other gauge fixings ar
acceptable as well. Clearly, as seen in Eq.~34!, a properly
chosen gauge fixing~‘‘unitary’’ gauge fixing! of the newk1

symmetry will eliminate the linear combination of the ne
fermionic degrees of freedom2 i r̄21 z̄1p” . For example a
possible unitary gauge fixing is

u250 and 2 i r̄21 z̄1p”50. ~36!

This results in the same gauge fixed system that was use
Ref. @9#. A different and interesting gauge fixing that elim
nates the old degrees of freedom and leaves only the ne
degrees of freedom is simply,

u250 and u150. ~37!

The gauge fixed D0 system is given in this gauge in term
2 i r̄21 z̄1p” only. As in the case of the unitary gauge in E
~36!, the Poisson bracket matrix@ T̄6a ,x6b# between the
constraintsT̄1a ,T̄2a8 and the gauge fixing conditionsx2

5u2 ,x15u1 is not singular sincep21Z250. Of course,
other combinations ofk2 and k1 gauge fixings are also
possible.

An interesting set of constraints is defined by
s

on
ny

-
m.

om

6

le

in

16

f

T̄2a8 5T̄2a1F̄2bvbgVga5p̄21 i ū1p”1 iZ ū22 i r̄21 z̄1p”

T̄1a8 5T̄11 i2S p21Z2

p2 D F F̄S 11G11

2 D p” G
a

5p̄2p”2Zp̄11 i ū1~p21Z2!1 z̄1~p21Z2!

2 i r̄2p” S p21Z2

p2 D . ~38!

These constraints satisfy the following Poisson bracket r
tions:

@ T̄1a8 ,T̄1b8 #522i S Z2

p2D ~p21Z2!FG0S 11G11

2 D p” G
ab

,

@ T̄2a8 ,T̄2b8 #50, @ T̄1a8 ,T̄2b8 #50. ~39!

We note in thep2@Z2 limit, T̄1a8 and T̄2a8 are functions
of (p1 ,u2) and (p22 ir2 ,u12 i z1) only. It is expected,
in this limit, that the system behaves as theN52 massless
superparticle—a system with 16 independent fermionic
grees of freedom in its phase space, as seen also dir
from the action in Eq.~10!. Indeed, one notes that not on
r̄2 and z1 appear only in the linear combinationsr̄2

1 i z̄1p” but now alsop̄21 i ū1p” is the only linear combina-
tion of p̄2 andu1 that appears in the constraints. Thus, af
taking into account the decoupling of their orthogonal line
combination and the fact that the fermionic degrees of fr
dom in phase space are now constrained by 16 first c
constraints (T̄2a8 ) while (T̄1a8 ) are now second class onl
~sincep21Z2Þ0), one finds indeed in thep2@Z2 limit only
16 independent fermionic degrees of freedom as for theN
52 massless superparticle. Namely, 6413221632216
516116116 where the last 16116 fermionic degrees o
freedom are decoupled in the same sense as the ‘‘Bat
Fradkin decoupling’’~do not appear in the constraints or
the Hamiltonian of the extended system!.

The path integral formulation@22# of the system in Eqs.
~30! and~31! with k2 andk1 symmetry which has only firs
class constraints is given by
S5E
t i

t f
dtH pmẋm1p̄1u̇21p̄2u̇11 r̄2ż11p̄l1l̇21p̄l2l̇11ppl̇p1 C̃Ṗ1P̃Ċ1 C̄̃1Ṗ21 P̃̄1Ċ21 C̄̃2Ṗ1

1 P̃̄2Ċ12H01ppx1p̄l2x11p̄l1x22
lp

2
~p21Z2!2T̄1l22T̄2l11 C̄̃1@x2 ,T̄1#C2

1 C̄̃2@x1 ,T̄2#C12P̃P2P̃1P22P̃2P124P̃l̄2p” C214ZP̃~ l̄2C12l̄1C2!J . ~40!

086004-5
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Here, C6 and P̃7 are canonical pairs of bosonic ghos
and P6 and C̃7 are canonical pairs of bosonic antighos
associated with the fermionic constraintsT1 and T2 . The
Majorana-Weylpl1 ,pl2 are the canonical conjugates
the Lagrange multipliersl2 ,l1 . The bosonicpp is the ca-
nonical conjugate of the Lagrange multiplierlp associated
with the constraintp21Z250 andx1 ,x1 are gauge fixings.
The fermionic ghost and its canonical conjugate are deno
by C andP̃, and the canonical pairs of fermionic anti-ghos
asP,C̃ .

The last three lines in Eq.~40! are given by2@C,V#
where the BRST operatorV is given by

V5Ppp1P̄1pl21P̄2pl11T̄1C21T̄2C11
C
2

~p21Z2!

12P̃C̄2p” C212ZP̃~ C̄2C12 C̄1C2! ~41!

and the gauge fixingC is given by

C52P̃l2 P̃̄1l22 P̃̄2l11 C̃x1 C̄̃1x21 C̄̃2x1 .
~42!

The abovek2 ,k1 symmetric D0 defined in the extende
phase space (u6 ,p7 ,z1 ,r2) is physically equivalent to the
ordinary D0 withk2 symmetry of Eq.~11!. This, as men-
tioned, is demonstrated by choosing the ‘‘unitary’’ gau
fixing x6 in Eq. ~36! that sets the extended phase spa
variablesr̄21 i z̄1p” to zero. On the other hand the abo
symmetric system accepts many different gauge fixingsx6

giving different presentations of the D0 brane@for example,
Eq. ~37!#.

III. D1-BRANE WITH kÀ AND k¿ EXTENDED
SYMMETRY

Following along similar lines we present now the exte
sion of this derivation to the case of a D1-brane. It results
a system withk2 andk1 symmetry which will be discusse
below.

The action of the D1-brane consists of the Born-Infe
Nambu-Goto term and the Chern-Simons two formV2 term
@7#

S5E L~s!d2s52TH E d2sA2det~Gmn1Fmn!1E V2J
~43!

where Gmn is the supersymmetric induced world-volum
metric and Fmn is the supersymmetric Born-Infeld fiel
strength:

Gmn5Pm
mPnm , Pm

m5]mxm2 ūGm]mu, m,n50,1;

m50,1,2, . . . ,9 ~44!

F015F012b01~t3!, Fmn5]mAn2]nAm , ~45!

b01~tk!52 ūGmtk$]0uP1
m2]1uP0

m1 1
2 @]0u~ūGm]1u!

2]1u~ūGm]0u!#% ~46!

whereua
A , a51,2, . . . ,32 are twoMajorana-Weyl spinors
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with the same chirality, andtk are Pauli matrices acting o
indicesA51,2. The Lagrangian can be rewritten as

L~s!52T$AG01
2 2G00G112F 01

2 1b01~t1!%. ~47!

The canonical momenta for the world sheet gauge field
given by the electric fieldEm

E05
]L
]Ȧ0

50, E15
]L
]Ȧ1

5
TF01

AG01
2 2G00G112F 01

2
. ~48!

The canonical momentap̄a and pm are defined forua and
xm, respectively:

pm5 p̃m2 ūGmTE]1u, p̃m5T
G11P0m2G01P1m

AG01
2 2G00G112F 01

2
,

p̄5 ūP” 1TE2 ūp”̃1~ ūGm]1u!~ ūGmTE!, TE5E1t31Tt1 .

~49!

We will suppress the indicesA51,2 of ua
A when it is easily

recognized. From Eq.~47! one finds the fermionic con

straintsF̄a
A

F̄a5p̄a1~ ūp” !a2~ ūGmTE!a~]1xm!1~ ūGm]1u!~ ūGmTE!a

50 ~50!

which satisfy the Poisson bracket relations:

@F̄a~s!,F̄b~s8!#52@~G0p”̃ !ab2~G0P” 1TE!ab#d~s2s8!.
~51!

In addition to the fermionic constraints in Eq.~50! one
finds from Eq.~47! also the bosonic first class constraints

p̃21G11~E1
21T2!50, p̃mP1

m50. ~52!

The constraints in Eq.~50! can be separated covariant
into first class and second class constraints@9,10#:

T̄1a5F F̄~p”̃2P” TE!S 11t3

2 D G
a

, T̄2a5F F̄S 12t3

2 D G
a

.

~53!

The Poisson bracket@T1a ,T1b# vanishes on the con
straints hyperplane.

These 16 first class constraintsT1a generate the localk
symmetry of the D1-brane. On the other hand

@ T̄2a ,T̄2b#52~G0P” t2!abd~s2s8! ~54!

where

Pm5 p̃m1E1P1m5pm1 ūGmTE]1u1E1~]1xm2 ūGm]1u!.

Since P25 p̃212E1( p̃P1)1E1
2G1152T2G11 on the

constraints hyperplane, we obtain a nonvanish
det@ T̄2a ,T̄2b# ~apart from the caseG1150) implying that
T̄2a are 16 second class constraints. The conditionG11Þ0 is
essential for separating the first and second class constr
and the covariant quantization of the D1 system. In Ref.@9#
4-6
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it has been emphasized that in the static gauge~where xm

5sm for m50,1) indeedG11Þ0. The implications of this
fact on the ground state spectrum and on the relation to
work of Ref. @7# on the type IIB fundamental string hav
been cleared there. Both Refs.@7# and @9# discuss the prop-
erties of the static gauge and elucidate its physics cont
Since the static gauge is a natural gauge for D1, we fol
this point of view.

We define now a new system in an extended phase s
that includes in addition to the 64 fermionic degrees of fr
dom ua

A and pa
A extra fermionic 32 degrees of freedo

@13,14# that satisfy

@ r̄a
A~s!,zb

B~s8!#5d~s2s8!t2
ABdab . ~55!

The constraints of the new systemT̄a8
A(x,p,u,p,z,r) are

obtained from the constraints in Eq.~53! in a similar way the
constraints in the extended phase space in Eq.~28! were
obtained for theD-particle. Namely, T̄1a8

A(x,p,u,p,z,r)

5T̄1a
A (x,p,u,p) is left unchanged and does not depend

(z,r), whereas the other constraintT2a
A is modified as

T̄2a8
A~x,p,u,p,z,r!5T̄2a

A ~x,p,u,p!2 r̄a
A1~ z̄BP” !at2

BA

~56!

which depends on (z,r) and satisfies the Poisson brack
relation2:

@ T̄2a8 ,T̄2b8 #522E1d~s2s8!@2~G0Gm!ab~ z̄Gmt2]1u!

2~ z̄Gm!a~]1z̄Gmt2!b#

22E1
]d~s2s8!

]s8
~ z̄Gm!a~ z̄Gmt2!b . ~57!

In the case ofE150 the new system has only first cla
constraints and local symmetriesk1 andk2 generated byT1a

and byT2a8 , respectively. The symmetric system phase sp

is given by the coordinatesua
A(s),pa

A(s),ra
A(s), andz̄b

B(s)
where the number of independent fermionic degrees of f
dom has not been changed. Namely, we started with 2332
22316216516 independent fermionic degrees of freedo
in phase space and in the extended phase space we h
33222332516116 ~BF! degrees of freedom where th
16 ~BF! degrees of freedom are ‘‘Batalin-Fradkin deco
pled’’ @14,15# leaving 16 independent fermionic degrees
freedom.

2In deriving Eq. ~57!, the following relations for Majoranal i

have been used (G0GmTl2)a(l̄3Gm)b1(G0GmTl2)b(l̄3Gm)a

5(G0Gm)ab(l̄3GmTl2) whereT is a matrix in the internal space o
the Majorana spinors ~such as t2 and TE). Also

(l̄2Gm)a(l̄3GmT)b5(l̄2GmT)a(l̄3Gm)b .
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We note from Eq.~48! that settingE150 means also tha
F0150 which results in the Lagrangian of Eq.~47! to be
very similar to the Green-Schwarz~GS! string.

The GS string is described by the action@5#

S5E L~s!d2s52
T

2E d2sAhhabGab1E L 2d2s,

~58!

L252Teab]axm~ ū1Gm]bu12 ū2Gm]bu2!

2Teab~ ū1Gm]au1!~ ū2Gm]bu2!

52T@]0xm~ ūGmt3]1u!2]1xm~ ūGmt3]0u!#

2
T

2
~ ūGmt3]0u!~ ūAGm]1uA!1

T

2
~ ūGmt3]1u!

3~ ūAGm]0uA!. ~59!

This can be compared to theb01(tk) of Eq. ~46! which can
be written also as

b01~tk!5@]0xm~ ūGmtk]1u!2]1xm~ ūGmtk]0u!#

1 1
2 ~ ūGmtk]0u!~ ūAGm]1uA!2 1

2 ~ ūGmtk]1u!

3~ ūAGm]0uA!. ~60!

ThusL252Tb01(t3) compared to2Tb01(t1) in the Wess-
Zumino term of the D1-brane. Similarly, using the equati
of motion for hab one notices that the D1 action in Eq.~43!
with E150 ~namelyFmn50) is identical to the Green an
Schwarz action whent3 is replaced byt1 @10#. Since we are
using the static gauge as a natural gauge for D1@7#, the
massless modes are projected out. This relation between
physics of the type IIB fundamental string and the D1 syst
in the static gauge has been noted in Ref.@9#.

We also note that the electric fieldE1 is quantized and
represents the number of fundamental string bound to
D1-brane producing (n,m) string@24,25#. Therefore we have
succeeded in extending the system where all the second
constraints are turned into first class constraints at least
the case of the (0,1) string, namely the genuine D1-br
without F1 provided the massless modes which are proje
out by using, for instance, the static gauge.
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