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Multiple zero modes of the Dirac operator in three dimensions
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One of the key properties of Dirac operators is the possibility of a degeneracy of zero modes. For the
Abelian Dirac operator in three dimensions the construction of multiple zero modes has been successfully
carried out only very recently. Here we generalize these results by discussing a much wider class of Dirac
operators together with their zero modes. Further we show that those Dirac operators that do admit zero modes
may be related to Hopf maps, where the Hopf index is related to the number of zero modes in a simple way.

PACS numbsd(s): 12.20—m, 02.40-k

[. INTRODUCTION strong magnetic fields on the one hand, and the nonperturba-
tive behavior of the three dimensional fermionic determinant

Fermionic zero modes of the Dirac opera[Q)A: ’y'u((;,u, (for massive fermiowsin Strong external magnetic fields on
—iA,) are of importance in many places in quantum fielgthe other hand. The behavior of this determinant, in turn, is
M

theory and mathematical physifs—3]. They are the ingre- related to the paramagnetism of charged fermions|[&&g

dients for the computation of the index of the Dirac operatorso’ a thorough understanding of the zero modes of the Dirac

and play a key role in understanding anomalies. In AbeliarPPerator is of utmost importance for the understanding of

heories, which is what we ar ncerned with here®™Me deeﬁP phys?cal problems as well. .
gauge theories, ch is what we are concerned with heré, In addition, it is speculated if9] that the existence and

th ffect ially the behavior of the fermion determinant . ;
ey atect cruciafly the benavior of the fermion determinan degeneracy of zero modes for three-dimensional QED

det(D,) in quantum electrodynamics. The nature of the QED ED,) may have a topological origin as it does in QED

i ali Q
Luonucr:gr;ilrgmrigﬁg epends strongly on the degeneracy of th%lO—llljl—cf. [9] for details and an account of the situation

In three dimensions—which is the case which we want tofor QED?v3v4' W? shall find some further strong support for
at conjecture in our paper.

study here—the first examples of such zero energy ferm|0|1|h This article is organized as follows. In Sec. Il we briefly

bound states were obtained only in 198, and some fur- . : )
y e6 review the case of zero modes of the Abelian Dirac operator

ther results have been found recerj}. In both articles no . di g b h st imilarity b
degeneracy of these zero modes has been observed, becalﬁ'géyvo IMensions, because thereé exists some simifanty be-
tween the general two-dimensional case and the specific

by their very methods, the authors [gf] and of [5] could | ¢ des in th di s h
only construct one zero mode per gauge field. Only ver)F ass of zero modes In three dimensions that we want to

recently were we able to give the first examples of Diracg!scuss_' Wle pomtthOL:t somhe I;spem(fjlcl f[eaturesl 0; the”tlwo-
operators that admit more than one zero mfgle thereby Imensional case thal we shall néed 1ater on. In sec. 1l we

H 2 3
establishing that the phenomenon of zero mode degenera&?v'ew the features of mags*—S* and of Hopf mapsS

2 . .
exists for the Abelian Dirac operator in three dimensions. It > » Pecause we shall need them for a topological interpre-

is the purpose of this article to generalize and further explairli"",t'on of our results. In Sep. v Wwe construct our class of
the results of6]. Dirac operators together with their zero modes. Further we

It should be emphasized here that the problem of the eXghow that the corresponding magnetic fields may be related
fo Hopf maps(they may be expressed as Hopf curvatures of

istence and degeneracy of zero modes of the Abelian Dira Hobf d that the Hopf index is related h
operator in three dimensions, in addition to being interestin ome Hopf maps and that t & Hopt index Is related to the
umber of zero modes of a given Dirac operator in a simple

in its own right, has some deep physical implications. Th ) X C2 X 2
authors of[4] were mainly interested in these zero modesfaSh'.on' This Fopologpal mterpre_tatlon of_the magnetic fields
requires the introduction of a fixed, universal background

because in an accompanying papét it was proven that S . . . .
panying papef p magnetic field. In the final section we briefly describe an-

one-electron atoms with sufficiently high nuclear charge in ther ol ¢ multiol des that i di
an external magnetic field are unstable if such zero modes €r class of mufliple zero modes that were not covered In
the main section. Further we discuss how our results are

the Dirac operator exist. lated ) bound h h of th
Further, there is an intimate connection between the exig€'ated to a rigorous upper bound on the growth of the num-

tence and number of zero modes of the Dirac operator foper of Zero mOde.S for strong .magneti_c fields, and we proyide
some interpretations for the fixed, universal background field

that we had to introduce.

* . ) . . .
Email addre_ss_. adam@particle.physik.uni-karlsruhe.de, Il. TWO-DIMENSIONAL CASE
adam@pap.univie.ac.at
"Email address: bmurator@fermil.thphys.may.ie First of all, we want to briefly recall the situation in two
*Email address: cnash@stokes2.thphys.may.ie dimensions, because there will be some analogies with the
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three-dimensional discussion. The two-dimensional Diradue to zeros op of the above type may be gauged away by

equation is choosing the appropriate gauge functions
Yu(—1d,—AL(X)¥(x)=0, (1) Xp—
gL R A= —aargz—zy):=a arctanZTy2 (7)
where x=(xq,X;), ©=12, y,=0, and ¥ is a two- X1 Y1

component Zspinor. Both in Euclidean spaké and on the Eg. (2). As we want nonsingular gauge potentials, this
Pc,)vv(\?:rpchoer;esor?élniec:f?lfn?gjz?r Qarg’r er:thhetfr:g‘:;jhea;t‘:i@d theer gauge choice will be assumed in the sequel. Howeven

P . gntn upp Eg. (7) is not a single-valued function, and the gauge factor
component of¥’ is zerg. Further, a solution of the first type exp(\) will be single-valued only provided that=ne N,

(left-handed may be mapped into a solution of the second; ¢ “only zeros of the above type of integer order are allowed
type by the simple replacemedt,——A,,, therefore we

may restrict to the left-handed case for p. Zeros of other type&s e.gp=z+z, which is zero at

z=0) lead to singularities ii , that are not pure gauge, i.e.,
0 a,—iA, _ 1 they lead to singular magnetic field$1). They are, there-
—i( o )pl’z(z,z)e'*(zvz)( )20 (2) fore, forbidden.
Iz~ 1A; 0 0 Now suppose that a zero mode for a non-singular gauge
where z=x,+ix,, d,=(1/2)(3;—id,) and A,=(1/2)(A, field is given andp has some zeros of integer order of the

—iA,). Herep'%(z,2) is a real, nonsingular function and ~ allowed type as just described. For each zp{p—zo)(z

is a pure gauge factor that has to be determined accordingly Zo)1" we may multiply the zero mode in Eq2) by the
(see below. functionf(z)=(z—2z) ~". This is a function ok only, there-

At this point we want to make some observations. Firstfore the new spinof¥ is a zero mode of the same Dirac
obviously only the left lower component;—iA; of the  operator. As a consequence, for each Dirac operator that ad-
Dirac operator acts on the spinor in E®). Therefore, a Mits zero modes there exists a zero mé@esuch thatp is
spinor that solves Eq2) may be multiplied by an arbitrary Nhonzero everywherep'/? is strictly positive,p?>0. Fur-
holomorphic functionf(z) and still solves the same Dirac ther, the corresponding pure gauge tefifisare absent, and
equation(2). A more complicated way of stating the same we may assume that the gauge factor in E).is absent
observation(\which will be useful for the three-dimensional altogether, A\=0, which corresponds to Lorentz gauge

case is as follows. We search for a functicmz,?) suchthat 9uAu=0. . o ) 2
Let us assume that a spin@®) is given withA\=0, p
) 1 >0 and
—ivua.h| 5| =0. (3

lim p~(z2)~ . (8)
thenfW¥ will formally solve the Dirac equation for the same =
Dirac operator(i.e., the same gauge potentias V. A pos-
sible choice foif is f=z and, as a consequence of the Leib-
nitz rule, arbitrary function$(z) of z only are allowed. Ob-

serve that Eq(3) implies

. 1
det —iy,a,f)=(f D>+ (f »?=0, 4 \Pk=2kp1/2(0), k=0...n—1. 9

which requires a complek . ) .
Secondly, from Eq(2) A, may be expressed in terms of In addition, .. determines the magnetic fluk,
p and\ as (e;,=1)

Square-integrability of¥ in R? implies a,>1. If n+1
>a.,>n, neN, then further square-integrable zero modes
of the same Dirac operator may be constructed as

@:f d’xB=2ma.. (10)

AILZEGM,ﬁan-F)\”M. (5)

- B=0d,A,— d,A1=23,d,In p. (11
Now assume thagi(z,z) has a zero at some poins. As p is ) )
Here we may follow two different approaches. Either we

real, lSt us assume that the zero is of the JEE-20)(Z ;o5 me that our results really exist in Euclidean space. Then
—20)]* for somea>0. This zero induces a singular contri- there are no further restrictions am,. Further, whenever

bution A7™ to the gauge potentigh,, (herezo=:y;+iy;), 4, =neN, then there are onlp— 1 square-integrable zero
where modes(9), because the one witk=n—1 is not square-
integrable(its L? norm behaves as M, whereV is the vol-
; Xy,=Yy ume of space
A= ———-=ad, argz—zp). 6 .
® ae’”(x_y)Z d,ard o) © Or, on the other hand, we could interpzets a stereo-

graphic coordinate on the Riemann sphere. Thenre is a
From the right-hand sidéRHS) of Eq. (6) it is obvious that  single point, ang in Eq. (8) has a zero at this point ..
AZ‘”Q is in fact a pure gauge. Therefore, all singularitied\gf ~ #0, which leads to a singularity &, . This singularity,
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however, cannot be removed by a gauge transformation G(z,?)= f(u)z"=:g"%(u)en? (17)
without introducing a singularity somewhere else. Instead,

two different gauge potentials have to be chosen on diﬁere%hich we shall need later on. The pullback@funderG is
coordinate patcheg.g. on the northern and southern hemi- '=a,) '

spherg, such that the difference of the two gauge potentials .
in the overlap region is a pure gauggh. The gauge func-
tion exp{\) (which acts on the zero mopés single-valued G*Q=2n
only if @,=n.eN and, consequently, the magnetic fldx (1+9)?
=2n,, is quantized(in fact, this is just the well-known

topology of the Dirac monopoleln addition, the zero modes gnd its integral is
are now normalized with respect to the integration measure

on the sphere, therefore there are=®/(27) normalizable

zero modes, in accordance with the index theorem. j G*Q:4ﬂ-nf du
0

dude (18

g’ 4 1 -
———=—4mn————| .
(1+9)? 1+g(uw ],

ll. MAPS S2—S2 AND HOPF MAPS S%—S? (19)

The second homotopy group of the two-sphere is nonif g(0)=0 andg(>=) =<, as holds e.g. for the rational maps
trivial, I1,(S?) = Z, therefore map$®— S? are characterized R(z)=2", then the functiorG in Eq. (17) defines a maj$?
by the integer winding numbew. One way of describing — S? with winding numbem,
them is by interpreting botl$? as Riemann spheres and by
introducing stereographic coordinates C on both of them.
A specific class of such ma®— S?* may then be described f G*Q=4mn. (20
by rational maps

P(2) Apart fromg(u)=0, which follows from the definition of,
R:iz—R(z)= —— (12 g is not very much restricted in the intermediate range 0
Q(2) <u<w, Let us, e.g., assume thgthas a singularity ati,

: d a zero atl, (we assumei;<u, for this example then
whereP(z) and Q(z) are polynomials, and andR(z) are 2" . 2 1~-2 .
interpreted as stereographic coordinates on the domain arige regionu € [0u,] of the domainS” is mapped onto the

2 . . . . .
targetS?, respectively. The winding numberof this map is ~ [@/9€tS” with Wlndlngsenur.nberj— n, the region[uy,u,] is
given by the degree of the map, mapped onto the targ&t with winding number—n, and the

region[u,,~] is mapped onto the targ&® with winding
w=deg R)=maxp,q) (13 number+n, again, so the net winding numberns
Observe that it is possible to relate the pullb&k() or
wherep andq are the degrees of the polynomid®$z) and G*() to a magnetic field via (e.g. forG)
Q(2) [15,16. Another possibility of computing the same

winding number involves the pullback und&(z) of the G*(Q=:Bdxdx,=F, (21
standard area two-forrf on S? (in stereographic coordi-
nates, where F = (1/2)F ,,dx,dx, is the magnetic field strength
_ two-form. However, allB’s that are constructed in this way
2 dzdz fﬂ_‘l 14 have an even integer multiple ofr2as magnetic flux®
i (1+222' o (149 = [d*xB=4mn=27-2n, as is obvious from Eq20). Dif-

ferently stated, if we want to formally express magnetic
The pullback is ( means derivative with respect to the ar- fields with magnetic fluxes that are odd integer multiples of

gumenj 27 by mapsR or G, then we have to allow for square-root
type, double-valued maf@~z"? or G~z"2. This we shall
IR'(2)|? — need later on.
Q=< mdmz (15 Hopf maps are mapS®— S?. The third homotopy group

of the two-sphere is non-trivial as well] 3(S?)=Z, there-
fore such maps are characterized by an integer topological

and obeys index, the so-called Hopf index. Hopf maps may be ex-
pressed, e.g., by mapsR®— C provided that the complex
J R*Q=4mw (18 function x obeys liny_..x(X)=xo=const, where X
=(X1,X5,X3)". The pre-images iR® of points of the target
wherew is again the winding numbéed.3). $? (i.e., the pre-images of poinjg= const) are closed curves

However, rational maps are not the only types of func-in R® (circles in the related domaig®). Any two different
tions that generate maf® — S?. Instead ofR(z) we may circles are linkedN times, whereN is the Hopf index of the

e.g. choose the functiofiberez=u%exp(¢), ui=zzandfis  given Hopf mapy. Further, a magnetic fielé§ (the Hopf
an at the moment arbitrary real function curvature is related to the Hopf mapy via
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. 2 ()X (dx) _(dT)xdo where we introduced the unit vectoN?=1)
B=" =2 - (22)
b (1+xx) (1+T) 2X1X3— 2X;
where y=S€” is expressed in terms of its modul N= 2XoX3+ 2%y | . (28
=:TY2 and phaser at the RHS of Eq(22). LR NP T S
1 2 3

Mathematically, the curvatureF= %]—]jdxidxj . Fii
= €;jx By, is the pullback under the Hopf mag=x* (2, of
the ‘standard area two-forf}, Eq. (14), on the targetS®. IV. THREE-DIMENSIONAL CASE

Geometrically,B’ is tangent to the closed curvgs=const A. General remarks

(see e.g[17~-20). The Hopf indexN of x may be computed Here we want to study multiple solutions of the three-

from B via dimensional, Abelian Dirac equation
1 - s —io;, ¥ (X)=A{(X)o;¥(X), 29
Nzl&rzfdam@ 23 V() =A (X)o7 (%) (29
where X=(Xq,X2,X3)", i,j,k=1...3, ¥ is a two-
whereB=dx A. component, square-integrable spinorR®t o; are the Pauli

Once a Hopf mapy is given, we may construct further matrices and; is an Abelian gauge potential. Before start-

Hopf maps by composing the Hopf map with maps S ing the actual computations we want to mention some gen-
.2 eral aspects of the Dirac equati¢?9). Firstly, for any pair

(¥,A) that solves Eq(29), the spin densit)i of ¥ has to
x G obey
XG S-S (24
, _— , 93 =3P aW)=0. (30)
whereG might be e.g. &(x,x) as in Eq.(17) or a rational
map R(x) as in Eq.(12). Further, if y has Hopf indexN  secondly, when a spino¥ is given that obeys Eq30) (i.e.,
=1 andG has degreé.e. winding numbern, then the com- it js a formal zero modk then the corresponding gauge po-

posed Hopf magg has Hopf indexN=n’. tential A that solves the Dirac e i i
) . . quatidg9) together withw
The simplest(standardl Hopf map y with Hopf indexN may actually be expressed in termsWf[4],

=1is
: 11
= 2(X1+|X2) (25) A=— Efijkﬁjzk‘f'lm \IfTﬁqu> (31)
2X3—i(1—r2) %]
with modulus and phase Next we want to discuss the simplest example of a zero
mode that was already found 4], because we need it as a
. 4(r2—x§) starting point. The authors §4] found the following explicit
T=xx=—5——55 o=cB+s? example:
Ax5+(1—r?)2
1-r? N4 i X (1) (32
X —r =———(1tixo 3
oW=arctan>, o®=arctan———. (26) (1+r2)3’2( o

X1 2X3
Here the phase is a sum of two terms%) ando(?), where S _groy_ 16 q a3
o® is multiply valued around the singular poigt=0 in —roE= (1+12)2 (33

target space, i.e., along thg axis in the domairR®, and

@ i i i i -
o is multiply valued around the singular poigt=<, i.e., whereN is the specific unit vector defined in EQ8) and we

. -> _ 2 2_ . N X
around the circlgxe R®\x3=0x]+x3=1}. As x in three  chose the factor 4 in Eq32) for later convenience. The

dimensions will play a role similar t@=x;+ix, in two  gpinor(32) is a zero mode for the gauge field
dimensions in Sec. I, it is important to note a crucial differ-

ence in this. respgct. The same phasge= argz ) 3 ytow 3 .
=arctank,/x;) is multiply valued around both singular A= P Rpr—— ! (34
pointsz=0 andz=cc in the two-dimensional case. 1+ Wi 1+4r
The simplest standard Hopf map, E&5), leads to the oL
Hopf curvature with magnetic fieldB=dx A
B=—2° § (27) B-—2 K (35)
(1+r?)2 (1+12)2
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Now we want to repeat the argument of E¢®. and(4) N+m+172Y) 1o
of the two-dimensional case, i.e., we assume that a function D) = (40
X €exists such that —VI=m+1/2Y| i1
1 (whereme[—1-1/2,1+1/2] andY are spherical harmon-
; Tygnd _ ics), they found the solutions
(—mjajx)(lﬂx(r)(O) =0. (36) ), they
V) n=r'(1+12) 732 1+ix0) @) (42)
Consequentlyy"¥, ne Z [whereW is the zero modé¢32)],
are additional formal zero modes for the same gauge field N v o
. . . 2y —1 I,m I,m
(34). Condition(36) implies Al m=(21+3)(1+19) " ——, (42)
\I’I,mq’l,m
3
i o Specifically, for maximal magnetic quantum number=|
det—iadx) ;1 Xixi=0, S +1/2, these solutions read
. |

therefore, y necessarily must be complex. Indeed, such a _ N Yiur .- (1
function y fulfilling Eq. (36) exists. It is just the simplest =W a2~ (1+r2)|+3/2(1+'x‘7) 0 (43
Hopf map x, Eg. (25, as may be checked easily. For the
formal zero modesy"V we observe the following two 342 4(3+21)
points. Firstn has to be integer, because only integer powers AO="_", BO=—""—'N (44)
of x lead to a single-valued spingt®V¥. Secondlyx"¥ is 1+r? (1+r2)?

singular for allne Z\{0}, becausey is singular along the ) )
circle {xe R®\x3=0,x3+x%=1} and zero along the; axis. (= means equal up to an irrelevant conslanence, ¥, is
Therefore, the formal zero modg8W¥, with W given in Eq. pr_oport|o_nal to the simplest Zero ”?0@9) an_d |s,_theref0re,
(32), are not acceptable. However, we shall find some zerc?tIII an eigenvector of the matrix i o;d;x W'Fh eigenvalue
modes, different from E32), where multiplication withy" zero. Further, the zero mode, may be rewritten as
will lead to acceptable new zero modes for some0.

For this purpose, let us observe that the spin der{SiBy P =gll®
is in fact equal to the Hopf curvatur@7) of the simplest
Hopf map(25). As a consequendesee Eq(22)]

12

/1
T (1+r?) 3/2(1+|xU)(0) (45)

where we introduced polar coordinatesx; (X,,Xg)
—(r,0,¢), Tis the squared modulu®6), and

- — . 16 =
M), oM X)S =~ aM(x.x)
3 e 3 (1+r2)2e N (39 . ety ”‘p(rz_xg)l/z il¢(1+r2)l( T |2
|’|—e Sl =e rl =e rl 1+T
still is the spin density of a zero mode, i.e., it still obeys (46)
JSM=0. HereM(x, ) is a real function ofy andy. The
corresponding zer(g( rr)1(c))de reads ATEX Taking further into account thap= arctang,/x;)=o") we
conclude that the spinors
. . 4(1+iox) (1 (1-n)/2
(M) _ Qi A gM/2ypy — aiAM/2 . . T
v ete P =¢g'te (1+r2)3/2 (0 (39) \I’nvl:X*mlﬁ:el(lfn)a(l)*lna(z) (—1+T)|/2‘~P, n=0,...,l

: : : (47)
where A is a gauge function that has to be determined ac-
cordingly (analogously to our discussion in Sec. Il; see be-are non-singular, square-integrable zero modes for the same
M) H H . > . .
low). W™ is proportional to the simplest zero mod@),  gauge fieldA(" and, therefore, the Dirac operator with gauge

therefore it remains true that additional formal zero modesfield A0 given by Eq.(44) hasl +1 square-integrable zero
for the same Dirac operator may be constructed frfif) modes(47). Hereo®) :;mda(z) are the two term€26) of the

by multiplication with powersy” of x, Eq. (25). phase of the simplest Hopf mags).

At this point several remarks are necessary. First, observe
B. First examples that the function expd), as defined in Eq(38), for the zero

At this point we want to present some first examples of0des(47) reads
such multiple zero modeshese examples were already dis-

cussed if6]). For this purpose, we need some more results eM— T (48)
of [4]. The authors of4] observed that, in addition to their (1+T)!

simplest solutiorn(32), they could find similar solutions with

higher angular momentum. Using instead of the constant ImeM~T-"  limeM~T"", (49)
spinor (1,0) the spinor T-0 T
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Hence, exp{l) has a zero of orddr—n at T=0 and a zero (we shall explain in Sec. IV D why this is sufficiontAs a
of ordern at T=«. As in the two-dimensional case, these consequence, there exist additional non-singular, square-
zeros introduce singularities in the gauge potentials, whictintegrable zero modes for the same Dirac operator,
are cured by the pure gauge functions—f)o") and
—no®), respectively, leading to the well-behaving gauge
potentials(44). In contrast to the two-dimensional case, the
singularity aty=c may be cured independently, i.e., with- i.€., there arek=n.+1 zero modes. The corresponding
out introducing singularities somewhere el§er an expla- gauge potentiaR(™) that obeys the Dirac equation together
nation see beloy with ™) or wM) may be computed from Eq31),
Secondly, we observe that already the simplest magnetic
field (35) (for 1=0) is proportional but not equal to the Hopf
curvature(27) [the magnetic field has a factor of 12 instead
of 16, i.e., they differ by 4(%r2)2N]. Here we shall take
the following point of view. We assume that this difference HereA, is the gauge potenti&B4) of the simplest zero mode

is related to a fixed, universal background magnetic f8ld ~ (32) andN; is the unit vector(28).
The corresponding magnetic fieBf" = e;j, 3, AM is

M= g n—0, .. .n,, (56)

1
AJ(M):AJ"" _6jk|M,kNI+A,j .

. (57)

4

B~ — ———N
(1+7r?)?

(50 w1
B =BI+E[M,X(X,Ika+X,INk,k_X,kkNI_X,kNI,k)

which couples to the fermion via the Dirac operator but is
“non-dynamical” otherwise. Then for the “dynamical” part

Bj:=B;—B! of Bj it holds that

+M 3O NKF XN = XN = XN )
—(M XX kM X X kT 2M X X o N

1+ xx)?
G L A
r

B,=B —BP= 16 58)
J J J (1+I‘2)2 ] J (
where B; is the Hopf curvaturg27). We immediately find

where B, is the magnetic field35). Here it turns out after
that this feature continues to hold for all the highg in

some tedious algebra that only the coefficientMf,} is

Eq. (44), nonzero.
As in Eq. (51), we now have to subtract the background
- 16(1+1/2 magnetic field(50) in order to be able to relate the resultin
B}'):B}"—Bsz)Nj . (52 9 450 9

1 (14122 “dynamical” magnetic fieldB{™ to Hopf maps. We find

TheseB{" are Hopf curvatures for the Hopf maps BV =[1- %(1+X;)2M,X; B (59

Y =T2i(1 41120 (53)

o _ where 3 is the Hopf curvaturé27).
whereT ando are given in Eq(26). We find that we have to At this point we want to specialize to the class of func-
allow for double-valued, square-root type Hopf maps if weijigns

want to relate alB{" to Hopf curvatures. Further, we find the

relation M(x,.x)=M(xx)=M(T), M’'<0 (60)
_[k+1 2 (54) ('=07) because we want to relate them to Hopf maps of the
12 type (24) where the functionG is given by Eq.(17). For

these functionM (T), Eq. (59) simplifies to
between the Hopf indeN and the numbek=1+1 of zero
modes. We shall find that all these features continue to hold

~ 1
. . . . (M) _ _ 2 ’ "
for a much wider class of solutions to the Dirac equation. Bi™={1 2(1+T) (M7 +TM") | 5, .

(61)

C. More general solutions We want to re-express this magnetic field as a Hopf curva-

In order to discuss this wider class, let us go back to thd!re B for the Hopf map
general zero modg39) which depends on a function X(G)=gl/2(T)eim"

M(X,;) and a pure gauge functioh. Further we assume (62)

expM/2)>0 for all y<o and (0., . .. integej
lim expM)~T "=

x| o0

(59

which is a composition of the standard Hopf m@1) and a
mapS?— S? of the typeG as in Eq.(17). The Hopf curvature
B® is
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i (Gg)xdo  g'(1+T)2. whereo and o' are defined in Eq(26). As already stated,
B®=2m = 5 63 9,0V is singular at|x|=0 and 9,0'® is singular at|y]|
(1+9) (1+9) =, therefore the singularity69 may be removed by a

gauge transformation exp{n..0®®) without introducing a

which is indeed a Hopf curvature (0)=0, g(=) =<, see ¢, ypar singularity at x| =0 (of coursen.. has to be an in-

Eqg. (19). Equality of Egs.(61) and(63) implies

tegey.
1\’ 1\ 1 In this respect the three-dimensional case differs from the
-m— =—|——=| —5(M'T)’ (64)  two-dimensional one. The reason for this difference lies in
1+g 1+7 2 the digferent topological features of the underlying spe8es
- . and S°, respectively. In fact, the second cohomology group
or upon integration of S? is non-trivial, H,(S?) = Z. Therefore, it is not possible
m 1 1 1 to find a globally defined gauge potential 8hfor magnetic
Trg 14T t5TM + 50, (65 fields with non-zerdquantized magnetic flux. On the other
hand, H,(S%)=0, therefore it is always possible to find a
1 well-behaving non-singular gauge potential for a well-
m=1+ 7N= (66)  behaving non-singular magnetic field.
[where we have chosen an appropriate constant of integration V. DISCUSSION

n E?' (65;]..t_HerteM =0 [t>ogether with Eq(55)] is a suffi- We found a whole class of Dirac operators that may have
cient condition o ensurg=1. an arbitrary number of zero modes. Further the correspond-

Therefore, we find that for all the zero modes of the typeing magnetic fields are the Hopf curvatures of the Hopf maps

(56), (60) the corresponding magneic fields may indeed b 62) [after the subtraction of the fixed background fi€3@)],
expressed as Hopf curvatures, provided that we allow fo nd the number of zero modes is related to the Hopf index

double-valued Hopf mapsm=1+(n./2), whenever the via Eg. (54). Here we had to allow for double-valued Hopf
Dirac operator has an even number of zero modes. In add}haps whenever the number of zero modes is even

tion, we confirm the general relatids4) between Hopf in- Further, we imposed the restrictioni60) because we

—m?2
dexN=m*"and the number of zero modés=n..+1. wanted to relate the magnetic fields to the specific, simple
_ N o type (62) of Hopf maps. We think that these restrictions are
D. Singularities and gauge fixing a mere technicality, and that abandoning them will just lead

We still have to explain why the assumptions on ép( to more complicated Hopf maps. One specific type of such
at the beginning of Sec. IV C are justified. In fact, this dis- Hopf maps, different from Eq62), is easily accessible and
cussion is analogous to the discussion of Sec. Il for the twoleads to results that are in complete agreement with the ones
dimensional case, therefore we just want to repeat it brieflywe have described above, therefore we want to describe it

; ; - briefly.
Again, the function ex ,x)) may only have zeros of .
the t?/pe M (x:x)) may only Recall that there exists a class of Hopf maps that are a

composition of the standard Hopf map with an arbitrary ra-
— 2 V(v — 2z )= D 6 tional map R(x)=P(x)/Q(x), see EQq.(12). The corre-
LOr=20)(x =20 J'=:4% (7 sponding Hopf curvature read$=t derivative with respect
and these zeros induce singularities in the gauge potenti& the argument
(57)
— (R)_|P’Q_PQ’|2

_ o B(R=
Af'”g~n0|arctaM=:na|A (68) " (PI+]QI)?

1+ x0)2B=B"% (70

. P and Q do not have a common zerovhere we have al-
that are in ;act pure gaugei and _n;aé/ ?18 re_moveq by th ady indicated on the RHS of E(r0) that there exists a
gzage transformation exp(nA) provided tham is an inte magnetic field~B|(MR) for some zero moda?MR). In fact,

Further, if ™) is a zero mode of some Dirac operator, &XPMg) reads

then " "¥M) is another zero mode of the same Dirac op- _
erator, therefore there always exists one zero mode such that (1+xx)?
expM) has no zeros for finitey|. This was the first assump- exp(Mg) = (IP[2+]0Q|?) (72)
tion of Sec. IV C. If, in addition, the so chosen ekfj(goes
to zero for large|x| like lim),|_oexpM)~T ™ as in Eq.

(55), then this induces a further singularity in the gauge po- lim exp(Mg)=(xx) 2"~V (72)
tential, x| —o
AT n lim g,c~n, lim §,0c® (69)  Wherew is the degred13) of the rational mafR. Therefore
x| =2 x| - there are&k=2w—1 zero modes
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\PﬁMR):Xn\P(MR), n=0,...2Aw—1). (73) ~ wonders whether it admits some further interpretation. We
cannot yet give a final answer to this question, but we want

In addition, the corresponding magnetic ﬁgﬂ\’lre) (after the tq me_ntion two possible in_terpretations that were already
subtraction of the background figlés indeed equal to the given |n.[21_]. On one _hand, if one compares the background
Hopf curvature(70), as may be computed easily with the magnetlc field (50) with the magnetic fields44) of t_he
help of Eq.(59). The Hopf index isN=w?, therefore the higher angular momentum zero modé8), then one realizes
relation (54) between Hopf index and number of zero modesthat changing the angular momentum by one unit produces a
is confirmed once more. change of the corresponding magnetic field that is precisely
This class of solutions has another interesting feature. Aninus two times the background fie{80). It is, therefore,
zero mode may be constructgalspecific linear combination tempting to conjecture that the background field is somehow
of the zero mode$73)] such that its spin densit}i, equals related to the half-integer angular momentdspin of the
the magnetic fie|d§|(MR). Hence in addition to the Dirac fermion. Of course, this is just an observation at this point,

. . . . ~ because a mechanism that generates this background field is
equation(29) this solution obeys the equatidy=B,, see il nleissing ! 9 ! ground hield

[21,22 for details. This system of equations of motion is On the other hand, it is possible to re-interpret the gauge

generated by the Lagrangian density potential A°>=—(1+r?) "IN of the background magnetic
field (50) as a spin connectiom in the Dirac equatiori29)
on a conformally flat manifold with torsion, sd@1] for
details.
where the background field is coupled to the fermion, but it Finally we want to point out that some important ques-
is absent in the second, “kinetic” terrifihe Abelian Chern- tions still remain to be answered. Firstly, all our zero modes
Simons term This explains why we callef, the “dynami-  are of a specific type. They are multiplésy a scalar func-
cal” gauge potential. tion) of the simplest spinof32). There exist, of course, zero
Another point that we want to mention here is the fact thatmodes of a different typésee e.g[5]). By the very methods
our results may be used to estimate the number of zero ewf [5], only one zero mode per Dirac operatoe., per gauge
ergy bound stategzero modek for strong magnetic fields. potentia) could be constructed. We believe that the methods
This is seen especially easily for the higher angular momenof this paper may, in principle, be adapted to address the
tum zero modeg47), because the magnetic fiel@#4) for  question of a degeneracy of zero modes for more general
higher a_mg_ular momentulrere just multiples of the simplest pjrac operators, like those i5].
magnetic field(35). Therefore, the numbée=1+1 of zero Secondly, all our magnetic fields are Hopf curvatures af-
modes for strong magnetic fieldse. largel) behaves like ter the subtraction of the background magnetic fi€s@),
where one has to allow for double-valued Hopf maps in the
k=|+1~cj d3x|BM)| (759  case of an even number of zero modes. This immediately
leads to the question whether this feature can be proven in
general, and whether the existence and degeneracy of zero

Eq. (75) existd, i.e.,k grows linearly with the strength of the modes may be explained on topological grounds, as is the

magnetic fieldherec is some constantThis remains true in  caS€ in éven dimensions. , ,

a certain sense for our other solutions. From Exf) we Thirdly, the topological interpretation of our magnetic

infer that the number of zero modisbehaves likek~NY2  fields necessitated the introduction of the background mag-
VR netic field(50). We already provided some interpretations of

for large k. Further, asN~Jd"xA;B;, the number of zero this background field, but we think that it plays a rather

que;s grows'lllfe\ und'er a rescalingy —~AA;, B;—~\B;. . fundamental role in the whole problem and, therefore, de-
This is well within the rigorous upper bound on the poss'bleserves further investigation.
growth of the number of zero modes Anyhow, we think that our results should be relevant for
. some future developments in mathematical physics, as well
k~cJ d3x|B|%2 (76)  as for the understanding of non-perturbative aspects of quan-
tum electrodynamics, especially in three dimensions.

_ 1.
;C:\I,TGJ(—l(?]—AJ)\I"F EA]B], (74)

[it holds that limy ..[BM|~r~*, therefore the integral in

that was first stated ifd] and later derived in9].
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