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Multiple zero modes of the Dirac operator in three dimensions

C. Adam*
Institut für Theoretische Physik, Universita¨t Karlsruhe, D-76128 Karlsruhe, Germany

B. Muratori† and C. Nash‡

Department of Mathematical Physics, National University of Ireland, Maynooth, Ireland
~Received 11 April 2000; published 28 September 2000!

One of the key properties of Dirac operators is the possibility of a degeneracy of zero modes. For the
Abelian Dirac operator in three dimensions the construction of multiple zero modes has been successfully
carried out only very recently. Here we generalize these results by discussing a much wider class of Dirac
operators together with their zero modes. Further we show that those Dirac operators that do admit zero modes
may be related to Hopf maps, where the Hopf index is related to the number of zero modes in a simple way.

PACS number~s!: 12.20.2m, 02.40.2k
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I. INTRODUCTION

Fermionic zero modes of the Dirac operatorDA5gm(]m

2 iAm) are of importance in many places in quantum fie
theory and mathematical physics@1–3#. They are the ingre-
dients for the computation of the index of the Dirac opera
and play a key role in understanding anomalies. In Abel
gauge theories, which is what we are concerned with h
they affect crucially the behavior of the fermion determina
det(DA) in quantum electrodynamics. The nature of the QE
functional integral depends strongly on the degeneracy of
bound zero modes.

In three dimensions—which is the case which we wan
study here—the first examples of such zero energy ferm
bound states were obtained only in 1986@4#, and some fur-
ther results have been found recently@5#. In both articles no
degeneracy of these zero modes has been observed, be
by their very methods, the authors of@4# and of @5# could
only construct one zero mode per gauge field. Only v
recently were we able to give the first examples of Dir
operators that admit more than one zero mode@6#, thereby
establishing that the phenomenon of zero mode degene
exists for the Abelian Dirac operator in three dimensions
is the purpose of this article to generalize and further exp
the results of@6#.

It should be emphasized here that the problem of the
istence and degeneracy of zero modes of the Abelian D
operator in three dimensions, in addition to being interest
in its own right, has some deep physical implications. T
authors of@4# were mainly interested in these zero mod
because in an accompanying paper@7# it was proven that
one-electron atoms with sufficiently high nuclear charge
an external magnetic field are unstable if such zero mode
the Dirac operator exist.

Further, there is an intimate connection between the e
tence and number of zero modes of the Dirac operator
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strong magnetic fields on the one hand, and the nonpertu
tive behavior of the three dimensional fermionic determin
~for massive fermions! in strong external magnetic fields o
the other hand. The behavior of this determinant, in turn
related to the paramagnetism of charged fermions, see@8,9#.
So, a thorough understanding of the zero modes of the D
operator is of utmost importance for the understanding
some deep physical problems as well.

In addition, it is speculated in@9# that the existence and
degeneracy of zero modes for three-dimensional Q
(QED3) may have a topological origin as it does in QED2
@10–14#—cf. @9# for details and an account of the situatio
for QED2,3,4. We shall find some further strong support f
that conjecture in our paper.

This article is organized as follows. In Sec. II we briefl
review the case of zero modes of the Abelian Dirac opera
in two dimensions, because there exists some similarity
tween the general two-dimensional case and the spe
class of zero modes in three dimensions that we wan
discuss. We point out some specific features of the tw
dimensional case that we shall need later on. In Sec. III
review the features of mapsS2→S2 and of Hopf mapsS3

→S2, because we shall need them for a topological interp
tation of our results. In Sec. IV we construct our class
Dirac operators together with their zero modes. Further
show that the corresponding magnetic fields may be rela
to Hopf maps~they may be expressed as Hopf curvatures
some Hopf maps!, and that the Hopf index is related to th
number of zero modes of a given Dirac operator in a sim
fashion. This topological interpretation of the magnetic fie
requires the introduction of a fixed, universal backgrou
magnetic field. In the final section we briefly describe a
other class of multiple zero modes that were not covered
the main section. Further we discuss how our results
related to a rigorous upper bound on the growth of the nu
ber of zero modes for strong magnetic fields, and we prov
some interpretations for the fixed, universal background fi
that we had to introduce.

II. TWO-DIMENSIONAL CASE

First of all, we want to briefly recall the situation in tw
dimensions, because there will be some analogies with
©2000 The American Physical Society26-1
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three-dimensional discussion. The two-dimensional Di
equation is

gm„2 i ]m2Am~x!…C~x!50, ~1!

where x5(x1 ,x2), m51,2, gm5sm and C is a two-
component spinor. Both in Euclidean spaceR2 and on the
two-sphereS2 all zero modes are either left-handed~i.e., the
lower component ofC is zero! or right-handed~the upper
component ofC is zero!. Further, a solution of the first typ
~left-handed! may be mapped into a solution of the seco
type by the simple replacementAm→2Am , therefore we
may restrict to the left-handed case

2 i S 0 ]z2 iAz

] z̄2 iAz̄ 0 D r1/2~z,z̄!eil(z,z̄)S 1

0D 50 ~2!

where z5x11 ix2 , ]z5(1/2)(]12 i ]2) and Az5(1/2)(A1

2 iA2). Herer1/2(z,z̄) is a real, nonsingular function andl
is a pure gauge factor that has to be determined accordi
~see below!.

At this point we want to make some observations. Fi
obviously only the left lower component] z̄2 iAz̄ of the
Dirac operator acts on the spinor in Eq.~2!. Therefore, a
spinor that solves Eq.~2! may be multiplied by an arbitrary
holomorphic functionf (z) and still solves the same Dira
equation~2!. A more complicated way of stating the sam
observation~which will be useful for the three-dimensiona
case! is as follows. We search for a functionf (z,z̄) such that

2 igm~]m f !S 1

0D 50, ~3!

then f C will formally solve the Dirac equation for the sam
Dirac operator~i.e., the same gauge potential! asC. A pos-
sible choice forf is f 5z and, as a consequence of the Le
nitz rule, arbitrary functionsf (z) of z only are allowed. Ob-
serve that Eq.~3! implies

det~2 igm]m f !5~ f ,1!
21~ f ,2!

250, ~4!

which requires a complexf.
Secondly, from Eq.~2! Am may be expressed in terms o

r andl as (e1251)

Am5
1

2
emn]nln r1l ,m . ~5!

Now assume thatr(z,z̄) has a zero at some pointz0. As r is
real, let us assume that the zero is of the type@(z2z0)( z̄
2 z̄0)#a for somea.0. This zero induces a singular contr
bution Am

sing to the gauge potentialAm ~herez05:y11 iy2),
where

Am
sing5aemn

xn2yn

~xW2yW !2
5a]marg~z2z0!. ~6!

From the right-hand side~RHS! of Eq. ~6! it is obvious that
Am

sing is in fact a pure gauge. Therefore, all singularities ofAm
08502
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due to zeros ofr of the above type may be gauged away
choosing the appropriate gauge functions

l52a arg~z2z0!ªa arctan
x22y2

x12y1
~7!

in Eq. ~2!. As we want nonsingular gauge potentials, th
gauge choice will be assumed in the sequel. However,l in
Eq. ~7! is not a single-valued function, and the gauge fac
exp(il) will be single-valued only provided thata5nPN,
i.e., only zeros of the above type of integer order are allow
for r. Zeros of other types~as e.g.r5z1 z̄, which is zero at
z50) lead to singularities inAm that are not pure gauge, i.e
they lead to singular magnetic fields~11!. They are, there-
fore, forbidden.

Now suppose that a zero mode for a non-singular ga
field is given andr has some zeros of integer order of th
allowed type as just described. For each zero@(z2z0)( z̄
2 z̄0)#n we may multiply the zero mode in Eq.~2! by the
function f (z)5(z2z0)2n. This is a function ofz only, there-
fore the new spinorf C is a zero mode of the same Dira
operator. As a consequence, for each Dirac operator tha
mits zero modes there exists a zero mode~2! such thatr is
nonzero everywhere,r1/2 is strictly positive,r1/2.0. Fur-
ther, the corresponding pure gauge terms~7! are absent, and
we may assume that the gauge factor in Eq.~2! is absent
altogether, l[0, which corresponds to Lorentz gaug
]mAm50.

Let us assume that a spinor~2! is given with l50, r1/2

.0 and

lim
uzu→`

r;~zz̄!2a`. ~8!

Square-integrability ofC in R2 implies a`.1. If n11
.a`.n, nPN, then further square-integrable zero mod
of the same Dirac operator may be constructed as

Ck5zkr1/2S 1

0D , k50 . . .n21. ~9!

In addition,a` determines the magnetic fluxF,

F5E d2xB52pa` ~10!

B5]1A22]2A152]z] z̄ln r. ~11!

Here we may follow two different approaches. Either w
assume that our results really exist in Euclidean space. T
there are no further restrictions ona` . Further, whenever
a`5nPN, then there are onlyn21 square-integrable zer
modes ~9!, because the one withk5n21 is not square-
integrable~its L2 norm behaves as lnV, whereV is the vol-
ume of space!.

Or, on the other hand, we could interpretz as a stereo-
graphic coordinate on the Riemann sphere. Thenz5` is a
single point, andr in Eq. ~8! has a zero at this point ifa`

Þ0, which leads to a singularity inAm . This singularity,
6-2
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however, cannot be removed by a gauge transforma
without introducing a singularity somewhere else. Inste
two different gauge potentials have to be chosen on diffe
coordinate patches~e.g. on the northern and southern hem
sphere!, such that the difference of the two gauge potenti
in the overlap region is a pure gauge]ml. The gauge func-
tion exp(il) ~which acts on the zero mode! is single-valued
only if a`[n`PN and, consequently, the magnetic fluxF
52pn` is quantized~in fact, this is just the well-known
topology of the Dirac monopole!. In addition, the zero mode
are now normalized with respect to the integration meas
on the sphere, therefore there aren`5F/(2p) normalizable
zero modes, in accordance with the index theorem.

III. MAPS S2\S2 AND HOPF MAPS S3\S2

The second homotopy group of the two-sphere is n
trivial, P2(S2)5Z, therefore mapsS2→S2 are characterized
by the integer winding numberw. One way of describing
them is by interpreting bothS2 as Riemann spheres and b
introducing stereographic coordinateszPC on both of them.
A specific class of such mapsS2→S2 may then be describe
by rational maps

R:z→R~z!5
P~z!

Q~z!
~12!

whereP(z) and Q(z) are polynomials, andz and R(z) are
interpreted as stereographic coordinates on the domain
targetS2, respectively. The winding numberw of this map is
given by the degree of the map,

w5deg~R!5max~p,q! ~13!

wherep andq are the degrees of the polynomialsP(z) and
Q(z) @15,16#. Another possibility of computing the sam
winding number involves the pullback underR(z) of the
standard area two-formV on S2 ~in stereographic coordi
nates!,

V5
2

i

dz̄dz

~11zz̄!2
, E V54p. ~14!

The pullback is (8 means derivative with respect to the a
gument!

R* V5
2

i

uR8~z!u2

~11RR̄!2
dz̄dz ~15!

and obeys

E R* V54pw ~16!

wherew is again the winding number~13!.
However, rational maps are not the only types of fun

tions that generate mapsS2→S2. Instead ofR(z) we may
e.g. choose the functions@herez5u1/2exp(iw), uªzz̄andf is
an at the moment arbitrary real function#
08502
n
,

nt
-
s

re

-

nd

-

G~z,z̄!5 f ~u!zn5:g1/2~u!einw ~17!

which we shall need later on. The pullback ofV underG is
(8[]u)

G* V52n
g8

~11g!2
dudw ~18!

and its integral is

E G* V54pnE
0

`

du
g8

~11g!2
524pn

1

11g~u!
U

0

`

.

~19!

If g(0)50 andg(`)5`, as holds e.g. for the rational map
R(z)5zn, then the functionG in Eq. ~17! defines a mapS2

→S2 with winding numbern,

E G* V54pn. ~20!

Apart fromg(u)>0, which follows from the definition ofg,
g is not very much restricted in the intermediate range
,u,`. Let us, e.g., assume thatg has a singularity atu1
and a zero atu2 ~we assumeu1,u2 for this example!, then
the regionuP@0,u1# of the domainS2 is mapped onto the
target S2 with winding number1n, the region@u1,u2# is
mapped onto the targetS2 with winding number2n, and the
region @u2 ,`# is mapped onto the targetS2 with winding
number1n, again, so the net winding number isn.

Observe that it is possible to relate the pullbackR* V or
G* V to a magnetic fieldB via ~e.g. forG)

G* V5:Bdx1dx2[F, ~21!

where F5(1/2)Fmndxmdxn is the magnetic field strength
two-form. However, allB’s that are constructed in this wa
have an even integer multiple of 2p as magnetic flux,F
5*d2xB54pn52p•2n, as is obvious from Eq.~20!. Dif-
ferently stated, if we want to formally express magne
fields with magnetic fluxes that are odd integer multiples
2p by mapsR or G, then we have to allow for square-roo
type, double-valued mapsR;zn/2 or G;zn/2. This we shall
need later on.

Hopf maps are mapsS3→S2. The third homotopy group
of the two-sphere is non-trivial as well,P3(S2)5Z, there-
fore such maps are characterized by an integer topolog
index, the so-called Hopf index. Hopf maps may be e
pressed, e.g., by mapsx:R3→C provided that the complex
function x obeys limuxW u→`x(xW )5x05const, where xW
5(x1 ,x2 ,x3)T. The pre-images inR3 of points of the target
S2 ~i.e., the pre-images of pointsx5const) are closed curve
in R3 ~circles in the related domainS3). Any two different
circles are linkedN times, whereN is the Hopf index of the
given Hopf mapx. Further, a magnetic fieldBW ~the Hopf
curvature! is related to the Hopf mapx via
6-3



r

r-

r

e-

rt-
en-

o-

ero
a

C. ADAM, B. MURATORI, AND C. NASH PHYSICAL REVIEW D62 085026
BW 5
2

i

~]W x̄ !3~]Wx!

~11x̄x!2
52

~]WT!3]Ws

~11T!2
~22!

where x5Seis is expressed in terms of its modulusS
5:T1/2 and phases at the RHS of Eq.~22!.

Mathematically, the curvatureF5 1
2 Fi j dxidxj , Fi j

5e i jkBk , is the pullback under the Hopf map,F5x* V, of
the standard area two-formV, Eq. ~14!, on the targetS2.
Geometrically,BW is tangent to the closed curvesx5const
~see e.g.@17–20#!. The Hopf indexN of x may be computed
from BW via

N5
1

16p2E d3xAW BW ~23!

whereBW 5]W3AW .
Once a Hopf mapx is given, we may construct furthe

Hopf maps by composing the Hopf mapx with mapsS2

→S2,

xG :S3→
x

S2→
G

S2 ~24!

whereG might be e.g. aG(x,x̄) as in Eq.~17! or a rational
map R(x) as in Eq.~12!. Further, if x has Hopf indexN
51 andG has degree~i.e. winding number! n, then the com-
posed Hopf mapxG has Hopf indexN5n2.

The simplest~standard! Hopf mapx with Hopf indexN
51 is

x5
2~x11 ix2!

2x32 i ~12r 2!
~25!

with modulus and phase

Tªx̄x5
4~r 22x3

2!

4x3
21~12r 2!2

, s5s (1)1s (2)

s (1)5arctan
x2

x1
, s (2)5arctan

12r 2

2x3
. ~26!

Here the phases is a sum of two termss (1) ands (2), where
s (1) is multiply valued around the singular pointx50 in
target space, i.e., along thex3 axis in the domainR3, and
s (2) is multiply valued around the singular pointx5`, i.e.,
around the circle$xWPR3\x350,x1

21x2
251%. As x in three

dimensions will play a role similar toz5x11 ix2 in two
dimensions in Sec. II, it is important to note a crucial diffe
ence in this respect. The same phasew5argz
5arctan(x2 /x1) is multiply valued around both singula
pointsz50 andz5` in the two-dimensional case.

The simplest standard Hopf map, Eq.~25!, leads to the
Hopf curvature

BW 5
16

~11r 2!2
NW ~27!
08502
where we introduced the unit vector (NW 251)

NW 5
1

11r 2 S 2x1x322x2

2x2x312x1

12x1
22x2

21x3
2
D . ~28!

IV. THREE-DIMENSIONAL CASE

A. General remarks

Here we want to study multiple solutions of the thre
dimensional, Abelian Dirac equation

2 is i] iC~x!5Ai~x!s iC~x!, ~29!

where xW5(x1 ,x2 ,x3)T, i , j ,k51 . . . 3, C is a two-
component, square-integrable spinor onR3, s i are the Pauli
matrices andAi is an Abelian gauge potential. Before sta
ing the actual computations we want to mention some g
eral aspects of the Dirac equation~29!. Firstly, for any pair

(C,AW ) that solves Eq.~29!, the spin densitySW of C has to
obey

]WSW ª]W~C†sW C!50. ~30!

Secondly, when a spinorC is given that obeys Eq.~30! ~i.e.,
it is a formal zero mode!, then the corresponding gauge p
tentialAW that solves the Dirac equation~29! together withC
may actually be expressed in terms ofC @4#,

Ai5
1

uSW u
S 1

2
e i jk] jSk1Im C†] iC D . ~31!

Next we want to discuss the simplest example of a z
mode that was already found in@4#, because we need it as
starting point. The authors of@4# found the following explicit
example:

C5
4

~11r 2!3/2
~11 ixWsW !S 1

0D ~32!

SW 5C†sW C5
16

~11r 2!2
NW ~33!

whereNW is the specific unit vector defined in Eq.~28! and we
chose the factor 4 in Eq.~32! for later convenience. The
spinor ~32! is a zero mode for the gauge field

AW 5
3

11r 2

C†sW C

C†C
5

3

11r 2
NW ~34!

with magnetic fieldBW 5]W3AW

BW 5
12

~11r 2!2
NW . ~35!
6-4
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Now we want to repeat the argument of Eqs.~3! and ~4!
of the two-dimensional case, i.e., we assume that a func
x exists such that

~2 is j] jx!~11 ixWsW !S 1

0D 50. ~36!

Consequently,xnC, nPZ @whereC is the zero mode~32!#,
are additional formal zero modes for the same gauge fi
~34!. Condition~36! implies

det~2 isW ]Wx!5(
i 51

3

x ,ix ,i50, ~37!

therefore,x necessarily must be complex. Indeed, such
function x fulfilling Eq. ~36! exists. It is just the simples
Hopf mapx, Eq. ~25!, as may be checked easily. For th
formal zero modesxnC we observe the following two
points. First,n has to be integer, because only integer pow
of x lead to a single-valued spinorxnC. Secondly,xnC is
singular for all nPZ\$0%, becausex is singular along the
circle $xWPR3\x350,x1

21x2
251% and zero along thex3 axis.

Therefore, the formal zero modesxnC, with C given in Eq.
~32!, are not acceptable. However, we shall find some z
modes, different from Eq.~32!, where multiplication withxn

will lead to acceptable new zero modes for somenÞ0.
For this purpose, let us observe that the spin density~33!

is in fact equal to the Hopf curvature~27! of the simplest
Hopf map~25!. As a consequence@see Eq.~22!#

SW (M )
ªeM (x,x̄)SW 5

16

~11r 2!2
eM (x,x̄)NW ~38!

still is the spin density of a zero mode, i.e., it still obe

]WSW (M )50. HereM (x,x̄) is a real function ofx and x̄. The
corresponding zero mode reads

C (M )5eiLeM /2C5eiLeM /2
4~11 isW xW !

~11r 2!3/2 S 1

0D ~39!

whereL is a gauge function that has to be determined
cordingly ~analogously to our discussion in Sec. II; see b
low!. C (M ) is proportional to the simplest zero mode~32!,
therefore it remains true that additional formal zero mod
for the same Dirac operator may be constructed fromC (M )

by multiplication with powersxn of x, Eq. ~25!.

B. First examples

At this point we want to present some first examples
such multiple zero modes~these examples were already d
cussed in@6#!. For this purpose, we need some more res
of @4#. The authors of@4# observed that, in addition to the
simplest solution~32!, they could find similar solutions with
higher angular momentum. Using instead of the cons
spinor (1,0)T the spinor
08502
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F l ,m5S Al 1m11/2Yl ,m21/2

2Al 2m11/2Yl ,m11/2
D ~40!

~wheremP@2 l 21/2 , l 11/2# and Y are spherical harmon
ics!, they found the solutions

C l ,m5r l~11r 2!2 l 23/2~11 ixWsW !F l ,m ~41!

AW l ,m5~2l 13!~11r 2!21
C l ,m

† sW C l ,m

C l ,m
† C l ,m

. ~42!

Specifically, for maximal magnetic quantum numberm5 l
11/2, these solutions read

C lªC l ,l 11/2.
Yl ,l r

l

~11r 2! l 13/2
~11 ixWsW !S 1

0D ~43!

AW ( l )5
312l

11r 2
NW , BW ( l )5

4~312l !

~11r 2!2
NW ~44!

(. means equal up to an irrelevant constant!. Hence,C l is
proportional to the simplest zero mode~32! and is, therefore,
still an eigenvector of the matrix2 is j] jx with eigenvalue
zero. Further, the zero modeC l may be rewritten as

C l.eil wS T

11TD l /2

~11r 2!23/2~11 ixWsW !S 1

0D ~45!

where we introduced polar coordinates (x1 ,x2 ,x3)
→(r ,u,w), T is the squared modulus~26!, and

Yl ,l.eil wsinlu.eil w
~r 22x3

2! l /2

r l
.eil w

~11r 2! l

r l S T

11TD l /2

.

~46!

Taking further into account thatw5arctan(x2 /x1)5s(1) we
conclude that the spinors

Cn,l5x2nC l5ei ( l 2n)s(1)2 ins(2) T( l 2n)/2

~11T! l /2
C, n50, . . . , l

~47!

are non-singular, square-integrable zero modes for the s
gauge fieldAW ( l ) and, therefore, the Dirac operator with gau
field AW ( l ) given by Eq.~44! has l 11 square-integrable zer
modes~47!. Heres (1) ands (2) are the two terms~26! of the
phase of the simplest Hopf map~25!.

At this point several remarks are necessary. First, obse
that the function exp(M), as defined in Eq.~38!, for the zero
modes~47! reads

eM5
Tl 2n

~11T! l
~48!

lim
T→0

eM;Tl 2n, lim
T→`

eM;T2n. ~49!
6-5
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Hence, exp(M) has a zero of orderl 2n at T50 and a zero
of order n at T5`. As in the two-dimensional case, the
zeros introduce singularities in the gauge potentials, wh
are cured by the pure gauge functions (l 2n)s (1) and
2ns (2), respectively, leading to the well-behaving gau
potentials~44!. In contrast to the two-dimensional case, t
singularity atx5` may be cured independently, i.e., with
out introducing singularities somewhere else~for an expla-
nation see below!.

Secondly, we observe that already the simplest magn
field ~35! ~for l 50) is proportional but not equal to the Hop
curvature~27! @the magnetic field has a factor of 12 inste
of 16, i.e., they differ by 4(11r 2)2NW ]. Here we shall take
the following point of view. We assume that this differen
is related to a fixed, universal background magnetic fieldBW b,

BW b52
4

~11r 2!2
NW ~50!

which couples to the fermion via the Dirac operator but
‘‘non-dynamical’’ otherwise. Then for the ‘‘dynamical’’ par
B̃jªBj2Bj

b of Bj it holds that

B̃j5Bj2Bj
b5

16

~11r 2!2
Nj5Bj ~51!

whereBj is the Hopf curvature~27!. We immediately find
that this feature continues to hold for all the higherBj

( l ) in
Eq. ~44!,

B̃j
( l )5Bj

( l )2Bj
b5

16~11 l /2!

~11r 2!2
Nj . ~52!

TheseB̃j
( l ) are Hopf curvatures for the Hopf maps

x ( l )5T1/2ei (11 l /2)s ~53!

whereT ands are given in Eq.~26!. We find that we have to
allow for double-valued, square-root type Hopf maps if w
want to relate allB̃j

( l ) to Hopf curvatures. Further, we find th
relation

N5S k11

2 D 2

~54!

between the Hopf indexN and the numberk5 l 11 of zero
modes. We shall find that all these features continue to h
for a much wider class of solutions to the Dirac equation

C. More general solutions

In order to discuss this wider class, let us go back to
general zero mode~39! which depends on a functio
M (x,x̄) and a pure gauge functionL. Further we assume
exp(M/2).0 for all x,` and (n` . . . integer!

lim
uxu→`

exp~M !;T2n` ~55!
08502
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~we shall explain in Sec. IV D why this is sufficient!. As a
consequence, there existn` additional non-singular, square
integrable zero modes for the same Dirac operator,

Cn
(M )5xnC (M ), n50, . . .n` , ~56!

i.e., there arek5n`11 zero modes. The correspondin
gauge potentialAW (M ) that obeys the Dirac equation togeth
with C (M ) or Cn

(M ) may be computed from Eq.~31!,

Aj
(M )5Aj1

1

2
e jklM ,kNl1L , j . ~57!

HereAj is the gauge potential~34! of the simplest zero mode
~32! andNl is the unit vector~28!.

The corresponding magnetic fieldBi
(M )5e i jk] jAk

(M ) is

Bl
(M )5Bl1

1

2
@M ,x~x ,lkNk1x ,lNk,k2x ,kkNl2x ,kNl ,k!

1M ,x̄~ x̄ ,lkNk1x̄ ,lNk,k2x̄ ,kkNl2x̄ ,kNl ,k!

2~M ,xxx ,kx ,k1M ,x̄x̄x̄ ,kx̄ ,k12M ,xx̄x ,kx̄ ,k!Nl #

5Bl28
~11xx̄!2

~11r 2!2
M ,xx̄Nl ~58!

whereBl is the magnetic field~35!. Here it turns out after
some tedious algebra that only the coefficient ofM ,xx̄ is
nonzero.

As in Eq. ~51!, we now have to subtract the backgroun
magnetic field~50! in order to be able to relate the resultin
‘‘dynamical’’ magnetic fieldB̃l

(M ) to Hopf maps. We find

B̃l
(M )5S 12

1

2
~11xx̄!2M ,xx̄DBl ~59!

whereBW is the Hopf curvature~27!.
At this point we want to specialize to the class of fun

tions

M ~x,x̄ !5M ~xx̄ ![M ~T!, M 8<0 ~60!

(8[]T) because we want to relate them to Hopf maps of
type ~24! where the functionG is given by Eq.~17!. For
these functionsM (T), Eq. ~59! simplifies to

B̃l
(M )5S 12

1

2
~11T!2~M 81TM9! DBl . ~61!

We want to re-express this magnetic field as a Hopf cur
ture BW (G) for the Hopf map

x (G)5g1/2~T!eims ~62!

which is a composition of the standard Hopf map~25! and a
mapS2→S2 of the typeG as in Eq.~17!. The Hopf curvature
BW (G) is
6-6
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BW (G)52m
~]Wg!3]Ws

~11g!2
5m

g8~11T!2

~11g!2
BW ~63!

which is indeed a Hopf curvature ifg(0)50, g(`)5`, see
Eq. ~19!. Equality of Eqs.~61! and ~63! implies

2mS 1

11gD 8
52S 1

11TD 8
2

1

2
~M 8T!8 ~64!

or upon integration

m

11g
5

1

11T
1

1

2
TM81

1

2
n` ~65!

m511
1

2
n` ~66!

@where we have chosen an appropriate constant of integra
in Eq. ~65!#. HereM 8<0 @together with Eq.~55!# is a suffi-
cient condition to ensureg>0.

Therefore, we find that for all the zero modes of the ty
~56!, ~60! the corresponding magnetic fields may indeed
expressed as Hopf curvatures, provided that we allow
double-valued Hopf maps,m511(n`/2), whenever the
Dirac operator has an even number of zero modes. In a
tion, we confirm the general relation~54! between Hopf in-
dex N5m2 and the number of zero modesk5n`11.

D. Singularities and gauge fixing

We still have to explain why the assumptions on exp(M)
at the beginning of Sec. IV C are justified. In fact, this d
cussion is analogous to the discussion of Sec. II for the t
dimensional case, therefore we just want to repeat it brie

Again, the function exp„M (x̄,x)… may only have zeros o
the type

@~x2z0!~ x̄2 z̄0!#n5:znz̄n ~67!

and these zeros induce singularities in the gauge pote
~57!

Al
sing;n] l arctan

i ~z2 z̄ !

z1 z̄
5:n] lL ~68!

that are in fact pure gauges and may be removed by
gauge transformation exp(2inL) provided thatn is an inte-
ger.

Further, if C (M ) is a zero mode of some Dirac operato
then z2nC (M ) is another zero mode of the same Dirac o
erator, therefore there always exists one zero mode such
exp(M) has no zeros for finiteuxu. This was the first assump
tion of Sec. IV C. If, in addition, the so chosen exp(M) goes
to zero for largeuxu like limuxu→0exp(M);T2n` as in Eq.
~55!, then this induces a further singularity in the gauge p
tential,

Al
sing;n` lim

uxu→`

] ls;n` lim
uxu→`

] ls
(2) ~69!
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wheres ands (2) are defined in Eq.~26!. As already stated
] ls

(1) is singular atuxu50 and ] ls
(2) is singular atuxu

5`, therefore the singularity~69! may be removed by a
gauge transformation exp(2in`s(2)) without introducing a
further singularity atuxu50 ~of course,n` has to be an in-
teger!.

In this respect the three-dimensional case differs from
two-dimensional one. The reason for this difference lies
the different topological features of the underlying spacesS2

andS3, respectively. In fact, the second cohomology gro
of S2 is non-trivial,H2(S2)5Z. Therefore, it is not possible
to find a globally defined gauge potential onS2 for magnetic
fields with non-zero~quantized! magnetic flux. On the othe
hand,H2(S3)50, therefore it is always possible to find
well-behaving non-singular gauge potential for a we
behaving non-singular magnetic field.

V. DISCUSSION

We found a whole class of Dirac operators that may ha
an arbitrary number of zero modes. Further the correspo
ing magnetic fields are the Hopf curvatures of the Hopf ma
~62! @after the subtraction of the fixed background field~50!#,
and the number of zero modes is related to the Hopf in
via Eq. ~54!. Here we had to allow for double-valued Hop
maps whenever the number of zero modes is even.

Further, we imposed the restrictions~60! because we
wanted to relate the magnetic fields to the specific, sim
type ~62! of Hopf maps. We think that these restrictions a
a mere technicality, and that abandoning them will just le
to more complicated Hopf maps. One specific type of su
Hopf maps, different from Eq.~62!, is easily accessible an
leads to results that are in complete agreement with the o
we have described above, therefore we want to describ
briefly.

Recall that there exists a class of Hopf maps that ar
composition of the standard Hopf map with an arbitrary
tional map R(x)5P(x)/Q(x), see Eq.~12!. The corre-
sponding Hopf curvature reads (8[ derivative with respect
to the argument!

B l
(R)5

uP8Q2PQ8u2

~ uPu21uQu2!2
~11xx̄!2Bl5B̃l

(MR)
~70!

~P and Q do not have a common zero!, where we have al-
ready indicated on the RHS of Eq.~70! that there exists a
magnetic fieldB̃l

(MR) for some zero modeC (MR). In fact,
exp(MR) reads

exp~MR!5
~11xx̄!2

~ uPu21uQu2!2
~71!

lim
uxu→`

exp~MR!5~xx̄ !22(w21) ~72!

wherew is the degree~13! of the rational mapR. Therefore
there arek52w21 zero modes
6-7
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Cn
(MR)

5xnC (MR), n50, . . . 2~w21!. ~73!

In addition, the corresponding magnetic fieldB̃l
(MR)

~after the
subtraction of the background field! is indeed equal to the
Hopf curvature~70!, as may be computed easily with th
help of Eq. ~59!. The Hopf index isN5w2, therefore the
relation~54! between Hopf index and number of zero mod
is confirmed once more.

This class of solutions has another interesting feature
zero mode may be constructed@a specific linear combination
of the zero modes~73!# such that its spin densityS l equals
the magnetic fieldB̃l

(MR) . Hence in addition to the Dirac

equation~29! this solution obeys the equationS l5B̃l , see
@21,22# for details. This system of equations of motion
generated by the Lagrangian density

L5C†s j~2 i ] j2Aj !C1
1

2
Ãj B̃j , ~74!

where the background field is coupled to the fermion, bu
is absent in the second, ‘‘kinetic’’ term~the Abelian Chern-
Simons term!. This explains why we calledÃl the ‘‘dynami-
cal’’ gauge potential.

Another point that we want to mention here is the fact t
our results may be used to estimate the number of zero
ergy bound states~zero modes! for strong magnetic fields
This is seen especially easily for the higher angular mom
tum zero modes~47!, because the magnetic fields~44! for
higher angular momentuml are just multiples of the simples
magnetic field~35!. Therefore, the numberk5 l 11 of zero
modes for strong magnetic fields~i.e. largel ) behaves like

k5 l 11;cE d3xuBW ( l )u ~75!

@it holds that limuxW u→`uBW ( l )u;r 24, therefore the integral in
Eq. ~75! exists#, i.e.,k grows linearly with the strength of th
magnetic field~herec is some constant!. This remains true in
a certain sense for our other solutions. From Eq.~54! we
infer that the number of zero modesk behaves likek;N1/2

for large k. Further, asN;*d3xÃj B̃j , the number of zero
modes grows likel under a rescalingÃj→lÃj , B̃j→lB̃j .
This is well within the rigorous upper bound on the possi
growth of the number of zero modes

k;cE d3xuBW u3/2 ~76!

that was first stated in@4# and later derived in@9#.
Observe that it was possible to relate our magnetic fie

to Hopf curvatures only after the subtraction of the fixe
universal background field~50! ~although the existence an
degeneracy of the zero modes per se does not require
background field!. Further, the above-mentioned solutions
the equations of motion of the Chern-Simons and ferm
system~74! only exist in the presence of this backgrou
field, as well~@21,22#!. Therefore, this background field~50!
seems to be rather fundamental for our discussion, and
08502
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wonders whether it admits some further interpretation. W
cannot yet give a final answer to this question, but we w
to mention two possible interpretations that were alrea
given in @21#. On one hand, if one compares the backgrou
magnetic field ~50! with the magnetic fields~44! of the
higher angular momentum zero modes~43!, then one realizes
that changing the angular momentum by one unit produc
change of the corresponding magnetic field that is precis
minus two times the background field~50!. It is, therefore,
tempting to conjecture that the background field is someh
related to the half-integer angular momentum~spin! of the
fermion. Of course, this is just an observation at this po
because a mechanism that generates this background fie
still missing.

On the other hand, it is possible to re-interpret the gau

potential AW b52(11r 2)21NW of the background magneti
field ~50! as a spin connectionv in the Dirac equation~29!
on a conformally flat manifold with torsion, see@21# for
details.

Finally we want to point out that some important que
tions still remain to be answered. Firstly, all our zero mod
are of a specific type. They are multiples~by a scalar func-
tion! of the simplest spinor~32!. There exist, of course, zer
modes of a different type~see e.g.@5#!. By the very methods
of @5#, only one zero mode per Dirac operator~i.e., per gauge
potential! could be constructed. We believe that the metho
of this paper may, in principle, be adapted to address
question of a degeneracy of zero modes for more gen
Dirac operators, like those in@5#.

Secondly, all our magnetic fields are Hopf curvatures
ter the subtraction of the background magnetic field~50!,
where one has to allow for double-valued Hopf maps in
case of an even number of zero modes. This immedia
leads to the question whether this feature can be prove
general, and whether the existence and degeneracy of
modes may be explained on topological grounds, as is
case in even dimensions.

Thirdly, the topological interpretation of our magnet
fields necessitated the introduction of the background m
netic field~50!. We already provided some interpretations
this background field, but we think that it plays a rath
fundamental role in the whole problem and, therefore,
serves further investigation.

Anyhow, we think that our results should be relevant f
some future developments in mathematical physics, as
as for the understanding of non-perturbative aspects of qu
tum electrodynamics, especially in three dimensions.
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@7# J. Fröhlich, E. Lieb, and M. Loss, Commun. Math. Phys.104,

251 ~1986!.
@8# M. Fry, Phys. Rev. D54, 6444~1996!.
@9# M. Fry, Phys. Rev. D55, 968 ~1997!.

@10# R. Jackiw, Phys. Rev. D29, 2375~1984!.
@11# C. Jayewardena, Helv. Phys. Acta61, 636 ~1988!.
08502
@12# I. Sachs and A. Wipf, Helv. Phys. Acta65, 653 ~1992!.
@13# M. Fry, Phys. Rev. D47, 2629~1993!.
@14# C. Adam, Z. Phys. C63, 169 ~1994!.
@15# C. Houghton, N. Manton, and P. Sutcliffe, Nucl. Phys.B510,

507 ~1998!.
@16# P. A. Horvathy, hep-th/9903116.
@17# A. F. Ranada, J. Phys. A25, 1621~1992!.
@18# L. Faddeev and A. Niemi, hep-th/9705176.
@19# R. Battye and P. Sutcliffe, Proc. R. Soc. LondonA455, 4305

~1999!.
@20# R. Jackiw and S.-Y. Pi, Phys. Rev. D61, 105015~2000!.
@21# C. Adam, B. Muratori, and C. Nash, Phys. Rev. D61, 105018

~2000!.
@22# C. Adam, B. Muratori, and C. Nash, Phys. Lett. B479, 329

~2000!.
6-9


