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We derive and analyze the Bethe-Salpeter equations for spin zero diquarks in the color superconducting
phase of cold dense QCD with two massless flavors. The spectrum of diquarks contains an infinite number of
massive excitations and fiteearly massless pseudoscalars. The former are singlets while the latter include a
doublet, an antidoublet and a singlet with respect to the unbr&ké(2).. Because of approximate parity
doubling at a large chemical potential, all massive states come in pairs. The decay constants, as well as the
velocities of the(nearly) massless pseudoscalars, are derived. The different role of the Meissner effect for
tightly bound states and quasiclassical bound states is revealed.

PACS numbsgfs): 11.10.St, 11.15.Ex, 12.38.Aw, 21.65.

[. INTRODUCTION scale u, the magnetic modes are subject only to Landau

damping, which does not completely eliminate the long

With continuing advances in modern nuclear and highrange interactio10]. Subsequent studies of the gap equa-

energy experiments, it has become feasible to produce d&on in QCD confirmed that proper treatment of the gluon

confined quark matter in the laboratory. Not surprisingly, SCréening effects is crucial in deriving the estimates for the
this has stimulated many theoretical studies of quark matte§uperconduct|ng 9apL1-17.

at high densities and/or temperatuier recent reviews see Also, it was revealed that the ground state of quark matter
g P ' with three light flavors is given by the so-called color flavor

for example, Refs[1—4]). _ locked (CFL) phase[18]. It is remarkable that the chiral

~ Of special interest is the cold quark matter at high densisymmetry in such a phase is spontaneously broken and most
ties, i.e., at densities which are at least a few times largepf the quantum numbers of physical states coincide with
than that of a nucleom,=0.17 fm 2. It has been known those in the hadronic phase. It was tempting, therefore, to
for a long time that such matter could be a color superconsuggest that there might exist some kind of continuity be-
ductor[5,6]. Nevertheless, until recently our understandingtween the two phaselsl9]. Another interesting feature of

of the color superconducting state has remained very poothree flavor QCD was pointed out in RéR0], where the

The new developments started with the ground breaking e20ssibility of gapless color superconductivity metastable
timates of the color superconducting order parameter in Ref&Nas¢ was proposed. In addition, many interesting patterns
[7.8]. Within a phenomenologicainstanton liquid model, it of symmetry breaking were revealed in models with the

was shown there that the order parameter could be as large aumber of flavors larger than[d7], as well as in two-color
P 9 D with quarks in the fundamental representation and in

100 MeV. These estimates revived the hope of producingny_color QCD with quarks in the adjoint representation
and detecting the color superconducting phase either in exX21]. The anomaly matching conditions were analyzed in
periments or in natural systems such as neutqoiark) stars.  Ref. [22].
Being motivated by the potential possibility of observing the  The low energy dynamics of the color superconducting
color superconducting phase at moderate densities, the suphase could be efficiently studied by using effective actions
ject resulted in numerous studies and new discoveries.  whose general structure is fixed by symmetf@3-26. The
At first, it was not clear at all that the microscopic theory, finite set of parameters in such theories could be either taken
quantum chromodynamio®QCD), would lead to the same from an experimentwhen availablg or sometimes derived
(or, at least, the same order of magnitudstimates for the from QCD (for example, in the limit of the asymptotically
superconducting gap as the phenomenological models. It waarge chemical potentinl Because of the nature of such an
suggested in Ref$9,10] that the screening effects of gluons approach, at best it could probe the properties of the pseudo
should play a crucial role in the analysis. In particular, whileNambu-GoldstondNG) bosons, but not the detailed spec-
the electric gluon modes are subject to Debye screening atum of the diquark bound statésiesons It was argued in
already the scales of ordes~ 1/g.u, whereu is the chemi-  Ref. [27], however, that, because of long-range interactions
cal potential andys is the running coupling related to the mediated by gluons of the magnetic tyf®10], the presence
of an infinite tower of massive diquark states could be the
key signature of the color superconducting phase of dense
*On leave of absence from Bogolyubov Institute for Theoreticalquark matter.
Physics, 252143, Kiev, Ukraine. In this paper, we consider the problem of spin zero bound
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states in the two fla_vor color ;upercqnductor using the Bethe- so=<0|8”83ab(§a)?75(‘1’8)§’|0>, (2)
Salpeter(BS) equations(A brief outline of our results was

given in Ref.[28].) We find that the spectrum contains five where ¥ and ‘P8=C‘I_fg are the Dirac spinor and its

(nearly) massless states and an infinite tower of massive sin- . . : . . .
glets with respect to the unbroke®U(2), subgroup. Fur- charge conjugate spinor, al@is a unitary matrix that satis-

i -1 __ T _ T . _
thermore, the following mass formula is derived for the sin-f€S ¢ ~7,C=—7v, andC=—C". Here and in what fol
lows, we explicitly display the flavori(j=1,2) and color

glets: (a,b=1,2) indices of the spinor fields. It is also appropriate
ar to mention that the subscript and superscript indices corre-
M§:4|A5|2( 1- ;4 , n=12,..., (1) spond to complex conjugate representations.
(2n+1) The order parameter in E(R) is even under parity. Such

. ) a choice is dictated by the instanton induced interactions
where « is 7a'constant Of_ order' Ywe find that « [7,8] which, despite being vanishingly small at a large
=0.27), [Aq| is the dynamical Majorana mass of quarks chemical potential, could be sufficiently strong for picking
in the color superconducting phase, ang-=gg/4. up the right vacuum. In addition, any bare Dirac masses of
The Meissner effect plays a crucial role in obtaining thisquarks(which are non-zero in naturshould also favor the

result. In particular, the important point is that while the parity-even condensafe9,30.

Meissner effect is essentially irrelevant for tightly bound \with the choice of the order parameter orientation as in
states, it is crucial for the dynamiCS of qUaSiClaSSical boun(Eq_ (2), itis very convenient to introduce the fo”owing Ma-

states(whose binding energy is small jorana spinors:
At a large chemical potential, we also notice an approxi-
mate degeneracy between scalar and pseudoscalar channels. \pia: ,ﬂ;_,.sgabgii(lpc)}), a=1,2, 3
As a result of this parity doubling, the massive diquark states
come in pairs. In addition, there also exist five massless sca- D= ¢la_83ab8ij(¢c)Jb, a=12 (4)

lars and five(nearly massless pseudoscalgesdoublet, an
antidoublet and a singlet und&U(2).]. While the scalars \yhich are built of the Wey! spinors of the first two colors:
are removed from the spectrum of physical particles by the

Higgs mechanism, the pseudoscalars remain in the spectrum, lﬂi :p+(\I,D)i (lﬁc)‘b:P—(q’C)‘b (5)
and they are the relevant degrees of freedom of the infrared a ar ! B’
dynamics. At high density, the massive dnéarly massless

i i cyb_ Cyb
states are narrow resonances. $a=P-(Ypa, (¢7)j=P+(Vp);- (6)

This paper is organized as follows. In Sec. I, we describei_|ere P, =(1=y%)/2 are the left- and right-handed projec-

the model and introduce the notation. Then, further develop,[-OrS The new spinors in Eq&3) and(4), as is easy to check

Ing our notation in Sec. Ill, we br_leﬂy review the approach Qf from their definition, satisfy the following generalized Majo-
the Schwinger-Dyson equation in the color superconductlngana conditions:

phase ofN;=2 QCD. In Sec. IV, we derive the Ward iden-
tities for the quark-gluon vertex functions, corresponding to (WC)a= g3abg i @
the broken generators of the color symmetry. These identities : b

are going to be very helpful in the rest of the paper. We
outline the general derivation of the Bethe-Salpeter equations

for the diquark states in Sec. V. The detailed analysis of th? th | ducti h £ OCD in which K
Bethe-Salpeter equations for the NG bosons and the massivi '€ color superconductng phase o QCD in which quarks
are known to acquire a dynamic@ajorang mass, the use

diquarks is presented in Secs. VI and VII, respectively. Ap-

pendix A contains some useful formulas that we use throughf—)f four-component Majorana spinors, built of Weyl spinors,

out the paper. In Appendix B, we estimate the effect of the’s‘h.m?St naturtal. .Of Coll.”.stf’ t\)NhEn ql.Jtarks %r% massive and
correction to the Schwinger-Dyson equation that comes fronf' '@l SYmmetry IS explicitly broken, it would beé more ap-
the non-perturbative contribution to the vertex function. AtPropriate to consider the eight-component Majorana spinors,

last, in Appendix C, we present the approximate anal ticarnade of Dirac ones. L
solutions Fzg the BS equaﬁons PP y With our choice of the order parameter that points in the

third direction of the color space, only quarks of the first two
colors take part in the condensation. Quarks of the third color
do not participate in the color condensate. It is more conve-

In the case of two flavor dense QCD, the original gaugehient, therefore, to use the left and right Weyl spinors,
symmetry SU(3), breaks down toSU(2). by the Higgs

(DC)2=—g%bg;; D] . 8

II. MODEL AND NOTATION

mechanism. The flavadBU(2), X SU(2)g group remains in- Y'=P.(Vp)y, (¥°)=P_(¥E);, 9
tact. The appropriate order parameter is given by the vacuum _ _
expectation value of the diquartkntidiquarK field that is an P =P_(¥p)s, (¢);=P(¥P)}, (10)

antitriplet (triplet) in color and a singlet in flavor. Without
loss of generality, we assume that the order parameter pointer their description. Notice that the color index “3” is omit-
in the third direction of the color space, ted in the definition ofy' and ¢'.
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In the color superconducting phase with a parity even P-q
condensatg?2), parity is a good symmetry. Then, all the
guantum states of the Hilbert space, including those in the P - P +
diquark channel, could be chosen so that they are either par- - i q

ity even or parity odd. In order to construct such states ex-

plicitly, we would need to know the following parity trans- FIG. 1. The diagrammatic representation of the SD equation.

formation properties of the spinors:

_ . _ . S, = —i(P+uyy AP+ A,P,)

P(X)—=y ¢ (x), )=y X)), 11 : _ _ _

== '[(po_ €p )YOA; + (Ap )*A; + (p0+ E;)'}/OAp
+ - : +\ 0+ + A+

UE0—=Pe0X), L0 ufx),  (12) F8p) A JPeilPo )7 A +Ap Ay

+(potey) YA, +A AP, (17)

VLX) —yPDL(x"),  DL(X)—yPWL(x"), (13)

- . -1_ _; 0
wherex=(xg,x) andx’ = (Xq, —X). Sp (Bt uy )Py
Before cor)cludlng this sectu_)n, let us rew.rlte the order — —iyo[(po—e;)A;+(po+ ES)AQ]PJH (18)
parameter?2) in terms of the Majorana spinors:

¢=—(0[¥{P_W,+ 7P, d}[0). 14 Sl=—i(p-uy)P
—_ia0 YAt “VA~
This representation is explicitly SU(2) X SU(2)g =17 T(Po—€p)Ap +(Pot ) Ay IP-, (19
X SU(2),. invariant, and so it is very convenient. By making
use of the transformation properties in Efj3), we also eas-

ily check thate is even under parity, as it should be. with €, =|p|= . The notation for the gap functiony,
=ApAg+A, A, and Rp=y0A54°, as well as the “on-
IIl. SCHWINGER-DYSON EQUATION shell” projectors of quarks,

In order to have a self-contained discussion, in this sec-
tion we briefly review the Schwinger-Dysdi$D) equation R
using our new notation. This would also serve us as a con- 1 a-p - -

: X . . 1+ a=7y"y (20
venient reference point when we discuss more complicated P2 o) ’
BS equations.
To start with, let us introduce the multi-component spinor

is the same as in Reff11].
Now, it is straightforward to derive the matrix form of the
a SD equation:
P, (15)

WC

G,'=(Gp) '+4mas

built of left fields alone. Similarly, we could introduce a
multi-spinor made of right fields. In our analysis, restricted XJ dq
only to the(hard dense loop improvéedainbow approxima- (2m)
tion, the left and right sectors of the theory completely de-
couple. Then, without loss of generality, it is sufficient to
study the SD equation only in one of the sectors.

With the notation in Eq(15), the inverse full propagator
of quarks takes a particularly simple block-diagonal form

YGo[(q,p)Dyn(a—p),  (21)

wherey** andI'** are the bare and the full vertices, respec-

tively. This equation is diagrammatically presented in Fig. 1.

The thin and bold solid lines correspond to the bare and full
quark propagators, respectively. The wavy line stands for the
full gluon propagator.

The only complication of using the multi-component
spinor(15) appears due to the more involved structure of the
where, upon neglecting the wave function renormalizatiorquark-gluon interaction vertex. Indeed, the explicit form of
effects of quark$10-16, the bare vertex reads

G,'=diags,'o2s), s,'s, s,teh, (18
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[TA°—285TSPP 18, TP, 8, —sl TheP.
YA = it T5°P, 5, T3P, 5, 0 (22
~ TP 0 ~T3°P_4)

wherezs!l =&'le5,. andTA are theSU(3), generators in the
fundamental representatioftr(TAT®) = 6"B/2]. The rela-

0 _ _
tively complicated structure of the bare vertex might suggest i Y (Po—€p)—Ap ATP
that our notation is somewhat unnatural. As we shall see in pg—(e;)2—|A;|2 pot
Sec. IV, because of the breakdown of 88(3), symmetry,
this structure, on the contrary, is quite natural, and it is es- Ypo+ €)—(Ap)*
pecially so in the case of the full quark-gluon vertex func- e A ApP-, (26)
tion. pO_(ep) _| p|
The gluon propagator in the SD equation is the same as in 0rt 0r
Ref.[11]. When the Meissner effect is neglected, the propa- s =i Y AP +i VAP 27)
gator in the Euclidean spacky=ik,) reads P Po+ E; Po— €, '
OA+ OA—
. — YA Py YASPL

" N k sp=Cs' Cl=i—"—+i—"—, 28

Dliks k)= 3D, (iky k) =i " pT— P ; 29

K2+ mM kg2 ™ Potep  Po~ép
The bare propagator in ER1) is similar but with zero value
Lighe 1 @) of the gap. _ o
ki+|l€|2+2M2 wv Ir_1 the_ improved Iadd_el(ralnbOV\) approximation, both
vertices in the SD equation are bare. By making use of the

d propagators in Eq923) and (25), along with the vertex in
+i5ABk2—||Z|ZO§f’3, (23)  Eq.(22), we derive the well-known gap equati¢hl-16
+
4
4 d'q A tr(y*ALy"AS)
whereM?=N;au?/ 7 (with Ny=2), andO{) are the pro- A :§7m5f 4 2 (ey2_ (a2 DuldTP):
fastl f d 2% p (277) qo_(fq) _|Aq|

jection operators of three different types of glugnsgnetic, (29)
electric and longitudinal, respectivejysee Ref[11]. The _ . .
Meissner effect could be qualitatively taken into account byAfter calculating the trace and performing the angular inte-

the following replacement of the magnetic teffrd]: gration(see Appendix A this equation considerably simpli-
fies. Then, by assuming that the dependence of the gap on
- the spatial component of the momentum is irrelevant in the
B K (1) vicinity of the Fermi surface, one arrives at the following
K3+ 7M2|Kk,) 12 " approximate equatiof.0—15:
: K
—i"B oY (29)

2ag (AddsA7(d,)

A~ = In , 30
_ _ (Pa) 97 Jo \/q42+|A5|2 |ps—aal (30
in the propagators of those five gluons that correspond to the

broken color generator\(B=4, . . . ,8). Inthis last expres- where A =(47)¥?u/a>?. The analytical solution to this

sion,c=0(1) is a constant of order 1. equation is relatively easy to obtditl]:
By inverting the expression in Eq16), we obtain the

following representation for the quark propagator:

[K|3+ 7M2(|ky| +c|Ag )12 "

_ _ [ Pa _
; L — A =|A,|J —, <|A,], (31
A (pa)=|Ag [VI5(v)+Ii(v
B yo(po-i-e;)—A; ) (Pa)=|4¢ [VIo(¥)+I1(v)
Sp_ 2_( +)2_|A+|2APP+ (v A 3
Po—(¢€p P X sin Elnp—, Pa=|4,], (31b
4

(o= €p)—(Ag)* | :

> T 5 A P- whereJ;(z) are the Bessel functions and= \8ag/9. The
—(eg)?—[Ag[? i
Po—(€p p corresponding result for the value of the gap reads
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where, in agreement with the remark made above, the irrel-
, (32 evant (in this approximatiop contributions of gluons and
ghosts are omitted. Here and in the rest of this section, we

where &2 718 Most of the existing studie§l0—1g  2SSUme thah=4, ... ,8;i.e., we do not consider the currents
seem to agree upon the dependence of this result on tHghich correspond to the generators of the unbro&efi2).

coupling constant. The issue of the overall constant factorSUbgroup. . : ,
however, is still not settled. The analysis of REFS], for As we mentioned earlier, we are interested in the Ward

example, suggests that the wave function renormalization efdentities that relate the quark-gluon vertices to the propaga-
fects of quarks give an extra factor of ordet Another  tors of quarks. Therefore, let us introduce the following
source of corrections might be due to the running of the(non-amputatedvertex functions:

coupling constanf31]. In addition to these, as we argue in

Appendix B using the Ward identities, there also exists at

least one non-perturbative correction that could modify the Fﬁjiﬂ(x,y)=(0|Tjﬁ(0)‘I’L(X)Ej(y)|0>, (343
constant factor in the expression for the gap.

|A7| (471.)3/28“ % 37T3/2
ol= 55

52 T o302
ag 2% ag

IV. WARD IDENTITIES Al ) 0|T'A 0) : )\fa )|0 (340
As in any other gauge theory, in order to preserve the o 0V =(OTILLOFCTFI0),
gauge invariance in QCD, one has to make sure that some
exact relationgWard identitie$ between Green functions are ) S
satisfied. In this section, we consider the simplest Ward iden-  I}%,(X,y) =(0|Tj5(0)¥,(x)Wi(y)[0), (349
tities that relate the vertex functions and the quark propaga-
tors. In addition to establishing the longitudinal part of the
full vertex function, these identities will play a very impor- TA _ A Iy
tant role in our analysis of the BS equations for the NG and Faiv#(x’y)_<O|TJ#(O)¢3(X)¢j(y)|O>’ (349
pseudo NG bosons.
In general, the structure of Ward identities in non-Abelian _ o
gauge theoriegthe Slavnov-Taylor identitiess much more TH2(x,y)=(0[ Tj5(0) ¢! (x)D(y)|0), (348
complicated than in Abelian ones: they include contributions ’
of the Faddeev-Popov ghosts. Fortunately in(therd dense
loop improved ladder approximation, used in this paper, the
situation simplifies. Indeed, since the direct interactions be-
tween gluons are neglected in this approximation, the Ward
identities have an Abelian-like structure. ) ]
To start with, let us rewrite the conserved currenegated ~ Besides the operator of the conserved current, the first three
to the color symmetryin terms of the Majorana fields, de- Vertices include only left-handed quark fields, while the other
fined in Egs.(3) and (4), and the Weyl spinors of the third three vertices contain only right-handed fields. Because of

color. By making use of their definitions, it is straightforward the invariance under the parity, all the mixed, left-right ver-

T1L00y) =(0[TiR(0) @) PF(y)[0). (34f)

)

to obtain the following representation for the currents: tices are trivial. For this reason, they are of no special inter-
. est here, and we do not consider them.
jﬁ(x):\IfD(x) yMTA\PD(x) As usual, in order to derive the Ward identities, one needs

to know the transformation properties of the quark fields.
1 e i — Aa i The color symmetry transformations of the Dirac spinors are
NG s Wi ()Y, PeWa(X)+ () v, T3P+ Wa(X)  well known. By making use of them, it is straightforward to

derive the following infinitesimal transformations for the

+\I_f?(x)77_ yﬂT;Bt/fi(x)-F%(X) 'yMngdli(X) spinors of interest:
—1 Shp2 i i ATA i | TA3 i
+2@ g L7 (X) 7, P-Py(X) SY =i wNTEP, UL+ Ty, (35
+ 617, TP PX) + PO P, 7, Ta ¢ (x) e
— H a
+6i(x)7,TH (%) (33 PN TP T T, %
I o l
1 . . NIZ A TAbP i+TA3 i
Note that the argument of Refl5] is somewhat incomplete, a_ l® a P+Wpt T ¢
since the calculation is performed for the critical temperature rather
than the order parameter itself. The celebrated BCS relation be- 1
tween the critical temperature and the gap might not be satisfied —&5 SiiTAwa_ A p P (37
. . . ab 3 ¥ 8 - Tal:
after the Meissner effect is carefully taken into account. \/5
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5‘1_’?= —iwh \Fibp_ Tﬁ‘a-l— %Téa— ssabsijECjTﬁs
aP+ ) (39
2f
for the left-handed fields, and
8¢ =i NTE*P_DL+T234"), (39
5= —1 N DIP, T+ ¢TSS, (40)
s, =i0"| TR"P_dp+To%¢!
—&3ape" T4 ) — 5A—\/§77+<13ia), (41
0= wA<<I_>F7>+TQa+$T§a
ab_. 4 CjTA3 5A 1 5a
gij¢ Ty — sﬁq)ip— , (42

for the right-handed fields. In all these expressian8,are
small parameters, parametrizing the transformations of th
SU(3). group.

In a standard way, by making use of the current conser-

vation as well as the definition of the vertices in E84), we
obtain the following Ward identities for the non-amputated
vertices:

PATA!(K+P.K)=iTA%5[ s~ Seip]P- (43a
PATR(k+ PK) =TS0 P [Sc— S e, (43b)
P (k+P k)= fa’*a'[mask P_S

—2S pP_+ScpP-], (439
PATA!(K+PK) =iTA36[S—Sis 1Py (430
P (k+ P, K) =i T4, P_[ Sc—Sksp ). (430
PATM(k+ P k) =—=845[2P-S— P, S

\/—
_Zék+PP+ +’ék+P77—]: (43f)

whereS,, s, andS,, s, are the Fourier transforms of the

quark propagators in the left and right sectors, respectively,

S(x—y) 828, = (0| T¥L(x) ¥ P(y)|0), (44)

PHYSICAL REVIEW D 62 085025

S(x=Y) &= (0| T¥'(x)#;(y)[0), (45)
S(x=y) 336)=(0| TP, () D}(y)[0), (46)
S(x=y)8,=(0[T¢'(x) ¢;(¥)|0). (47)

As we discussed in Sec. lll, in the approximation with no

wave function renormalization effects, the explicit form of
the momentum space propagators for the left-handed fields is
given in Egs.(26) and (27). For the completeness of our
presentation, we also mention that the right-handed propaga-
tors are the same, except that the projectBrs and P,
interchange.

At this point, let us note that the use of non-amputated
vertices in this section is not accidental. In fact, it is crucial
for a quick derivation of the Ward identities. Other than that,
non-amputated vertices are not very convenient to work
with. In fact, it is amputated rather than non-amputated ver-
tices that are usually used in Feynman diagrams. For ex-
ample, both the bare and full vertices in Fig. 1 are amputated
ones. Similarly, it is amputated vertices that appear in the BS
equation in Sec. V. The formal definitions of amputated ver-
tices read

Ial (k+Pk) =S pral (k+P kst (483
e TIPA(Kk+PK) =552 (k+Pk)S T, (48b)
I (k+P k) =S eI (k+Pk) S (480
o (k+P k=S eTa! (k+Pk)s (48d)
TAA(k+P k)= T2 (k+PK)S T, (489
TPL(k+ Pk =S eI (k+P,k)S (48f)

These, as is clear from our discussion above, are directly
related to quark-gluon interactions. As is clear from &@),
they satisfy the following identities of their own:

PR (K+PK)=iTR38 S e —s P (499
PATA2(k+P,K)=iT5%8P_[sp— S M, (49b)
PAT M (K+ P k) = 5‘\5'[23“,371 S P
f
-2P_S '+ P.S 1, (490
PMFaAllﬂ(lH'P k)= 'TA35I[$<+P Sk ]7)— (490
PET2I(k+ P k) =iT5%0 P, (5 s~ 5. 11, (499

085025-6
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i ~b -
. | : ~ ~ A"‘ ,P :§A ,P
erﬁ','t(kjuF>,k)=—2ﬁﬁ’ga}[zsﬁpn_g,k;lpp+ @ (P.P)=A(p.P)

=(0]T/(p+PIRD(p—PI2)|P;a)s, a=12,

—2P, 5+ P51 (49 (51b)
In the rest of the paper, we are going to use these Ward 77(p,p):<o|'rq>ia(p+ P/Z)‘S.a(P—P/Z)|P>R, (510
identities a number times. Because of the relatively simple
structure of the inverse quark propagators, this last form of o(p,P)=(0|T¢'(p+ P/2)pi(p— P/2)|P)g. (510

the identities will be particularly convenient.

In'connection with the Ward identities,'it is appropriate to Notice that analogous states containing charge conjugate
mention here the complementary analysis of RBE]. The (o4 of the third color,yC and ¢C, are not independent.

_authqrs of th_at paper consider the contribution to the War ecause of the property in EqS) and (8), they are related
|dent|ty_ that is directly related to the wave function renor- to those already introduced.
malization of quarks. For completeness, let us note that the only other diquark
channel that we do not consider here is a triplet under
V. DERIVATION OF THE BS EQUATION SU(2),. Itis however clear that repulsion dominates in such

In quantum field theory, bound states and resonances r(jﬁchannel because this triplet comes from $4(3), sextet.

veal themselves through the appearance of poles in Gre otice that, although one does not expect the appearance of

functions. These latter satisfy some general BS equation@" boynq state, we keep the wave function in the analy—_

which usually are rather complicated sSis. This is because the equations for the BS wave functions
To consider the problem of diquark bound states in coloOf the two singletser z_and 7, May not_decouple. NOt'Ce also

dense QCD, one has to introduce a four-point Green functio at the QOubIet, anugiqublet and smg[ets coming from the

that describes the two particle scattering in the diquark chan= U(3). triplet gnd anhtnplgt can mix with the doublet, an-

nel of interest. The residue at the pole of the Green functiofidoublet and singlets coming from tr&U(3). nonet(octet

is related to the BS wave function of the bound state. ByP!US SingleL , _ ,

starting from theinhomogeneoysBS equation for the four- Before proceeding further_ Wl_th the anaIyS|§ of the bound

point Green function, it is straightforward to derive the so-States, let us recall that parity is not broken in dense QCD

called homogeneous BS equation for the wave function.  With two flavors; see Sec. II. Then, all the bound states can
In the problem at hand, we could construct quite a fewP® Chosen in such a way that they are either parity even or

different diquark states. Not all of them could actually be Party Od.d' Clearly, the states n Ec@O) and (51) do not

bound states. For example, one would not expect from a pwghare this property. In order to fix this, we could have con-

particle state to form a bound state unless there is some attucted the following scalars and pseudoscalars:

traction in the corresponding channel. Now, in dense QCD, 1

the dominant interaction between q_uarks is giyen by one- |P;n)s=—=(|P;n) +|P;n)R), (52)

gluon exchange. As we know, this interaction is attractive V2

only in antisymmetric diquark channels. Therefore, without

loss of generality, it is sufficient to consider only the follow- 1

ing bound states: |Pin)p= E(|PJH>L—|PJH>R)' (53

X (p,P)=82x(p,P) _
_ . _ _ wheren denotes the appropriate state.
=(0|TYL(p+P/2)&i(p—PI2)|P;b),, b=1,2, In our analysis, however, we find it more convenient to

b b work with the bound states constructed of either left-handed
A(E)(p’P)_‘SéMp’P) (509 or right-handed fields separately. This is because, in the
_ i b, ~ ~ (hard dense loop improveédadder approximation, the two
=(0[Ty/(p+PI2)¥P(p=-PI2)|Pia)., a=12, sectors of the theory stay completely decoupled. Besides
(50b  that, the dynamics of the left and right fields are identical in
the approximation used. Under these conditions, the degen-

— i Wa(p—
7(p.P)=(0[TW5(p+P/2)¥i(p=PI2)|P)., (500 eracy of the left and right sectors is equivalent to the degen-
i — eracy of the parity-even and parity-odd ones. In this way, we
o(p,P)=(0[T¢'(p+PI2)¢i(p—PI2)|P)_, (500 reveal the parity doubling property of the spectrum of bound
) ) states in QCD at an asymptotically high density of quark
plus the states made out of the right handed fields, matter?
X2 (p,P)=82x(p,P)
_ [ - e T 2Notice that there are some subtleties in applying this parity dou-
= + (pD— =
(0[T®a(p+P2)4i(p—PI2)|Pib)r,  D=1.2, bling argument to the case of thpseudoyNG bound states; see
(519 Sec. VI.
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Equations for non-amputated wave functions of the SD equationsee Sec. ), we got the structure of
In order to derive the BS equations, we use the method'€ quark propagator. We also know that the approximation
developed in Ref33] for the case of a zero chemical poten- with no wave function renormalization effects is quite reli-
tial (for a review, see Refl34]). To this end, we need to able, at least in the leading order. By combining these facts
know the quark propagators and the quark-gluon interactogether, we arrive at the following effective Lagrangian
tions in the color superconducting phase. From the analysief quarks:

Let=T2(p+uy*y>+AP_+ AP )WL+ WIABTE - 265 TP TW + i AP, Wi — yC'A 2e3P W

b+ uY )P+ I (D= u )P YT+ APy — YO RSPy APy = Ve AP ]

+DA(P—uy* Y + AP, + AP )DL+ DPAP[TEP - 250 TEP. 1D+ hiAS PO — ¢C'A %3P, @),

+ i+ uy )P + 6% (P uy )Py 7+ AP ¢ — $OASPL $T+ DIASP_ G — DT UALSPL BT, (54
where, by definitionA=A A S +A A, A=9°ATy°, ande’’=e%;; . The choice ofA, as is easy to check, corresponds
to the case of the parity-even Majorana mass.

The effective Lagrangian in E¢54) is the starting point in derivation of the BS equations for the wave functions introduced

in Egs. (600 and (51). While using the notation of the multicomponent spinor in ELp), it is natural to combine the
(left-handed wave functions of the bound states into the following matrix:

1 ! ~ o
SmP.P) 326, X (p,P)s edCING (—p,P)]'C!
X(p.P)= (PP o(p,P)d 0 : (59
chx®P(-pPICls 0 Ca'(~p,P)CTs)

where we took into account the property of Majorana spinorstatus as the rainbow approximation in the SD equation. It
given in Eq.(7). We could also introduce a similar matrix assumes that the coupling constant is weak, and the leading
wave function for the right-handed fields. Since, however, inperturbative expression for the kernel of the BS equation
the (hard dense loop improvedadder approximation the adequately represents the quark interactions. Schematically,
left-handed and right-handed sectors decouple, we study orike BS equatiori56) is shown in Fig. 2.
of them in detail, and only occasionally refer to the other. By writing it in components, we arrive at the set of four

In the (hard dense loop improvedadder approximation, equations
the BS wave function in Eq55) satisfies the following ma-

trix equation: Sy teaXs ) (P.P)S, e

P P
G lpts X(p'P)G‘l(p——) 2 f d'q C

2| 2 =——ma “P xP(q,P)P_

, 3 S (277)47 { Xa (q )
d q A . Br1AB ~
= e | 2m . XERYPLaTe, (59 +3P_cxP(—q,P)ICTP_
where D4>(q—p) is the gluon propagator ang** is the _’P+Xg5)(q’p)7)_},yVD (q-p), (57)
bare quark-gluon vertex. This approximation has the same a
_ b _
p+P/2 p+P2 P2 Spipr2A ) (P P)S; pro

2 d*q b
== §7TasJ —— Y"{P:Ag (A, PP,

VVVVVVVVV

[}
2
°
AAAAAAAAA

, (2m)*
S S +3P, C[A?a)( —-q,P)]"Ctp,
p-P/2 p-P/2 q-P/2
b v
FIG. 2. The diagrammatic representation of the BS equation. —P+A(5)(q,P)P_}7 Dula=p), 9
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SptprmP.P)S, e Sec. IV, are of great help in dealing with this task. Moreover,
in the particular case of th@seudoNG bosons, knowledge
of the Ward identities is powerful enough to reveal a com-
“ P, 7(q,P)P.+P_n(q,P)P_ plete solution to the BS equations. We consider this impor-
tant case in the next section.

8 J’ d“q
=—smas| ——

5 5 3
+7P-nq, P)P, + 27+ma, PYP_+ >P+ol(q, P)P_ V1. BS EQUATIONS FOR NG AND PSEUDO-NG BOSONS

In this section we consider massless bound diquark states.
v'D,.(q—Pp) (590  The latter should include NG and pseudo-NG bosons. Before
mv 1 . . . . .
proceeding to a detailed analysis of the BS equations, it is
instructive to describe the qualitative physical picture in the

3
+ E7>,caT(—q,F>)c‘f7>+

Spip0(P.P)S, b1 problem at hand.
Let us start from a simple observation. As we stressed
2 d*q many times, the QCD dynamics at a large chemical potential
=—§77an —— V' [3Pin(q,P)P_ consists of two essentially decoupled and identigaft-
(2) handed and right-handgdectors. Then, as long as it con-
+2P, 0(q,P)P_19"D,,(q— D). (60) cerns the diquark paring dynamics, no changes would appear

in the model if one enlarges the gauge group of QCD from

The right-handed fields satisfy a similar set of equations. SU(3). to the approximat&U(3)c, X SU(3)cr, assuming

In order to solve the BS equations, it is important to de-that the couplmg_ constants of both gauge groups are identi-
termine the Dirac structure of the BS wave function. There ic@l- In the modified theory, the pattern of the symmetry
the following useful statement. Let us consider a BS wave’réaking —should  be SU(3) X SU(3)c,r—SU(2)c,.
function of an arbitrary bound state foman-zerochemical X SU(2)cr- In this case, ten NG bosons should appear. If
potential in thecenter of mass frameThen, the number of the gauge group wer&U(3). XSU(3).r, all ten NG
independent terms in its decomposition over the Dirac maP0osons would be unphysical because of the Higgs mecha-
trices coincides with the number of the terms in the decomnism. However, since the true gauge group of QCD is
position of the BS wave function aerochemical potential. Vector-like SU(3)., only five NG bosongscalars are re-

The proof of this statement is simple. The Dirac decom-moved from the spectrum of physical particles by the Higgs
position is determined by all the space-time tensors charadhechanism. The other five NG bosoripseudoscalays
terizing the bound state, e.g., the momeRtaand p?, the should remain in the spectrum. In the complete theory, these
polarization vectore” (in the case of a massive spin one latter are the pseudo-NG bosons. They should get non-zero
bound statg etc. In this respect, the case of a non-zeroMasses due to higher order corrections that are beyond the

chemical potential is distinguished by the occurrence of onlymproyeorl]ladder approximatir?(ran e>l<(amplle qfhsuch correc-
one additional vectou”=(1,5). But in the center of mass tions is the box diagram in the BS kernel with two interme-

_ - , diate gluong At the same time, since the theory is weakly
frame, where the t(V)taI momentuRt=(Po,0), the vectou coupled at a large chemical potential, it is natural to expect
is proportional toP” and therefore is not independent. Thus, ih5t the masses of the pseudo-NG bosons are small even

the numbe_r of_terms in the_Dirac decomposition of a BScompared to the value of the dynamical quark nf&ss.
wave function in this frame is the same for both zero and  gor the completeness of our discussion, let us also add
non-zero chemical potentials. that, even though the massless scalars are removed from the

Of course, t.here is an essen.tlal d|fferer_1ce between the ysical spectrum, they exist in the theory as some kind of
two cases: Whlle_for zZero chemlcal potentla! the number o ‘ghosts” [36]. In fact, one cannot completely get rid of
Dirac structures is the same in all frames; in the case of fhem, unless a unitary gauge is fouhidis also important to
non-zero chemical potential, it is different fBr=0 (the cen-  mention that these ghosts play a very important role in get-
ter of mass frameand for P#0 (all other frames For ex-  ting rid of unphysical poles from on-shell scattering ampli-
ample, as we will see for spin zero diquarks, whe# 0,  tudes[36].
there are four independent terms in the center of mass frame,
and there are eight terms in other frames.

Strictly speaking, this statement is valid only for massive ] ) ) _
bound states. However, in the case of spin zero bound states Earlier we mentioned in passing that the use of the Ward
it is still valid also for massless statés particular, for NG identities is crugal for revealing the Dirac structure of the
bosong: the point is that the limitM—0 is smooth for BS BS wave functions of thépseudoyNG bosons. Now let us
wave functions of spin zero states, aRd—0 is a very
useful limit for studying properties of NG bosons.

In the next two sections we study these BS equations for 3Note that, because of the composditiquark nature of the order
the diquark states in detail. In order to approach the problenparameter in color superconducting phase of dense QCD, it does
we first need to determine the Dirac structure of the BS waveot seem to be straightforward to define and to use the unitary
functions. As we shall see, the Ward identities, derived ingauge there.

A. Structure of the BS wave functions of(pseudo)NG bosons

085025-9
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elaborate on this point. We start with the definition of theconstants of the left- and right-handed composites should be
vertices in Eq.(34). By making use of them, one can show equal, i.e. FM=FMN FO=FW andE™=F,

that the corresponding Fourier transforms develop poles The existence of poles in the full vertex functions as

whenever the total momentum of the incoming quais, p_.0 is also required by the Ward identities, discussed in

SatISerS the on- She” Cond|t|0n Ofa bound state. In par“cularSeC V. Moreover the Ward |dent|t|es alone a.”OW us to

asP—0, we obtain establish the explicit form of the poles. Indeed, by making

use of the relations for the amputated vertices in @§) as

A (p+PJ2 P12 P(X)F(X) 2 5|TA3 (a)( 0) well as the explicit form of the quark propagators in
aj,u'P P P07~ p(x) = a Xa (P, Eqgs.(26), (27) and(28), we obtain
POEMN
—_H iTA3 p(x)
PVPS/X) 5JTa X(p,o). (61@ I‘Qllﬂ(k—’_ P,k)|p_,0 o P(X) TAS(sIAkP+, (62@
p(’\)|:(>\)
T2 (p+P/2,p—Pl2)|p o= > 5'TAa)\ (p,0) PO
PP 5 ® A2 (k4 P,K)| TA%S AP 62b)
P—-0~ P()\) k/~—
pPMEN
=5 ATaMP.0), (61b)
PP (n)
v P 7 \/5 -
T (K+PLK) | p o= (,7) e 90— (AP~ AP,
. PUIE() 1 PP
F '(p+P/2p P/2)|p_0= mz J5A1)(p 0), (620
(610 . P(X) N
i i
P(X’F(X) - I (K P.K)|p_o= o7p (X)T aAkP_ (62d)
A, _ Mk (a)
T3Pt PR2p=PR2)|p o= = 2 ST X (p,0)
PR =A, PO
ai a
_ 5| Agx(po) (610 I (k+P, K)|p_o= P P(*)T b"AkP+, (62¢
pr(X)
PMVEM 3
™ Aa TAI A
T PI2p=PIlp_o=" gy 20 TaRG(PO TRkt P e o= pw) 6@5 >
mem e X[AP_— AP, (62f)
PVP(” 0;T3°N(p,0), (618
Now, by taking into account the definition of the amputated
(”)F(”) 1 vertices iq Eq.(48).and comparing the .pole residues in
FA'(p+ PI2p—PI2)|p o= ﬁ —5'5A77(P 0), Eq. (6_1) with those in Eq.(62), we unambiguously deduce
P P the Dirac structure of the amputate@ds well as non-

(61f) amputate@l BS wave functions of thé¢pseudoNG bosons:

whereF® andF® (with x being\, x, or ) are the decay =
constants of thépseudoNG bosons. The rigorous definition x(p.0=S, 1X(p,0)5_1_ P,
and calculation of their values will be given in Sec. VIE. For P P FW
our purposes here, it is sufficient to know that they are con-
stants expressed through the parameters of the theory. Since
the Lorentz symmetry is explicitly broken by the chemical
potential, the dispersion relations of tfEseudoNG bosons
respect only the spatial rotation symmetry. In order to take
this into account, we introduced the following four-
momentum notationP{’ = (P°, — cZP) wherec,<1 is the 7(p,0)=S, ' 7(p,0)S,*
velocity of the appropriatépseudoNG boson. J3
By recalling that parity is preserved in the color supercon-
ducting phase of dense QCD, we conclude that the decay F( )

(633

-1 -1_ A
A(p,0)=s, "A(p,0)(p.0)S, —mﬂ (63b

——(R,P,—A,P), (630
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¥(p.0=%, X(p.05, 1= %P , Gag X (POP
_ 2 ﬁ n (b) ™
= SWQSJ (27)4;/ P_{Sgxa (9,084 +3s,C
N(p.O)=5;, Mp.0S, "= % 2 (639 < [xP(-a,01'C'S}P_ 4D, (a-p), (65)
PP (p.oP,
7(p.0)=S, (p.0)S, = F%(MP_ —ApPy). (83 , dq )
=3 mas f 2t VP Sx$(9,084P- v D, (9= P).

This concludes our derivation. Before concluding this sub- (66)

section, we would like to emphasize that the arguments usePh K i d . in Eas(26) and
here cannot be generalized for the case of massive diquark&;; %sazvepgzaag:eofgn?qhsgeareiglli\::inrén regzgteztigns not
The reason is that the corresponding on-shell pole contribux P P !

. ) . all of the terms are equally important. While some of them
tions to the vertex fuqcupn&:ompare with Eq{Gl)] must develop large contributions in the vicinity of the Fermi sur-
appear at a non-vanishing momentuen Obviously, the

o A face, the others are suppressed by powerg.ofhese latter
structure of such poles cannot be clarified by utilizing theg, 4 pe safely neglected in the leading order of the theory.
Ward identities alone. Using expressioif23) for the gluon propagator, we arrive at
the following approximate form of the BS equations:

B. NG doublet x® )
. . P+Xa (piO)P+
Now, let us consider the BS equation for the massjess

doublet; see Eq57). As soon as the color symmetry is spon- 4 0 B .
taneously broken in the model at hand, a non-trivial solution _ Ewa f dq [ 7 (G0~ &)~ (Ag)
to this equation should exist. In order to verify the self- 3773 (27-,)47 - qg_(eq*)2_|A;|2
consistency of our approach, we have to check that this is the

0 0

case. (B) Y Y () T
The most general Dirac structure of the amputated BS Xxa (4,00 ——+ n —[xa (—d,0)]
o (b) ~1 b -1 , Qo—€q o€
wave function, x5 (p,P) =Sy ppxa (P, P)Sp Zppp, that is
allowed by the space-time symmetries is given by Yo(qo+ €q)—(Ag)*

B = q2_(6—)2_|A—|2 AC;P*}YVD,U,V(q_p)! (67)
XP(pP) =8 X1 Ay +x1 Ay +(Po—€5)xz YA 0™ (€)%

+(po+5;)X;?’OAE+X3(;"|3)+X4(C;'|3) 77,)(533)(p,0)774r

+x50""p P+ X6y oM PP, (64) o
B sz dq iy LY (doteg)— A,

Y 4 + — _
3773 (2m)* qqﬁ—(ﬁq)2—|Aq|2

wheren,m=1,2,3 are space indices;"™=i/2[ y",y™], and

the factors po—e€,) and (po+ e;) are introduced here for s YOA; P
convenience. It is of great advantage to notice that four out X x(q,0—2—9"D,(q—p). (68)
of eight independent functions in this expression become ir- Qo~ €q

relevant in the limitP—0. This agrees with the general
statement made in Sec. V@ndeed, there are four indepen- In component form, these become
dent Dirac structures in the BS wave functions of spin zero
states at zero chemical potential]). We will consider only 1
this limit (which, in the case of NG bosons, implies that the  x; (p)= §7TaSJ
total momentunP—0).
After multiplying both sides of the BS equatidb7) by
the appropriate quark propagators on the left and on the X[ x2 (A)+3x2 (— T}

d4

ﬁ{x;(qwsxl‘(—q)—mp*

right, we obtain the equation for the amputated BS wave (eq)%— A4
function. This latter splits into the following set of two B .
equations: Xtr(y*Aq v"Ap)D, (A=), (69
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(Po—€p)x2 (P) the leading order solutio; (p) into Eq. (72), we get the
estimate fory, (p). In the most important regionA, |?
1 d*q [95—(eq)Ix; (@)~ Ag x5 () =pi+(ep)*=u?, we find that
-] (2m)" (do— € [~ (g)*— A4 7]
o ope an . agAg | (2u)?
Xtr(y*Aq ¥"y"Ap ¥°)Dy(A=P), (70 2P e T e (e e Y

plus the expressions that defige in terms ofy; . By not- _ )
ing that the equations for the even and odd combinations dNow, we also can check that this function could safely be

the BS wave functionsy; (p) = x; (—p), decouple and sat- neglected in the equation for; (p). Indeed, its substitution
isfy the same kind of equation, we argue that it is sufficientnto Ed.(71) produces a result of ordery(A ;)*/F* which

for our purposes to consider only the even combination. Inis suppressed by a power afs compared tox; (p)
deed, from the Ward identities, one finds thgt(p) is re-  =(A,)*/FX.

lated to the gap, . Then, if x; (p) is odd, we must have a Theref_ore_, both the corrections due to the wave function
non-trivial solution for the gap satisfyingy =A;|,—o=0. renc_)rmallzatlon of quark[sl()_—l@+ and those dueT to the non-
Analysis of the SD equation shows that no such soluvanishing component functions, (p) are small in the lead-

tion exists. Therefore, without loss of generality, we puting order of the theory. Moreover, consistency with the Ward
xi (—p)=x: (p), and obtain identities requires that either both effects be taken into ac-

count or neither of them.

_ 4 dg x1(9)—(A)*x2(q)
x1(p)= §7Ta5f (27)* qg_(ea)z_ |A;|2 C. NG antidoublet )\ila)
A The analysis of the BS equation for the antidoublet
XUr(y*Aq ¥"Ap)Dun(A—p), (7D follows very closely the analysis for the doublet. For com-
o pleteness of the presentation, we still give all the details.
(Po—€p)x2 (P) The most general BS wave function of this antidoublet is
given by

1 f d*q [95—(eq)%Ix2 () —Aq x1 (q) . )
=—Zma - - - Nz (P,P)=&P [Ny AS+ N[ Ag+(po—€,)N5 Y°A S
370 (2m)* (90— €;)[a3— ()2~ |Aq 2] @ o T e
+(Pot €5 A3 YAy +N3(y-P)+A4(a-P)
Xtr(y*Ag ¥°y" Ay ¥) DA P). (72) ’ "
_,_)\sa_nmpnpm_'_)\(s,yoo_nmpnpm]' (75)
By comparing our ansatz for the BS wave function in
Eq. (64) with the structure in Eq634 that is required by the  As in the case of thg doublet, to simplify the analysis we
Ward identities, we see that; (p) components should be restrict ourselves to the case of the vanishing total momen-
zero. Direct analysis of the BS equations, on the other handum P—0. Then, the equations for two projections of the
shows that these component functiggis cannot be identi-  \yave function?. \% (p,0)P_ andP_\% (p,0)P, , read
. . . . . . _ "= (a) 1 - - (a) ’ +
cally zero. It is not hard to pinpoint the origin of the discrep
ancy. Indeed, in our approximation, we completely neglected
the wave function renormalization effects of quarks. Uponp—x("a)(p’o)P—
taking them into account, the Ward identi#9) would lead

to a modified structure of the BS wave function, and all 2 d4q
allowed Dirac structures would be non-zero. . S §7msf _4,},M'P+{Sq)\?é)(q’0)sq+ 35,C

Therefore, as in the case of wave function renormaliza- (2m)
tion, we estimate the effect gf, (p) perturbatively. To this b Tt ,
end, we usey, (p)=0 in the leading order of the theory. X[ G(=a.01'ClsgtPsy"Dud=p), (76)
Then, the equation fog, (p) reads

. o PN (P.OP.
X1 =FTa — — v - .
3l emt g (e -lagr 2 d*q .
(73 :§7Tasj (ZT)A ')’WPJqu)\('é)(an)Sq,Pf yypyv(q_ p).

On comparison with the gap equatid29), we see that (77

Xl’(p):(A;)*/F(X) [as required by the Ward identities; see

Eg. (638] is the exact solution to the BS equation in the After extracting the most significant of the Fermi surface
leading order approximation. Here, of course, we assumeontributions in the vicinity from the quark propagat@s
that A is the solution to the gap equation. By substitutingands,, we arrive at
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b
P\ (P.O)P-

2 d4 0
:gﬂ-asf _qyup+A;f(7—

b
A~ (q,0
(2m)* do—€q @(@9

37%(do+€5)—Ag
95— (e5)2 =184

Y(do—€5)— Ay
95— (eq)2— A4 I

)/0

b T
XNz (—q,0)]' ———
D —a0"

A;P+ 'YVD/U/(q_ p),

(78)

b
P—)\(a)(pvo)P+

2 d*q P+A;yo
Wasf ( Y

b
-2 A% (0,0
2m)*" do—eq @@

3
Y (ot €q)— (Ag)*
95— (€g)%— 12512

Finally, rewriting this in components, we get

P-Aq v Du@—p). (79

d*q Ap(a)—A N5 (q)
(2m)* 95— (e5)?— A4 |2

_ 4
ST
Xtr(y*Aq v"Ap) D, (9= P), (80)

(Po—€p)A2 (P)

1 dq
_—§7Tasf (217)4
(05— (eg) 2Nz (A) = (Ag)* N1 (Q)
X “\r 2 -2 -2
(qO_ep)[QO_(Eq) _|Aq| ]
Xtr(y*Aq ¥*y'Ap ¥°)Dp(d—P), (81)
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glet comes from the product of the fundamental and the anti-
fundamental representations. Based on this observation, one
might have concluded that the bound state should form only
in the » channel. As we shall see below, this argument is not
completely groundless, although the real situation is slightly
different. We would like to point out that there is no sym-
metry in the color superconducting phase of dense QCD
which could prevent the coupling between the two singlet
channels.

Let us consider the equation for the amputated BS wave
functions of singletsy(p,0) ando(p,0) (we consider only
the case oP—0 below). The most general structure of the
wave functions is

7(P.0)=[n Ay + 71 Ay +(Po—€,) 75 YAy
+(Pot€p) My YA 1P T M3 Ay + 3 Ay
+(pot ey ) ms YA, +(Po—€y) ma YPAL TP,
(82

a(p,.0)=P_y[(Po—€,)o Ay +(Pot+ ey ) A TP, .
(83

Before proceeding any further, we would like to recall the
definition of thez-singlet wave function in Eq500). Unlike
other diquarks, it is built of only Majorana spinors. By mak-
ing use of the generalized Majorana property in E3), we
observe that the BS wave functiof{p,P) should satisfy the
following constraint:

Cy'(—p,P)CT=7(p,P). (84)

While rewritten in components, this restriction is satisfied
when the odd componentis(p) are even functions of mo-
menta and whem, (—p)= 7, (p).

The equations for different chiral projections of the am-
putated BS wave functionsy(p,0)=S,*»(p,0)S,* and
o(p.0)=s, ‘a(p,0)s, *, read

P.n(p.0)P+

where again, without loss of generality, we assumed that

\; (p) are even functions of momenta.

By repeating the arguments of the previous subsection, = —
we would find that\, (p) should be zero in a consistent
approximation when the wave function renormalizations of
qguarks are neglected. As in the case of jheloublet, the

equation for thex; (p) component has the solution, (p)

=—A,/F™, which is consistent with the Ward identities;

see Eq(63b).

D. NG singlets»

8 dg ,
§7Tasj (277)47 P—Sqﬂ(qvo)sqp—y D,uv(q_p)y
(85)

P_n(p,0)P_

8 d*q
=— —wan —47MP+Sq77(q'O)SqP+ Y Dud=P),
(2m)

3
(86)

The case of massless singlets is very special. This is al-
ready seen from the fact that the BS equations forzttend
o singlets are coupled in general. This might appear some-4strictly speaking, from Eq(50¢ one derives a relation for the
what puzzling if one traces back the origin of the singlets.non-amputated BS wave function. Assuming that the gap is an even
While the # singlet contains the antisymmetric tensor prod-function of the momentum, it is straightforward to show that the
uct of two fundamental representationsSif)(3), theo sin-  same relation holds for the amputated wave function
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P_n(p,0)P, Pin(p,0)P-
2 d* 2 4q _
= g PSS A0S, 65060 =g PP AES A0S 6,
XP-y"Du(Ad—p), (87 X[0(= 0,01 sq}P; "D, (d—p), (88)
J
2 d“q
P-o(p.OPr=~3 msf 2m? Y*P1[3541(d,0)S4+2540(9,0)S4]P-¥"D,,(d—P)- (89

In components, these become

B 4 d*q [a5—(eg)3m1 (D) +(Ag*) %75 (@) —2(A)*[d5—(€g)%]1 75 (q)
-

(2m)* [a5—(eq)?—[aq 712
Xtr(y*Aq ¥"Ag)D,(d—p), (90)
4 d*q [a5—(eq)1n5 (@) +(Ag)*n1 () =244 [q5— ()] mp (A) .
== tr(y*Aq y'A -
773(p) Swasf (2’7T)4 [qg—(fa)z_lAaF]z r()’ q'y p)D,uv(q p)v
(9)
1 A5 (0)?1m2 (@) +[Ag P74 (@) = Ag 71 (@)= (Ag)* n5(q) | 60 (q)
(Po e )72 (P)= 5 me f(zm ( (G5 (eq)2— 12 2P T (e)?
X (do— e)r(y*Aq ¥ y"A; ¥°) D, (A= p), (92)
I a5 (eq) 17z () +1Ag 175 ()= Ag 71 ()= (Aq)* 75 () 20-<q>>
(Po™ &) (P)=3 me J(27r>< (05— (eq)2— 124 2P T (e
X (do— e )Mr(y*Ag ¥°y"Ay ¥°) Dy (d—p), (93

along with the expressions for the plus components irrel- It is very rewarding, therefore, to check thaf (p)

evant for our analysis. Note that we did not write down the= — \/§(Ag)*/F(’7), 73 (p)= \/EA;;/FW)’ and 7, 4p)

equation for thewn, (p) component since it is related to =0 (p)=0 is an exact solution to the BS equaticnas-

7, (p) as we argued above. suming thatA, is the solution to the gap equation. It is
Now, let us analyze the BS equations for the singletsinteresting to notice that no admixture of thesinglet ap-

By repeating the argument involving the Ward identities,pears in this solution for thpseudoNG boson.

we see that the component functiomf_iA(p) should be

exactlyzero. As opposed to the case of @mti-doublet, a E. Decay constants

crucial difference appears in the case of singlets. As we dis- _ = b

cussed in Sec. VIA, the Dirac structure of the BS wave In order to define the decay constantsyaf, A, »

function of the# singlet is determined by the pole structure (PSeUdoNG bosons(as well as their counterparts built of

of the vertex in Eq(61¢). The explicit form of the latter is the right-handed fieldsit is convenient to introduce the fol-

determined by the Ward identity in EG190), and the result lowing combinations of the currents:

is presented in Eq(620. The remarkable property of this

result is thf_;lt it does noF ge_t any corrections even after the (a)p= E nglﬁ! a=1.2, (94)

wave function renormalization effects of quarks are taken

into account. To see this, one should note that the mentioned

Ward identity(49¢ is given in terms of a single propagator,

Sp. Because of this, all wave function renormalization ef- 5ye pelieve that this is the only non-trivial solution to the BS

fects always cancel from the leading pole contribution to thesquation, although we were unable to rigorously prove that no other

vertex of interest. solutions exist.
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Q,(9\'2- 2 The definitions of the decay constants above are exact.

FP, p The problem is, however, that a solution for the BS wave

wn— = functionsy(q,P), \(qg,P), and7(q,P) atP+#0 is very hard

to obtain. In order to get estimates of the decay constants and
9P 5 velocities, we will use the analogue of the Pagels-Stokar ap-

proximation[37] (for a review see Ref38]). In this approxi-
FIG. 3. The definition of the decay constant. mation, the wave functions &+ 0 are substituted by their
- values atP=0, i.e.,

iW=2 T b=12, (95

Aq
=T (96) X(AP)=x(0.0= 5P+, (103

wherej’, for A=4, ... 8 isdefined in Eq(33). It is easy to

check that the doublet(b) couples only toj ), , while the

anti- doublet)\ , couples only toj () The singlet couples Aq

onlytoj,. Mq,P)qu,O)=—mP7, (104
We will consider the low energy limit when the energy of

the diquark(pseudofNG bosonsP,—0. Then, we define
their decay constants as follows:

. V3
(0] (2u(0)|P,B) =i SEPWF ), (97) n(q,P)zn(q,O)=W(AqPJr—AqP,), (105
(0liP(0)|P.a) =i &2PIF, (99
<0|j#(0)|P>L=iP(”)F(”) (99) where the right hand sides are fixed by the Ward identities.
M 1

By making use of this approximation and the explicit form of
where pl(;(): (Po,—c2P) and c, is the velocity of the quark propagators in Eq26) and(27), we derive, in the
(pseudoNG bosons. weak coupling limit,

From the definition of the current in E¢33) in terms of
quark fields and from the definition of the BS wave functions

in Eq. (50), we obtain Po w? (1 ™ Po
) (F())2 25 :16773J xdxj désineg B codd
0 0 co
PWF(N= f(d (;4tr[7MP+X(q,P)] '
i [ d*q f dasdeq |Aq]?
== ——=tly,P.S P)Sq—pr2l, X = -
Zf (2m) [ YuP+Sq+p2x(d,P)Sq—pr2] [C{‘Zﬁ‘(fq )2+X|Aq |2]2
(100
d*q Po
p(X)F(A)_ f ZULP-y,Nq,P)] :M_z 1. 106
(2m) 2 ’ (108
8w §P

i [ d%
:EJ [P v,uSq+p2M(d,P)Sy—pp2l,

(2m)*
PO 2 1 PO
(101 (F)2 g [ = s dexf désiné
cyP) 16m3Jo P cos'e

f daudeg |Ag |2
X
[95+(eg)3+X|Ag %12

. 4
pME() = I_f dq trl v, P m(q,P)]
" 2y3) @m*

dq
= ﬁj W”[ YuP+Sq+prn(0:P)Sy—prl,

(102
where the doublet and the anti-doublet BS wave functions 2 | Po
. (b) b b b ; ——M 1
are defined so thag{® =62y and A =5\ The generic =— 1150, (107
o . 8w | 5P
definition is diagrammatically presented in Fig. 3. 3
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Po| 2 (= P,
F2y :—f désingy -
(F7) [cip] 8mJo P cogd

f dgudeg [A, |2
[a5+(eq)2+ A4 1212

2 Po
M
= 1|5 (108
8 3
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where e= eq=|ﬁ|—,u. In the calculation, we also assumed
that the gap is an even function @f ande. By making use
of the explicit solution to the gap equatidsee Sec. Il and
Appendix B in Ref[11]), we could check that these correc-
tions are suppressed by a power of the coupling constant
compared to the leading order results in EG6), (107)
and (1098).

Here we worked out the decay constants of the left-
handed diquark composites. It is straightforward to repeat an
analogous analysis for the right-handed diquarks. As it
should be, the results would be the same, in agreement with
the invariance under parity.

We observe that the decay constants of all NG bosons are of It is worthwhile to note that the decay constants in the two

order «, and all the velocities are equal to\B. This

sectors of the theory could have been equivalently defined

agrees with similar results for NG bosons in three flavorthrough the matrix elements of the left- and right-handed

dense QCO23-24, as well as with the studies of R¢89],

color current. As we discussed earlier, both such currents are

dealing with two flavor QCD in the framework of the ef- approximately conserved at large chemical potential. In other
fective theory approach. Notice that these estimates of theords, the latter means that the corresponding vector and
decay constants imply that the infrared masses of the fivaxial vector currents are also approximately conserved. Now,
gluons are of ordeggu. (For a discussion of subtleties con- by making use of the definition of scalar and pseudoscalar
cerning the generation of the mass of the eighth gluon, segiquarks in Eqs(52) and (53), it is easy to show that their

Ref.[40].)

decay constants are equal, up to a factor/8f to those of

For completeness of our presentation, let us mention thahe |eft- and right-handed states. Of course, here we assume
the above expressions for the decay constants in the Pagelfy the definition of the decay constants of scalars and pseu-

Stokar approximation also contain the following subleadin

derivative term corrections:

SL(FW)2]=8[(FM)?]

u? (1

473J)o

dadelAg|7dadqAq |2

x(l—x)dxf — —
[a3+(eg)?+x[aq 7P

p? (1 [ daudeqy(3/4—x)dq,|Aq|?
I
8m3Jo [az+(eq)?+x[A, %]

(109
S eH(FW)?]= 8 cF(FM)?]
2
)z jl
= X(1—x)dx
127%Jo ( )
fcllqzldelAqIZ«sﬁelAql2 p? fl
X —
[0+ (eg)?+x|A, 71 24730
dasdee(3/4—x)d A |?
) [T
[a2+ (eq)*+x[Aq17]
N O ddadedadg,[Aq |*
SL(F*™)“]= 3 T e (111
16m°) [+ (eq)*+]Aq 7]
2 dosdeed |A; |2
SLC5(FM)?]=~ A SJ 2 - —\2 | q—| 272’
487> ) [dz+(eq)*+[Aq17]
(112

Yoscalars are given in terms of the vector and axial vector

currents, respectively.

While the NG scalarga doublet, an antidoublet and a
single) are not physical particles because of the Higgs
mechanism, the five pseudoscalars remain in the physical
spectrum. Since the latter af@early massless in dense
QCD, they should be relevant degrees of freedom in the
infrared dynamics. The decay constants of these pseudosca-
lars are the physical observables that could be measured in
an experiment. The most likely decay products of these pseu-
doscalars should be gluons of the unbrol&di(2). and the
massless quarks of the third colawhich might eventually
get a small mass too if anothénon-scalar condensate is
generated7,41]].

VII. BS EQUATION FOR MASSIVE COMPOSITES

The essential property of the quark pairing dynamics in
N;=2 dense QCD is the long range interaction mediated by
gluons of the magnetic typ®,10]. Of course, the Meissner
effect in the color superconducting phase produces masses
for five out of the total eight magnetic modes. Nevertheless,
there are still three modes that remain long ranged. This
simple feature has many interesting consequences. One of
them was conjectured in Reff27] where it was suggested
that there should exist an infinite tower of massive radial
excitations in the diquark channels with the quantum num-
bers of the (pseudofNG bosons. This conclusion was
reached by making use of an indirect argument based on
special properties of the effective potential in the color su-
perconductor.

In this section, we study the problem of massive radial
excitations by using the rigorous approach of the BS equa-
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tion, derived in Sec. V. As we shall see, the conjecture ofjon is given bY|A5|S|ko|<|E|5M- In this particular re-

Ref.[27] is essentially correct. At the same time, it will turn gion, the two kernels, with and without the Meissner effect
out that some details of the pairing dynamics are rather sefaken into accounficompare Eqs(23) and (24)], are practi-

sitive to the specific detailsuch as the Meissner eff¢end ¢4y indistinguishable. Obviously, the same should be true
could not have been anticipated, based on the qualitativiy 41| very light bound states witM <|A; .

arguments of Ref.27]. In the rest of this section, we show that, because of
_ the Meissner effect, an infinite tower @fuasiclassicalmas-
A. Bound states and the Meissner effect sive diquarks occurs only in the singlet channel. In the dou-

In this subsection, we would like to clarify the role of the Plet channel, the only bound states are ttightly bound
Meissner effect in the dynamics of diquark bound states. Th&!G bosons. This is connected with the fact that the interac-
main point we want to emphasize is the existence of twdion in the doublet channel is mediated exclusively by the
classes of bound states, for which the role of the Meissne@luons subject to the Meissner effect. In the singlet channel,
effect is very different. The first class consists of light bound®n the other hand, the interaction is partly due to the un-
states with masseM <|A7|. The binding energy of these Screéened gluons of the unbrokesi(2). subgroup and,
states is largdtightly bound statés The second class in- thereforg, _the formation of massivguasiclassicalstates is
cludes quasiclassical states with the masses close to thélPt Prohibited.
thresholdk|A, | wherek=1 for diquark doublets, built of 3
one massive and one massless quark, lken@ for diquark B. Massive doublety ”
singlets built of two massive quarks. The binding energy of

; . . . Let us start from the analysis of the BS equation for the
the quasiclassical states is small, i.e.,

massive y doublets. By choosing the spatial component
of the center of mass momentum of the bound state zero,
<1, (113  P=(M,,0,0,0), we find that, similarly to E¢64), the most

k|Ag | general structure of the BS wave function in the center of

_ _ ) _mass frame reads
It is clear that the quasiclassical bound states are sensitive to

the details of the infrared dynamics. Indeed, for long range ®) B -t 4 B
potentials, the quasiclassical part of the spectrum is almost Xa (P:M))=8g[xa Ay +x1 Ay +(Po— €,
completely determined by the behavior of the potential at
large distances. In the particular case of cold dense QCD, the
interaction between quarks is long ranged in tineaginary
time direction and essentially short ranged in the spatial ones
[10,27]. Because of that, the region witko|<|Ay|<|K| is
particularly important for the pairing dynamics of the quasi-where, for convenience, we introduced here the factors
classical diquark states. This implies that the inclusion of th€po— €, + M /2) and o+ e; +M,/2). In contrast to the
Meissner effect is crucial for extracting the properties of thecase of(pseudoNG bosons, the structure of the wave func-
states from this second clagsee Appendix € tions of massive states cannot be established from the Ward
On the other hand, the Meissner effect is essentially irrelidentities. Although the vertex functions would also have the
evant for the light bound states. This point can be illustrategoles, corresponding to the massive intermediate states, the
by the BS equations for the lightest diquarks, the massles#&/ard identities are insufficient for extracting the structure of
NG bosons. As was shown in Sec. VI, the BS equations fothe residues unambiguously.
them are essentially equivalent to the gap equation. And we Be repeating the analysis similar to that in Sec. VIB, we
know from the experience of solving the gap equafibh—  arrive at the following set of equations for the components of
16] that the most important region of momenta in the equathe BS wave function:

klAg| =M

+M,/2) x5 7OA;+(p0+ e;

+M/2)x3 YA, 1P, (114

X—(p):imf d*q  (Go—eq +M/2)[x1 () —(A5)* x5 ()]
1 3""s (2m)* (QO_GJ_MX/Z)[(QO“‘MX/2)2—(6;)2—|A;|2]

Xt y*Aq ¥"Ag1D,,.(a=P), (115

d*q  [(Got M, /22 (e5)%Ixz ()~ Ag X1 (@)
(2m)* (do— €g — M /2)[ (do+M,/2)°— (€)%~ [A]?]

1
(o & +MJ2x; ()=~ 5 7 |
Xt y*y°Aq ¥'Ay ¥°1D, (A= p). (116
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The other two equations expreﬁ%z(p) in terms OfXIZ(p) side of EQ(].].?) comes through the argument of the Ioga-
and, therefore, they are irrelevant. As is easy to check byithm, in which either largey, or c|Ay | dominates.

tracing back the derivation of the BS equations, the interac- By matching the infrared and the ultraviolet asymptotes of
tion in this doublet channel is provided exclusively by gluonsthe solution, we find that the non-trivial wave function
that are subject to the Meissner effect in the color supercony; (p,) cannot have zeros in the whole range of momenta,
ducting phase. This fact could be taken into account qualitag<p,< A. This means that the only solution to the integral
tively by replacing the propagators of the magnetic modegquation(117) corresponds to the NG boson with,=0.
according to the qualitative rule in E4). In accordance |ndeed, a solution that describes a massive radial excitation

with the discussion in Sec. VII A, while such a modification 4t the NG boson must have at least one zero. Because of the
was irrelevant in the gap equation and in the BS equationgyaissner effect. no such solutions exist

for (pseudoNG bosons, it is going to play a very important
role in the analysis of the quasiclassical massive states.

In order to proceed with the analysis of the BS equation
we will use the approximation witly, =0. Recall that such
an approximation was completely justified in the case o
(pseudoNG bosons. It is certain that it gives a very good

T . < A] i ) ive
approxmatlo_n for “ght bound states, wM <t|A° ] n gen However, the binding energy of all these states would be
eral. Ourconjectureis that the ansatz witly, =0 yields a .
C . . overy small compared to the value of the superconducting
reasonable approximation even in the case of quasiclassical L L ) .
states. In order to justify this approximation one would gap. T.hls |nd|cat§s that it is the Iong range dynaml_cs thé.lt 'S
need to prove that theerturbativé correction due to non- primarily responsible for the formation of such quasiclassical
zero y= is small. By repeating the arguments used fc)rbound states. Then, in agreement with the discussion in Sec.
X2 ’ VII'A, even relatively small screening effects for gluons in

(pseudo}NG bosons, we CPUId,ShOW again t]é-ﬁ |s'|rrel- the infrared region are sufficient to prevent binding of quarks
evant in the ultraviolet regiopA, | <py= . While this ob- .
in the doublet channel.

servation is promising, it is not sufficient yet because the
infrared region B<py<<|A, | is also important for the pairing
dynamics of the quasiclassical radial excitations. Therefore,
for such states, it should be considered agemsonable
conjecture.

Now, we dropy, from the analysis and assume that the
component functiong; depend only on the time component
of the momentum(compare with the analysis of the gap
equation in Refs[10-16). Then, we arrive at the following
equation:

From physical point of view, massive gluons cannot pro-
vide a sufficiently strong interaction to form massive radial
excitations of the NG bosons in the doublet channel. To un-
fderstand this better, it might be instructive to point out that,
in absence of the Meissner effect, an infinite toweKafa-
siclassical massive states would appe@ee Appendix €

C. Massive antidoublet)\?a)

The analysis for the\:’a) antidoublet resembles a lot the
analysis in the previous subsection, so we outline only the
main points, omitting the unnecessary details.

The general structure of the BS wave function is given as

b b = _
N (PMy) = SP_[N Ay +N A, +(Po—€,

_ 2ag (A _
X1 (P4)= 9_;f0 dasKN () x1 (qq)In +M\/2)\; ’)’OA;‘*‘(PO"” 5;

|da—pal+clAg|’
(117) +My/2)N; YPA ] (119

whereA = (47)%?ul o2 and the kernel reads

The equations for the components of the BS wave functions

2 2 - -
KO0(qy) = M(da+Vag+|Ag 12)2=[Ag]* of the antidoublet are almost the same as those for the dou-
. /q4?+ Ay |2[4M)2(q§_(|A6|2_ M)Z()Z] ' blet. The only difference is thadl , is replaced by-M, . By

repeating all the arguments of the previous subsection, we
(118 . ; . .
again conclude that, after the Meissner effect is taken into
To analyze the BS equation, we could convert it into aconsideration, the gluon interaction is not strong enough to
differential equation, using the same approach as in thgrovide binding of the massive radial excitations in N‘f’g)
case of the gap equation in Réfll] (see Appendix €  ;ntidoublet channel.
It is straightforward to show then that, in the ultraviolet re-
gion |A, |<ps<A, the BS wave function of the massive
doublet, x; (p4), has the same behavior as the BS wave D. Massive singletyn
function of the NG boson in thg channel(which, as we
know from the Ward identities, is proportional to the gap Let us consider massive singlet diquark wilh,#0.
function). The deviations might appear only in the infrared Since the equations foj ando do not decouple, the massive
region, 0<p,<|A, |. Note, however, that the BS wave func- radial excitation of they NG boson would have a non-zero
tion in that region is essentially constant. To see this, on@dmixture ofo. The general structures of the BS wave func-
should notice that the dependence mnon the right hand tions in the center of mass framé=(M,,0,0,0), are
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_ — At +A— - - 0A+ + +_0A—
n(p!Mn)_[ﬂlAp +771Ap +(p0_6p +M77/2)7]2 Y Ap +(p0+6p +M7]/2)7]2 Y Ap]P+

+[m3 Ay + 1z Ay +(Pot €, =M, 12) 5 YA, +(Po— €, =M ,[2) s YPAS TP, (120
a(p.M,)=P_y[(Po—€, +M J2)c~ Aj +(pot e, + M, /200" A ]P, . (121

The components satisfy the following set of equations:

= [ : (- o
=5 Tag — — — — —| €y — =
(e (2m)* [(Go—M /20— (e3)%— | Aq [PI[(Go+ M J2)— (eg) = [ag 2 L0 V50 2] [T

M 2
+(A;*>2ng(q>—m;>*[qé—(e;— 7’7) }[WE(QH n;<q>]]tr[yMA;y”A;]DMm—p), (122

M, )
p0+7_6p 7, (P)

S e[ 2 ! oo+ e
T3] (2m) [(de—M J2)7— (e )2~ By [P (do+ M j2)°— (e )2~ |Bg 2 11 707 2 " €
2 - Mﬂ 2 — —\x _— M7/ — -2 . — - =
X%~ | €&~ % 72 (4)—(Ag)* m5(q) [ + do— 5 téq [Ag[# 74 (@) —Aq 71 ()]
Xt Yy A g YO y"AS 1D (q—p)+2mf oo - [ y°y*Ag ¥°y"AS 1D, (q—p) (123
q p1Zuy s (277)4q0—M,7/2—e; q p1=Zuv '
4 dq 1 H2 - Mﬂz} -
"3(‘))_3”“4<2w>4[(qo—Mn/ZV—(eq)z—lAq|2][<qo+Mn/2>2—<eq>2—|Aq|2] Wrlar ) 7@
-2 - - M,\2 2| - - M, 2 2| -
HA 0 ()= 8g] [ a0+ 22| —(q 2|z (@)= Ag || 0= 7| —(eg)?|ni (@)
M, | _
Po— = € | 74(P)
e 1 ot
T3] (2m) (o= M J2)7— (e 12— By [PIL(do+ M j2)°— (e )2~ [Bg [P 11 707 2~

M 2
x{ qg—(eg—T”) +

Xtr[ 'yoy“/\; yO)/”A';]'DM,,(q— p)+ 277an

M
74(A4) = (Ag)* n3(a) ( +| dot 77'—€J>[|A§|2772_(CI)—A§77I(Q)])

dg o (—q
(2m)% Qo+ M, 2+ €

—t[y%y*Aq ¥°y"A, 1D,.(q—p), (125
q
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M, | _
Pot - —€ |0 (P)

J’ d“q 1 (( . .

:77(1’3 — — — — - €
(2m)* [(do—M /22— (€q)*= A4 |21[(do+ M ,/2)°— (&) *— A4 ] BT T
X[

2
XULYPA 3 Yy Ay D0 =P)+ 5 e |

M
+<Qo_ 7”+6§ [|Aq|2774(CI)—Aq771(0|)]>

2 — M77 2 — —\* _—
o~ fq_T) 7, ()= (Aq)* 15(Q)

4 —

d*q o
(2m)* qo—M,f2—€

—t Y% y*Aq Yy Ay 1D,.(a—P), (126

q

In the case of massless NG bosons, the component funcionequal zero. Similarly to the case of doublets, we assume that

the ansatz with these functions being equal to zero yields a good approximation also for massive diquarks. By substituting
7, 4=0 into the BS equations above, we obtain the following simple set of equations:

4 dq [A5—(eg =M ,/2)*] 71 (@) +(Aq *)? 73 (q) e
=2 t y*Aq ¥"Ay 1D, (d—p),
7 (P 37”4 (2m) [(do—M /27— (eq 1o~ |Bq (G0 M 27— (g =[] 7 0 ¥ o TP G7P)
(127)
4 dq [A5—(eq +M,/2)*] 75 (@) +(Aq)?71 (q) o
- trl y*Aq v"Ap 1D,(A—P),
73 (P) 3”“4 (2 (oM 207~ (g = |3 T (o M 27— (g P Bg 7] 0 ¥ o IPu 4P

(128

plus the equation forr~ which does not allow a non-trivial plays an important role in the analysis of the massive bound

solution for a bound state. states. Indeed, our analysis indicates that only the long range
Now, in order to solve the set of equations fgf and interaction mediated by the unscreened gluons of the unbro-
n3 , we make the following substitution: ken SU(2). is strong enough to produce massive bound
states. This is taken into account in Ed.31) where the
B (Ap)* effective coupling constant differs by the factor 9/8 from the
71 (P)=- A h1(p), (129 coupling in the gap equatiof30).
p In order to get the solution for the BS wave function

h,(p), we use the same method as in the case of the gap
(130 equation[11]. In particular, we convert Eq.13)) into the
differential equation

o B o)
773(FJ)—|A;| 3(P),

and, as in the case of doublets, we assume that the wave
functions (; 3 depend only on the time component of the
momentump,=ip, (also compare with the analysis of the
gap equation in Ref§10—16). At the end, we arrive at the along with the boundary conditions

following equation for the BS wave functioin{=h3) of the ,
massive singlet: hi(0)=0 and h;(A)=0. (134

a
Pahi(pa) +hi(pa) + 7K™ (py)hy(p,) =0, (133

ag (A A Now, we solve the differential equatidda33) in the follow-
h1(D4)=Ef dQ4K(”)(Q4)h1(Q4)|”|f, ing three qualitatively  different  regions: <Op,

0 o) p4| —2_ P 2 > _
<\[Ao[P=(M,/2)%, V]Ag|*—(M,/2)°<ps<|Ay| and

131
(3D |Ag|<ps<A. The kernel(132) has a simple behavior in
whereA=(47-r)3’2,u/a§’2, and the kernel reads each region, and the BS equation allows the analytical
solutions
Vas+14g |7
K ()= - : (132 wlalp
B+|Ag|2— (M j2)2 hy(Pa)=CoJo _s|2 olPa ),
7[|Ag 2= (M,/2)%]

At this point it is appropriate to emphasize that, as we saw — 5
already in the previous two subsections, the Meissner effect for  O<ps<v|[Ay[*—(M,/2)% (1359
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as|Aa|) . ( as|A6|> VIIl. CONCLUSION
21No

hl(p4)—C1Jo( P4 P4 In this paper we studied the problem of diquark bound
- 5 states in the color superconducting phaseNgf=2 cold
for  V]Ag|°=(M,/2)*<p,s<|As], (135B  gense QCD. We used the conventional method of BS equa-
L A tions that suits the problem best. We derived the general BS
B . Qs - equations, and then analyzed them in spin zero channels.
hl(p4)—C33|n<—\ElnE), for [Aq[<ps=A, Our analytical analysis of the BS equations in cold dense
(1350 QCD shows that the theory contains fiugearly massless

pseudoscalargpseudo-NG bosonswhich transform as a
whereJ,, andN, are Bessel functions of the first and Seco”ddoublet an antidoublet and a singlet under unbroken

types. The solut|ons are chosen so that the boundary condg U(2).. To the best of our knowledge, these pseudoscalar

tions are automatically satisfied. In the above expressmn%hquarks have not been discussed in the literature before. We

Ci (i=0,...,3) are th_entegratlon constants. To obtain the estimate the decay constants of these pseudoscalars, and find
spectrum of the massive diquark states, we match the loga: . .
at their orders of magnitude are the same as that of the

r|thm|c:2 denvatwgs of the appropriate pairs of the solutions at Chemical potential. The velocities of the pseudoscalars are
VIAg t| (t:\:l Tt/s)t anq Ao lh Aftelr taklfnt?] into ac;:\ount ;he equal to 1//3, and this coincides with the velocity of the NG
equation that determines the value of the gege Appendix bosons in three flavor QCD. While beirigearly massless,

B in Ref. [11]), the five pseudoscalar diquarks should be the relevant degrees
of freedom in the low energy dynamics &f;=2 dense
A 2 Jo( V) s QCD
In—=—arctan ——|, v= , (1306 : , .
[Ag] ¥ J1(v) 9 The parity-even partners of the pseudoscalar diquarks are
the NG bosons which are the ghosts in the theory. Although

the matching condition reads they are removed from the spectrum of physical particles by
the Higgs mechanism, one cannot get rid of them com-
Jo(20)J1(2p) Vagm 37 pletely, unless a speci@linitary) gauge is defined. Since the
- o , o= . e .
J1(Zo)No(Zo) + Jo(Zg)N1(Zo) 4 42 order parameter is given by a diquark composite field, it does

not seem to be straightforward to define and to use the uni-
tary gauge in dense QCD. In all the covariant gauges we use
here, NG bosons are always present and they play an impor-
tant role in removing unphysical poles from physical scatter-

(137

where the coupling is assumed to be smalk<1, and

adAC ] ing amplitudes.

Zo= \/ S0 _ (139 We also studied the problem of massive diquarks. In ac-

77\/|A5|2—(M,,/2)2 cordance with the conjecture of RdR7], there exists an
infinite tower of massive bound states which are the radial

It is straightforward to check that the left hand side ofexcitations of the(pseudofNG bosons. As a result of the
Eqg. (137 is an oscillating function having an infinite number Meissner effect, it appears that massive radial excitations
of zeros {,~2.40,3.83,5.52...). In theweakly coupled occur only in the singlet channel. This could be understood
theory, each zergor rather a nearby point that approachesin the following way. The interaction in the doublet and the
the zero asas—0) determines a corresponding value of antidoublet channels is provided exclusively by the gluons
the diquark mas®.In the quasiclassical limit, i.e., when affected by the Meissner effect. Such an interaction is not
M,—2|Aq| from below, the left hand side of Eq137) is  sufficiently strong to form massive radial excitations in those
approximately given by cot@). Then, we derive the follow- channels. The important point in this analysis is the different

ing simple estimates for the masses of #hainglets: role the Meissner effect plays for tightly bound states and
quasiclassical bound states.

28,2 As we know, parity is unbroken in the color supercon-
M2=4|Ay |?| 1- ——-— | n>1. (139 ducting phase of two flavor dense QCD. Then by recalling
m(2n+1) that the left- and right-handed sectors of the theory approxi-

) ) _ ) mately decouple, we could see that all the massive diquarks
This agrees with the expression presented in @gwhen  come'in pairs of degenerate parity-evsealay and parity-
k=2°/7~0.27. Accidentally, one could also check from 5qq (pseudoscalarstates.

the position of the zeros on the left hand side of Eg7) Regarding the nature of the massive diquark states, let us

that the expression in E4139) gives a good approximation pote that they may truly be just resonances in the full theory,

even for the low lying statesn=1,2, .. .).Notice that the  sjnce they could decay into pseudo-NG bosons and/or gluons

state withn=0 does not appear. of unbrokenSU(2).. At high density, however, both the
running couplingag(u) and the effective Yukawa coupling
gy=|Ag[/F¥~]Ag|/n are small, and, therefore, these

®Note that there is also a zero zj=0, but Eq.(137 does not —Mmassive resonances are narrow.
have a solution in its vicinity. At the end, we would like to add a few words about the
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higher spin channels that we do not study here. In view of 0(33 tr[ y* ALy A L]
studies in Ref[13], it would be of great interest to investi- . . a
gate also the case of spin one diquarks, as they might be
rather light in the color superconducting phase. The general
form of the BS equations for such diquarks are exactly the
same as in Eqg57)-(60). Of course, the structure of the BS
wave functions would differ.

—p)2 _ 2
(141 (9=P)"+(da—Pa) (A5)

92+ p2—2qpt+(gs—pa)?’

OBt y*AL )y AL
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APPENDIX A: ANGULAR INTEGRATION
) . (+p)*+ (04— pa)?
We need to calculate the following traces over the Dirac —(1-1) I 5 (A7)
indices: q°+p“—2qpt+ (ds—pa)
Ly ARy A L] Ot y* AL y"A L]

=g"’(1+e€e't)—2ee g“g"0t
o™ ) 99 (a+p)?+(ds—pa)®

. s e =(1-t) : (A8)
Bp? 4 " 2. n2_ _ 2
gdPrae (A1) 9"+ p°—2gpt+(ds—Pa)
lallp (1) OA (7)) 0 (—)
] y#y°A &y yPA L] Our Ly y"Ap 7'y Aq ]
- -
:—g#V(l_ee’t)+ g/LO_eqT gVO_e/pT __ _ q2+p2+qp(l_t)
dl o 2 - (A9
q°+p°—2qpt
+ g,u,O_e/p_p' gVO_eq_V (AZ) 0(2)t w OA(*) v OA(*)
Il al)’ oo TLYHY Ay Ty Yy A ]
wheree,e’=+1, t=cos¢ is the cosine of the angle be- 2qp(1—t?)
tween three-vectorg and p, and irrelevant antisymmetric :q2+p2_2q pt+(1+t)
terms are denoted by the ellipsis.

By contracting these traces with the projectors of the (q—p)2—(0s—P4)2—2i(ds—pPs)(q—p)
magnetic, electric and longitudinal types of gluon modes, we X > 2 > ,
arrive at q°+p°—2qpt+(ds—pa)

(A10)
(1) (=) v A ()
Oty Ay 'y Aq+ ]
(3) OA (=) v, 04 ()
o+ P2 ap(1—1) Oty y Ay 7y y " Ay ]
=2(1—t) N Rp— (A3)
aremaap PPN el : i Y1 i G )
0@t y# ALy ALY g%+ p?—2qpt+ (Gs— Pa)?
por ULYHAL YA (A11)
q°+p?—qgp(1+1t)
_ (1) 0A () v 0 (+)
2(1+t) O pP—2qpt Oty Yy Ay /vy Ayl
_ 2+ _ 2 2 2_
_(1+1) (—p)°+(ds—Ppag) (Ad) :_2(1+t)q +p qp(1+t)’ (AL2)

g%+ p?—2qpt+ (ds—pa)?’ 9%+ p2—2qpt
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0@t vy AL )y yPA (D] - . .
’ P =02 [ 40D, (a- Pty 4AG 35 AL )

2qp(1-t?)
~ ¢’+p?-2qpt dim| — 22
3 |e;|3+7'r|\/|2w/2
(A+p)?— (04— Pa)®—2i(qs—Pa)(a+Pp)
+(1-1) _ 42 4 4 42 , (2p)°
q°+p°—2gpt+(ds—pPa) +in—— — &l (A17)
(€q)°+2M H+ o

(A13)

0(3) tr[ ’)/"“‘yOA(_)’yV'yOA(+)]
v P q _ _
. I, "=q? f dQD,,(q—p) tf y*y°A{)y" AT
(q+p)2—(ds—Pa)?—2i(ds—Ps)(q+p)

=—(1-1) , 3
02+ p?—20pt+ (ds—Pa)? P N T
(A14) 3 |E;|3+ T™™2w/2
whereq=|q|, p=|p|, ds=—iqo, andp,=—ip,. (2p)? (2p)?
+In —€&In . (A18
Therefore, (€;)2+2M2+w2 (65)2+“’2 ( )

117 =02 A0, D) HEyAL Iy AL)
APPENDIX B: A NON-PERTURBATIVE CORRECTION

2 (2u)3 (2u)? TO THE SD EQUATION
~2im|=In n + £, ] o
3 |egP+mM2w/2  (€q)?+2M?+ w? In light of our analysis in Sec. IV, one could argue that
ALS the SD equation might get a large non-perturbative contribu-
(A15) tion, coming from the pole contributions in the full vertex
function; see Eq(62) and Fig. 4. We recall that the pole
Iy~ :q2J dQD,,(q—p) tf y*AL) ¥y AL structure of the vertices is related to the existence of NG and
pseudo-NG bosons in the theojor more on this see
2 3 2 2 Sec. VD ) ) ) N
~2im| = In— 3( ) 5 T - 2( #) S If one recalls that the SD equation is quite sensitive
3 |egP+aM%w2 T (e,)*+2M?*+ o to the long range dynamics/R|<u), it would be very
5 natural to ask whether the pole contributions to the
+ &I (2u) (A16) vertex function in Eqgs.62) could modify the SD equa-
(6;)2+ 02| tion and its solution. The revealed non-perturbative contribu-
tions could conveniently be combined in matrix form as
whereM?=2a.u?/ 7 andw=|q,— p4|, and follows:
|
38,85(TONAP-—AqPs)  S(THIAP.  —eldTHSAGP-
STA(q+P,q)|po=—= —8(TH3A4P- 0 0 . (B1)
’ e (TY AP, 0 0
|
It is of great importance to notice that this is longitudinal,
i.e., STA#(q+P,q)~P*=(P°P/3). As a result of this
roperty, the contraction of this vertex with the transverse
Q\'L i';'i’)’;/? p p W > . . .
Q* p+ (with respect tdP) projector of the magnetic gluon modes is
FP, equal to zero. Regarding the other two types of gluon modes
= wwil 5 (electric and longituding) the corresponding contractions
P 2 o are non-zero, and they lead to a finite contribution to the
R W\Q'Pi right hand side of the SD equatig@1). We stress that the
vertex in Eq.(B1) is longitudinal with respect t@* (notice
FIG. 4. The pole contribution to the vertex Bs-0. the tilde, while the projector of the electric modes is trans-
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verse with respect t®* (no tilde hgr&. _This qifference is . 2a (A daux(qs) A

responsible for a non-zero contraction involving the electric x(pa)= . > —In —,
gluon modes. It is still, however, the longitudinal gluon mJo i+ [Ag[? [pa—aa +c|Ag]
mode that, after being contracted with the vertex in @), (CY

gives the most significant contribution to the SD equation.

By performing the explicit calculation, we arrive at the fol- where, for brevity of notation, we usg=y,; and A
lowing extra term to the right hand side of the gap equation,=(47-r)3’2,u/a§’2. Notice that, in accordance with EqR4),

the Meissner effect is taken into account by the tetfd, |

in the logarithm. Without loss of generality, we substitute
c=1 in what follows’ The integral equatioiC1) could be
approximately reduced to the following second order differ-

(Go+€5)Ag (a-p)” ential equation:

U5~ (€)= 12g > (@—p)*(a—p)y

o dq ©oe-
5Ap2—§asf wtr(y"Aqup)

2
(82) (et AT 1N (Pa) " (pa)+ D

. . . . _ pat]Ag|?
which results in the following term to the equations fiof :

h _ (/3 c2
ag A where v=1/g—, (C2)

SA, = f da,dq = =
P 1672 Qi+ (eq)2+]Aq 2 _ _ _ _

. subject to the infrared and the ultraviolet boundary condi-
+(€5)?  (2um)? tions

X—§+O q4 (q)ln (/J’)7 ’

M2 git(eg)?
4 q ’ — 7
x'(0)=0 and x(A)—[Ag|x'(A)=0. (C3
as [ ddsdg qs
~ 16m Rt |Ag |2 —¢+0 m2/ |’ (B3)  In order to get an estimate for the solution, we consider the
4 0

differential equation on the two adjacent intervalss 0,
This correction is of the same order as the correction froni=|4¢ | and|Ag[<ps<A, separately. The approximate ana-
the |Ongitudina| g|uon modes in the gap equat{ﬁ@) when |ytlcal solutions that Satley the bOUndary conditions in
the bare vertices are usgtl]. Therefore, such an additional Ed. (C3) read

correction could only modify the overall constant factor in

the solution forA,;: The expone_zntial factor and the overall' P4 . PavV1l—v?
power of the coupling constant in the solution should remain ~ X(P4) =Ci€ex — || V1—v°cosh ———
intact. 2|4, 2|4,

Of course, as we discussed earlier, the overall constant in D m
the expression for the gap might get other kinds of correc- _Sim—<4—)‘|, for 0<p,<|A;],
tions which have not been analyzed hgt,31]. Sorting out 2|Aq |
all such corrections is a rather complicated problem that is (C4a
outside the scope of this paper.
A+|A,
APPENDIX C: THE ANALYTICAL SOLUTIONS TO Y(pa)= Czsin<zln | 0 |) . for |A5| <p,<A,
THE BS EQUATIONS 2 Pa

C4ab
In this appendix, we present the approximate analytical (G40

solutions to the BS equations. In general, our approach her\ﬁherec- (i=1,2) are the integration constants. By match-
resembles the method commonly used for solving the gafhg the Isolutio;ws ap,=|A7 ], we arrive at the following
equation11-16. One of the purposes of the analysis belowCondition that determ?nes ?hé value of the gap:

is to illustrate that, while the Meissner effect is irrelevant for '

the pairing dynamics of light bound states with<|A, |, it B

is crucial for the pairing of quasiclassical bound stae=e InA+ Ao | 2 rctaf( V1-vZcoth 1-12/2)—1

Sec. VIIA). 1A;] v '

(CH
1. NG bosons
Let us start from the BS equatidi@3) for (pseudoNG
bosons in they-doublet channel. After performing the stan-  “The analysis foc#1 is a little more complicated since the two
dard approximations that were extensively discussed in mangcales,c|A,| and|A, |, are different. Despite this, the final result

studies of the gap equatidil-16g (see also Sec. Il we  for c#1 would remain qualitatively the same as sooncais a
arrive at the following integral equation: constant of order 1.
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This leads to the samg@ip to an overall constant of order almost obvious when we notice that the BS wave functions
one expression for the gap as in E@2). Recall that the that correspond to the states with masses in(E40 have
latter was derived without taking the Meissner effect intorather rich node structure in the far infrared regior (®
account. We conclude, therefore, that the solution for the<|A;|. Topologically, thenth wave function has exactly
x-doublet NG boson is not sensitive to the screening due t@eros. Thesa zeros appear at

the Meissner effect.

The analysis of the BS equation fguseudo)NG bosons KA 20 Jo(v) B
in the A -doublet andy-singlet channels is very similar to the Pa”=[4o |ex v TK—arcta 5 ()] k=12,...n.
analysis for they doublet and we do not repeat it here. (C1)

In the weakly coupled theoryp<1, we find thatp{®

_ ) _ <|A, | for anyk. This suggests that after taking the Meissner
Let us consider the integral equati¢hl?) for the BS  gffect back into consideration, the mentioned structure of the

wave function of the massivg doublet. It is instructive t0  ,54es in the BS wave functions of the massiveliquarks

start with the analysis of this equation by neglecting the, o hecome impossible due to the strong screening effects
Meissner effect at first. This is achieved by substituting ¢ o gluons in the infrared region<0p,=<|Ag|.

¢=0. In this special case, the differential equation reads To substantiate the claim of the previous paragraph, let us

2 now consider the equation where the Meissner effect is
Pax"(Pa)+ x'(Pa)+ ZK(X)(p4)X(p4)=O, qualitatively taken into account. We arrive at the following
differential equation:

2. Massive diquarks

8ag V2
where v= Vg (O (pat 20X (Pa) + X' (Pa) + 5 KW(Pa) x(Pa) =0,
along with the same boundary conditions as in @8). The 8
kernel[compare with Eq(118)] is approximately given by where v=/ @s (C12
9
[Agl/(|Ag[P=M%)  for O<p,<zy|Ag],
KX (p,) = b The wave function should again satisfy the boundary condi-
Ups for zy[Ag|<ps<A, tions in Eq.(C3). To get the estimate for the solution, we
(€7) consider the differential equation on the three adjacent inter-
wherezy = ‘/|A6|2_MX2/|A5|- vals, 0=p,=zy|Ao|, Zulag|=ps=|Aq|, and [Ag|<ps

The analytical solutions to the differential equation in two <A, separately. The corresponding analytical solutions read

qualitatively different regions are given by

x(pa)= Coex;{ P4 ) JzZZ,—v2 cos

r(p4\/ZM_V2

v 2|1A4 2zulAqg
X(p4):C1\]0(a |§i| for O=ps=<zy|A,], l iAol
0 NPz
(C8a —zMsim-(p“L_l for 0=<p,<z3|A;],
2zy[A, |
(v A .
x(p4)=C,sin| Elnp_ for Z%|Ag|<ps=<A. (C139
4
(C8b) 2
) . 2 -~ . _ 20 Pa 1_Z Pa
By matching these two solutions pi=24|A, |, we obtain ~ x(P4)=Cy| G5 —— Cor—F1
Sollg 4] Nl
A 2 Jo(v)| 2mn
In——— =—arcta , n=12.... 5
sl IO NN | e

By comparing this with the gap equatiqi36) (see also B
Appendix B in Ref[11]), we derive the following spectrum =ps=<|4q], (C13b
of massive diquarks in absence of the Meissner effect:

A+]Ag |>

|V B
_ 2N X(p4)=C3S|n(§|n , for |Ag|<ps<A,
M,=]4,] 1—eX[{—T), n=12,... . 10

(C10 20 . _ o
where G35 is the Meijer'sG function. The solutions in the

Below we argue that none of these massive states survivizst and the last regions are chosen so that they satisfy the
after the Meissner effect is taken into account. In fact, this ifooundary conditions in EqC3).
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We note that the ultraviolet asymptot€139 of the BS  |A,|<p,<A, they might occur only in the infrared,<Op,
wave function of a massive doublet coincides with that of the< |Ag .
NG boson(C4b). Moreover, this property is shared by all By matching the logarithmic derivatives of the solutions
massive states that exist, irrespective of the value of theigt p,=24|A,| and p,=|A,|, we obtain the two different
mass. Now, unlike the wave functions @pseudoyNG  expressions for the integration constéht
bosons which have no nodes, the BS wave functions of mas-
sive excitations should have at least one zero somewhere in C,=Fzy) and C,=F1), (C19
the region G=p,<A. Since, in agreement with our previous
statement, there cannot be any nodes in the ultraviolet regiowhere the explicit form of functiof(z) reads

()

2

14
1+—,2-2°

+
2 z

2 2

14 14
+—,2-22| 2% 1+ —
1 4,2,z> z(l 7

\/Z2 — 2 cot

2+V2 3-27°
4 b i Z

sziFl 21F1 Fl
1

— 24
0 O) — VZGig( z2
(C19

Notice that we used the gap equati@b) to derive the sec- whole region of momenta into separate intervals fb=0

ond expression in EqC14). and M #0 cases. This is also supported by the observation
The spectrum of massive excitatiofi§ any) should be that, because of the Meissner effect, the BS wave function in

determined by the solutions of the equatidifz)=7(1)  the doublet channel is always almost a constant function

wherez<1. Note that the obvious solutiar+1 corresponds  (and, therefore, cannot have zerds the infrared region

to the no-node wave function of the NG boson. By studyinQOSp4<|Aa|_ This is seen already from the integral version

the equation numerically, we find that there are no solutiong 1he Bs equatiori117). It is natural that there is only one

which would correspond to wave functions with nOdeS'no-node solution to the BS equation. Since the BS wave

However, in addition to the=1 solution, there is another g, ion of the NG boson is such a solution, no other non-

solution for z<1. This latter also corresponds to a wave trivial solutions should exist in the doublet cﬁannel

function without nqdes in the whole r_egion of momenta 0 The analysis of the BS equation for theantidout;let is

=ps=A. In fact, its shape barely differs from the wave similar and we do not repeat it here. The analysis for the

function of the NG boson. In the spectral problem at hand; . . . . . .
however, one does not expect to have two solutions with thémgkat is presented in Sec. VIIB in detail. There the Meiss-

same no-node topology. Therefore, we believe that the extrde! €ffect is qualitatively taken into account by considering
solution is an artifact of the approximations used. Its appear2N!y the interaction that is mediated by the gluons of the
ance apparently results from tvdifferent splittings of the ~ unbrokenSU(2). subgroup.
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