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Diquarks in cold dense QCD with two flavors
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We derive and analyze the Bethe-Salpeter equations for spin zero diquarks in the color superconducting
phase of cold dense QCD with two massless flavors. The spectrum of diquarks contains an infinite number of
massive excitations and five~nearly! massless pseudoscalars. The former are singlets while the latter include a
doublet, an antidoublet and a singlet with respect to the unbrokenSU(2)c . Because of approximate parity
doubling at a large chemical potential, all massive states come in pairs. The decay constants, as well as the
velocities of the~nearly! massless pseudoscalars, are derived. The different role of the Meissner effect for
tightly bound states and quasiclassical bound states is revealed.

PACS number~s!: 11.10.St, 11.15.Ex, 12.38.Aw, 21.65.1f
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I. INTRODUCTION

With continuing advances in modern nuclear and h
energy experiments, it has become feasible to produce
confined quark matter in the laboratory. Not surprising
this has stimulated many theoretical studies of quark ma
at high densities and/or temperatures~for recent reviews see
for example, Refs.@1–4#!.

Of special interest is the cold quark matter at high den
ties, i.e., at densities which are at least a few times lar
than that of a nucleon,n0.0.17 fm23. It has been known
for a long time that such matter could be a color superc
ductor @5,6#. Nevertheless, until recently our understandi
of the color superconducting state has remained very p
The new developments started with the ground breaking
timates of the color superconducting order parameter in R
@7,8#. Within a phenomenological~instanton liquid! model, it
was shown there that the order parameter could be as larg
100 MeV. These estimates revived the hope of produc
and detecting the color superconducting phase either in
periments or in natural systems such as neutron~quark! stars.
Being motivated by the potential possibility of observing t
color superconducting phase at moderate densities, the
ject resulted in numerous studies and new discoveries.

At first, it was not clear at all that the microscopic theo
quantum chromodynamics~QCD!, would lead to the same
~or, at least, the same order of magnitude! estimates for the
superconducting gap as the phenomenological models. It
suggested in Refs.@9,10# that the screening effects of gluon
should play a crucial role in the analysis. In particular, wh
the electric gluon modes are subject to Debye screenin
already the scales of orderl D;1/gsm, wherem is the chemi-
cal potential andgs is the running coupling related to th

*On leave of absence from Bogolyubov Institute for Theoreti
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scale m, the magnetic modes are subject only to Land
damping, which does not completely eliminate the lo
range interaction@10#. Subsequent studies of the gap equ
tion in QCD confirmed that proper treatment of the glu
screening effects is crucial in deriving the estimates for
superconducting gap@11–17#.

Also, it was revealed that the ground state of quark ma
with three light flavors is given by the so-called color flav
locked ~CFL! phase@18#. It is remarkable that the chira
symmetry in such a phase is spontaneously broken and m
of the quantum numbers of physical states coincide w
those in the hadronic phase. It was tempting, therefore
suggest that there might exist some kind of continuity b
tween the two phases@19#. Another interesting feature o
three flavor QCD was pointed out in Ref.@20#, where the
possibility of gapless color superconductivity~a metastable
phase! was proposed. In addition, many interesting patte
of symmetry breaking were revealed in models with t
number of flavors larger than 3@17#, as well as in two-color
QCD with quarks in the fundamental representation and
any-color QCD with quarks in the adjoint representati
@21#. The anomaly matching conditions were analyzed
Ref. @22#.

The low energy dynamics of the color superconduct
phase could be efficiently studied by using effective actio
whose general structure is fixed by symmetries@23–26#. The
finite set of parameters in such theories could be either ta
from an experiment~when available! or sometimes derived
from QCD ~for example, in the limit of the asymptotically
large chemical potential!. Because of the nature of such a
approach, at best it could probe the properties of the pse
Nambu-Goldstone~NG! bosons, but not the detailed spe
trum of the diquark bound states~mesons!. It was argued in
Ref. @27#, however, that, because of long-range interactio
mediated by gluons of the magnetic type@9,10#, the presence
of an infinite tower of massive diquark states could be
key signature of the color superconducting phase of de
quark matter.

In this paper, we consider the problem of spin zero bou
l
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states in the two flavor color superconductor using the Be
Salpeter~BS! equations.~A brief outline of our results was
given in Ref.@28#.! We find that the spectrum contains fiv
~nearly! massless states and an infinite tower of massive
glets with respect to the unbrokenSU(2)c subgroup. Fur-
thermore, the following mass formula is derived for the s
glets:

Mn
2.4uD0

2u2S 12
as

2k

~2n11!4D , n51,2, . . . , ~1!

where k is a constant of order 1~we find that k
.0.27), uD0

2u is the dynamical Majorana mass of quar
in the color superconducting phase, andas5gs

2/4p.
The Meissner effect plays a crucial role in obtaining th

result. In particular, the important point is that while th
Meissner effect is essentially irrelevant for tightly bou
states, it is crucial for the dynamics of quasiclassical bou
states~whose binding energy is small!.

At a large chemical potential, we also notice an appro
mate degeneracy between scalar and pseudoscalar cha
As a result of this parity doubling, the massive diquark sta
come in pairs. In addition, there also exist five massless
lars and five~nearly! massless pseudoscalars@a doublet, an
antidoublet and a singlet underSU(2)c#. While the scalars
are removed from the spectrum of physical particles by
Higgs mechanism, the pseudoscalars remain in the spect
and they are the relevant degrees of freedom of the infra
dynamics. At high density, the massive and~nearly! massless
states are narrow resonances.

This paper is organized as follows. In Sec. II, we descr
the model and introduce the notation. Then, further deve
ing our notation in Sec. III, we briefly review the approach
the Schwinger-Dyson equation in the color superconduc
phase ofNf52 QCD. In Sec. IV, we derive the Ward iden
tities for the quark-gluon vertex functions, corresponding
the broken generators of the color symmetry. These ident
are going to be very helpful in the rest of the paper. W
outline the general derivation of the Bethe-Salpeter equat
for the diquark states in Sec. V. The detailed analysis of
Bethe-Salpeter equations for the NG bosons and the mas
diquarks is presented in Secs. VI and VII, respectively. A
pendix A contains some useful formulas that we use throu
out the paper. In Appendix B, we estimate the effect of
correction to the Schwinger-Dyson equation that comes fr
the non-perturbative contribution to the vertex function.
last, in Appendix C, we present the approximate analyt
solutions to the BS equations.

II. MODEL AND NOTATION

In the case of two flavor dense QCD, the original gau
symmetry SU(3)c breaks down toSU(2)c by the Higgs
mechanism. The flavorSU(2)L3SU(2)R group remains in-
tact. The appropriate order parameter is given by the vacu
expectation value of the diquark~antidiquark! field that is an
antitriplet ~triplet! in color and a singlet in flavor. Withou
loss of generality, we assume that the order parameter po
in the third direction of the color space,
08502
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w5^0u« i j «3ab~C̄D! i
ag5~CD

C! j
bu0&, ~2!

where CD and CD
C5CC̄D

T are the Dirac spinor and its
charge conjugate spinor, andC is a unitary matrix that satis
fies C21gmC52gm

T and C52CT. Here and in what fol-
lows, we explicitly display the flavor (i , j 51,2) and color
(a,b51,2) indices of the spinor fields. It is also appropria
to mention that the subscript and superscript indices co
spond to complex conjugate representations.

The order parameter in Eq.~2! is even under parity. Such
a choice is dictated by the instanton induced interacti
@7,8# which, despite being vanishingly small at a larg
chemical potential, could be sufficiently strong for pickin
up the right vacuum. In addition, any bare Dirac masses
quarks~which are non-zero in nature! should also favor the
parity-even condensate@29,30#.

With the choice of the order parameter orientation as
Eq. ~2!, it is very convenient to introduce the following Ma
jorana spinors:

Ca
i 5ca

i 1«3ab«
i j ~cC! j

b , a51,2, ~3!

Fa
i 5fa

i 2«3ab«
i j ~fC! j

b , a51,2, ~4!

which are built of the Weyl spinors of the first two colors

ca
i 5P1~CD!a

i , ~cC! j
b5P2~CD

C! j
b , ~5!

fa
i 5P2~CD!a

i , ~fC! j
b5P1~CD

C! j
b . ~6!

Here P65(16g5)/2 are the left- and right-handed proje
tors. The new spinors in Eqs.~3! and~4!, as is easy to check
from their definition, satisfy the following generalized Majo
rana conditions:

~CC! i
a5«3ab« i j Cb

j , ~7!

~FC! i
a52«3ab« i j Fb

j . ~8!

In the color superconducting phase of QCD in which qua
are known to acquire a dynamical~Majorana! mass, the use
of four-component Majorana spinors, built of Weyl spino
is most natural. Of course, when quarks are massive
chiral symmetry is explicitly broken, it would be more ap
propriate to consider the eight-component Majorana spin
made of Dirac ones.

With our choice of the order parameter that points in t
third direction of the color space, only quarks of the first tw
colors take part in the condensation. Quarks of the third co
do not participate in the color condensate. It is more con
nient, therefore, to use the left and right Weyl spinors,

c i5P1~CD!3
i , ~cC! j5P2~CD

C! j
3 , ~9!

f i5P2~CD!3
i , ~fC! j5P1~CD

C! j
3 , ~10!

for their description. Notice that the color index ‘‘3’’ is omit
ted in the definition ofc i andf i .
5-2
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DIQUARKS IN COLD DENSE QCD WITH TWO FLAVORS PHYSICAL REVIEW D62 085025
In the color superconducting phase with a parity ev
condensate~2!, parity is a good symmetry. Then, all th
quantum states of the Hilbert space, including those in
diquark channel, could be chosen so that they are either
ity even or parity odd. In order to construct such states
plicitly, we would need to know the following parity trans
formation properties of the spinors:

c i~x!→g0f i~x8!, f i~x!→g0c i~x8!, ~11!

c j
C~x!→2g0f j

C~x8!, f j
C~x!→2g0c j

C~x8!, ~12!

Ca
i ~x!→g0Fa

i ~x8!, Fa
i ~x!→g0Ca

i ~x8!, ~13!

wherex5(x0 ,xW ) andx85(x0 ,2xW ).
Before concluding this section, let us rewrite the ord

parameter~2! in terms of the Majorana spinors:

w52^0uC̄ i
aP2Ca

i 1F̄ i
aP1Fa

i u0&. ~14!

This representation is explicitly SU(2)L3SU(2)R
3SU(2)c invariant, and so it is very convenient. By makin
use of the transformation properties in Eq.~13!, we also eas-
ily check thatw is even under parity, as it should be.

III. SCHWINGER-DYSON EQUATION

In order to have a self-contained discussion, in this s
tion we briefly review the Schwinger-Dyson~SD! equation
using our new notation. This would also serve us as a c
venient reference point when we discuss more complica
BS equations.

To start with, let us introduce the multi-component spin

S Ca
i

c i

c i
C
D , ~15!

built of left fields alone. Similarly, we could introduce
multi-spinor made of right fields. In our analysis, restrict
only to the~hard dense loop improved! rainbow approxima-
tion, the left and right sectors of the theory completely d
couple. Then, without loss of generality, it is sufficient
study the SD equation only in one of the sectors.

With the notation in Eq.~15!, the inverse full propagato
of quarks takes a particularly simple block-diagonal form

Gp
215diag~Sp

21da
bd j

i , sp
21d j

i , s̄p
21d i

j !, ~16!

where, upon neglecting the wave function renormalizat
effects of quarks@10–16#,
08502
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Sp
2152 i ~p”1mg0g51DpP21D̃pP1!

52 i @~p02ep
2!g0Lp

11~Dp
2!* Lp

11~p01ep
1!g0Lp

2

1~Dp
1!* Lp

2#P12 i @~p02ep
1!g0Lp

11Dp
1Lp

1

1~p01ep
2!g0Lp

21Dp
2Lp

2#P2 , ~17!

sp
2152 i ~p”1mg0!P1

52 ig0@~p02ep
2!Lp

11~p01ep
1!Lp

2#P1 , ~18!

s̄p
2152 i ~p”2mg0!P2

52 ig0@~p02ep
1!Lp

11~p01ep
2!Lp

2#P2 , ~19!

with ep
65upW u6m. The notation for the gap function,Dp

5Dp
1Lp

11Dp
2Lp

2 and D̃p5g0Dp
†g0, as well as the ‘‘on-

shell’’ projectors of quarks,

Lp
65

1

2 S 16
aW •pW

upW u
D , aW 5g0gW , ~20!

is the same as in Ref.@11#.
Now, it is straightforward to derive the matrix form of th

SD equation:

Gp
215~Gp

0!2114pas

3E d4q

~2p!4
gAmGqGAn~q,p!Dmn~q2p!, ~21!

wheregAm andGAm are the bare and the full vertices, respe
tively. This equation is diagrammatically presented in Fig.
The thin and bold solid lines correspond to the bare and
quark propagators, respectively. The wavy line stands for
full gluon propagator.

The only complication of using the multi-compone
spinor~15! appears due to the more involved structure of
quark-gluon interaction vertex. Indeed, the explicit form
the bare vertex reads

FIG. 1. The diagrammatic representation of the SD equation
5-3
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gAm5gmS @Ta
Ab22d8

ATa
8bP2#d j

i Ta
A3P1d j

i
2 «̂ac

i j T3
AcP2

T3
AbP1d j

i T3
A3P1d j

i 0

2Tc
A3«̂ i j

cbP2 0 2T3
A3P2d i

j
D , ~22!
e
e

es
c

s
pa

b

th

the

te-
-
p on
the
g

where«̂ac
i j [« i j «3ac andTA are theSU(3)c generators in the

fundamental representation@ tr(TATB)5dAB/2#. The rela-
tively complicated structure of the bare vertex might sugg
that our notation is somewhat unnatural. As we shall se
Sec. IV, because of the breakdown of theSU(3)c symmetry,
this structure, on the contrary, is quite natural, and it is
pecially so in the case of the full quark-gluon vertex fun
tion.

The gluon propagator in the SD equation is the same a
Ref. @11#. When the Meissner effect is neglected, the pro
gator in the Euclidean space (k05 ik4) reads

D mn
AB~ ik4 ,kW ![dABDmn~ ik4 ,kW !. idAB

ukW u

ukW u31pM2uk4u/2
Omn

(1)

1 idAB
1

k4
21ukW u212M2

Omn
(2)

1 idAB
d

k4
21ukW u2

Omn
(3) , ~23!

whereM25Nfasm
2/p ~with Nf52), andOmn

( i ) are the pro-
jection operators of three different types of gluons~magnetic,
electric and longitudinal, respectively!; see Ref.@11#. The
Meissner effect could be qualitatively taken into account
the following replacement of the magnetic term@11#:

idAB
ukW u

ukW u31pM2uk4u/2
Omn

(1)

→ idAB
ukW u

ukW u31pM2~ uk4u1cuD0
2u!/2

Omn
(1) ~24!

in the propagators of those five gluons that correspond to
broken color generators (A,B54, . . . ,8). Inthis last expres-
sion,c5O(1) is a constant of order 1.

By inverting the expression in Eq.~16!, we obtain the
following representation for the quark propagator:

Gp5diag~Spda
bd j

i ,spd j
i ,s̄pd i

j !, ~25!

Sp5 i
g0~p01ep

1!2Dp
1

p0
22~ep

1!22uDp
1u2

Lp
2P1

1 i
g0~p02ep

1!2~Dp
1!*

p0
22~ep

1!22uDp
1u2

Lp
1P2
08502
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g0~p02ep

2!2Dp
2

p0
22~ep

2!22uDp
2u2

Lp
1P1

1 i
g0~p01ep

2!2~Dp
2!*

p0
22~ep

2!22uDp
2u2

Lp
2P2 , ~26!

sp5 i
g0Lp

1P2

p01ep
1

1 i
g0Lp

2P2

p02ep
2

, ~27!

s̄p[Cs2p
T C†5 i

g0Lp
1P1

p01ep
2

1 i
g0Lp

2P1

p02ep
1

. ~28!

The bare propagator in Eq.~21! is similar but with zero value
of the gap.

In the improved ladder~rainbow! approximation, both
vertices in the SD equation are bare. By making use of
propagators in Eqs.~23! and ~25!, along with the vertex in
Eq. ~22!, we derive the well-known gap equation@11–16#

Dp
25

4

3
pasE d4q

~2p!4

Dq
2 tr~gmLq

1gnLp
2!

q0
22~eq

2!22uDq
2u2

Dmn~q2p!.

~29!

After calculating the trace and performing the angular in
gration~see Appendix A!, this equation considerably simpli
fies. Then, by assuming that the dependence of the ga
the spatial component of the momentum is irrelevant in
vicinity of the Fermi surface, one arrives at the followin
approximate equation@10–15#:

D2~p4!.
2as

9p E
0

L dq4D2~q4!

Aq4
21uD0

2u2
ln

L

up42q4u
, ~30!

where L5(4p)3/2m/as
5/2. The analytical solution to this

equation is relatively easy to obtain@11#:

D2~p4!.uD0
2uJ0S nA p4

uD0
2u

D , p4<uD0
2u, ~31a!

D2~p4!.uD0
2uAJ0

2~n!1J1
2~n!

3sinS n

2
ln

L

p4
D , p4>uD0

2u, ~31b!

whereJi(z) are the Bessel functions andn5A8as/9p. The
corresponding result for the value of the gap reads
5-4
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uD0
2u.

~4p!3/2em

as
5/2

expS 2
3p3/2

23/2Aas
D , ~32!

where e52.718 . . . . Most of the existing studies@10–16#
seem to agree upon the dependence of this result on
coupling constant. The issue of the overall constant fac
however, is still not settled. The analysis of Ref.@15#, for
example, suggests that the wave function renormalization
fects of quarks give an extra factor of order 1.1 Another
source of corrections might be due to the running of
coupling constant@31#. In addition to these, as we argue
Appendix B using the Ward identities, there also exists
least one non-perturbative correction that could modify
constant factor in the expression for the gap.

IV. WARD IDENTITIES

As in any other gauge theory, in order to preserve
gauge invariance in QCD, one has to make sure that s
exact relations~Ward identities! between Green functions ar
satisfied. In this section, we consider the simplest Ward id
tities that relate the vertex functions and the quark propa
tors. In addition to establishing the longitudinal part of t
full vertex function, these identities will play a very impo
tant role in our analysis of the BS equations for the NG a
pseudo NG bosons.

In general, the structure of Ward identities in non-Abeli
gauge theories~the Slavnov-Taylor identities! is much more
complicated than in Abelian ones: they include contributio
of the Faddeev-Popov ghosts. Fortunately in the~hard dense
loop improved! ladder approximation, used in this paper, t
situation simplifies. Indeed, since the direct interactions
tween gluons are neglected in this approximation, the W
identities have an Abelian-like structure.

To start with, let us rewrite the conserved currents~related
to the color symmetry! in terms of the Majorana fields, de
fined in Eqs.~3! and ~4!, and the Weyl spinors of the third
color. By making use of their definitions, it is straightforwa
to obtain the following representation for the currents:

j m
A~x!5C̄D~x!gmTACD~x!

5
1

2A3
d8

AC̄ i
a~x!gmP1Ca

i ~x!1c̄ i~x!gmT3
AaP1Ca

i ~x!

1C̄ i
a~x!P2gmTa

A3c i~x!1c̄ i~x!gmT3
A3c i~x!

1
1

2A3
d8

AF̄ i
a~x!gmP2Fa

i ~x!

1f̄ i~x!gmT3
AaP2Fa

i ~x!1F̄ i
a~x!P1gmTa

A3f i~x!

1f̄ i~x!gmT3
A3f i~x!, ~33!

1Note that the argument of Ref.@15# is somewhat incomplete
since the calculation is performed for the critical temperature ra
than the order parameter itself. The celebrated BCS relation
tween the critical temperature and the gap might not be satis
after the Meissner effect is carefully taken into account.
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where, in agreement with the remark made above, the ir
evant ~in this approximation! contributions of gluons and
ghosts are omitted. Here and in the rest of this section,
assume thatA54, . . . ,8;i.e., we do not consider the curren
which correspond to the generators of the unbrokenSU(2)c
subgroup.

As we mentioned earlier, we are interested in the W
identities that relate the quark-gluon vertices to the propa
tors of quarks. Therefore, let us introduce the followi
~non-amputated! vertex functions:

Ga j ,m
A,i ~x,y!5^0uT jm

A~0!Ca
i ~x!c̄ j~y!u0&, ~34a!

Gj ,m
A,ai~x,y!5^0uT jm

A~0!c i~x!C̄ j
a~y!u0&, ~34b!

Gj ,m
A,i ~x,y!5^0uT jm

A~0!Ca
i ~x!C̄ j

a~y!u0&, ~34c!

G̃a j ,m
A,i ~x,y!5^0uT jm

A~0!Fa
i ~x!f̄ j~y!u0&, ~34d!

G̃j ,m
A,ai~x,y!5^0uT jm

A~0!f i~x!F̄ j
a~y!u0&, ~34e!

G̃j ,m
A,i ~x,y!5^0uT jm

A~0!Fa
i ~x!F̄ j

a~y!u0&. ~34f!

Besides the operator of the conserved current, the first th
vertices include only left-handed quark fields, while the oth
three vertices contain only right-handed fields. Because
the invariance under the parity, all the mixed, left-right ve
tices are trivial. For this reason, they are of no special in
est here, and we do not consider them.

As usual, in order to derive the Ward identities, one ne
to know the transformation properties of the quark field
The color symmetry transformations of the Dirac spinors
well known. By making use of them, it is straightforward
derive the following infinitesimal transformations for th
spinors of interest:

dc i5 ivA~T3
AaP1Ca

i 1T3
A3c i !, ~35!

dc̄ i52 ivA~C̄ i
aP2Ta

A31c̄ iT3
A3!, ~36!

dCa
i 5 ivAS Ta

AbP1Cb
i 1Ta

A3c i

2«3ab«
i j T3

Abc j
C2d8

A 1

2A3
P2Ca

i D , ~37!

er
e-
d

5-5
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dC̄ i
a52 ivAS C̄ i

bP2Tb
Aa1c̄ iT3

Aa2«3ab« i j c̄
C jTb

A3

2d8
A 1

2A3
C̄ i

aP1D , ~38!

for the left-handed fields, and

df i5 ivA~T3
AaP2Fa

i 1T3
A3f i !, ~39!

df̄ i52 ivA~F̄ i
aP1Ta

A31f̄ iT3
A3!, ~40!

dFa
i 5 ivAS Ta

AbP2Fb
i 1Ta

A3f i

2«3ab«
i j T3

Abf j
C2d8

A 1

2A3
P1Fa

i D , ~41!

dF̄ i
a52 ivAS F̄ i

bP1Tb
Aa1f̄ iT3

Aa

2«3ab« i j f̄
C jTb

A32d8
A 1

2A3
F̄ i

aP2D , ~42!

for the right-handed fields. In all these expressions,vA are
small parameters, parametrizing the transformations of
SU(3)c group.

In a standard way, by making use of the current cons
vation as well as the definition of the vertices in Eq.~34!, we
obtain the following Ward identities for the non-amputat
vertices:

PmGa j ,m
A,i ~k1P,k!5 iTa

A3d j
i @sk2Sk1P#P2 , ~43a!

PmG j ,m
A,ai~k1P,k!5 iT3

Aad j
i P1@Sk2sk1P#, ~43b!

PmGj ,m
A,i ~k1P,k!5

i

2A3
d8

Ad j
i @2P1Sk2P2Sk

22Sk1PP21Sk1PP1#, ~43c!

PmG̃a j ,m
A,i ~k1P,k!5 iTa

A3d j
i @ s̃k2S̃k1P#P1 , ~43d!

PmG̃j ,m
A,ai~k1P,k!5 iT3

Aad j
i P2@S̃k2 s̃k1P#, ~43e!

PmG̃j ,m
A,i ~k1P,k!5

i

2A3
d8

Ad j
i @2P2S̃k2P1S̃k

22S̃k1PP11S̃k1PP2#, ~43f!

whereSk , sk , andS̃k , s̃k are the Fourier transforms of th
quark propagators in the left and right sectors, respectiv

S~x2y!da
bd j

i 5^0uTCa
i ~x!C̄ j

b~y!u0&, ~44!
08502
e

r-

,

s~x2y!d j
i 5^0uTc i~x!c̄ j~y!u0&, ~45!

S̃~x2y!da
bd j

i 5^0uTFa
i ~x!F̄ j

b~y!u0&, ~46!

s̃~x2y!d j
i 5^0uTf i~x!f̄ j~y!u0&. ~47!

As we discussed in Sec. III, in the approximation with
wave function renormalization effects, the explicit form
the momentum space propagators for the left-handed field
given in Eqs.~26! and ~27!. For the completeness of ou
presentation, we also mention that the right-handed propa
tors are the same, except that the projectorsP2 and P1

interchange.
At this point, let us note that the use of non-amputa

vertices in this section is not accidental. In fact, it is cruc
for a quick derivation of the Ward identities. Other than th
non-amputated vertices are not very convenient to w
with. In fact, it is amputated rather than non-amputated v
tices that are usually used in Feynman diagrams. For
ample, both the bare and full vertices in Fig. 1 are amputa
ones. Similarly, it is amputated vertices that appear in the
equation in Sec. V. The formal definitions of amputated v
tices read

Ga j ,m
A,i ~k1P,k!5Sk1P

21 Ga j ,m
A,i ~k1P,k!sk

21 , ~48a!

G j ,m
A,ai~k1P,k!5sk1P

21 Gj ,m
A,ai~k1P,k!Sk

21 , ~48b!

G j ,m
A,i ~k1P,k!5Sk1P

21 Gj ,m
A,i ~k1P,k!Sk

21 , ~48c!

G̃a j ,m
A,i ~k1P,k!5S̃k1P

21 G̃a j ,m
A,i ~k1P,k!s̃k

21 , ~48d!

G̃ j ,m
A,ai~k1P,k!5 s̃k1P

21 G̃j ,m
A,ai~k1P,k!S̃k

21 , ~48e!

G̃ j ,m
A,i ~k1P,k!5S̃k1P

21 G̃j ,m
A,i ~k1P,k!S̃k

21 . ~48f!

These, as is clear from our discussion above, are dire
related to quark-gluon interactions. As is clear from Eq.~43!,
they satisfy the following identities of their own:

PmGa j ,m
A,i ~k1P,k!5 iTa

A3d j
i @Sk1P

21 2sk
21#P1 , ~49a!

PmG j ,m
A,ai~k1P,k!5 iT3

Aad j
i P2@sk1P

21 2Sk
21#, ~49b!

PmG j ,m
A,i ~k1P,k!5

i

2A3
d8

Ad j
i @2Sk1P

21 P12Sk1P
21 P2

22P2Sk
211P1Sk

21#, ~49c!

PmGa j ,m
A,i ~k1P,k!5 iTa

A3d j
i @S̃k1P

21 2 s̃k
21#P2 , ~49d!

PmG j ,m
A,ai~k1P,k!5 iT3

Aad j
i P1@ s̃k1P

21 2S̃k
21#, ~49e!
5-6
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PmG j ,m
A,i ~k1P,k!5

i

2A3
d8

Ad j
i @2S̃k1P

21 P22S̃k1P
21 P1

22P1S̃k
211P2S̃k

21#. ~49f!

In the rest of the paper, we are going to use these W
identities a number times. Because of the relatively sim
structure of the inverse quark propagators, this last form
the identities will be particularly convenient.

In connection with the Ward identities, it is appropriate
mention here the complementary analysis of Ref.@32#. The
authors of that paper consider the contribution to the W
identity that is directly related to the wave function reno
malization of quarks.

V. DERIVATION OF THE BS EQUATION

In quantum field theory, bound states and resonances
veal themselves through the appearance of poles in G
functions. These latter satisfy some general BS equat
which usually are rather complicated.

To consider the problem of diquark bound states in c
dense QCD, one has to introduce a four-point Green func
that describes the two particle scattering in the diquark ch
nel of interest. The residue at the pole of the Green func
is related to the BS wave function of the bound state.
starting from the~inhomogeneous! BS equation for the four-
point Green function, it is straightforward to derive the s
called homogeneous BS equation for the wave function.

In the problem at hand, we could construct quite a f
different diquark states. Not all of them could actually
bound states. For example, one would not expect from a
particle state to form a bound state unless there is some
traction in the corresponding channel. Now, in dense QC
the dominant interaction between quarks is given by o
gluon exchange. As we know, this interaction is attract
only in antisymmetric diquark channels. Therefore, witho
loss of generality, it is sufficient to consider only the follow
ing bound states:

xa
(b̃)~p,P!5da

b̃x~p,P!

5^0uTCa
i ~p1P/2!c̄ i~p2P/2!uP;b̃&L , b̃51,2,

~50a!l(ã)
b

~p,P!5d ã
b
l~p,P!

5^0uTc i~p1P/2!C̄ i
b~p2P/2!uP;ã&L , ã51,2,

~50b!

h~p,P!5^0uTCa
i ~p1P/2!C̄ i

a~p2P/2!uP&L , ~50c!

s~p,P!5^0uTc i~p1P/2!c̄ i~p2P/2!uP&L , ~50d!

plus the states made out of the right handed fields,

x̃a
(b̃)~p,P!5da

b̃x̃~p,P!

5^0uTFa
i ~p1P/2!f̄ i~p2P/2!uP;b̃&R , b̃51,2,

~51a!
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l̃(ã)
b

~p,P!5d ã
b
l̃~p,P!

5^0uTf i~p1P/2!F̄ i
b~p2P/2!uP;ã&R , ã51,2,

~51b!

h̃~p,P!5^0uTFa
i ~p1P/2!F̄ i

a~p2P/2!uP&R , ~51c!

s̃~p,P!5^0uTf i~p1P/2!f̄ i~p2P/2!uP&R . ~51d!

Notice that analogous states containing charge conju
fields of the third color,c i

C and f i
C , are not independent

Because of the property in Eqs.~7! and ~8!, they are related
to those already introduced.

For completeness, let us note that the only other diqu
channel that we do not consider here is a triplet un
SU(2)c . It is however clear that repulsion dominates in su
a channel because this triplet comes from theSU(3)c sextet.
Notice that, although one does not expect the appearanc
a s bound state, we keep thes wave function in the analy-
sis. This is because the equations for the BS wave funct
of the two singlets,s andh, may not decouple. Notice als
that the doublet, antidoublet and singlets coming from
SU(3)c triplet and antitriplet can mix with the doublet, an
tidoublet and singlets coming from theSU(3)c nonet~octet
plus singlet!.

Before proceeding further with the analysis of the bou
states, let us recall that parity is not broken in dense Q
with two flavors; see Sec. II. Then, all the bound states
be chosen in such a way that they are either parity even
parity odd. Clearly, the states in Eqs.~50! and ~51! do not
share this property. In order to fix this, we could have co
structed the following scalars and pseudoscalars:

uP;n&s5
1

A2
~ uP;n&L1uP;n&R), ~52!

uP;n&p5
1

A2
~ uP;n&L2uP;n&R), ~53!

wheren denotes the appropriate state.
In our analysis, however, we find it more convenient

work with the bound states constructed of either left-hand
or right-handed fields separately. This is because, in
~hard dense loop improved! ladder approximation, the two
sectors of the theory stay completely decoupled. Besi
that, the dynamics of the left and right fields are identical
the approximation used. Under these conditions, the deg
eracy of the left and right sectors is equivalent to the deg
eracy of the parity-even and parity-odd ones. In this way,
reveal the parity doubling property of the spectrum of bou
states in QCD at an asymptotically high density of qua
matter.2

2Notice that there are some subtleties in applying this parity d
bling argument to the case of the~pseudo-!NG bound states; see
Sec. VI.
5-7
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Equations for non-amputated wave functions

In order to derive the BS equations, we use the met
developed in Ref.@33# for the case of a zero chemical pote
tial ~for a review, see Ref.@34#!. To this end, we need to
know the quark propagators and the quark-gluon inter
tions in the color superconducting phase. From the anal
or
x
, i

o
.

m

.

08502
d

c-
is

of the SD equation~see Sec. III!, we got the structure of
the quark propagator. We also know that the approximat
with no wave function renormalization effects is quite re
able, at least in the leading order. By combining these fa
together, we arrive at the following effective Lagrangia
of quarks:
ds

uced
Le f f5C̄ i
a~p”1mg0g51DP21D̃P1!Ca

i 1C̄ i
aA” B@Ta

Bb22d8
BTa

8bP2#Cb
i 1c̄ iA” 3

bP1Cb
i 2c̄CiA” a

3«̂ i j
abP2Cb

j

1c̄ i~p”1mg0!P1c i1c̄Ci~p”2mg0!P2c i
C1c̄ iA” 3

3P1c i2c̄CiA” 3
3P2c i

C1C̄ i
aA” a

3P1c i2C̄ i
a«̂ab

i j A” 3
bP2c j

C

1F̄ i
a~p”2mg0g51DP11D̃P2!Fa

i 1F̄ i
aA” B@Ta

Bb22d8
BTa

8bP1#Fb
i 1f̄ iA” 3

bP2Fb
i 2f̄CiA” a

3«̂ i j
abP1Fb

j

1f̄ i~p”1mg0!P2f i1f̄Ci~p”2mg0!P1f i
C1f̄ iA” 3

3P2f i2f̄CiA” 3
3P1f i

C1F̄ i
aA” a

3P2f i2F̄ i
a«̂ab

i j A” 3
bP1f j

C, ~54!

where, by definition,D5Dp
1Lp

11Dp
2Lp

2 , D̃5g0D†g0, and«̂ i j
ab5«3ab« i j . The choice ofD, as is easy to check, correspon

to the case of the parity-even Majorana mass.
The effective Lagrangian in Eq.~54! is the starting point in derivation of the BS equations for the wave functions introd

in Eqs. ~50! and ~51!. While using the notation of the multicomponent spinor in Eq.~15!, it is natural to combine the
~left-handed! wave functions of the bound states into the following matrix:

X~p,P!5S 1

2
h~p,P!da

bd j
i xa

(b̃)~p,P!d j
i «̂ac

i j C@l(ã)
c

~2p,P!#TC†

l(ã)
b

~p,P!d j
i s~p,P!d j

i 0

C@xc
(b̃)~2p,P!#TC†«̂ i j

cb 0 CsT~2p,P!C†d i
j

D , ~55!
. It
ding
ion
ally,

r

where we took into account the property of Majorana spin
given in Eq.~7!. We could also introduce a similar matri
wave function for the right-handed fields. Since, however
the ~hard dense loop improved! ladder approximation the
left-handed and right-handed sectors decouple, we study
of them in detail, and only occasionally refer to the other

In the ~hard dense loop improved! ladder approximation,
the BS wave function in Eq.~55! satisfies the following ma-
trix equation:

G21S p1
P

2 DX~p;P!G21S p2
P

2 D
524pasE d4q

~2p!4
gAmX~q;P!gBnD mn

AB~q2p!, ~56!

whereD mn
AB(q2p) is the gluon propagator andgAm is the

bare quark-gluon vertex. This approximation has the sa

FIG. 2. The diagrammatic representation of the BS equation
s

n

ne

e

status as the rainbow approximation in the SD equation
assumes that the coupling constant is weak, and the lea
perturbative expression for the kernel of the BS equat
adequately represents the quark interactions. Schematic
the BS equation~56! is shown in Fig. 2.

By writing it in components, we arrive at the set of fou
equations

Sp1P/2
21 xa

(b̃)~p,P!sp2P/2
21

52
2

3
pasE d4q

~2p!4
gm$P2xa

(b̃)~q,P!P2

13P2C@xa
(b̃)~2q,P!#TC†P2

2P1xa
(b̃)~q,P!P2%gnDmn~q2p!, ~57!

sp1P/2
21 l(ã)

b
~p,P!Sp2P/2

21

52
2

3
pasE d4q

~2p!4
gm$P1l(ã)

b
~q,P!P1

13P1C@l(ã)
b

~2q,P!#TC†P1

2P1l(ã)
b

~q,P!P2%gnDmn~q2p!, ~58!
5-8
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Sp1P/2
21 h~p,P!Sp2P/2

21

52
8

3
pasE d4q

~2p!4
gmFP1h~q,P!P11P2h~q,P!P2

1
5

4
P2h~q,P!P11

5

4
P1h~q,P!P21

3

2
P1s~q,P!P2

1
3

2
P2CsT~2q,P!C†P1GgnDmn~q2p!, ~59!

sp1P/2
21 s~p,P!sp2P/2

21

52
2

3
pasE d4q

~2p!4
gm@3P1h~q,P!P2

12P1s~q,P!P2#gnDmn~q2p!. ~60!

The right-handed fields satisfy a similar set of equations
In order to solve the BS equations, it is important to d

termine the Dirac structure of the BS wave function. There
the following useful statement. Let us consider a BS wa
function of an arbitrary bound state for anon-zerochemical
potential in thecenter of mass frame. Then, the number o
independent terms in its decomposition over the Dirac m
trices coincides with the number of the terms in the deco
position of the BS wave function atzerochemical potential.

The proof of this statement is simple. The Dirac deco
position is determined by all the space-time tensors cha
terizing the bound state, e.g., the momentaPn and pn, the
polarization vectoren ~in the case of a massive spin on
bound state!, etc. In this respect, the case of a non-ze
chemical potential is distinguished by the occurrence of o
one additional vectorun5(1,0W ). But in the center of mass
frame, where the total momentumPn5(P0 ,0W ), the vectorun

is proportional toPn and therefore is not independent. Thu
the number of terms in the Dirac decomposition of a
wave function in this frame is the same for both zero a
non-zero chemical potentials.

Of course, there is an essential difference between th
two cases: while for zero chemical potential the number
Dirac structures is the same in all frames, in the case o
non-zero chemical potential, it is different forPW 50 ~the cen-
ter of mass frame! and for PW 5” 0 ~all other frames!. For ex-
ample, as we will see for spin zero diquarks, whenm5” 0,
there are four independent terms in the center of mass fra
and there are eight terms in other frames.

Strictly speaking, this statement is valid only for mass
bound states. However, in the case of spin zero bound s
it is still valid also for massless states~in particular, for NG
bosons!: the point is that the limitM→0 is smooth for BS
wave functions of spin zero states, andPn→0 is a very
useful limit for studying properties of NG bosons.

In the next two sections we study these BS equations
the diquark states in detail. In order to approach the probl
we first need to determine the Dirac structure of the BS w
functions. As we shall see, the Ward identities, derived
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Sec. IV, are of great help in dealing with this task. Moreov
in the particular case of the~pseudo-!NG bosons, knowledge
of the Ward identities is powerful enough to reveal a co
plete solution to the BS equations. We consider this imp
tant case in the next section.

VI. BS EQUATIONS FOR NG AND PSEUDO-NG BOSONS

In this section we consider massless bound diquark sta
The latter should include NG and pseudo-NG bosons. Be
proceeding to a detailed analysis of the BS equations,
instructive to describe the qualitative physical picture in t
problem at hand.

Let us start from a simple observation. As we stress
many times, the QCD dynamics at a large chemical poten
consists of two essentially decoupled and identical~left-
handed and right-handed! sectors. Then, as long as it con
cerns the diquark paring dynamics, no changes would ap
in the model if one enlarges the gauge group of QCD fr
SU(3)c to the approximateSU(3)c,L3SU(3)c,R , assuming
that the coupling constants of both gauge groups are ide
cal. In the modified theory, the pattern of the symme
breaking should be SU(3)c,L3SU(3)c,R→SU(2)c,L
3SU(2)c,R . In this case, ten NG bosons should appear
the gauge group wereSU(3)c,L3SU(3)c,R , all ten NG
bosons would be unphysical because of the Higgs mec
nism. However, since the true gauge group of QCD
vector-like SU(3)c , only five NG bosons~scalars! are re-
moved from the spectrum of physical particles by the Hig
mechanism. The other five NG bosons~pseudoscalars!
should remain in the spectrum. In the complete theory, th
latter are the pseudo-NG bosons. They should get non-
masses due to higher order corrections that are beyond
improved ladder approximation~an example of such correc
tions is the box diagram in the BS kernel with two interm
diate gluons!. At the same time, since the theory is weak
coupled at a large chemical potential, it is natural to exp
that the masses of the pseudo-NG bosons are small
compared to the value of the dynamical quark mass@35#.

For the completeness of our discussion, let us also
that, even though the massless scalars are removed from
physical spectrum, they exist in the theory as some kind
‘‘ghosts’’ @36#. In fact, one cannot completely get rid o
them, unless a unitary gauge is found.3 It is also important to
mention that these ghosts play a very important role in g
ting rid of unphysical poles from on-shell scattering amp
tudes@36#.

A. Structure of the BS wave functions of„pseudo-…NG bosons

Earlier we mentioned in passing that the use of the W
identities is crucial for revealing the Dirac structure of t
BS wave functions of the~pseudo-!NG bosons. Now let us

3Note that, because of the composite~diquark! nature of the order
parameter in color superconducting phase of dense QCD, it d
not seem to be straightforward to define and to use the uni
gauge there.
5-9
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elaborate on this point. We start with the definition of t
vertices in Eq.~34!. By making use of them, one can sho
that the corresponding Fourier transforms develop po
whenever the total momentum of the incoming quarks,P,
satisfies the on-shell condition of a bound state. In particu
asP→0, we obtain

Ga j ,m
A,i ~p1P/2,p2P/2!uP→0.

Pm
(x)F (x)

PnPn
(x) (

ã

d j
i Tã

A3
xa

(ã)~p,0!

[
Pm

(x)F (x)

PnPn
(x)

d j
i Ta

A3x~p,0!, ~61a!

Gj ,m
A,ai~p1P/2,p2P/2!uP→0.

Pm
(l)F (l)

PnPn
(l) (

ã

d j
i T3

Aãl(ã)
a

~p,0!

[
Pm

(l)F (l)

PnPn
(l)

d j
i T3

Aal~p,0!, ~61b!

Gj ,m
A,i ~p1P/2,p2P/2!uP→0.

Pm
(h)F (h)

PnPn
(h)

1

2
d j

i d8
Ah~p,0!,

~61c!

G̃a j ,m
A,i ~p1P/2,p2P/2!uP→0.

Pm
(x)F̃ (x)

PnPn
(x) (

ã

d j
i Tã

A3
x̃a

(ã)~p,0!

[
Pm

(x)F̃ (x)

PnPn
(x)

d j
i Ta

A3x̃~p,0!, ~61d!

G̃j ,m
A,ai~p1P/2,p2P/2!uP→0.

Pm
(l)F̃ (l)

PnPn
(l) (

ã

d j
i T3

Aãl̃(ã)
a

~p,0!

[
Pm

(l)F̃ (l)

PnPn
(l)

d j
i T3

Aal̃~p,0!, ~61e!

G̃j ,m
A,i ~p1P/2,p2P/2!uP→0.

Pm
(h)F̃ (h)

PnPn
(h)

1

2
d j

i d8
Ah̃~p,0!,

~61f!

whereF (x) andF̃ (x) ~with x beingl, x, or h) are the decay
constants of the~pseudo-!NG bosons. The rigorous definitio
and calculation of their values will be given in Sec. VI E. F
our purposes here, it is sufficient to know that they are c
stants expressed through the parameters of the theory. S
the Lorentz symmetry is explicitly broken by the chemic
potential, the dispersion relations of the~pseudo-!NG bosons
respect only the spatial rotation symmetry. In order to ta
this into account, we introduced the following fou
momentum notation:Pm

(x)5(P0,2cx
2PW ) wherecx,1 is the

velocity of the appropriate~pseudo-!NG boson.
By recalling that parity is preserved in the color superco

ducting phase of dense QCD, we conclude that the de
08502
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-
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constants of the left- and right-handed composites should
equal, i.e.,F̃ (l)5F (l), F̃ (x)5F (x), andF̃ (h)5F (h).

The existence of poles in the full vertex functions
P→0 is also required by the Ward identities, discussed
Sec. IV. Moreover, the Ward identities alone allow us
establish the explicit form of the poles. Indeed, by maki
use of the relations for the amputated vertices in Eq.~49! as
well as the explicit form of the quark propagators
Eqs.~26!, ~27! and ~28!, we obtain

Ga j ,m
A,i ~k1P,k!uP→0.

Pm
(x)

PnPn
(x)

Ta
A3d j

i D̃kP1 , ~62a!

G j ,m
A,ai~k1P,k!uP→0.2

Pm
(l)

PnPn
(l)

T3
Aad j

i DkP2 , ~62b!

G j ,m
A,i ~k1P,k!uP→0.

Pm
(h)

PnPn
(h)

d8
Ad j

i
A3

2
@D̃kP12DkP2#,

~62c!

G̃a j ,m
A,i ~k1P,k!uP→0.

Pm
(x)

PnPn
(x)

Ta
A3d j

i D̃kP2 , ~62d!

G̃ j ,m
A,ai~k1P,k!uP→0.2

Pm
(l)

PnPn
(l)

T3
Aad j

i DkP1 , ~62e!

G̃ j ,m
A,i ~k1P,k!uP→0.

Pm
(h)

PnPn
(h)

d8
Ad j

i
A3

2

3@D̃kP22DkP1#. ~62f!

Now, by taking into account the definition of the amputat
vertices in Eq.~48! and comparing the pole residues
Eq. ~61! with those in Eq.~62!, we unambiguously deduc
the Dirac structure of the amputated~as well as non-
amputated! BS wave functions of the~pseudo-!NG bosons:

x~p,0!5Sp
21x~p,0!sp

215
D̃p

F (x)
P1 , ~63a!

l~p,0!5sp
21l~p,0!~p,0!Sp

2152
Dp

F (l)
P2 , ~63b!

h~p,0!5Sp
21h~p,0!Sp

21

5
A3

F (h)
~D̃pP12DpP2!, ~63c!
5-10
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x̃~p,0!5S̃p
21x̃~p,0!s̃p

215
D̃p

F (x)
P2 , ~63d!

l̃~p,0!5 s̃p
21l̃~p,0!S̃p

2152
Dp

F (l)
P1 , ~63e!

h̃~p,0!5S̃p
21h̃~p,0!S̃p

215
A3

F (h)
~D̃pP22DpP1!. ~63f!

This concludes our derivation. Before concluding this su
section, we would like to emphasize that the arguments u
here cannot be generalized for the case of massive diqu
The reason is that the corresponding on-shell pole contr
tions to the vertex functions@compare with Eq.~61!# must
appear at a non-vanishing momentumP. Obviously, the
structure of such poles cannot be clarified by utilizing t
Ward identities alone.

B. NG doublet xa
„b̃…

Now, let us consider the BS equation for the masslesx
doublet; see Eq.~57!. As soon as the color symmetry is spo
taneously broken in the model at hand, a non-trivial solut
to this equation should exist. In order to verify the se
consistency of our approach, we have to check that this is
case.

The most general Dirac structure of the amputated

wave function,xa
(b̃)(p,P)5Sp1P/2

21 xa
(b̃)(p,P)sp2P/2

21 , that is
allowed by the space-time symmetries is given by

xa
(b̃)~p,P!5da

b̃@x1
2Lp

11x1
1Lp

21~p02ep
2!x2

2g0Lp
1

1~p01ep
1!x2

1g0Lp
21x3~gW •PW !1x4~aW •PW !

1x5snmpnPm1x6g0snmpnPm#P1 , ~64!

wheren,m51,2,3 are space indices,snm5 i /2@gn,gm#, and
the factors (p02ep

2) and (p01ep
1) are introduced here fo

convenience. It is of great advantage to notice that four
of eight independent functions in this expression become
relevant in the limit PW →0. This agrees with the genera
statement made in Sec. V A~indeed, there are four indepen
dent Dirac structures in the BS wave functions of spin z
states at zero chemical potential@34#!. We will consider only
this limit ~which, in the case of NG bosons, implies that t
total momentumP→0).

After multiplying both sides of the BS equation~57! by
the appropriate quark propagators on the left and on
right, we obtain the equation for the amputated BS wa
function. This latter splits into the following set of tw
equations:
08502
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P1xa
(b̃)~p,0!P1

52
2

3
pasE d4q

~2p!4
gmP2$Sqxa

(b̃)~q,0!sq13s̄qC

3@xa
(b̃)~2q,0!#TC†Sq%P2gnDmn~q2p!, ~65!

P2xa
(b̃)~p,0!P1

5
2

3
pasE d4q

~2p!4
gmP1Sqxa

(b̃)~q,0!sqP2gnDmn~q2p!.

~66!

The quark propagatorsSq andsq are given in Eqs.~26! and
~27!. As we can see from those explicit representations,
all of the terms are equally important. While some of the
develop large contributions in the vicinity of the Fermi su
face, the others are suppressed by powers ofm. These latter
could be safely neglected in the leading order of the theo
Using expression~23! for the gluon propagator, we arrive a
the following approximate form of the BS equations:

P1xa
(b̃)~p,0!P1

.
2

3
pasE d4q

~2p!4
gmP2Lq

2S g0~q02eq
2!2~Dq

2!*

q0
22~eq

2!22uDq
2u2

3xa
(b̃)~q,0!

g0

q02eq
2

1
3g0

q01eq
2

@xa
(b̃)~2q,0!#T

3
g0~q01eq

2!2~Dq
2!*

q0
22~eq

2!22uDq
2u2 D Lq

2P2gnDmn~q2p!, ~67!

P2xa
(b̃)~p,0!P1

.2
2

3
pasE d4q

~2p!4
gmP1Lq

1
g0~q01eq

2!2Dq
2

q0
22~eq

2!22uDq
2u2

3xa
(b̃)~q,0!

g0Lq
2P2

q02eq
2

gnDmn~q2p!. ~68!

In component form, these become

x1
2~p!.

1

3
pasE d4q

~2p!4
$x1

2~q!13x1
2~2q!2~Dq

2!*

3@x2
2~q!13x2

2~2q!#%
1

q0
22~eq

2!22uDq
2u2

3tr~gmLq
2gnLp

1!Dmn~q2p!, ~69!
5-11
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~p02ep
2!x2

2~p!

.2
1

3
pasE d4q

~2p!4

@q0
22~eq

2!2#x2
2~q!2Dq

2x1
2~q!

~q02ep
2!@q0

22~eq
2!22uDq

2u2#

3tr~gmLq
1g0gnLp

1g0!Dmn~q2p!, ~70!

plus the expressions that definex i
1 in terms ofx i

2 . By not-
ing that the equations for the even and odd combination
the BS wave functions,x i

2(p)6x i
2(2p), decouple and sat

isfy the same kind of equation, we argue that it is sufficie
for our purposes to consider only the even combination.
deed, from the Ward identities, one finds thatx1

2(p) is re-
lated to the gapDp

2 . Then, ifx1
2(p) is odd, we must have a

non-trivial solution for the gap satisfyingD0
25Dp

2up5050.
Analysis of the SD equation shows that no such so
tion exists. Therefore, without loss of generality, we p
x i

2(2p)5x i
2(p), and obtain

x1
2~p!.

4

3
pasE d4q

~2p!4

x1
2~q!2~Dq

2!* x2
2~q!

q0
22~eq

2!22uDq
2u2

3tr~gmLq
2gnLp

1!Dmn~q2p!, ~71!

~p02ep
2!x2

2~p!

.2
1

3
pasE d4q

~2p!4

@q0
22~eq

2!2#x2
2~q!2Dq

2x1
2~q!

~q02ep
2!@q0

22~eq
2!22uDq

2u2#

3tr~gmLq
1g0gnLp

1g0!Dmn~q2p!. ~72!

By comparing our ansatz for the BS wave function
Eq. ~64! with the structure in Eq.~63a! that is required by the
Ward identities, we see thatx2

6(p) components should b
zero. Direct analysis of the BS equations, on the other ha
shows that these component functionsx2

6 cannot be identi-
cally zero. It is not hard to pinpoint the origin of the discre
ancy. Indeed, in our approximation, we completely neglec
the wave function renormalization effects of quarks. Up
taking them into account, the Ward identity~49! would lead
to a modified structure of the BS wave function, and
allowed Dirac structures would be non-zero.

Therefore, as in the case of wave function renormali
tion, we estimate the effect ofx2

2(p) perturbatively. To this
end, we usex2

2(p)50 in the leading order of the theory
Then, the equation forx1

2(p) reads

x1
2~p!.

4

3
pasE d4q

~2p!4

x1
2~q!tr~gmLq

2gnLp
1!

q0
22~eq

2!22uDq
2u2

Dmn~q2p!.

~73!

On comparison with the gap equation~29!, we see that
x1

2(p)5(Dp
2)* /F (x) @as required by the Ward identities; se

Eq. ~63a!# is the exact solution to the BS equation in t
leading order approximation. Here, of course, we assu
that Dp

2 is the solution to the gap equation. By substituti
08502
of

t
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the leading order solutionx1
2(p) into Eq. ~72!, we get the

estimate forx2
2(p). In the most important region,uD0

2u2

&p4
21(ep

2)2&m2, we find that

x2
2~p!;

asuD0
2u

F (x)Ap4
21~ep

2!2
ln

~2m!2

p4
21~ep

2!2
. ~74!

Now, we also can check that this function could safely
neglected in the equation forx1

2(p). Indeed, its substitution
into Eq.~71! produces a result of orderas(Dp

2)* /F (x) which
is suppressed by a power ofas compared to x1

2(p)
5(Dp

2)* /F (x).
Therefore, both the corrections due to the wave funct

renormalization of quarks@10–16# and those due to the non
vanishing component functionsx2

6(p) are small in the lead-
ing order of the theory. Moreover, consistency with the Wa
identities requires that either both effects be taken into
count or neither of them.

C. NG antidoublet l
„ã…
b

The analysis of the BS equation for thel antidoublet
follows very closely the analysis for thex doublet. For com-
pleteness of the presentation, we still give all the details.

The most general BS wave function of this antidoublet
given by

l (ã)
b

~p,P!5d ã
bP2@l1

1Lp
11l1

2Lp
21~p02ep

2!l2
2g0Lp

1

1~p01ep
1!l2

1g0Lp
21l3~gW •PW !1l4~aW •PW !

1l5snmpnPm1l6g0snmpnPm#. ~75!

As in the case of thex doublet, to simplify the analysis we
restrict ourselves to the case of the vanishing total mom
tum P→0. Then, the equations for two projections of th
wave function,P2l (ã)

b (p,0)P2 andP2l (ã)
b (p,0)P1 , read

P2l (ã)
b

~p,0!P2

52
2

3
pasE d4q

~2p!4
gmP1$sql (ã)

b
~q,0!Sq13SqC

3@l (ã)
b

~2q,0!#TC†s̄q%P1gnDmn~q2p!, ~76!

P2l (ã)
b

~p,0!P1

5
2

3
pasE d4q

~2p!4
gmP1sql (ã)

b
~q,0!SqP2gnDmn~q2p!.

~77!

After extracting the most significant of the Fermi surfa
contributions in the vicinity from the quark propagatorsSq
andsq , we arrive at
5-12
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P2l (ã)
b

~p,0!P2

.
2

3
pasE d4q

~2p!4
gmP1Lq

1S g0

q02eq
2

l (ã)
b

~q,0!

3
g0~q02eq

2!2Dq
2

q0
22~eq

2!22uDq
2u2

1
3g0~q01eq

2!2Dq
2

q0
22~eq

2!22uDq
2u2

3@l (ã)
b

~2q,0!#T
g0

q01eq
2D Lq

1P1gnDmn~q2p!,

~78!

P2l (ã)
b

~p,0!P1

.2
2

3
pasE d4q

~2p!4
gm

P1Lq
1g0

q02eq
2

l (ã)
b

~q,0!

3
g0~q01eq

2!2~Dq
2!*

q0
22~eq

2!22uDq
2u2

P2Lq
2gnDmn~q2p!. ~79!

Finally, rewriting this in components, we get

l1
2~p!.

4

3
pasE d4q

~2p!4

l1
2~q!2Dq

2l2
2~q!

q0
22~eq

2!22uDq
2u2

3tr~gmLq
1gnLp

2!Dmn~q2p!, ~80!

~p02ep
2!l2

2~p!

.2
1

3
pasE d4q

~2p!4

3
@q0

22~eq
2!2#l2

2~q!2~Dq
2!* l1

2~q!

~q02ep
2!@q0

22~eq
2!22uDq

2u2#

3tr~gmLq
1g0gnLp

1g0!Dmn~q2p!, ~81!

where again, without loss of generality, we assumed
l i

2(p) are even functions of momenta.
By repeating the arguments of the previous subsect

we would find thatl2
2(p) should be zero in a consisten

approximation when the wave function renormalizations
quarks are neglected. As in the case of thex doublet, the
equation for thel1

2(p) component has the solutionl1
2(p)

52Dp
2/F (l), which is consistent with the Ward identitie

see Eq.~63b!.

D. NG singletsh

The case of massless singlets is very special. This is
ready seen from the fact that the BS equations for theh and
s singlets are coupled in general. This might appear so
what puzzling if one traces back the origin of the single
While theh singlet contains the antisymmetric tensor pro
uct of two fundamental representations ofSU(3), thes sin-
08502
at

n,

f

l-
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-

glet comes from the product of the fundamental and the a
fundamental representations. Based on this observation,
might have concluded that the bound state should form o
in theh channel. As we shall see below, this argument is
completely groundless, although the real situation is sligh
different. We would like to point out that there is no sym
metry in the color superconducting phase of dense Q
which could prevent the coupling between the two sing
channels.

Let us consider the equation for the amputated BS w
functions of singlets,h(p,0) ands(p,0) ~we consider only
the case ofP→0 below!. The most general structure of th
wave functions is

h~p,0!5@h1
2Lp

11h1
1Lp

21~p02ep
2!h2

2g0Lp
1

1~p01ep
1!h2

1g0Lp
2#P11@h3

1Lp
11h3

2Lp
2

1~p01ep
2!h4

2g0Lp
21~p02ep

1!h4
1g0Lp

1#P2 ,

~82!

s~p,0!5P2g0@~p02ep
2!s2Lp

11~p01ep
1!s1Lp

2#P1 .

~83!

Before proceeding any further, we would like to recall t
definition of theh-singlet wave function in Eq.~50c!. Unlike
other diquarks, it is built of only Majorana spinors. By ma
ing use of the generalized Majorana property in Eq.~3!, we
observe that the BS wave functionh(p,P) should satisfy the
following constraint4:

ChT~2p,P!C†5h~p,P!. ~84!

While rewritten in components, this restriction is satisfi
when the odd componentsh1,3

6 (p) are even functions of mo
menta and whenh2

6(2p)5h4
6(p).

The equations for different chiral projections of the am
putated BS wave functions,h(p,0)5Sp

21h(p,0)Sp
21 and

s(p,0)5sp
21s(p,0)sp

21 , read

P1h~p,0!P1

52
8

3
pasE d4q

~2p!4
gmP2Sqh~q,0!SqP2gnDmn~q2p!,

~85!

P2h~p,0!P2

52
8

3
pasE d4q

~2p!4
gmP1Sqh~q,0!SqP1gnDmn~q2p!,

~86!

4Strictly speaking, from Eq.~50c! one derives a relation for the
non-amputated BS wave function. Assuming that the gap is an e
function of the momentum, it is straightforward to show that t
same relation holds for the amputated wave functionh.
5-13
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P2h~p,0!P1

52
2

3
pasE d4q

~2p!4
gmP1@5Sqh~q,0!Sq16sqs~q,0!sq#

3P2gnDmn~q2p!, ~87!
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P1h~p,0!P2

52
2

3
pasE d4q

~2p!4
gmP2$5Sqh~q,0!Sq16s̄q

3@s~2q,0!#Ts̄q%P1gnDmn~q2p!, ~88!
P2s~p,0!P152
2

3
pasE d4q

~2p!4
gmP1@3Sqh~q,0!Sq12sqs~q,0!sq#P2gnDmn~q2p!. ~89!

In components, these become

h1
2~p!.

4

3
pasE d4q

~2p!4

@q0
22~eq

2!2#h1
2~q!1~Dq

2* !2h3
2~q!22~Dq

2!* @q0
22~eq

2!2#h2
2~q!

@q0
22~eq

2!22uDq
2u2#2

3tr~gmLq
2gnLp

1!Dmn~q2p!, ~90!

h3
2~p!.

4

3
pasE d4q

~2p!4

@q0
22~eq

2!2#h3
2~q!1~Dq

2!2h1
2~q!22Dq

2@q0
22~eq

2!2#h2
2~q!

@q0
22~eq

2!22uDq
2u2#2

tr~gmLq
1gnLp

2!Dmn~q2p!,

~91!

~p02ep
2!h2

2~p!.
1

3
pasE d4q

~2p!4 S 5
@q0

22~eq
2!2#h2

2~q!1uDq
2u2h4

2~q!2Dq
2h1

2~q!2~Dq
2!* h3

2~q!

@q0
22~eq

2!22uDq
2u2#2

1
6s2~q!

q0
22~eq

2!2D
3~q02eq

2!tr~gmLq
1g0gnLp

1g0!Dmn~q2p!, ~92!

~p02ep
2!s2~p!.

1

3
pasE d4q

~2p!4 S 3
@q0

22~eq
2!2#h2

2~q!1uDq
2u2h4

2~q!2Dq
2h1

2~q!2~Dq
2!* h3

2~q!

@q0
22~eq

2!22uDq
2u2#2

1
2s2~q!

q0
22~eq

2!2D
3~q02eq

2!tr~gmLq
1g0gnLp

1g0!Dmn~q2p!, ~93!
is

f
-

S
ther
along with the expressions for the plus components ir
evant for our analysis. Note that we did not write down t
equation for theh4

2(p) component since it is related t
h2

2(p) as we argued above.
Now, let us analyze the BS equations for the single

By repeating the argument involving the Ward identitie
we see that the component functionsh2,4

6 (p) should be
exactlyzero. As opposed to the case of an~anti-!doublet, a
crucial difference appears in the case of singlets. As we
cussed in Sec. VI A, the Dirac structure of the BS wa
function of theh singlet is determined by the pole structu
of the vertex in Eq.~61c!. The explicit form of the latter is
determined by the Ward identity in Eq.~49c!, and the result
is presented in Eq.~62c!. The remarkable property of thi
result is that it does not get any corrections even after
wave function renormalization effects of quarks are tak
into account. To see this, one should note that the mentio
Ward identity~49c! is given in terms of a single propagato
Sp . Because of this, all wave function renormalization
fects always cancel from the leading pole contribution to
vertex of interest.
l-

.
,

s-

e
n
ed

-
e

It is very rewarding, therefore, to check thath1
2(p)

52A3(Dp
2)* /F (h), h3

2(p)5A3Dp
2/F (h), and h2,4

2 (p)

5s2(p)50 is an exact solution to the BS equations,5 as-
suming thatDp is the solution to the gap equation. It
interesting to notice that no admixture of thes singlet ap-
pears in this solution for the~pseudo-!NG boson.

E. Decay constants

In order to define the decay constants ofxa
(b̃) , l (ã)

b , h
~pseudo-!NG bosons~as well as their counterparts built o
the right-handed fields!, it is convenient to introduce the fol
lowing combinations of the currents:

j (a)m5 (
A54

7

Ta
A3 j m

A , a51,2, ~94!

5We believe that this is the only non-trivial solution to the B
equation, although we were unable to rigorously prove that no o
solutions exist.
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j m
(b)5 (

A54

7

T3
Abj m

A b51,2, ~95!

j m5 j m
8 , ~96!

where j m
A for A54, . . . ,8 isdefined in Eq.~33!. It is easy to

check that the doubletxa
(b̃) couples only toj (a)m , while the

anti-doubletl (ã)
b couples only toj m

(b) . The singlet couples
only to j m .

We will consider the low energy limit when the energy
the diquark~pseudo-!NG bosonsP0→0. Then, we define
their decay constants as follows:

^0u j (a)m~0!uP,b̃&L5 ida
b̃Pm

(x)F (x), ~97!

^0u j m
(b)~0!uP,ã&L5 id ã

b
Pm

(l)F (l), ~98!

^0u j m~0!uP&L5 iPm
(h)F (h), ~99!

where Pm
(x)5(P0 ,2cx

2PW ) and cx is the velocity of
~pseudo-!NG bosons.

From the definition of the current in Eq.~33! in terms of
quark fields and from the definition of the BS wave functio
in Eq. ~50!, we obtain

Pm
(x)F (x)5

i

2E d4q

~2p!4
tr@gmP1x~q,P!#

5
i

2E d4q

~2p!4
tr@gmP1Sq1P/2x~q,P!sq2P/2#,

~100!

Pm
(l)F (l)5

i

2E d4q

~2p!4
tr@P2gml~q,P!#

5
i

2E d4q

~2p!4
tr@P2gmsq1P/2l~q,P!Sq2P/2#,

~101!

Pm
(h)F (h)5

i

2A3
E d4q

~2p!4
tr@gmP1h~q,P!#

5
i

2A3
E d4q

~2p!4
tr@gmP1Sq1P/2h~q,P!Sq2P/2#,

~102!

where the doublet and the anti-doublet BS wave functi

are defined so thatxa
(b̃)5da

b̃x and l(ã)
b

5d ã
b
l. The generic

definition is diagrammatically presented in Fig. 3.

FIG. 3. The definition of the decay constant.
08502
s

The definitions of the decay constants above are ex
The problem is, however, that a solution for the BS wa
functionsx(q,P), l(q,P), andh(q,P) at P5” 0 is very hard
to obtain. In order to get estimates of the decay constants
velocities, we will use the analogue of the Pagels-Stokar
proximation@37# ~for a review see Ref.@38#!. In this approxi-
mation, the wave functions atP5” 0 are substituted by thei
values atP50, i.e.,

x~q,P!.x~q,0!5
D̃q

F (x)
P1 , ~103!

l~q,P!.l~q,0!52
Dq

F (l)
P2 , ~104!

h~q,P!.h~q,0!5
A3

F (h)
~D̃qP12DqP2!, ~105!

where the right hand sides are fixed by the Ward identit
By making use of this approximation and the explicit form
the quark propagators in Eqs.~26! and~27!, we derive, in the
weak coupling limit,

~F (x)!2H P0

cx
2PW J .

m2

16p3E0

1

xdxE
0

p

dusinuH P0

PW cos2u
J

3E dq4deq
2uDq

2u2

@q4
21~eq

2!21xuDq
2u2#2

5
m2

8p2 H P0

1

3
PW J , ~106!

~F (l)!2H P0

cl
2PW J .

m2

16p3E0

1

xdxE
0

p

dusinuH P0

PW cos2u
J

3E dq4deq
2uDq

2u2

@q4
21~eq

2!21xuDq
2u2#2

5
m2

8p2 H P0

1

3
PW J , ~107!
5-15
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~F (h)!2H P0

ch
2 PW J .

m2

8p3E0

p

dusinuH P0

PW cos2u
J

3E dq4deq
2uDq

2u2

@q4
21~eq

2!21uDq
2u2#2

5
m2

8p2 H P0

1

3
PW J . ~108!

We observe that the decay constants of all NG bosons a
order m, and all the velocities are equal to 1/A3. This
agrees with similar results for NG bosons in three flav
dense QCD@23–26#, as well as with the studies of Ref.@39#,
dealing with two flavor QCD in the framework of the e
fective theory approach. Notice that these estimates of
decay constants imply that the infrared masses of the
gluons are of ordergsm. ~For a discussion of subtleties con
cerning the generation of the mass of the eighth gluon,
Ref. @40#.!

For completeness of our presentation, let us mention
the above expressions for the decay constants in the Pa
Stokar approximation also contain the following sublead
derivative term corrections:

d@~F (x)!2#5d@~F (l)!2#

5
m2

4p3E0

1

x~12x!dxE dq4deuDq
2u2q4]q4

uDq
2u2

@q4
21~eq

2!21xuDq
2u2#3

2
m2

8p3E0

1

dxE dq4deq4~3/42x!]q4
uDq

2u2

@q4
21~eq

2!21xuDq
2u2#2

,

~109!

d@cx
2~F (x)!2#5d@cl

2~F (l)!2#

5
m2

12p3E0

1

x~12x!dx

3E dq4deuDq
2u2e]euDq

2u2

@q4
21~eq

2!21xuDq
2u2#3

2
m2

24p3E0

1

dx

3E dq4dee~3/42x!]euDq
2u2

@q4
21~eq

2!21xuDq
2u2#2

, ~110!

d@~F (h)!2#52
m2

16p3E dq4deq4]q4
uDq

2u2

@q4
21~eq

2!21uDq
2u2#2

, ~111!

d@ch
2~F (h)!2#52

m2

48p3E dq4dee]euDq
2u2

@q4
21~eq

2!21uDq
2u2#2

,

~112!
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wheree[eq5uqW u2m. In the calculation, we also assume
that the gap is an even function ofq4 ande. By making use
of the explicit solution to the gap equation~see Sec. III and
Appendix B in Ref.@11#!, we could check that these corre
tions are suppressed by a power of the coupling constanas

compared to the leading order results in Eqs.~106!, ~107!
and ~108!.

Here we worked out the decay constants of the le
handed diquark composites. It is straightforward to repea
analogous analysis for the right-handed diquarks. As
should be, the results would be the same, in agreement
the invariance under parity.

It is worthwhile to note that the decay constants in the t
sectors of the theory could have been equivalently defi
through the matrix elements of the left- and right-hand
color current. As we discussed earlier, both such currents
approximately conserved at large chemical potential. In ot
words, the latter means that the corresponding vector
axial vector currents are also approximately conserved. N
by making use of the definition of scalar and pseudosc
diquarks in Eqs.~52! and ~53!, it is easy to show that thei
decay constants are equal, up to a factor ofA2, to those of
the left- and right-handed states. Of course, here we ass
that the definition of the decay constants of scalars and p
doscalars are given in terms of the vector and axial vec
currents, respectively.

While the NG scalars~a doublet, an antidoublet and
singlet! are not physical particles because of the Hig
mechanism, the five pseudoscalars remain in the phys
spectrum. Since the latter are~nearly! massless in dens
QCD, they should be relevant degrees of freedom in
infrared dynamics. The decay constants of these pseudo
lars are the physical observables that could be measure
an experiment. The most likely decay products of these ps
doscalars should be gluons of the unbrokenSU(2)c and the
massless quarks of the third color@which might eventually
get a small mass too if another~non-scalar! condensate is
generated@7,41##.

VII. BS EQUATION FOR MASSIVE COMPOSITES

The essential property of the quark pairing dynamics
Nf52 dense QCD is the long range interaction mediated
gluons of the magnetic type@9,10#. Of course, the Meissne
effect in the color superconducting phase produces ma
for five out of the total eight magnetic modes. Neverthele
there are still three modes that remain long ranged. T
simple feature has many interesting consequences. On
them was conjectured in Ref.@27# where it was suggeste
that there should exist an infinite tower of massive rad
excitations in the diquark channels with the quantum nu
bers of the ~pseudo-!NG bosons. This conclusion wa
reached by making use of an indirect argument based
special properties of the effective potential in the color s
perconductor.

In this section, we study the problem of massive rad
excitations by using the rigorous approach of the BS eq
5-16
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tion, derived in Sec. V. As we shall see, the conjecture
Ref. @27# is essentially correct. At the same time, it will tur
out that some details of the pairing dynamics are rather s
sitive to the specific details~such as the Meissner effect! and
could not have been anticipated, based on the qualita
arguments of Ref.@27#.

A. Bound states and the Meissner effect

In this subsection, we would like to clarify the role of th
Meissner effect in the dynamics of diquark bound states.
main point we want to emphasize is the existence of t
classes of bound states, for which the role of the Meiss
effect is very different. The first class consists of light bou
states with massesM!uD0

2u. The binding energy of thes
states is large~tightly bound states!. The second class in
cludes quasiclassical states with the masses close to
thresholdkuD0

2u where k51 for diquark doublets, built of
one massive and one massless quark, andk52 for diquark
singlets built of two massive quarks. The binding energy
the quasiclassical states is small, i.e.,

kuD0
2u2M

kuD0
2u

!1. ~113!

It is clear that the quasiclassical bound states are sensitiv
the details of the infrared dynamics. Indeed, for long ran
potentials, the quasiclassical part of the spectrum is alm
completely determined by the behavior of the potential
large distances. In the particular case of cold dense QCD
interaction between quarks is long ranged in the~imaginary!
time direction and essentially short ranged in the spatial o
@10,27#. Because of that, the region withuk0u,uD0

2u&ukW u is
particularly important for the pairing dynamics of the qua
classical diquark states. This implies that the inclusion of
Meissner effect is crucial for extracting the properties of
states from this second class~see Appendix C!.

On the other hand, the Meissner effect is essentially ir
evant for the light bound states. This point can be illustra
by the BS equations for the lightest diquarks, the mass
NG bosons. As was shown in Sec. VI, the BS equations
them are essentially equivalent to the gap equation. And
know from the experience of solving the gap equation@11–
16# that the most important region of momenta in the eq
08502
f
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tion is given by uD0
2u&uk0u!ukW u&m. In this particular re-

gion, the two kernels, with and without the Meissner effe
taken into account@compare Eqs.~23! and ~24!#, are practi-
cally indistinguishable. Obviously, the same should be t
for all very light bound states withM!uD0

2u.
In the rest of this section, we show that, because

the Meissner effect, an infinite tower of~quasiclassical! mas-
sive diquarks occurs only in the singlet channel. In the d
blet channel, the only bound states are the~tightly bound!
NG bosons. This is connected with the fact that the inter
tion in the doublet channel is mediated exclusively by t
gluons subject to the Meissner effect. In the singlet chan
on the other hand, the interaction is partly due to the
screened gluons of the unbrokenSU(2)c subgroup and,
therefore, the formation of massive~quasiclassical! states is
not prohibited.

B. Massive doubletxa
„b̃…

Let us start from the analysis of the BS equation for t
massivex doublets. By choosing the spatial compone
of the center of mass momentum of the bound state z
P5(Mx,0,0,0), we find that, similarly to Eq.~64!, the most
general structure of the BS wave function in the center
mass frame reads

xa
(b̃)~p,Mx!5da

b̃@x1
2Lp

11x1
1Lp

21~p02ep
2

1Mx/2!x2
2g0Lp

11~p01ep
1

1Mx/2!x2
1g0Lp

2#P1 , ~114!

where, for convenience, we introduced here the fact
(p02ep

21Mx/2) and (p01ep
11Mx/2). In contrast to the

case of~pseudo-!NG bosons, the structure of the wave fun
tions of massive states cannot be established from the W
identities. Although the vertex functions would also have t
poles, corresponding to the massive intermediate states
Ward identities are insufficient for extracting the structure
the residues unambiguously.

Be repeating the analysis similar to that in Sec. VI B, w
arrive at the following set of equations for the components
the BS wave function:
x1
2~p!5

4

3
pasE d4q

~2p!4

~q02eq
21Mx/2!@x1

2~q!2~Dq
2!* x2

2~q!#

~q02eq
22Mx/2!@~q01Mx/2!22~eq

2!22uDq
2u2#

3tr@gmLq
2gnLp

1#Dmn~q2p!, ~115!

~p02ep
21Mx/2!x2

2~p!52
1

3
pasE d4q

~2p!4

@~q01Mx/2!22~eq
2!2#x2

2~q!2Dq
2x1

2~q!

~q02eq
22Mx/2!@~q01Mx/2!22~eq

2!22uDq
2u2#

3tr@gmg0Lq
2gnLp

1g0#Dmn~q2p!. ~116!
5-17
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The other two equations expressx1,2
1 (p) in terms ofx1.2

2 (p)
and, therefore, they are irrelevant. As is easy to check
tracing back the derivation of the BS equations, the inter
tion in this doublet channel is provided exclusively by gluo
that are subject to the Meissner effect in the color superc
ducting phase. This fact could be taken into account qua
tively by replacing the propagators of the magnetic mo
according to the qualitative rule in Eq.~24!. In accordance
with the discussion in Sec. VII A, while such a modificatio
was irrelevant in the gap equation and in the BS equati
for ~pseudo-!NG bosons, it is going to play a very importa
role in the analysis of the quasiclassical massive states.

In order to proceed with the analysis of the BS equati
we will use the approximation withx2

650. Recall that such
an approximation was completely justified in the case
~pseudo-!NG bosons. It is certain that it gives a very goo
approximation for light bound states, withM!uD0

2u, in gen-
eral. Ourconjectureis that the ansatz withx2

650 yields a
reasonable approximation even in the case of quasiclas
states. In order to justify this approximation one wou
need to prove that the~perturbative! correction due to non-
zero x2

6 is small. By repeating the arguments used
~pseudo-!NG bosons, we could show again thatx2

6 is irrel-
evant in the ultraviolet regionuD0

2u&p0&m. While this ob-
servation is promising, it is not sufficient yet because
infrared region 0,p0,uD0

2u is also important for the pairing
dynamics of the quasiclassical radial excitations. Theref
for such states, it should be considered as a~reasonable!
conjecture.

Now, we dropx2
6 from the analysis and assume that t

component functionsx1
6 depend only on the time compone

of the momentum~compare with the analysis of the ga
equation in Refs.@10–16#!. Then, we arrive at the following
equation:

x1
2~p4!5

2as

9p E
0

L

dq4K (x)~q4!x1
2~q4!ln

L

uq42p4u1cuD0
2u

,

~117!

whereL5(4p)3/2m/as
5/2 and the kernel reads

K (x)~q4!5
Mx

2~q41Aq4
21uD0

2u2!22uD0
2u4

Aq4
21uD0

2u2@4Mx
2q4

22~ uD0
2u22Mx

2!2#
.

~118!

To analyze the BS equation, we could convert it into
differential equation, using the same approach as in
case of the gap equation in Ref.@11# ~see Appendix C!.
It is straightforward to show then that, in the ultraviolet r
gion uD0

2u,p4,L, the BS wave function of the massiv
doublet, x1

2(p4), has the same behavior as the BS wa
function of the NG boson in thex channel~which, as we
know from the Ward identities, is proportional to the g
function!. The deviations might appear only in the infrare
region, 0,p4,uD0

2u. Note, however, that the BS wave fun
tion in that region is essentially constant. To see this,
should notice that the dependence onp4 on the right hand
08502
y
c-
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a-
s
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,

f
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e
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e

e

side of Eq.~117! comes through the argument of the log
rithm, in which either largeq4 or cuD0

2u dominates.
By matching the infrared and the ultraviolet asymptotes

the solution, we find that the non-trivial wave functio
x1

2(p4) cannot have zeros in the whole range of momen
0,p4,L. This means that the only solution to the integr
equation~117! corresponds to the NG boson withMx50.
Indeed, a solution that describes a massive radial excita
of the NG boson must have at least one zero. Because o
Meissner effect, no such solutions exist.

From physical point of view, massive gluons cannot p
vide a sufficiently strong interaction to form massive rad
excitations of the NG bosons in the doublet channel. To
derstand this better, it might be instructive to point out th
in absence of the Meissner effect, an infinite tower of~qua-
siclassical! massive states would appear~see Appendix C!.
However, the binding energy of all these states would
very small compared to the value of the superconduct
gap. This indicates that it is the long range dynamics tha
primarily responsible for the formation of such quasiclassi
bound states. Then, in agreement with the discussion in
VII A, even relatively small screening effects for gluons
the infrared region are sufficient to prevent binding of qua
in the doublet channel.

C. Massive antidoubletl
„ã…
b

The analysis for thel (ã)
b antidoublet resembles a lot th

analysis in the previous subsection, so we outline only
main points, omitting the unnecessary details.

The general structure of the BS wave function is given

l (ã)
b

~p,Ml!5d ã
bP2@l1

1Lp
11l1

2Lp
21~p02ep

2

1Ml/2!l2
2g0Lp

11~p01ep
1

1Ml/2!l2
1g0Lp

2#. ~119!

The equations for the components of the BS wave functi
of the antidoublet are almost the same as those for the d
blet. The only difference is thatMx is replaced by2Ml . By
repeating all the arguments of the previous subsection,
again conclude that, after the Meissner effect is taken i
consideration, the gluon interaction is not strong enough
provide binding of the massive radial excitations in thel (ã)

b

antidoublet channel.

D. Massive singleth

Let us consider massive singlet diquark withMh5” 0.
Since the equations forh ands do not decouple, the massiv
radial excitation of theh NG boson would have a non-zer
admixture ofs. The general structures of the BS wave fun
tions in the center of mass frame,P5(Mh,0,0,0), are
5-18
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h~p,Mh!5@h1
2Lp

11h1
1Lp

21~p02ep
21Mh/2!h2

2g0Lp
11~p01ep

11Mh/2!h2
1g0Lp

2#P1

1@h3
1Lp

11h3
2Lp

21~p01ep
22Mh/2!h4

2g0Lp
21~p02ep

12Mh/2!h4
1g0Lp

1#P2 , ~120!

s~p,Mh!5P2g0@~p02ep
21Mh/2!s2Lp

11~p01ep
11Mh/2!s1Lp

2#P1 . ~121!

The components satisfy the following set of equations:

h1
2~p!5

4

3
pasE d4q

~2p!4

1

@~q02Mh/2!22~eq
2!22uDq

2u2#@~q01Mh/2!22~eq
2!22uDq

2u2#
H Fq0

22S eq
22

Mh

2 D 2Gh1
2~q!

1~Dq
2* !2h3

2~q!2~Dq
2!* Fq0

22S eq
22

Mh

2 D 2G@h2
2~q!1h4

2~q!#J tr@gmLq
2gnLp

1#Dmn~q2p!, ~122!

S p01
Mh

2
2ep

2Dh2
2~p!

5
5

3
pasE d4q

~2p!4

1

@~q02Mh/2!22~eq
2!22uDq

2u2#@~q01Mh/2!22~eq
2!22uDq

2u2#
S S q01

Mh

2
1eq

2D
3H Fq0

22S eq
22

Mh

2 D 2Gh2
2~q!2~Dq

2!* h3
2~q!J 1S q02

Mh

2
1eq

2D @ uDq
2u2h4

2~q!2Dq
2h1

2~q!# D
3tr@g0gmLq

1g0gnLp
1#Dmn~q2p!12pasE d4q

~2p!4

s2

q02Mh/22eq
2

tr@g0gmLq
1g0gnLp

1#Dmn~q2p!, ~123!

h3
2~p!5

4

3
pasE d4q

~2p!4

1

@~q02Mh/2!22~eq
2!22uDq

2u2#@~q01Mh/2!22~eq
2!22uDq

2u2#
H Fq0

22S eq
21

Mh

2 D 2Gh3
2~q!

1~Dq
2!2h1

2~q!2Dq
2F S q01

Mh

2 D 2

2~eq
2!2Gh2

2~q!2Dq
2F S q02

Mh

2 D 2

2~eq
2!2Gh4

2~q!J
3tr@gmLq

1gnLp
2#Dmn~q2p!, ~124!

S p02
Mh

2
1ep

2Dh4
2~p!

5
5

3
pasE d4q

~2p!4

1

@~q02Mh/2!22~eq
2!22uDq

2u2#@~q01Mh/2!22~eq
2!22uDq

2u2#
S S q02

Mh

2
2eq

2D
3H Fq0

22S eq
22

Mh

2 D 2Gh4
2~q!2~Dq

2!* h3
2~q!J 1S q01

Mh

2
2eq

2D @ uDq
2u2h2

2~q!2Dq
2h1

2~q!# D
3tr@g0gmLq

2g0gnLp
2#Dmn~q2p!12pasE d4q

~2p!4

s2~2q!

q01Mh/21eq
2

tr@g0gmLq
2g0gnLp

2#Dmn~q2p!, ~125!
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S p01
Mh

2
2ep

2Ds2~p!

5pasE d4q

~2p!4

1

@~q02Mh/2!22~eq
2!22uDq

2u2#@~q01Mh/2!22~eq
2!22uDq

2u2#
S S q01

Mh

2
1eq

2D
3H Fq0

22S eq
22

Mh

2 D 2Gh2
2~q!2~Dq

2!* h3
2~q!J 1S q02

Mh

2
1eq

2D @ uDq
2u2h4

2~q!2Dq
2h1

2~q!# D
3tr@g0gmLq

1g0gnLp
1#Dmn~q2p!1

2

3
pasE d4q

~2p!4

s2

q02Mh/22eq
2

tr@g0gmLq
1g0gnLp

1#Dmn~q2p!, ~126!

In the case of massless NG bosons, the component functionsh2,4
2 equal zero. Similarly to the case of doublets, we assume

the ansatz with these functions being equal to zero yields a good approximation also for massive diquarks. By sub
h2,4

2 50 into the BS equations above, we obtain the following simple set of equations:

h1
2~p!5

4

3
pasE d4q

~2p!4

@q0
22~eq

22Mh/2!2#h1
2~q!1~Dq

2* !2h3
2~q!

@~q02Mh/2!22~eq
2!22uDq

2u2#@~q01Mh/2!22~eq
2!22uDq

2u2#
tr@gmLq

2gnLp
1#Dmn~q2p!,

~127!

h3
2~p!5

4

3
pasE d4q

~2p!4

@q0
22~eq

21Mh/2!2#h3
2~q!1~Dq

2!2h1
2~q!

@~q02Mh/2!22~eq
2!22uDq

2u2#@~q01Mh/2!22~eq
2!22uDq

2u2#
tr@gmLq

1gnLp
2#Dmn~q2p!,

~128!
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plus the equation fors2 which does not allow a non-trivia
solution for a bound state.

Now, in order to solve the set of equations forh1
2 and

h3
2 , we make the following substitution:

h1
2~p!52

~Dp
2!*

uDp
2u

h1~p!, ~129!

h3
2~p!5

Dp
2

uDp
2u

h3~p!, ~130!

and, as in the case of doublets, we assume that the w
functions (h1,3) depend only on the time component of th
momentump45 ip0 ~also compare with the analysis of th
gap equation in Refs.@10–16#!. At the end, we arrive at the
following equation for the BS wave function (h15h3) of the
massive singlet:

h1~p4!5
as

4pE0

L

dq4K (h)~q4!h1~q4!ln
L

uq42p4u
,

~131!

whereL5(4p)3/2m/as
5/2, and the kernel reads

K (h)~q4!5
Aq4

21uD0
2u2

q4
21uD0

2u22~Mh/2!2
. ~132!

At this point it is appropriate to emphasize that, as we s
already in the previous two subsections, the Meissner ef
08502
ve

w
ct

plays an important role in the analysis of the massive bo
states. Indeed, our analysis indicates that only the long ra
interaction mediated by the unscreened gluons of the un
ken SU(2)c is strong enough to produce massive bou
states. This is taken into account in Eq.~131! where the
effective coupling constant differs by the factor 9/8 from t
coupling in the gap equation~30!.

In order to get the solution for the BS wave functio
h1(p), we use the same method as in the case of the
equation@11#. In particular, we convert Eq.~131! into the
differential equation

p4h19~p4!1h18~p4!1
as

4p
K (h)~p4!h1~p4!50, ~133!

along with the boundary conditions

h18~0!50 and h1~L!50. ~134!

Now, we solve the differential equation~133! in the follow-
ing three qualitatively different regions: 0<p4

<AuD0
2u22(Mh/2)2, AuD0

2u22(Mh/2)2<p4<uD0
2u and

uD0
2u<p4<L. The kernel~132! has a simple behavior in

each region, and the BS equation allows the analyt
solutions

h1~p4!5C0J0SA asuD0
2up4

p@ uD0
2u22~Mh/2!2#

D ,

for 0<p4<AuD0
2u22~Mh/2!2, ~135a!
5-20
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h1~p4!5C1J0SAasuD0
2u

pp4
D 1C2N0SAasuD0

2u
pp4

D ,

for AuD0
2u22~Mh/2!2<p4<uD0

2u, ~135b!

h1~p4!5C3sinS 1

2
Aas

p
ln

L

p4
D , for uD0

2u<p4<L,

~135c!

whereJn andNn are Bessel functions of the first and seco
types. The solutions are chosen so that the boundary co
tions are automatically satisfied. In the above expressi
Ci ( i 50, . . . ,3) are theintegration constants. To obtain th
spectrum of the massive diquark states, we match the lo
rithmic derivatives of the appropriate pairs of the solutions
AuD0

2u22(Mh/2)2 and uD0
2u. After taking into account the

equation that determines the value of the gap~see Appendix
B in Ref. @11#!,

ln
L

uD0
2u

5
2

n
arctanS J0~n!

J1~n! D , n5A8as

9p
, ~136!

the matching condition reads

J0~z0!J1~z0!

J1~z0!N0~z0!1J0~z0!N1~z0!
.

Aasp

4
cotS 3p

4A2
D ,

~137!

where the coupling is assumed to be small,as!1, and

z05A asuD0
2u

pAuD0
2u22~Mh/2!2

. ~138!

It is straightforward to check that the left hand side
Eq. ~137! is an oscillating function having an infinite numb
of zeros (z0'2.40,3.83,5.52, . . . ). In the weakly coupled
theory, each zero~or rather a nearby point that approach
the zero asas→0) determines a corresponding value
the diquark mass.6 In the quasiclassical limit, i.e., whe
Mh→2uD0

2u from below, the left hand side of Eq.~137! is
approximately given by cot(2z0). Then, we derive the follow-
ing simple estimates for the masses of theh singlets:

Mn
2.4uD0

2u2S 12
28as

2

p6~2n11!4D , n@1. ~139!

This agrees with the expression presented in Eq.~1! when
k528/p6'0.27. Accidentally, one could also check fro
the position of the zeros on the left hand side of Eq.~137!
that the expression in Eq.~139! gives a good approximation
even for the low lying states (n51,2, . . . ).Notice that the
state withn50 does not appear.

6Note that there is also a zero atz050, but Eq.~137! does not
have a solution in its vicinity.
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VIII. CONCLUSION

In this paper we studied the problem of diquark bou
states in the color superconducting phase ofNf52 cold
dense QCD. We used the conventional method of BS eq
tions that suits the problem best. We derived the general
equations, and then analyzed them in spin zero channel

Our analytical analysis of the BS equations in cold den
QCD shows that the theory contains five~nearly! massless
pseudoscalars~pseudo-NG bosons! which transform as a
doublet, an antidoublet and a singlet under unbrok
SU(2)c . To the best of our knowledge, these pseudosc
diquarks have not been discussed in the literature before.
estimate the decay constants of these pseudoscalars, an
that their orders of magnitude are the same as that of
chemical potential. The velocities of the pseudoscalars
equal to 1/A3, and this coincides with the velocity of the NG
bosons in three flavor QCD. While being~nearly! massless,
the five pseudoscalar diquarks should be the relevant deg
of freedom in the low energy dynamics ofNf52 dense
QCD.

The parity-even partners of the pseudoscalar diquarks
the NG bosons which are the ghosts in the theory. Althou
they are removed from the spectrum of physical particles
the Higgs mechanism, one cannot get rid of them co
pletely, unless a special~unitary! gauge is defined. Since th
order parameter is given by a diquark composite field, it d
not seem to be straightforward to define and to use the
tary gauge in dense QCD. In all the covariant gauges we
here, NG bosons are always present and they play an im
tant role in removing unphysical poles from physical scatt
ing amplitudes.

We also studied the problem of massive diquarks. In
cordance with the conjecture of Ref.@27#, there exists an
infinite tower of massive bound states which are the rad
excitations of the~pseudo-!NG bosons. As a result of the
Meissner effect, it appears that massive radial excitati
occur only in the singlet channel. This could be understo
in the following way. The interaction in the doublet and th
antidoublet channels is provided exclusively by the gluo
affected by the Meissner effect. Such an interaction is
sufficiently strong to form massive radial excitations in tho
channels. The important point in this analysis is the differ
role the Meissner effect plays for tightly bound states a
quasiclassical bound states.

As we know, parity is unbroken in the color superco
ducting phase of two flavor dense QCD. Then by recall
that the left- and right-handed sectors of the theory appro
mately decouple, we could see that all the massive diqua
come in pairs of degenerate parity-even~scalar! and parity-
odd ~pseudoscalar! states.

Regarding the nature of the massive diquark states, le
note that they may truly be just resonances in the full theo
since they could decay into pseudo-NG bosons and/or glu
of unbrokenSU(2)c . At high density, however, both the
running couplingas(m) and the effective Yukawa coupling
gY5uD0

2u/F (x);uD0
2u/m are small, and, therefore, thes

massive resonances are narrow.
At the end, we would like to add a few words about t
5-21



o
i-
t
er
th
S

-
ro
nk
nd
rg

ra

-

th
w

MIRANSKY, SHOVKOVY, AND WIJEWARDHANA PHYSICAL REVIEW D 62 085025
higher spin channels that we do not study here. In view
studies in Ref.@13#, it would be of great interest to invest
gate also the case of spin one diquarks, as they migh
rather light in the color superconducting phase. The gen
form of the BS equations for such diquarks are exactly
same as in Eqs.~57!-~60!. Of course, the structure of the B
wave functions would differ.
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APPENDIX A: ANGULAR INTEGRATION

We need to calculate the following traces over the Di
indices:

tr@gmLp
(e)gnLq

(e8)#

5gmn~11ee8t !22ee8gm0gn0t

1ee8
qW mpW n1qW npW m

uqW uupW u
1 . . . , ~A1!

tr@gmg0Lp
(e)gng0Lq

(e8)#

52gmn~12ee8t !1S gm02e
qW m

uqW u
D S gn02e8

pW n

upW u
D

1S gm02e8
pW m

upW u
D S gn02e

qW n

uqW u
D , ~A2!

where e,e8561, t5cosu is the cosine of the angle be
tween three-vectorsqW and pW , and irrelevant antisymmetric
terms are denoted by the ellipsis.

By contracting these traces with the projectors of
magnetic, electric and longitudinal types of gluon modes,
arrive at

Omn
(1) tr@gmLp

(2)gnLq
(1)#

52~12t !
q21p21qp~12t !

q21p222qpt
, ~A3!

Omn
(2) tr@gmLp

(2)gnLq
(1)#

52~11t !
q21p22qp~11t !

q21p222qpt

2~11t !
~q2p!21~q42p4!2

q21p222qpt1~q42p4!2
, ~A4!
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Omn
(3) tr@gmLp

(2)gnLq
(1)#

5~11t !
~q2p!21~q42p4!2

q21p222qpt1~q42p4!2
, ~A5!

Omn
(1) tr@gmLp

(2)gnLq
(2)#

52~11t !
q21p22qp~11t !

q21p222qpt
, ~A6!

Omn
(2) tr@gmLp

(2)gnLq
(2)#

52~12t !
q21p21qp~12t !

q21p222qpt

2~12t !
~q1p!21~q42p4!2

q21p222qpt1~q42p4!2
, ~A7!

Omn
(3) tr@gmLp

(2)gnLq
(2)#

5~12t !
~q1p!21~q42p4!2

q21p222qpt1~q42p4!2
, ~A8!

Omn
(1) tr@gmg0Lp

(2)gng0Lq
(2)#

522~12t !
q21p21qp~12t !

q21p222qpt
, ~A9!

Omn
(2) tr@gmg0Lp

(2)gng0Lq
(2)#

5
2qp~12t2!

q21p222qpt
1~11t !

3
~q2p!22~q42p4!222i ~q42p4!~q2p!

q21p222qpt1~q42p4!2
,

~A10!

Omn
(3) tr@gmg0Lp

(2)gng0Lq
(2)#

52~11t !
~q2p!22~q42p4!222i ~q42p4!~q2p!

q21p222qpt1~q42p4!2
,

~A11!

Omn
(1) tr@gmg0Lp

(2)gng0Lq
(1)#

522~11t !
q21p22qp~11t !

q21p222qpt
, ~A12!
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Omn
(2) tr@gmg0Lp

(2)gng0Lq
(1)#

52
2qp~12t2!

q21p222qpt

1~12t !
~q1p!22~q42p4!222i ~q42p4!~q1p!

q21p222qpt1~q42p4!2
,

~A13!

Omn
(3) tr@gmg0Lp

(2)gng0Lq
(1)#

52~12t !
~q1p!22~q42p4!222i ~q42p4!~q1p!

q21p222qpt1~q42p4!2
,

~A14!

whereq[uqW u, p[upW u, q4[2 iq0, andp4[2 ip0.
Therefore,

I 1
215q2E dVDmn~q2p! tr@gmLp

(2)gnLq
(1)#

'2ipF2

3
ln

~2m!3

ueq
2u31pM2v/2

1 ln
~2m!2

~eq
2!212M21v2

1jG ,

~A15!

I 1
225q2E dVDmn~q2p! tr@gmLp

(2)gnLq
(2)#

'2ipF2

3
ln

~2m!3

ueq
2u31pM2v/2

2
as

p
ln

~2m!2

~eq
2!212M21v2

1j ln
~2m!2

~eq
2!21v2G , ~A16!

whereM252asm
2/p andv5uq42p4u, and
08502
I 2
225q2E dVDmn~q2p! tr@gmg0Lp

(2)gng0Lq
(2)#

'2ipF2
2

3
ln

~2m!3

ueq
2u31pM2v/2

1 ln
~2m!2

~eq
2!212M21v2

2jG , ~A17!

I 2
215q2E dVDmn~q2p! tr@gmg0Lp

(2)gng0Lq
(1)#

'2ipF2
2

3
ln

~2m!3

ueq
2u31pM2v/2

1 ln
~2m!2

~eq
2!212M21v2

2j ln
~2m!2

~eq
2!21v2G . ~A18!

APPENDIX B: A NON-PERTURBATIVE CORRECTION
TO THE SD EQUATION

In light of our analysis in Sec. IV, one could argue th
the SD equation might get a large non-perturbative contri
tion, coming from the pole contributions in the full verte
function; see Eq.~62! and Fig. 4. We recall that the pol
structure of the vertices is related to the existence of NG
pseudo-NG bosons in the theory~for more on this see
Sec. VI!.

If one recalls that the SD equation is quite sensit
to the long range dynamics (uPu!m), it would be very
natural to ask whether the pole contributions to t
vertex function in Eqs.~62! could modify the SD equa-
tion and its solution. The revealed non-perturbative contri
tions could conveniently be combined in matrix form
follows:
dGAm~q1P,q!uP→05
P̃m

PnP̃n
S 3d j

i d8
A~T8!a

b~DqP22D̃qP1! d j
i ~TA!a

3D̃qP1 2 «̂ac
i j ~TA!3

cDqP2

2d j
i ~TA!3

bDqP2 0 0

«̂ i j
cb~TA!c

3D̃qP1 0 0
D . ~B1!
l,

rse
is
des
s
the

s-
FIG. 4. The pole contribution to the vertex asP→0.
It is of great importance to notice that this is longitudina
i.e., dGAm(q1P,q); P̃m[(P0,PW /3). As a result of this
property, the contraction of this vertex with the transve
~with respect toPW ) projector of the magnetic gluon modes
equal to zero. Regarding the other two types of gluon mo
~electric and longitudinal!, the corresponding contraction
are non-zero, and they lead to a finite contribution to
right hand side of the SD equation~21!. We stress that the
vertex in Eq.~B1! is longitudinal with respect toP̃m ~notice
the tilde!, while the projector of the electric modes is tran
5-23
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MIRANSKY, SHOVKOVY, AND WIJEWARDHANA PHYSICAL REVIEW D 62 085025
verse with respect toPm ~no tilde here!. This difference is
responsible for a non-zero contraction involving the elec
gluon modes. It is still, however, the longitudinal gluo
mode that, after being contracted with the vertex in Eq.~B1!,
gives the most significant contribution to the SD equati
By performing the explicit calculation, we arrive at the fo
lowing extra term to the right hand side of the gap equati

dDp
2.2

p

2
asE d4q

~2p!4
tr~gmLq

1g0Lp
2!

3
~q01eq

2!Dq
2

q0
22~eq

2!22uD0
2u2

~ q̃2 p̃!n

~ q̃2 p̃!l~q2p!l

Dmn~q2p!,

~B2!

which results in the following term to the equations forDp
2 :

dDp
2.

as

16p2E dq4dq
Dq

2

q4
21~eq

2!21uD0
2u2

3F2j1OS q4
21~eq

2!2

M2
ln

~2m!2

q4
21~eq

2!2D G ,

.
as

16pE dq4Dq
2

Aq4
21uD0

2u2
F2j1OS q4

2

M2D G , ~B3!

This correction is of the same order as the correction fr
the longitudinal gluon modes in the gap equation~29! when
the bare vertices are used@11#. Therefore, such an additiona
correction could only modify the overall constant factor
the solution forDp

2 . The exponential factor and the overa
power of the coupling constant in the solution should rem
intact.

Of course, as we discussed earlier, the overall constan
the expression for the gap might get other kinds of corr
tions which have not been analyzed here@15,31#. Sorting out
all such corrections is a rather complicated problem tha
outside the scope of this paper.

APPENDIX C: THE ANALYTICAL SOLUTIONS TO
THE BS EQUATIONS

In this appendix, we present the approximate analyt
solutions to the BS equations. In general, our approach
resembles the method commonly used for solving the
equation@11–16#. One of the purposes of the analysis belo
is to illustrate that, while the Meissner effect is irrelevant f
the pairing dynamics of light bound states withM!uD0

2u, it
is crucial for the pairing of quasiclassical bound states~see
Sec. VII A!.

1. NG bosons

Let us start from the BS equation~73! for ~pseudo-!NG
bosons in thex-doublet channel. After performing the sta
dard approximations that were extensively discussed in m
studies of the gap equation@11–16# ~see also Sec. III!, we
arrive at the following integral equation:
08502
c

.

,

n

in
-

is

l
re
p

r

ny

x~p4!.
2as

9p E
0

L dq4x~q4!

Aq4
21uD0

2u2
ln

L

up42q4u1cuD0
2u

,

~C1!

where, for brevity of notation, we usex[x1
2 and L

5(4p)3/2m/as
5/2. Notice that, in accordance with Eq.~24!,

the Meissner effect is taken into account by the termcuD0
2u

in the logarithm. Without loss of generality, we substitu
c51 in what follows.7 The integral equation~C1! could be
approximately reduced to the following second order diff
ential equation:

~p41uD0
2u!x9~p4!1x8~p4!1

n2

4

x~p4!

Ap4
21uD0

2u2
50,

where n5A8as

9p
, ~C2!

subject to the infrared and the ultraviolet boundary con
tions

x8~0!50 and x~L!2uD0
2ux8~L!'0. ~C3!

In order to get an estimate for the solution, we consider
differential equation on the two adjacent intervals, 0<p4

<uD0
2u anduD0

2u<p4<L, separately. The approximate an
lytical solutions that satisfy the boundary conditions
Eq. ~C3! read

x~p4!5C1expS p4

2uD0
2u D FA12n2 coshS p4A12n2

2uD0
2u D

2sinhS p4A12n2

2uD0
2u D G , for 0<p4<uD0

2u,

~C4a!

x~p4!5C2sinS n

2
ln

L1uD0
2u

p4
D , for uD0

2u<p4<L,

~C4b!

whereCi ( i 51,2) are the integration constants. By matc
ing the solutions atp45uD0

2u, we arrive at the following
condition that determines the value of the gap:

ln
L1uD0

2u

uD0
2u

5
2

n
arctanSA12n2coth~A12n2/2!21

n D .

~C5!

7The analysis forc5” 1 is a little more complicated since the tw
scales,cuD0

2u and uD0
2u, are different. Despite this, the final resu

for c5” 1 would remain qualitatively the same as soon asc is a
constant of order 1.
5-24
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This leads to the same~up to an overall constant of orde
one! expression for the gap as in Eq.~32!. Recall that the
latter was derived without taking the Meissner effect in
account. We conclude, therefore, that the solution for
x-doublet NG boson is not sensitive to the screening du
the Meissner effect.

The analysis of the BS equation for~pseudo-!NG bosons
in thel-doublet andh-singlet channels is very similar to th
analysis for thex doublet and we do not repeat it here.

2. Massive diquarks

Let us consider the integral equation~117! for the BS
wave function of the massivex doublet. It is instructive to
start with the analysis of this equation by neglecting
Meissner effect at first. This is achieved by substituti
c50. In this special case, the differential equation reads

p4x9~p4!1x8~p4!1
n2

4
K (x)~p4!x~p4!50,

where n5A8as

9p
, ~C6!

along with the same boundary conditions as in Eq.~C3!. The
kernel @compare with Eq.~118!# is approximately given by

K (x)~p4!5H uD0
2u/~ uD0

2u22Mx
2! for 0<p4<zM

2 uD0
2u,

1/p4 for zM
2 uD0

2u<p4<L,
~C7!

wherezM5AuD0
2u22Mx

2/uD0
2u.

The analytical solutions to the differential equation in tw
qualitatively different regions are given by

x~p4!5C1J0S n

zM
A p4

uD0
2u

D for 0<p4<zM
2 uD0

2u,

~C8a!

x~p4!5C2sinS n

2
ln

L

p4
D for zM

2 uD0
2u<p4<L.

~C8b!

By matching these two solutions atp45zM
2 uD0

2u, we obtain

ln
L

zM
2 uD0

2u
5

2

n
arctanS J0~n!

J1~n! D1
2pn

n
, n51,2, . . . .

~C9!

By comparing this with the gap equation~136! ~see also
Appendix B in Ref.@11#!, we derive the following spectrum
of massive diquarks in absence of the Meissner effect:

Mn5uD0
2uA12expS 2

2pn

n D , n51,2, . . . .

~C10!

Below we argue that none of these massive states sur
after the Meissner effect is taken into account. In fact, thi
08502
e
to

e

ve
s

almost obvious when we notice that the BS wave functio
that correspond to the states with masses in Eq.~C10! have
rather rich node structure in the far infrared region 0,p
!uD0

2u. Topologically, thenth wave function has exactlyn
zeros. Thesen zeros appear at

p4
(k)5uD0

2uexpF2
2

n S pk2arctan
J0~n!

J1~n! D G , k51,2, . . . ,n.

~C11!

In the weakly coupled theory,n!1, we find that p4
(k)

!uD0
2u for anyk. This suggests that after taking the Meissn

effect back into consideration, the mentioned structure of
nodes in the BS wave functions of the massivex diquarks
would become impossible due to the strong screening eff
of the gluons in the infrared region 0,p4&uD0

2u.
To substantiate the claim of the previous paragraph, le

now consider the equation where the Meissner effec
qualitatively taken into account. We arrive at the followin
differential equation:

~p41uD0
2u!x9~p4!1x8~p4!1

n2

4
K (x)~p4!x~p4!50,

where n5A8as

9p
. ~C12!

The wave function should again satisfy the boundary con
tions in Eq. ~C3!. To get the estimate for the solution, w
consider the differential equation on the three adjacent in
vals, 0<p4<zM

2 uD0
2u, zM

2 uD0
2u<p4<uD0

2u, and uD0
2u<p4

<L, separately. The corresponding analytical solutions r

x~p4!5C0expS p4

2uD0
2u D FAzM

2 2n2 coshS p4AzM
2 2n2

2zMuD0
2u D

2zM sinhS p4AzM
2 2n2

2zMuD0
2u D G for 0<p4<zM

2 uD0
2u,

~C13a!

x~p4!5C1FG12
20S p4

uD0
2u U12

n2

4

0 1
D 1C2

p4

uD0
2u

1F1

3S 11
n2

4
,2,2

p4

uD0
2u D G for zM

2 uD0
2u

<p4<uD0
2u, ~C13b!

x~p4!5C3sinS n

2
ln

L1uD0
2u

p4
D for uD0

2u<p4<L,

~C13c!

whereG12
20 is the Meijer’sG function. The solutions in the

first and the last regions are chosen so that they satisfy
boundary conditions in Eq.~C3!.
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We note that the ultraviolet asymptote~C13c! of the BS
wave function of a massive doublet coincides with that of
NG boson~C4b!. Moreover, this property is shared by a
massive states that exist, irrespective of the value of t
mass. Now, unlike the wave functions of~pseudo-!NG
bosons which have no nodes, the BS wave functions of m
sive excitations should have at least one zero somewhe
the region 0<p4,L. Since, in agreement with our previou
statement, there cannot be any nodes in the ultraviolet re
in
on
s

r
ve
0
e
nd
th
xt
a

H

.

.

.
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uD0
2u,p4,L, they might occur only in the infrared, 0<p4

<uD0
2u.

By matching the logarithmic derivatives of the solutio
at p45zM

2 uD0
2u and p45uD0

2u, we obtain the two different
expressions for the integration constantC2:

C25F~zM ! and C25F~1!, ~C14!

where the explicit form of functionF(z) reads
n2z1
2F1S 11

n2

4
,2,2z2D1zFAz22n2 cothS zAz22n2

2 D 2zGF21F1S 11
n2

4
,2,2z2D2z2S 11

n2

4 D
1

F1S 21
n2

4
,3,2z2D G

2z@Az22n2 coth~zAz22n2/2!2z#G12
20S z2U2n2/4

0 0D 2n2G12
20S z2U12n2/4

0 1D
.

~C15!
tion
n in
tion

n
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he
Notice that we used the gap equation~C5! to derive the sec-
ond expression in Eq.~C14!.

The spectrum of massive excitations~if any! should be
determined by the solutions of the equationF(z)5F(1)
wherez,1. Note that the obvious solutionz51 corresponds
to the no-node wave function of the NG boson. By study
the equation numerically, we find that there are no soluti
which would correspond to wave functions with node
However, in addition to thez51 solution, there is anothe
solution for z,1. This latter also corresponds to a wa
function without nodes in the whole region of momenta
<p4,L. In fact, its shape barely differs from the wav
function of the NG boson. In the spectral problem at ha
however, one does not expect to have two solutions with
same no-node topology. Therefore, we believe that the e
solution is an artifact of the approximations used. Its appe
ance apparently results from twodifferent splittings of the
g
s
.

,
e
ra
r-

whole region of momenta into separate intervals forM50
and M5” 0 cases. This is also supported by the observa
that, because of the Meissner effect, the BS wave functio
the doublet channel is always almost a constant func
~and, therefore, cannot have zeros! in the infrared region
0<p4,uD0

2u. This is seen already from the integral versio
of the BS equation~117!. It is natural that there is only one
no-node solution to the BS equation. Since the BS wa
function of the NG boson is such a solution, no other no
trivial solutions should exist in the doublet channel.

The analysis of the BS equation for thel antidoublet is
similar and we do not repeat it here. The analysis for
singlet is presented in Sec. VII B in detail. There the Mei
ner effect is qualitatively taken into account by consideri
only the interaction that is mediated by the gluons of t
unbrokenSU(2)c subgroup.
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