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Remark on the classical solution of the Chaplygin gas as d-branes
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The classical solution of a bosonic d-brane in (d11,1) space-time is studied. We work with the light-cone
gauge and reduce the problem into a Chaplygin gas problem. The static equation is equivalent to the vanishing
of the extrinsic mean curvature, which is similar to Einstein’s equation in vacuum. We show that the d-brane
problem in this gauge is closely related to the plateau problem, and we give some nontrivial solutions from
minimal surfaces. The solutions ofd21,d,d11 spatial dimensions are obtained fromd-dimensional minimal
surfaces as solutions of the plateau problem. In addition we discuss the relation to the Hamiltonian-BRST
formalism for d-branes.

PACS number~s!: 11.10.Kk
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I. INTRODUCTION

The theory of the d-brane in (d11,1) space-time is
equivalent to fluid dynamics. This was first found by Gol
stone, and developed by Hoppe and Bordemann@1,2#. Start-
ing from the Nambu-Goto action, they fixed the time re
arametrization by using the light-cone gauge and solved
momentum constraint in a miraculous way with some ga
condition. The action obtained in this way gives
d-dimensional irrotational Euler equation with a given pre
sure as

v̇1v•¹v52
¹P

r
, P52

2l

r
, v5¹u, ~1!

wherer is the matter density,l is some constant, andu is
velocity potential. The action has the form

SC5E dd11r Fuṙ2S r
~¹u!2

2m
1

l

r D G . ~2!

Because of the last term we can eliminate ther variable
from the theory by using an equation of motion if we ta
lÞ0. Then we have

SC522AlE dd11r F u̇1
~¹u!2

2m G1/2

. ~3!

This kind of fluid is called Chaplygin gas~see Ref.@7#!, and
it hasd12 dimensional Poincare´ symmetry with each gen
erator given by Hoppe@2#. The similar discussion is als
given in four-dimensional scalar field theory using light-fro
formalism given by Jevicki@10#. For the theory of fluid,
time, and space translation~energy and momentum conse
vation!, rotation ~angular momentum conservation!, Galileo
boost, and phase symmetry~matter conservation! are the
natural symmetries. But the number of these generator
totally (d213d14)/2 and is missingd11 generators to
construct d12 dimensional Poincare´ generators. These
d11 generators are the hidden symmetries in the theor
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fluid dynamics, and this point was made clear by Bazeia
Jackiw. One is the time-rescaling symmetry~dilatation!, and
otherd generators induce the field dependent transforma
~FDT! which mixes the dynamical field with space-time@5#.
On the other hand, Hoppe@2# has also shown another gaug
fixing ~we call Cartesian parametrization hereafter! which
reduces the Nambu-Goto theory to Poincare´ invariant Born-
Infeld model given by

SBI5E dd11r @uṙ2Ar2c21a2Am2c21~¹u!2# ~4!

or its other representation

SBI52aE dd11rAm2c22~]mu!2. ~5!

In the nonrelativistic limit, this model agrees with the Cha
lygin gas. These two models are equivalent and are tra
formed to the other by exact transformation@7#. Several au-
thors have given classical solutions of these two mod
@2–9#. In this paper we pay special attention to the sta
solutions. This is worthwhile because, if we find one sta
solution, we get the various time dependent solutions
combining Galileo boost and FDT. There is another rea
of considering the static solution. The essence of these C
lygin and Born-Infeld model is the theory of minimal surfac
or saying Plateau problem, and its typical form is the sta
equation. From this correspondence, the time depen
equations can also be rewritten into static form by us
some ansatz. The static equation has special symmetry w
we call generalized scale transformation. On this symme
we discuss its geometrical meaning in Sec. II. In Sec. III
discuss the solution of static equation, and we show t
there are some new nontrivial solutions as minimal surfac
In Sec. IV we discuss the time dependent solution in
sense of Plateau problem. In Sec. V the relation
Hamiltonian-BRST formalism is discussed. In Sec. VI co
clusions are given.
©2000 The American Physical Society23-1
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II. GEOMETRY AND SYMMETRY
FOR CHAPLYGIN GAS

It is easy to see thatd-dimensional Chaplygin gas has th
(d12)-dimensional Poincare´ symmetry if we start from
d-brane theory. There is another generalized scaling sym
try, which we will see in the following. Let us start from th
Chaplygin gas equation with onlyu variable.

]
]t

1

Au̇1~¹u!2/2m
1¹•S ¹u/m

Au̇1~¹u!2/2m
D 50. ~6!

If we consider the time independent solution, the equat
takes quite simple form, such as

¹•S ¹u

A~¹u!2D 50. ~7!

The same equation can be obtained by taking the m
less limit. This equation means that the surfa
u(r 1,r 2, . . . ,r d)5const has zero extrinsic mean curvatu
where r 1,r 2, . . . ,r d are Cartesian coordinates on bran
We will show this connection in the following. Let us in
troduce the (d21)-dimensional hypersurface defined b
u(r 1,r 2, . . . ,r d)50 in d-dimensional Euclidean spac
~d-brane!. We can introduce (d21)-dimensional coordinate
(q1,q2, . . . ,qd21) on that surface with its induced metric a

gi j [
]rW

]qi
•

]rW

]qj
, ~8!

where$ i , j , . . . % run from 1 tod21. Inverse metric is de-
fined asgi j . Further we introduce another coordinateqd nor-
mal to that surface. The surface is then specified byqd50.
The set$q1, . . . ,qd% construct the curvilinear coordinate i
d-dimensional space. We use lowercase Latin indi
$a,b, . . . % for the set of coordinates fromq1 to qd and
uppercase Latin indices$A,B, . . . % for the set of coordinates
from r 1 to r d. Then the metric in this curvilinea
d-dimensional space on the surface (qd50) is given as

gab5S gi j 0

0 gdd
D ,

gab5S gi j 0

0 gddD .

Now we define extrinsic curvature by using metric on s
face, and normal unit vectornW to the surface. The extrinsi
curvature is defined as

k i j [2
]nW

]qi
•

]rW

]qj
, ~9!

and extrinsic mean curvature is given as

k[gi j k i j . ~10!
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Note thatnW is defined only on surface and it does not depe
on qd. If we transport the normal unit vector on surface,
direction changes, and its difference projected to the surf
is the extrinsic curvature@11#. Then we can show that extrin
sic mean curvature is equal to2div(nW ):

k[gi j k i j 52gi j
]nW

]qi
•

]rW

]qj

52gab
]nW

]qa
•

]rW

]qb

52
]qa

]r A

]qb

]r A

]nB

]qa

]r B

]qb

52
]nA

]r A

[2div~nW !. ~11!

Therefore our static equation for Chaplygin gas means

k50, ~12!

which is similar to Einstein equation in vacuumR50. There
is deep relation between intrinsic and extrinsic curvature@11#

R5k22k i j k
i j . ~13!

The surfaces satisfyingk50 are called ‘‘minimal surface,’’
and various solutions are known. These solutions are
cussed in next section. Here we clarify the symmetry
Eq. ~7!. It is trivial that this equation is invariant under

u→u85F~u!, ~14!

whereF(x) is any real function satisfyingdF/dxÞ0. So ifu
is the solution,F(u) is also the solution. This point is als
noted in Ref.@9#. We call this symmetry as generalized sca
invariance. Under this transformation, action is not invaria
but the equation of motion is invariant. This kind of fa
occurs usually in scale transformation@12#, and scale trans-
formation corresponds to a special choice ofF. Note that we
cannot use Noether theorem because it is not the symm
of action. We can show another equation of motion, wh
has time dependence and invariance under this transfo
tion:

V5k1const, V5
u̇

u¹uu
, ~15!

whereV is the velocity of growing surfaceu(rW,t)50. This
equation is called as mean curvature flow equation, and p
important role in the theory of crystal growth. This is foun
by Ohta, Jasnow, and Kawasaki in 1982@13#, and discussed
by several authors@14–16#. In this theory, physical quantity
is not u itself, but is the surface defined byu50. There-
fore the symmetry~14! is natural if we fixF(x) to satisfy
F(0)50. ~This can be done without loss of generality, if w
3-2
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REMARK ON THE CLASSICAL SOLUTION OF THE . . . PHYSICAL REVIEW D 62 085023
pull out another trivial symmetryu85u1const.! Only in the
static case is this theory the same as ours. This symmet
important to solve time dependent equation~6!. Starting
from one static solution, we have infinitely many static so
tions by transformationF. Then we boost it to obtain the
time dependent solutions, and change it in a nontrivial w
by using FDT. The time-dependent solutions obtained
way depend on the choice of functionF. In this sense, this
symmetry remains in the time-dependent solution due to
Galileo invariance of the theory. So it may be possible
say, this generalized scale symmetry is hidden in the the
of Chaplygin gas. Then we can give a conjecture that
mean curvature flow equation~15! has the possibility to
transform into Eq.~6!. In addition, if we take the massles
limit for the Born-Infeld model, this symmetry clearly ap
pears as we see from its time-dependent equation of mo

Born-Infeld model→
m→0

]mS ]mu

A~]au!2D 50. ~16!

III. SOLUTION OF kÄ0

A. Standard consideration

Let us construct the classical solution for static Chaply
gas~7! by using separation of variables method. This eq
tion can be written in the form.

Gi jkl ] iu•] ju•]k] lu50, Gi jkl [d i j dkl2d ikd j l . ~17!

We look for special solution of the form

u~r 1,r 2, . . . ,r d!5u (1)~r 1!•u (2)~r 2!•••u (d)~r d!. ~18!

Putting this form into the equation, we obtain

(
iÞ j

F S ] iu
( i )

u ( i ) D 2
] j

2u ( j )

u ( j )
2S ] iu

( i )

u ( i ) D 2S ] ju
( j )

u ( j ) D 2G50. ~19!

Introducing the new variable by

Zi[ logu ( i ), ~20!

we write our equation as

(
i . j

f i j ~r i ,r j !50, f i j [@~] iZ
i !2] j

2Zj1~] jZ
j !2] i

2Zi #.

~21!

Here we assume further that all thef i j ’s vanish.
Then we get

] j
2Zj5l j~] jZ

j !2, l j1l i50. ~22!

Zi satisfies the same equation. The solution is given by

Zj5Ajr
j1Bj for l50 ~23!

and Zj5Cj2
1

l j
logur j2Rj u for lÞ0,

~24!
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whereA,B,C,R are the integration constants. Therefore w
have

u ( j )5exp@Ajr
j1Bj #, u~r 1,r 2, . . . ,r d!5F~AW •rW1B!,

~25!

in the case ofl50. whereF is any function, andAW ,B are
constants. This solution has been obtained by Jackiw
Polychronakos@7#. Here we have another new solution.
the case oflÞ0, l i1l j50 should be hold for any pai
( i , j ) which is possible only whend52 ~membrane!. Then
we have the solution

u~x,y!5CS y2y0

x2x0
D a

, ~26!

whereC,x0 ,y0 ,a are constants.
Using the generalized scale transformation, this can

extended into

u~x,y!5FS y2y0

x2x0
D . ~27!

This is the any function of rotation angle centered at (x0 ,y0).
Therefore the normal vector for the surfaceu5const con-
structs a vortexlike vector field. As this solution has sing
larity at the origin, we should consider the membrane w
finite area and appropriate boundary condition, where
origin is taken to be outside.

This solution is related to the higher dimensional solutio
helicoid by choosing the form ofF. Let us define

a[az1b1FS y2y0

x2x0
D .

For a to satisfy the static equation~7! again, we need the
relation

¹•

F8~f!¹f

Aa21F8~f!2~¹f!2
50, f[

y2y0

x2x0
.

Then the left-hand side~LHS! has the following form:

2]x

y2y0

A~a2~x2x0!4/F82!1r 2
1]y

x2x0

A~a2~x2x0!4/F82!1r 2
,

r 2[~x2x0!21~y2y0!2.

If the denominator is a function of onlyr, the sum of these
terms vanishes. This occurs whenF8(f)5(x2x0)2f (r ) is
satisfied. From dimensional analysis,f 5const/r 2 holds. This
gives

F8~f!5const3
1

11f2
,

which leads toF(f)5arctan(f) up to multiplicative con-
stant. So we come to a three-dimensional solution known
a helicoid:a50,
3-3
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NAOHISA OGAWA PHYSICAL REVIEW D 62 085023
a[az1b1arctanS y2y0

x2x0
D . ~28!

The first two static solutions are not surprising in the vie
point of geometry, because the surfaceu5const should have
zero mean curvature. The first solution gives the flat surf
which is normal toAW , and the surface given by the seco
solution is the half straight line, which is flat except for th
terminal. In d52 the surfaceu5const gives the one
dimensional line, which should be straight from geometri
requirement. In this sense these two solutions are gen
ones up to generalized scale invariance ford52. For higher
dimensions we have other solutions as we have seen od
53 solution. In fact some minimal surfaces are known ad
53, and they are explained in the next subsection.

B. dÄ3 static solutions as minimal surfaces

If we find the minimal surface asG(r 1,r 2, . . . ,r d)50,
we have

k@G#[¹•S ¹G

A~¹G!2D 50 on G50. ~29!

The key point is that LHS vanishes only on the surfa
G50. This is the difference to our solutions where the me
curvature vanishes everywhere even forGÞ0. In a spe-
cial case where we write the functionG as G[r d

2 f (r 1,r 2, . . . ,r d21), k@G# does not depend onr d at all.
Then k@G#50 is satisfied without conditionG50. There-
fore this minimal surface can be the solution of our proble
Our static solution for Chaplygin gas is given as

u~rW !5F@G~rW2RW !#, ~30!

whereF is any analytic function, andRW is the constant. In the
following we show some minimal surfaces.~We have non-
trivial minimal surfaces atd>3. Becausek50 does not
mean flat. For any point on hypersurfaceG50, we can take
d21 orthogonal tangent vectors. The mean curvature is
sum of extrinsic curvatures for each direction.!

Let us here discussd53 case which is well studied as
Plateau problem. In this case some nontrivial minimal s
faces are known@17#.

One example is the catenoid given as

Ax21y22a cosh
z

a
50, ~31!

wherea is the positive constant. Another example is the rig
helicoid which we have seen before.

x5u cosv, y5u sinv,

z5av1b; y2x tanS z2b

a D50,

~32!
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whereu andv are the real parameters,a andb are the con-
stants. We present two new examples.

The first one is Scherk’s minimal surface, which is giv
as

ez cosx2cosy50. ~33!

The second one is Enneper’s minimal surface, which is gi
as

x53u13uv22u3, y5v323v23u2v, z53~u22v2!.

~34!

For right helicoid we have solutions as Chaplygin gas,

u~x,y,z!5F@y2y02~x2x0!tan~az1b!#

or u~x,y,z!5F@x2x02~y2y0!/tan~az1b!#

or u~x,y,z!5FFz2z02arctanS y2y0

x2x0
D G . ~35!

For Scherk’s minimal surface

u~x,y,z!5FS z2z02 logUcos~y2y0!

cos~x2x0!
U D ,

or u~x,y,z!5F$x2x02arccos@e6(z2z0)

cos~y2y0!#%. ~36!

For the catenoid,

u~x,y,z!5FFx2x06Aa2cosh2S z2z0

a D2~y2y0!2G ,
or

u~x,y,z!5FFz2z02a cosh21SA~x2x0!21~y2y0!2

a D G .
~37!

But for Enneper’s one we cannot simply write it in th
form G(x,y,z)50. So it is still not clear at this stage. W
only put the extrinsic curvature and induced metric on t
surface:

gi j 59~11u21v2!2S 1 0

0 1D ,

k i j 56S 1 0

0 21D .

which leads tok50 on the surface.
From the above consideration, at least we have th

kinds of new nontrivial static solutions for Chaplygin gas
d53. For catenoid and helicoid solutions, they are also d
cussed by Gibbons@9# for the static Born-Infeld model. Fo
these static solutions, time dependence can be introduce
Galileo symmetry and then changed by FDT. In this way
can construct as manyd53 solutions as the minimal sur
3-4
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REMARK ON THE CLASSICAL SOLUTION OF THE . . . PHYSICAL REVIEW D 62 085023
faces. It should be stressed that catenoid solution can
easily extended to any dimensions by using the ansatz

u5r d2 f ~ r̄ !, r̄ 25~r 1!21~r 2!21•••1~r d21!2.

Some of the minimal surfaces are determined by mini
zation of area with fixed boundary. This is the well-know
Plateau problem. If we give the boundary as a closed lo
the shape of the soap membrane can be determined by m
mization of area. This is just the minimal surface:k50 ev-
erywhere on surface.~The opposite is not necessarily true!
On this point we give a bit of explanation. Let us consid
the surface asz5 f (x,y) with some fixed boundaryC ~closed
loop!. Then the surface with minimal area with fixed boun
ary is given by

dG@ f #50, G@ f #[E E
D

dxdyA11~¹ f !2, ~38!

whereD is the region closed byC projected to thex-y plane,
and¹ is for x andy. The reason is simple. The infinitesim
area of surface is

dG5
dxdy

nz
,

where nW is the normal unit vector to that surface. This
given by

nW 5
¹u

u¹uu
5S 2]xf

A11~¹ f !2
,

2]yf

A11~¹ f !2
,

1

A11~¹ f !2D .

Here we writeu[z2 f (x,y). The variation ofG gives the
equation

]

]x S ]xf

A11~¹ f !2D 1
]

]y S ]yf

A11~¹ f !2D 50. ~39!

This is rewritten as

¹S ¹u

u¹uu D50. ~40!

This means the surface is minimal: extrinsic mean curva
is vanishing. So we should finally say that, finding the so
tion of d-dimensional static Chaplygin gas is similar to fin
ing the (d21)-dimensional minimal area surface
d-dimensional space. The relation to Plateau problem w
our time dependent d-brane theory will be discussed in
next section.

IV. TIME DEPENDENT SOLUTIONS
AND PLATEAU PROBLEM

We show the time dependent solutions and their conn
tions with Plateau problems in this section. The Plateau
tion G in Eq. ~38! has a good similarity with the time depen
dent action for Chaplygin gas and Born-Infeld model.

First we consider the Chaplygin gas with action~3!. We
08502
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look for the solution in the form

u5t2A2m f~rW !. ~41!

Then the equation forf (rW) is the same as Eq.~39!. This is
the minimum area problem for hypersurfacez5 f (rW), or the
Plateau problem in (d11)-dimensional space. The bounda
condition is the one for the d-brane. Note that in this ca
there is no generalized scale symmetry forf. The dimension
of surface is nowd but notd21.

Therefore if we haved-dimensional minimal surface, we
can construct the solution ofd-spatial dimension as above
We should remark that this time dependent solution is ti
independent in the sense of fluid mechanics. Because
velocity vW 5¹u, and the densityr which is obtained from
u̇ and¹u, are really time independent. To obtain the expli
time dependence, FDT or Galileo boost is necessary.

Next we come to the Born-Infeld model with rescale
action of Eq.~5!:

SBI52E dtddrA12~]mu!2. ~42!

For this action, if we take an ansatz such asu5t2b(rW), b
satisfies Eq.~7!, and b50 gives the (d21)-dimensional
minimal surface ind-dimensional space. So we come aga
to the Plateau problem. This ansatz was discussed by Ho
@3# in the d52 case.

Let us show another observation of other differe
problems. If we compare Eq.~42! with action ~38!, this is
just the relativistic version of Plateau problem, and w
should consider the (d11)-dimensional minimal surface a
z5u(t,r 1,r 2, . . . ,r d) in (d12)-dimensional Minkowskian
space, in which the essence is the same as the orig
Nambu-Goto action: minimization of world surface. It
possible to rewrite this Born-Infeld action i
(d12)-dimensional form as we have discussed already.
xA5$t,r 1,r 2, . . . ,r d,z% and taking metric hAB5(1,21,
21, . . . ,21). Then for a new variablea,

a[z2u~ t,r 1,r 2, . . . ,r d!, ~43!

the action

SBI52E dtddrdzA2hAB]Aa•]Ba, ~44!

gives the same theory as the Born-Infeld model. The eq
tion of motion is

]

]xA S ]Aa

A~]Ba!2D 50. ~45!

This means that a50 is the (d11)-dimensional
‘‘Minkowskian minimal surface’’ just like Eq.~7!. The gen-
eralized scale symmetry appears here, but the‘‘ga
choice’’ a5z2u(t,r 1,r 2, . . . ,r d) gives the Born-Infeld
model.
3-5



.
n

e
se

iv
r-
-

tic

el

iv
g

b

n

en
e

in

b
n

t
th
ar
e
co
S

rst

tive
ge
nto
n-

he
ac
ite

and

as
y
ce.
e

ix

ge

NAOHISA OGAWA PHYSICAL REVIEW D 62 085023
The property of (d11)-dimensional Minkowskian mini-
mal surface given by Eq.~45! with weaker conditiona50
has been discussed by several authors@4,8,9#, though they
did not discuss the connection with the Plateau problem

A solution constructed by elliptic Weierstrass functio
forming the BIonic crystal ford52 appears. Here we giv
new different special solutions, based on quite simple ob
vations. By comparing Eq.~45! with Eq. ~7!, the difference
appears only on signature for the square of the time der
tive. So if we take analytic continuation for minimal su
faces, we obtain the solution fora. For example, some so
lutions of the Plateau problem ind53 is known, and if we
change one variable to imaginary time: for example,y5 i t ,
the ‘‘Minkowskian surface:’’ z5 f (x,t) is obtained. Then
a5z2 f (x,t) satisfies Eq.~45!. Thereforef is the solution of
the Born-Infeld model.

Let us see somed51 solutions of Eq.~45! constructed
from three typical minimal surfaces by using the analy
continuation. First from the catenoid

uBI5Av22cos2@v~ t2t0!#2~x2x0!2. ~46!

From the right helicoid,

uBI5~x2x0!tan~vt1b!. ~47!

From the Scherk surface,

uBI5 logUcosh~ t2t0!

cos~x2x0!
U. ~48!

By using the transformation from the Born-Infeld mod
to Chaplygin gas, the solutions ford51 Chaplygin gas
are obtained. They should be some general solutions g
by Bazeia@6#. In this way there will be a path between strin
in ~2,1! dimensions and Plateau problem ind53. Inversely
starting from general solution ford51 Chaplygin gas,
we might obtain the general solution for Plateau pro
lem in d53. Therefore we can obtain (d21,1) Born-
Infeld solutions from d-dimensional minimal surface in
(d11)-dimensional space.

V. A COMMENT ON THE RELATION
TO HAMILTONIAN-BRST FORMALISM

The treatment of constraint problem for the membra
theory has been discussed for a long time. The problem
due to its property of open-algebra, that is, the field dep
dence of structure constant for the Poisson brackets betw
first class constraints. The Hamiltonian Batalin-Fradk
Vilkovisky, ~BFV! Becchi-Rouet-Stora-Tyutin~BRST! for-
malism of path-integral has reached to the result given
Henneaux@18,19#. For the path integral in configuratio
space, Fujikawa and Kubo have given another way@20#.
These two methods are equivalent and constructed on
basis of explicit covariant gauge for target space. For
equivalence see the Appendix. In both cases, there appe
four-ghost term, and it seems usual for the general d-bran
have such ghost terms. But this is not true for other non
variant gauges. The starting idea on Hamiltonian BFV-BR
08502
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formalism is to introduce the covariant gauge for the fi
ordered~Hamiltonian formed! path-integral formula.~I mean
the covariant gauge as the one including the time deriva
of auxiliary field.! In this sense even if we take the gau
function equals to zero, gauge is fixed already to take i
account the time derivative of auxiliary field as gauge co
dition in this formalism@18,21#. So if we work with other
gauge, this framework fails.

In the framework given by Hoppe and Bordemann, t
gauge condition was not so clear in the way of the Dir
method for the diffeomorphism symmetry. But the qu
simple gauge conditionXi5r i to fix that local symmetry
gives the same result as the ones earlier given by Hoppe
Bordemann. This is shown by Hoppe himself in Ref.@3#. Use
of this gauge condition with light-cone gauge~Cartesian
gauge! changes the action into the form of Chaplygin g
~Born-Infeld model!, which takes canonical form completel
as Eq. ~2!, and we have no ghosts in this gauge choi
In fact if we work with Faddeev-Senjanovic formula, w
can show it explicitly ~even if we start from BFV-
BRST framework, this is so; on this point see the Append!.
We start from Nambu-Goto action for (d11,1)
Minkowskian target space (X0

•••Xd11) in (d,1) parameter
space-time (r 0[t,r 1, . . . ,r d):

S52E dd11rAG, G[~21!d detFhAB

]XA

]r m

]XB

]r n G ,

~49!

Z5E DXDP )
m

d~Tm! )
n

d~xn!udet$Tm ,xn%u

3expS i E dtddrPAẊAD , ~50!

whereTm is the Hamiltonian-momentum constraint, andxn

is the gauge condition. Let us choose the light-cone gau

x05
1

A2
~X01Xd11!2t, xk5Xk2r k ~k51;d!,

~51!

with the definitionu[1/A2(X02Xd11). Then we obtain

Z5E DuDr expS i E dtddr Fu ṙ2
r

2
~¹u!22

1

2rG D , ~52!

where r[(1/A2)(P02Pd11). If we take the Cartesian
gauge

x05X02t, xk5Xk2r k ~k51;d!, ~53!

with the definitionu[Xd11, we obtain

Z5E DuDr expS i E dtddr @u ṙ2Ar221A11~¹u!2# D ,

~54!
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where r[Pd11. These are the Chaplygin gas and Bor
Infeld model.

VI. CONCLUSION

We have discussed the classical solutions for Chaply
gas as d-branes. The static equation for this theory has
geometrical meaning as vanishing extrinsic mean curvat
This means that theu field extended on the d-brane is co
sidered as the set of contour lines, and these lines, or
these surfaces, have the vanishing mean curvature. Such
faces of vanishing mean curature are known as minimal
faces. As a result if we find oned-dimensional minimal sur-
face in (d11)-dimensional space, we have a sta
(d11)-dimensional solution for Chaplygin gas. In this wa
we have shown some examples of static solutions for Ch
lygin gas from minimal surfaces. Furthermore if we fix th
time dependence asu5t2A2m f(rW), we obtain the solutions
of d-spatial dimensions from thed-dimensional minimal sur-
face in (d11)-dimensional space. For the Born-Infe
model, this is just the relativistic extension of Plateau pro
lem and this interpretation has the same mean
as original Nambu-Goto action: minimization of area f
world hypersurface. Solving this Born-Infeld model as
Minkowskian plateau problem will be interesting. This is n
only because of its intuitive form, but also for its connecti
with usual plateau problem by analytic continuation. For e
ample, the general solutions for Plateau problem ind53
might be obtained from the general solution given by Baz
@6# for the string in~2,1! space time. In many cases our tw
models are closely related to the plateau problem. If we fi
d-dimensional minimal surface in (d11)-dimensional space
we obtain the solutions of Chaplygin gas ford and d11
spatial dimension, and the solutions of Born-Infeld model
d11 andd21 spatial dimensions. Since these two mod
are related by exact transformation, we obtain the soluti
of d21,d,d11 spatial dimensions fromd-dimensional mini-
mal surfaces. The theorem for the existence of solution
Plateau problem is related to the mapping theorem of R
mann in the theory of conformal mapping@23#. To study this
point as physics may be an interesting open problem.
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APPENDIX

For the membrane theory, Hamiltonian-BRST formalis
takes the form
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Seff5E dt@PAẊA1ĊmC̄m1ḣmh̄m1PmṄm

1$QB ,C̄mNm1h̄mxm%#, ~A1!

QB5hmPm1V,

V[CmTm1CmCn(1)Unm
l C̄l1CmCnCr(2)Urnm

ls C̄sC̄l ,
~A2!

whereC,C̄,h,h̄ are Grassmannian odd ghost fields,P,N are
the auxiliary fields,x is the gauge fixing function, andTm is
the Hamiltonian and momentum constraint.(1)U is the struc-
ture constant for the Poisson brackets between 1st class
straints, and(2)U is introduced to obtain the nilpotency o
QB . It is proved that the theory does not depend on
choice ofx @18,19#. Even if we takex50, gauge is fixed
already since gauge condition isṄ1x50 @21#. Two-
dimensional spatial integration is included in the contract
of indices. The indicesm,n,r, . . . , run from 0 to 2 with
spatial integration. All the variables are forming the cano
cal sets. For the path integral

Z5E DXDPDC̄DCDh̄DhDNDP exp@ iSeff#, ~A3!

we change the integral variables ash̄→eh̄, P→eP,
x→x/e then the path-integral measure does not chan
Then we take limite→0 which reduces the theory into

Seff5E dt@PAẊA1ĊmC̄m2hmC̄m2Pmxm

1$V,C̄mNm1h̄mxm%#. ~A4!

If we choosex5x(X,P), h integration can be performe
and to obtainC̄50. In that case, the theory reduces to

Seff5E dt@PAẊA2Pmxm2TmNn1Cm$Tm ,xn%h̄n#.

~A5!

This is clearly equal to the Faddeev-Senjanovic formula.
this way if we work with gaugelike light-cone or Cartesia
we come to the Faddeev-Senjanovic formulation even if
start from BFV-BRST formalism. But for general choice
gauge, this no longer holds. Starting from Eq.~A4!, we have

Seff5E dt@PAẊA1ĊmC̄m2hmC̄m2Pmxm

1$V,C̄mNm1h̄mxm%#

5E dt@PAẊA1ĊmC̄m1dB~NmC̄m1h̄mxm!#,

~A6!

where

dBF~X,P,C,C̄![$V,F~X,P,C,C̄!%,
3-7
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dBPm50,

dBhm50,

dBNm5hm,

dBh̄m52Pm . ~A7!

These defined BRST transformations are proved to be ni
tent, and it is easily seen thatP,h,N,h̄ are forming the
BRST quartet. The theory starting from the action~A6! is
given by Caicedo, Restuccia, and Torrealba and called
modified BFV quantization@22#, although they do not dis
cuss the reduction from the Hamiltonian BRST formalism
above. Then we take the gauge condition given by Torrea
and Restuccia

x05N021, x15N1, x25N2. ~A8!

h,h̄,P,N integrations can be performed explicitly, and w
obtain the form
s

u
n

iw

.P

ys

08502
o-

e

s
a

Z5E DXDPDCDC̄ expS i E dt@PAẊA1ĊmC̄m2Heff# D ,

Heff5T012Cn(1)Un0
l C̄l13CnCr(2)Urn0

ls C̄sC̄l . ~A9!

Here we take the boundary condition that ghosts vanish
the boundary of the membrane. Because the Hamiltonia
quadratic for momentum, the momentum integration can
performed explicitly and gives

Seff5E dtd2r F1

2
Ẋ22

1

2
det@Gkl#1 iC̄mĊm2 iC̄0]kC

kG ,
Gkl[gkl1 iC̄k] lC

01 iC̄ l]kC
0, ~A10!

where we have changed the variableC̄→2 iC̄. This is
Fujikawa and Kubo’s formulation of membrane theor
From the above consideration, we have shown various
mulations are equivalent up to gauge choice and bound
condition for ghosts.
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