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Remark on the classical solution of the Chaplygin gas as d-branes
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The classical solution of a bosonic d-brane ih(1,1) space-time is studied. We work with the light-cone
gauge and reduce the problem into a Chaplygin gas problem. The static equation is equivalent to the vanishing
of the extrinsic mean curvature, which is similar to Einstein’s equation in vacuum. We show that the d-brane
problem in this gauge is closely related to the plateau problem, and we give some nontrivial solutions from
minimal surfaces. The solutions df-1,d,d+ 1 spatial dimensions are obtained frahdimensional minimal
surfaces as solutions of the plateau problem. In addition we discuss the relation to the Hamiltonian-BRST
formalism for d-branes.

PACS numbsd(s): 11.10.Kk

[. INTRODUCTION fluid dynamics, and this point was made clear by Bazeia and
Jackiw. One is the time-rescaling symmetdjlatation), and
The theory of the d-brane ind@1,1) space-time is otherd generators induce the field dependent transformation
equivalent to fluid dynamics. This was first found by Gold- (FDT) which mixes the dynamical field with space-tirfts.
stone, and developed by Hoppe and Bordenfdn?|. Start-  On the other hand, Hopgd@] has also shown another gauge
ing from the Nambu-Goto action, they fixed the time rep-fixing (we call Cartesian parametrization hereaftesich
arametrization by using the light-cone gauge and solved theeduces the Nambu-Goto theory to Poincameariant Born-
momentum constraint in a miraculous way with some gaugénfeld model given by
condition. The action obtained in this way gives a
d-dimensional irrotational Euler equation with a given pres-
sure as

Sei= f d* [ 6p— Vp*c®+a*Vm’e?+(V)’]  (4)
. VP 2\
v+v-Vv=—7, P=—7, v=V4, )
or its other representation
wherep is the matter density) is some constant, and is
velocity potential. The action has the form

SB|=—af d?*1r ym?c?—(a,0)% (5)

(V)2 A\

2m p

Sc=f qé+ 1 2

Gb—(p

Because of the last term we can eliminate theariable  |n the nonrelativistic limit, this model agrees with the Chap-
from the theory by using an equation of motion if we takelygin gas. These two models are equivalent and are trans-
A#0. Then we have formed to the other by exact transformatigf]. Several au-

5 thors have given classical solutions of these two models

SC=—2\/Xf di+1r| o+ (Vo) &) [2—9]_. In th|s. paper we pay special at_tentlon_ to the stat_lc

2m solutions. This is worthwhile because, if we find one static

solution, we get the various time dependent solutions by
This kind of fluid is called Chaplygin gasee Ref[7]), and  combining Galileo boost and FDT. There is another reason
it hasd+2 dimensional Poincarsymmetry with each gen- of considering the static solution. The essence of these Chap-

erator given by Hopp¢2]. The similar discussion is also lygin and Born-Infeld model is the theory of minimal surface
given in four-dimensional scalar field theory using light-front or saying Plateau problem, and its typical form is the static
formalism given by Jevicki10]. For the theory of fluid, equation. From this correspondence, the time dependent
time, and space translatiqgenergy and momentum conser- equations can also be rewritten into static form by using
vation), rotation (angular momentum conservatjorGalileo  some ansatz. The static equation has special symmetry which
boost, and phase symmet(ynatter conservationare the we call generalized scale transformation. On this symmetry
natural symmetries. But the number of these generators ige discuss its geometrical meaning in Sec. Il. In Sec. Il we
totally (d?+3d+4)/2 and is missingd+1 generators to discuss the solution of static equation, and we show that
construct d+2 dimensional Poincaregenerators. These there are some new nontrivial solutions as minimal surfaces.
d+1 generators are the hidden symmetries in the theory ah Sec. IV we discuss the time dependent solution in the
sense of Plateau problem. In Sec. V the relation to

Hamiltonian-BRST formalism is discussed. In Sec. VI con-

*Email address: ogawa@particle.sci.hokudai.ac.jp clusions are given.
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Il. GEOMETRY AND SYMMETRY Note thatn is defined only on surface and it does not depend
FOR CHAPLYGIN GAS on g¢. If we transport the normal unit vector on surface, its
It is easy to see that-dimensional Chaplygin gas has the direction changes, and its difference projected to the surface
(d+2)-dimensional Poincarsymmetry if we start from 1S the extrinsic curvaturgl1]. Then we can show that extrin-

d-brane theory. There is another generalized scaling symm&iCc mean curvature is equal tediv(n):
try, which we will see in the following. Let us start from the

Chaplygin gas equation with onlg variable. k=g = — g a_ﬁ &_F
N aq' ag’
d 1 N Voim )_0 ® o
Nt o+ (V6)%2m Vo+(VeyZiem) _ g
9% aqP
If we consider the time independent solution, the equation
takes quite simple form, such as 9% 9g° on® or®
ar® ar® ag? aq°
o\, . a7
o) - o
_ _ _ arA
The same equation can be obtained by taking the mass-
less limit. This equation means that the surface E_div(ﬁ)_ (11)
6(rt,r2, ... r% =const has zero extrinsic mean curvature,
where rt,r2, ... r% are Cartesian coordinates on brane.Therefore our static equation for Chaplygin gas means
We will show this connection in the following. Let us in- _
troduce the @—1)-dimensional hypersurface defined by k=0, (12
1 2 d _ - _ - - .
ad(rb,r N Wr )_Q tmd d d|rEelnS|dqnal I.Euchldeand.sp?ce which is similar to Einstein equation in vacuurR+ 0. There
( 1 “’3”9- edtia;n introduced~1)-dimensional coordinates deep relation between intrinsic and extrinsic curvafig
(95,97, ...,9° %) on that surface with its induced metric as
o R= k%= k' (13
ar or
9= ) The surfaces satisfying=0 are called “minimal surface,”

a0 ol . : : .
aq dq and various solutions are known. These solutions are dis-

cussed in next section. Here we clarify the symmetry of

where{i,j, ...} run from 1 tod—1. Inverse metric is de- Eq. (7). It is trivial that this equation is invariant under

fined asg'!. Further we introduce another coordinatenor-
mal to that surface. The surface is then specifiedyby 0. 60— 60 =F(0), (14)
The set{q?, ...,q"% construct the curvilinear coordinate in

d-dimensional space. We use lowercase Latin indicesvhereF(x) is any real function satisfyingF/dx+#0. So if ¢
{a,b, ...} for the set of coordinates from* to q% and is the solutionF(#) is also the solution. This point is also
uppercase Latin indicg#\,B, . . .} for the set of coordinates noted in Ref[9]. We call this symmetry as generalized scale
from r! to r% Then the metric in this curvilinear invariance. Under this transformation, action is not invariant

d-dimensional space on the surfaag € 0) is given as but the equation of motion is invariant. This kind of fact
occurs usually in scale transformatipt2], and scale trans-
g; O formation corresponds to a special choicd~ofNote that we
Gab= 0 gyg’ cannot use Noether theorem because it is not the symmetry
of action. We can show another equation of motion, which
gl o has time dependence and invariance under this transforma-
gab:( dd) . tion:
0 g

Now we define extrinsic curvature by using metric on sur- V=k+const, V=—— (15

6
. > . Ve’
face, and normal unit vector to the surface. The extrinsic

curvature is defined as whereV is the velocity of growing surfacé(r,t)=0. This

- - equation is called as mean curvature flow equation, and plays
P 0_” (?_r 9) important role in the theory of crystal growth. This is found
4 aq aqi’ by Ohta, Jasnow, and Kawasaki in 1983], and discussed
by several authorgl4—186. In this theory, physical quantity
and extrinsic mean curvature is given as is not @ itself, but is the surface defined b§=0. There-
B fore the symmetry(14) is natural if we fixF(x) to satisfy
k=g"k;j . (100  F(0)=0. (This can be done without loss of generality, if we
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pull out another trivial symmetry’ = 6+ const) Only in the
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whereA,B,C,R are the integration constants. Therefore we

static case is this theory the same as ours. This symmetry Rave

important to solve time dependent equati@). Starting

from one static solution, we have infinitely many static solu- H(I)ZGXF[AJFJ +Bi],
tions by transformatior-. Then we boost it to obtain the

time dependent solutions, and change it in a nontrivial way
by using FDT. The time-dependent solutions obtained thi¢
way depend on the choice of functiéh In this sense, this ©

o(rir2, ... rY%=F(A-r+B),
(29

n the case o\ =0. whereF is any function, andd,B are
onstants. This solution has been obtained by Jackiw and

symmetry remains in the time-dependent solution due to thE0lychronakog7]. Here we have another new solution. In
Galileo invariance of the theory. So it may be possible tof€ case oA #0, A;+\;=0 should be hold for any pair
say, this generalized scale symmetry is hidden in the theor{i+}) Which is possible only whed=2 (membrang Then
of Chaplygin gas. Then we can give a conjecture that th&/€ have the solution

mean curvature flow equatiofl5) has the possibility to
transform into Eq.{6). In addition, if we take the massless
limit for the Born-Infeld model, this symmetry clearly ap-
pears as we see from its time-dependent equation of motior\ll\:/

m—0 J.0
Born-Infeld model— * ’ =0. (16)

V(3,0)*

Ill. SOLUTION OF k=0

A. Standard consideration

y—yo)“, 26

0(x,y)=C(X_X0

hereC,xq,yq,a are constants.
Using the generalized scale transformation, this can be
extended into

o(x,y)=F

(27)

Y—Yo
X—Xg/ "

This is the any function of rotation angle centeredxat,¥o) -

Let us construct the classical solution for static Chaplygin! herefore the normal vector for the surfage=const con-
gas(7) by using separation of variables method. This equa_structs a vortexlike vector field. As this solution has singu-

tion can be written in the form.

GM0-9,0-9¢0,0=0, GIM=s154-s%s. (17)
We look for special solution of the form

ortr?, o rH=00rh- 62(r?). .. 6D(rd). (18)

Putting this form into the equation, we obtain

a6 Zajzgu) .60\ 2 9,61 2
Ej o0 | g | g a0 | |=Y (19
Introducing the new variable by
Z'=log 61, (20)

we write our equation as

> fi(rhih=0, f;=[(6,2)2721+(9;2))%57Z'].
i>]

(21
Here we assume further that all tlhg’s vanish.
Then we get
FZ=N\(9;Z1)2,  Nj+N\=0. (22)

Z' satisfies the same equation. The solution is given by

ZI=A;r'+B; for \=0 (23

. 1 : :
and ZJ=Cj—)\—Iog|r'—R'| for N#0,
j
(24)

larity at the origin, we should consider the membrane with
finite area and appropriate boundary condition, where the
origin is taken to be outside.

This solution is related to the higher dimensional solution:
helicoid by choosing the form df. Let us define

0

aEaZ+b+F(y_y0).

For « to satisfy the static equatiofY) again, we need the
relation

- F@ve
Va2 F (6)%(V ¢)?
Then the left-hand sidd_.HS) has the following form:

_ Y Yo
CX—Xp

0, ¢

Y—Yo

P + X“ %o
(@ (x—xo) F' ) +r2

1% )
(@ (x—xo) F' ) +r?

r?=(x—x%o)*+(y—Yo)*.

If the denominator is a function of only, the sum of these
terms vanishes. This occurs Whed(¢)=(x—xg)2f(r) is
satisfied. From dimensional analysis; constf? holds. This
gives

1
F (¢)—const><1+¢2,

which leads toF(¢)=arctang) up to multiplicative con-
stant. So we come to a three-dimensional solution known as
a helicoid: =0,
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Y—Yo whereu andv are the real parametes,andb are the con-
a=aztb-+arctan  — ~|. (28)  stants. We present two new examples.
0 The first one is Scherk’s minimal surface, which is given

The first two static solutions are not surprising in the view3S
point of geometry, because the surfaze const should have e? cosx— cosy =0. (33)
zero mean curvature. The first solution gives the flat surface

which is normal toA, and the surface given by the second The second one is Enneper’s minimal surface, which is given
solution is the half straight line, which is flat except for the as

terminal. In d=2 the surfacef#=const gives the one-
dimensional line, which should be straight from geometrical
requirement. In this sense these two solutions are general (34
ones up to generalized scale invarianceder2. For higher  For right helicoid we have solutions as Chaplygin gas,
dimensions we have other solutions as we have seerdone

=3 solution. In fact some minimal surfaces are knownl at 0(X,y,2)=F[y—Yyo— (X—Xg)tanaz+b)]

=3, and they are explained in the next subsection.

x=3u+3uv?—ud, y=v3-3v-3u, z=3(Uu’-v?.

or 6(x,y,2)=F[x—Xy— (y—Yp)/tanaz+b)]

B. d=3 static solutions as minimal surfaces

Y—Yo
If we find the minimal surface a&(r%,r?, ... r%=0, or 6(xy,z)=F z—zo—arctarﬁ - (35
we have 0
For Scherk’s minimal surface
K[G]EV~(— =0 on G=0. (29 cogy—Vo)
(VG)2 —El ey 1og 2 Y0
0(x,y,z)=F| z—zy,—log coax—xg)| |’
The key point is that LHS vanishes only on the surface (2-20)
G=0. This is the difference to our solutions where the mean ~ OF  0(X,y,2)=F{x—xo—arccoge™*
curvature vanishes everywhere even 8 0. In a spe- cogv— _
cial case where we write the functio® as G=r¢ YYol} (36)

—f(rtr?, ... r97%), x[G] does not depend or® at all.  For the catenoid,
Then k[ G]=0 is satisfied without conditios=0. There-
z-z2
X—Xo* \/azcosh°-< 3 0) —(y—yo)ZJ,

fore this minimal surface can be the solution of our problem.
Our static solution for Chaplygin gas is given as o(x.y,z)=F

6(r)=F[G(r—R)], (300 or

2 2

whereF is any analytic function, ani is the constant. In the 6(x,y,z)=F VX X0+ (y=Y0) ”

following we show some minimal surface@Ve have non- a

trivial minimal surfaces atd=3. Becausex=0 does not (37)

mean flat. For any point on hypersurfaGe=0, we can take

d—1 orthogonal tangent vectors. The mean curvature is th?or

sum of extrinsic _curvatures for each d'TeCtDO”- . only put the extrinsic curvature and induced metric on this
Let us here discusd=3 case which is well studied as a surface:

Plateau problem. In this case some nontrivial minimal sur- '

z-70—a cosh‘l(

But for Enneper’'s one we cannot simply write it in the
m G(x,Yy,z)=0. So it is still not clear at this stage. We

faces are knowfl7]. 1 0
One example is the catenoid given as 0ij=9(1+u?+ vz)z(o 1),
z
VX?+y?—acosh-=0, (3D 10
a Kij =6 0 -1 .

wherea is the positive constant. Another example is the rightWhiCh leads tox=0 on the surface

helicoid which we have seen before. From the above consideration, at least we have three

kinds of new nontrivial static solutions for Chaplygin gas at
d=3. For catenoid and helicoid solutions, they are also dis-
cussed by Gibbon9] for the static Born-Infeld model. For
these static solutions, time dependence can be introduced by
' Galileo symmetry and then changed by FDT. In this way we
(32 can construct as mang=3 solutions as the minimal sur-

X=ucosv, Yy=usinv,

z—b
z=av+b; y—xtar(T

085023-4
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faces. It should be stressed that catenoid solution can Heok for the solution in the form
easily extended to any dimensions by using the ansatz R

_ 0=t—~2m f(r). (41

o=ro—f(r), r2=(H2+ 2>+ ..+ (i hH2

. . ... Then the equation fof(F) is the same as Ed39). This is
Some of the minimal surfaces are determined by m|n|m|-th - blem for h tome (1 th
zation of area with fixed boundary. This is the well-known € minimum area probiem for nypersurtace (r), or the
Plateau problem. If we give the boundary as a closed |00pPIateau problem ind+ 1)-dimensional space. The boundary
the shape of the soap membrane can be determined by mi -ondition is the one for the d-brane. Note that in this case
mization of area. This is just the minimal surface=0 ev- here Is no'generalized scale symmetry fiofhe dimension
erywhere on surfacdThe opposite is not necessarily true. of _srtarfacfe IS _r]lovxd ?:Jt gjoéd_l' ional minimal surf
On this point we give a bit of explanation. Let us consider eretore 1T we have-dimensional minimal surface, we

the surface ag=f(x,y) with some fixed boundarg (closed ~ °&" construct the solution af-spatial dimension as above.
loop). Then the surf'ace with minimal area with fixed bound- W€ should remark that this time dependent solution is time

ary is given by independent in the sense of fluid mechanics. Because the

velocity v=V6, and the densityy which is obtained from
6 andV 6, are really time independent. To obtain the explicit
— — / 2
or'[f1=0, F[f]zf fDdxdy 1+(VHS B8 ime dependence, FDT or Galileo boost is necessary.
Next we come to the Born-Infeld model with rescaled
whereD is the region closed b projected to thex-y plane, — action of Eq.(5):
andV is for x andy. The reason is simple. The infinitesimal

area of surface is Sg= —J dtd?r V1—(3,0)>2 (42)
B dxdy
dI'= n, ' For this action, if we take an ansatz suchéast—ﬁ(F), B

satisfies Eq.(7), and 8=0 gives the @—1)-dimensional
wheren is the normal unit vector to that surface. This is minimal surface ind-dimensional space. So we come again

given by to the Plateau problem. This ansatz was discussed by Hoppe
[3] in thed=2 case.
. Vo —dyf —a,f 1 Let us show another observation of other different
n= Vo = \/1+(Vf)2' \/1+(Vf)2’\/1+(Vf)2 . problems. If we compare Eq42) with action (38), this is

just the relativistic version of Plateau problem, and we

Here we writed=z—f(x,y). The variation ofl" gives the should consider thed(+ 1)-dimensional minimal surface as

equation z=0(t,r5r? ... r% in (d+2)-dimensional Minkowskian
space, in which the essence is the same as the original
P of ) P o f ) Nambu-Goto action: minimization of world surface. It is
X y . . . . .
— — =0. (399 possible to rewrite this Born-Infeld action in
IX\ 1+ (V)2 Y\ J1+(VH)? (d+2)-dimensional form as we have discussed already. Let
o _ xA={t,rtr?, ... r%2z and taking metric yag=(1,—1,
This is rewritten as —1,...,—1). Then for a new variable,
Vo _ 1,2 d
7= a=z—0(t,r-re, ... 19, (43
V( |V0|> 0. (40
the action

This means the surface is minimal: extrinsic mean curvature

is vanishing. So we should finally say that, finding the solu-

tion of d-dimensional static Chaplygin gas is similar to find- Sgi= —f dtdrdz\— 7*Pdpa- dga, (44)

ing the (d@—1)-dimensional minimal area surface in

d-dimensional space. The relation to Plateau problem withyiyes the same theory as the Born-Infeld model. The equa-
our time dependent d-brane theory will be discussed in th€gon of motion is

next section.

P ( Pa )
IV. TIME DEPENDENT SOLUTIONS — | —=/=0. (45)
A 2
AND PLATEAU PROBLEM X"\ \(dga)

We show the time dependent solutions and their connec- This means thate=0 is the @+ 1)-dimensional
tions with Plateau problems in this section. The Plateau ac*‘Minkowskian minimal surface” just like Eq(7). The gen-
tion I" in Eq. (38) has a good similarity with the time depen- eralized scale symmetry appears here, but the“gauge
dent action for Chaplygin gas and Born-Infeld model. choice” a=z—6(t,r},r? ... r% gives the Born-Infeld

First we consider the Chaplygin gas with acti@®). We  model.
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The property of ¢+ 1)-dimensional Minkowskian mini- formalism is to introduce the covariant gauge for the first
mal surface given by Eq45) with weaker conditiona=0 ordered(Hamiltonian formed path-integral formula(l mean
has been discussed by several autidt8,9), though they the covariant gauge as the one including the time derivative
did not discuss the connection with the Plateau problem. of auxiliary field) In this sense even if we take the gauge

A solution constructed by elliptic Weierstrass function function equals to zero, gauge is fixed already to take into
forming the Blonic crystal fod=2 appears. Here we give account the time derivative of auxiliary field as gauge con-
new different special solutions, based on quite simple obseudition in this formalism[18,21. So if we work with other
vations. By comparing Eq45) with Eq. (7), the difference  gauge, this framework fails.
appears only on signature for the square of the time deriva- In the framework given by Hoppe and Bordemann, the
tive. So if we take analytic continuation for minimal sur- gauge condition was not so clear in the way of the Dirac
faces, we obtain the solution far. For example, some so- method for the diffeomorphism symmetry. But the quite
lutions of the Plateau problem ih=3 is known, and if we simple gauge conditiorK'=r' to fix that local symmetry
change one variable to imaginary time: for example;it,  gives the same result as the ones earlier given by Hoppe and
the “Minkowskian surface:”z=f(x,t) is obtained. Then Bordemann. This is shown by Hoppe himself in R&f. Use
a=z—f(x,t) satisfies Eq(45). Thereforef is the solution of ~ of this gauge condition with light-cone gaud€artesian
the Born-Infeld model. gauge changes the action into the form of Chaplygin gas

Let us see some=1 solutions of Eq.(45) constructed (Born-Infeld model, which takes canonical form completely
from three typical minimal surfaces by using the analyticas Eq.(2), and we have no ghosts in this gauge choice.

continuation. First from the catenoid In fact if we work with Faddeev-Senjanovic formula, we
can show it explicitly (even if we start from BFV-
0= 2coS[w(t—ty)]— (X—Xq)>. (46)  BRST framework, this is so; on this point see the Appendix
) o We start from Nambu-Goto action for d¢1,1)
From the right helicoid, Minkowskian target spacexf- - - X4™1) in (d,1) parameter
_ti 0_— 1 dy.
B, = (X— o) tan wt + b). 47 space-time i"=t,r-, ... r%:
XA 9XB
From the Scherk surface, S:_J 4G, G=(—1)del 7ag 2 ’
ark or”
bo—| cosht—tg) 48
g =109 W_Xo) . (48 (49

By using the transformation from the Born-Infeld model Z:j DXDP [ ] o(T,) 11 8(x")|de{T, ,x"}|
to Chaplygin gas, the solutions faf=1 Chaplygin gas m v

are obtained. They should be some general solutions given _
by Bazeid 6]. In this way there will be a path between string X exya( [ j drddrP ,XA
in (2,1) dimensions and Plateau problemds 3. Inversely

starting from general solution fod=1 Chaplygin gas, . - .
we might obtain the general solution for Plateau prob-wrlﬁre-r# is the I-ée%{r_nlltolr_ua:n-morr]nentu%C(?_nsr;[{alnt, and
lem in d=3. Therefore we can obtaind¢-1,1) Born- 'S the gauge condition. Let us choose the light-cone gauge
Infeld solutions from d-dimensional minimal surface in
(d+1)-dimensional space.

: (50

1
0 0 d+1 k k k
= (XO04x9t1) —t, =Xk—r k=1~d),
X=7 X (
V. A COMMENT ON THE RELATION (51

TO HAMILTONIAN-BRST FORMALISM
. with the definitiond=1/y/2(X°—X91). Then we obtain
The treatment of constraint problem for the membrane

theory has been discussed for a long time. The problem is - 1
due to its property of open-algebra, that is, the field depenz=f DODp exp{ if dtddr[ﬂ p—E(V 6)%— 2
dence of structure constant for the Poisson brackets between P
first class constraints. The Hamiltonian Batalin-Fradkin- )
Vilkovisky, (BFV) Becchi-Rouet-Stora-TyutifBRST) for- ~ Where p=(12)(Po—Pgy1). If we take the Cartesian
malism of path-integral has reached to the result given by@auge

Henneaux[18,19. For the path integral in configuration 0 w0 ook K

space, Fujikawa and Kubo have given another W2§]. X =Xt x'=X=rt (k=1~d), (53
These two methods are equivalent and constructed on the

basis of explicit covariant gauge for target space. For thavith the definitiond=X?"**, we obtain

equivalence see the Appendix. In both cases, there appears a

four-ghost term, and it seems usual for the general d-brane t . .

have such ghost terms. But this is not true for other nonco-ozzf DoDp exp<|f drd[6 p—\p*~1V1+(VO)T),
variant gauges. The starting idea on Hamiltonian BFV-BRST (549

) ., (52
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where p=P4,,. These are the Chaplygin gas and Born- AL R )
Infeld model. Seff:j dtf PaX"+C#C, + n* 5, +11,N*

+{Qg,C,N*+7,x"}1, (A1)

Q= 7*11,+Q,

VI. CONCLUSION

We have discussed the classical solutions for Chaplygin
gas as d-branes. The static equation for this theory has the
geometrical meaning as vanishing extrinsic mean curvature.
This means that thé field extended on the d-brane is con-

sidered as the set of contour lines, and these lines, or S&¥hereC C. 7 ;are Grassmannian odd ghost fiellsN are
these surfaces, have the vanishing mean curvature. Such Sts auxiliary fields y is the gauge fixing function, arit, is

faces of vanlshmg'mean. curature' are ".”OW” as m|n|mal SUlthe Hamiltonian and momentum constraifitU is the struc-
faces. As a result if we find ongdimensional minimal sur-

. . . . ture constant for the Poisson brackets between 1st class con-
face in (d+1)-dimensional space, we have a static

straints, and®U is introduced to obtain the nilpotency of
(d+1)-dimensional solution for Chaplygin gas. In this way P Y

; ; Qg . It is proved that the theory does not depend on the
we have shown some examples of static solutions for Chapéhoice of x [18.19. Even if we takey=0, gauge is fixed

lygin gas from minimal surfaces. Furthermore if we fix the . . "
yain g already since gauge condition s+ y=0 [21]. Two-

time depgndgnce afpt_ Vsz(r)’. we obtam th? .SOIUt'OnS dimensional spatial integration is included in the contraction
of d-spatial dimensions from thé&dimensional minimal sur- of indices. The indicesu, »,p run from O to 2 with

s (dfl)-dmensmnqll space. qu the Born-Infeld spatial integration. All the variables are forming the canoni-
model, this is just the relativistic extension of Plateau pmb'cal sets. For the path integral

lem and this interpretation has the same meaning
as original Nambu-Goto action: minimization of area for _ _
world hypersurface. Solving this Born-Infeld model as a Z:J’ DXDPDCDCDnDyDNDII exdiSer], (A3)
Minkowskian plateau problem will be interesting. This is not

only because of its intuitive form, but also for its connection\ye change the integral variables as— ez, 11— €ll,

with usual plateau problem by analytic continuation. For eX-y— x/e then the path-integral measure does not change.

ample, the general solutions for Plateau problendin3  Then we take limite—0 which reduces the theory into
might be obtained from the general solution given by Bazeia

. ” N~ v No ~ ~
Q=C+T,+CrCU),C, +Ccrererduly, C,C, "2

[6] for the string in(2,1) space time. In many cases our two DAL —

models are closely related to the plateau problem. If we find Seff:J di{PAX"+CHC, = 7#C ), — I x*
d-dimensional minimal surface ird¢+ 1)-dimensional space, . -

we obtain the solutions of Chaplygin gas fdrand d+1 +{Q,C N*+ 7, x"}]. (A4)

spatial dimension, and the solutions of Born-Infeld model for _ ]

d+1 andd—1 spatial dimensions. Since these two models'f we choosex=x(X,P), # integration can be performed
are related by exact transformation, we obtain the solutionand to obtainC=0. In that case, the theory reduces to

of d—1,d,d+ 1 spatial dimensions from-dimensional mini-

mal surfaces. The theorem for the existence of solution for _ A _ “_ v W n
Plateau problem is related to the mapping theorem of Rie- Seﬁ_f APAXT = Tx = TN+ CHTL X )
mann in the theory of conformal mappifi23]. To study this (A5)

point as physics may be an interesting open problem. This is clearly equal to the Faddeev-Senjanovic formula. In

this way if we work with gaugelike light-cone or Cartesian,

we come to the Faddeev-Senjanovic formulation even if we

start from BFV-BRST formalism. But for general choice of
The author would like to greatly thank Professor R.gauge, this no longer holds. Starting from E&4), we have

Jackiw for giving him much information on this problem,

valuable discussions, and encouraging him. He thanks Pro- _ AL R o u

fessor K. Ishikawa for discussions and carefully reading Sef fdt[PAX FERCL e C

through the manuscript. He also thanks Professor Bazeia and

Professor Gibbons for important comments, and Professor

Yokoyama and Professor Furukawa for information on
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+{Q,C, N*+ 7,x"}]

theory of crystal growth. =j dt[ PAXA+CHC, + 85(N“C .+ 7,x")],
(AB)
APPENDIX
where
For the membrane theory, Hamiltonian-BRST formalism o .
takes the form 8gF(X,P,C,C)={Q,F(X,P,C,C)},
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5BHM:0’ —_— ) A . —

Z= | DXDPDCDCexp|i | dif PaX"+CHC,—Heql |,
5877#:0!
SaNH= Henr=To+2C*™MU3,C, +3C"Cr@Ul.C,C, . (A9)

_ Here we take the boundary condition that ghosts vanish at
o= —11,. (A7) the boundary of the membrane. Because the Hamiltonian is
quadratic for momentum, the momentum integration can be

These defined BRST transformations are proved to be n”pof)erformed explicitly and gives

tent, and it is easily seen thadi,»,N,» are forming the
BRST quartet. The theory starting from the acti@b) is 1. 1 . _
given by Caicedo, Restuccia, and Torrealba and called the Seff:f dtd?r EXZ— Ede(Gm]HCMC“—iCo&ka ,
modified BFV quantizatiof22], although they do not dis-

cuss the reduction from the Hamiltonian BRST formalism as
above. Then we take the gauge condition given by Torrealba
and Restuccia

Gk|Egk|+ic_:k(9|C0+i6|(9kC0, (AlO)

where we have changed the varialle——iC. This is
x0=NO—1, y'=N! y2=N2 (A8)  Fujikawa and Kubo's formulation of membrane theory.
. From the above consideration, we have shown various for-
7, 1,I1,N integrations can be performed explicitly, and we mulations are equivalent up to gauge choice and boundary

obtain the form condition for ghosts.
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