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Noncommutative monopole at the second order inu

Seiya Goto* and Hiroyuki Hata†

Department of Physics, Kyoto University, Kyoto 606-8502, Japan
~Received 23 May 2000; published 27 September 2000!

We study the noncommutative U~2! monopole solution to second order in the noncommutativity parameter
u i j . We solve the BPS equation in noncommutative super Yang-Mills theory toO(u2), transform the solution
to the commutative description by the Seiberg-Witten~SW! map, and evaluate the eigenvalues of the scalar
field. We find that, by tuning the free parameters in the SW map, we can make the scalar eigenvalues precisely
reproduce the configuration of a tilted D-string suspended between two parallel D3-branes. This gives an
example of how the ambiguities inevitable in the higher order SW map are fixed by physical requirements.

PACS number~s!: 11.27.1d
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I. INTRODUCTION

An explicit relation between the noncommutative fiel
and the commutative ones has been presented in Ref.@1#,
called ‘‘the Seiberg-Witten~SW! map.’’ The noncommuta-
tive Dirac-Born-Infeld ~DBI! theory and the ordinary on
appear as low-energy effective theories of D-branes in a c
stant Neveu-Schwarz–Neveu-Schwarz~NSNS! B field. They
differ by the choice of regularization for the worldshe
theory: the Pauli-Villars regularization for the commutati
description and the point-splitting regularization for the no
commutative one. This means that these two descriptions
connected by some field redefinition and this is the SW m

The relation between the commutative and noncomm
tive DBI theories has been examined in various aspects. N
in particular, let us concentrate on the Bogomol’nyi-Pras
Sommerfield~BPS! solutions and compare them in both th
descriptions. The reason is that the BPS solutions are
sidered as powerful tools beyond the perturbative und
standing. Noncommutative BPS monopoles describe, by
brane interpretation of@2#, the configurations of tilted
D-strings ending on parallel D3-branes in a constant NS
B-field @3# and have been investigated in various pap
@4–8#. In Ref. @4#, noncommutative U~2! monopole was con-
sidered at the first order in the noncommutativity parame
u i j . The analysis using the noncommutative eigenvalue eq
tion for the scalar field successfully reproduced the til
D-string picture. In Ref.@6#, the similar analysis was carrie
out for the string junction and the anticipated result was
tained. Study of the noncommutative monopoles using
SW map was carried out in Refs.@7,8# ~see also Ref.@9#!.
There, the noncommutative BPS solutions were transform
into the commutative description via the SW map, and th
the brane interpretation was done for the eigenvalues of
mapped scalar field to give the expected tilted D-string p
ture.

The purpose of this paper is to extend the analysis of
noncommutative U~2! monopole using the SW map to se
ond order inu. The motivating fact is as follows: the SW
map possesses some ambiguities in higher orders inu @10#.
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This map is derived from the requirement of the gau
equivalence of the two descriptions. Since this is a very w
requirement, arbitrary parameters appear in the map. T
are two types of ambiguities in it. One is in the form of th
gauge transformation and has no physical effect. Howe
the other type of ambiguity consists of gauge covariant qu
tities and can cause physical differences.

We apply the SW map to the noncommutative monop
solution at the second order inu and examine the effects o
the ambiguities. Concretely, we compare the eigenvalue
the scalar field obtained by the SW map with that in t
commutative Yang-Mills theory in a background magne
field. Note that the ambiguities in the SW map can chan
the scalar eigenvalues~which are gauge invariant quantities!
and hence change their brane interpretation. It is found
we can make these two eigenvalues coincide with each o
by tuning the free parameters in the SW map. This gives
example of how the ambiguities in the SW map are fixed
concrete physical situations.

The rest of this paper is organized as follows. In Sec.
we solve the noncommutative version of the BPS equatio
second order inu. In Sec. III, we apply the SW map to th
solution and evaluate the eigenvalues of the scalar field
the commutative description. In Sec. IV, we compare
scalar eigenvalues of Sec. III with those in the commutat
Yang-Mills theory in a constant magnetic field, and exam
the effect of the ambiguities in the SW map. In Sec. IV, w
summarize the paper and give some discussions. The
map to second order in the change ofu is presented in the
Appendix.

II. NONCOMMUTATIVE BPS MONOPOLE SOLUTION
AT u2

We shall consider theN54 U~2! noncommutative supe
Yang-Mills theory in 113 dimensions with the metricGmn

5diag(21,1,1,1), and construct the BPS monopole solut
to second order in the noncommutativity parameter. The B
equation reads

D̂ iF̂1
1

2
e i jk F̂ jk50, ~2.1!
©2000 The American Physical Society22-1
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where the quantities with a hat denote those in the nonc
mutative description. In particular, we have

F̂ i j [] i Â j2] j Âi2 iÂ i* Âj1 iÂ j* Âi , ~2.2!

D̂ iF̂[] iF̂2 iÂ i* F̂1 i F̂* Âi , ~2.3!

where the * product is defined by

~ f * g!~x![ f ~x!expS i

2
u i j ]Q i]W j Dg~x!

5 f ~x!g~x!1
i

2
u i j ] i f ~x! ] jg~x!

2
1

8
u i j ukl] i]kf ~x! ] j] lg~x!1O~u3!.

~2.4!

In order to solve the BPS equation~2.1!, we expand the
fields in powers ofu:

F̂[~F̂a(0)1F̂a(1)1F̂a(2)!
1

2
sa1~F̂0(1)1F̂0(2)!

1

2
1,

Âi[~Âi
a(0)1Âi

a(1)1Âi
a(2)!

1

2
sa1~Âi

0(1)1Âi
0(2)!

1

2
1,

~2.5!

where the superscript~n! denotes the order ofu. As the so-
lution at O(u0), we adopt the BPS monopole@11,12# with

vanishing U~1! componentsF̂0(0)5Âi
0(0)50:

F̂a(0)5
x̂a

r
H~j!, Âi

a(0)5eai j

x̂ j

r
„12K~j!…, ~2.6!

with x̂i[xi /r andj[Cr (C is the parameter characterizin
the mass of the monopole!. The functionsH and K are de-
fined by

H~j!5
j

tanhj
21, K~j!5

j

sinhj
. ~2.7!

These two functions behave asymptotically as

H~j!5j211O~e2j!, K~j!501O~e2j!. ~2.8!

Note that the solution~2.6! has an invariance under the ro
tation by the diagonal subgroup SO~3! of SO(3)space
^ SO(3)gauge.

The solution atO(u) was constructed in Refs.@4,5# and it
is given by

Âi
a(1)50, Âi

0(1)5u i j x̂ j

1

4r 3
~12K !~12K12H !,

F̂a(1)50, F̂0(1)50. ~2.9!
08502
-This solution is invariant under the generalized rotatio
namely, the simultaneous rotation of the diagonal SO~3! and
the indices of the noncommutativity parameteru i j . Note that
the noncommutativity has no influence on the scalar solu
at O(u).

Now let us consider the components at the second orde
u in the expansion~2.5!. TheO(u2) part of the BPS equation
reads

] iF̂
0(2)1e i jk] j Âk

0(2)50, ~2.10!

] iF̂
a(2)1e i jk] j Âk

a(2)1eabc~Âi
b(0)F̂c(2)

2F̂b(0)Âi
c(2)1e i jk Âj

b(0)Âk
c(2)!

5
1

2
ukl]kF̂

a(0)] l Âi
0(1)2

1

2
e i jku lm] l Â j

a(0)]mÂk
0(1)

1
1

8
eabcu

lmupqS ] l]pÂi
b(0)]m]qF̂c(0)

1
1

2
e i jk] l]pÂj

b(0)]m]qÂk
c(0)D , ~2.11!

where the first equation~2.10! is the U~1! part of Eq.~2.1!,
while the second equation~2.11! is the SU~2! part. The U~1!
part has no regular solutions and we shall concentrate on
SU~2! part ~2.11!.

In order to solve Eq.~2.11!, we adopt the generalize
rotational invariance used in the construction of theO(u)

part ~2.9!, and expandF̂a(2) and Âi
a(2) as

F̂a(2)5
1

r 5
@f1~j!~u x̂!ua1f2~j!u2x̂a1f3~j!~u x̂!2x̂a#,

Âi
a(2)5

1

r 5
@a1~j!u2eai j x̂ j1a2~j!~u x̂!eai ju j

1a3~j!ea jku iu j x̂k1a4~j!~u x̂!2eai j x̂ j

1a5~j!~u x̂!ea jkx̂iu j x̂k#, ~2.12!

where we have usedu i[(1/2)e i jku jk, u2[u iu i and (u x̂)
[u i x̂i . One can check that this is the most general expr
sion satisfying the generalized rotational invariance, by us
the identities

eai jx
25~eki jxa1eak jxi1eaikxj !xk , ~2.13!

and the same one withxi replaced byu i . Putting the expan-
sion ~2.12! into Eq. ~2.11!, we obtain the following linear
differential equations with inhomogeneous terms for the
known functionsfk(j) andak(j):
2-2
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D~2a12a3!1f214a12a215a31a52~12K !f22Ha15I 1 ,

D~f21a11a3!26f226a126a32a51~12K !~f212a11a3!1Ha15I 2 ,

Da31f11a225a32a52Ha35I 3 ,

D~a22a3!12f326a216a312a51~12K !~f11a22a32a5!1Ha35I 4 ,

D~f12a3!26f116a312a41a51~12K !a21H~a22a5!5I 5 ,

D~2a21a32a4!1f316a226a314a422a52~12K !~f11f3!2H~a21a4!5I 6 ,

D~f31a4!28f328a41~12K !~f312a41a5!1H~a41a5!5I 7 , ~2.14!
-

where the differential operatorD[j(d/dj) has been intro-
duced. The seven equations~2.14! correspond to seven inde

pendent structures of Eq.~2.11!: u2dai , u2x̂ax̂i , uau i ,

(u x̂) x̂au i , (u x̂)uax̂i , (u x̂)2dai , and (u x̂)2x̂ax̂i , respec-
tively. The functionsI k (k51, . . . ,7) are theinhomoge-
neous terms which are polynomials ofH andK:

I 1~j!52
13

8
1

3H

8
2

H2

2
1

9K

4
1

5HK

4
1

3H2K

8

1
H3K

8
1

K2

8
2

5HK2

8
2

H2K2

4
2

5K3

8

2HK32
3H2K3

8
2

K5

8
,

I 2~j!5
3

8
1

7H

8
1

H2

2
2

9K

8
2

3HK

2
2

3H2K

8
2

H3K

8

1K21
HK2

8
2

H2K2

2
2

H3K2

4
1

3HK3

4

1
3H2K3

8
2

3K4

8
2

HK4

4
1

K5

8
,

I 3~j!5
5

8
1

9H

8
1

H2

2
2

17K

8
23HK2

5H2K

4

2
H3K

4
1

21K2

8
1

21HK2

8
1

3H2K2

4
2

11K3

8

2
3HK3

4
1

K4

4
,

08502
I 4~j!52
11

8
2

17H

8
2

H2

2
1

17K

4

15HK1
3H2K

2
1

H3K

4
2

9K2

2
2

29HK2

8

2H2K21
7K3

4
1

3HK3

4
2

K4

8
,

I 5~j!5212
3H

2
2

3H2

4
1

13K

4
1

31HK

8
1

3H2K

2

1
H3K

4
2

15K2

4
2

13HK2

4
2

3H2K2

4
1

7K3

4

1
7HK3

8
2

K4

4
,

I 6~j!522H1
3H2

4
2

19K

8
2

3HK

4
2

3 H2 K

8
2

H3K

8

2K21
HK2

2
1

H2K2

4
1

5K3

4
1

5HK3

4

1
3H2K3

8
1

K5

8
,

I 7~j!5
7

4
1

7H

4
2

43K

8
2

39HK

8
2

11H2K

8
2

H3K

8

1
23K2

4
1

19HK2

4
1

7H2K2

4
1

H3K2

4
2

5K3

2

2
15HK3

8
2

3H2K3

8
1

K4

2
1

HK4

4
2

K5

8
. ~2.15!
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We can solve the differential equations~2.14! by the same
polynomial assumption as used in the construction of
noncommutative 1/4 BPS solution@6#, that is, we assume
that the functionsF5fk andak are given as polynomials o
H andK:

F5 (
n50

nmax

(
m50

mmax

F nmHnKm, ~2.16!

with suitably largenmax andmmax. This assumption is owing
to the property ofH andK,

DK52HK,

DH511H2K2, ~2.17!

which implies that the operation ofD on a polynomial ofH
andK just reproduces another polynomial of them. With t
assumption~2.16!, the differential equations~2.14! are re-
duced to a set of linear algebraic equations for the coe
cientsFnm , which can be solved straightforwardly. Note th
we originally had seven differential equations~2.14! for
eight unknown functions, so the solution contains one un
termined function. This is the gauge freedom which p
serves the generalized rotational invariant form~2.12!, and
the corresponding gauge transformation function is

la5eai ju ixj~u x̂!
1

r 4
l~j!. ~2.18!

Using this freedom to choosea5(j)50, the solution to the
O(u2) part ~2.11! of the noncommutative BPS equation
given as follows:

f1~j!52
1

4
H1

1

4
H22

1

8
H31

1

4
HK2,

f2~j!5
1

8
2

3

8
H1

1

8
H22

1

4
K21

3

8
HK21

1

8
H2K2

1
1

8
K4,

f3~j!52
1

8
1

7

8
H2

5

8
H21

1

8
H31

1

4
K22

7

8
HK2

2
1

8
H2K22

1

8
K4,

a1~j!52
1

8
1

1

2
H2

1

8
K2

1

2
HK2

1

4
H2K1

5

8
K2

1
1

4
HK22

3

8
K32

1

4
HK3,
08502
e

-

e-
-

a2~j!5
1

4
1

1

2
H2

3

8
H22

3

4
K2

1

2
HK1

1

8
H2K

1
3

4
K22

1

4
K3,

a3~j!52
1

8
2

1

4
H2

1

8
H21

3

8
K1

1

2
HK1

1

8
H2K

2
3

8
K22

1

4
HK21

1

8
K3,

a4~j!52
1

4
2

3

2
H1

1

2
H21

5

4
K1

3

2
HK1

1

4
H2K

2
7

4
K22

1

4
HK21

3

4
K31

1

4
HK3. ~2.19!

III. SW MAP AND THE EIGENVALUES
OF THE SCALAR FIELD

Having obtained the classical solution to the noncomm
tative BPS equation toO(u2), our next task is to transform i
into the commutative description via the SW map to get
eigenvalues of the scalar field@7#. For this purpose, we firs
have to establish the SW map to second order in the cha
du of the noncommutativity parameter.

It was pointed out in Ref.@10# that the SW map has in
herent ambiguities. There are two types of ambiguities in
One is of the form identifiable as gauge transformations. T
other type of ambiguity consists of gauge covariant qua
ties. The latter can cause physical differences and mus
fixed by some physical requirements. This type of ambig
ities comes from the path dependence of the map in thu
space. In other words, even if we perform the map to
round in theu space, we do not come back to the origin
configuration. This means that the SW map atO(du2) and
higher has such a type of ambiguities.

The SW map for the gauge field toO(du2), including the
ambiguities, is presented in the Appendix. Here, we need
SW map for the scalar field from a noncommutative spa
with smallu to the commutative space. This map is obtain
by performing the dimensional reduction of the map for t
gauge field and taking

du i j 52u i j . ~3.1!

Then, the scalar fieldF in the commutative description i

expressed in terms ofF̂ and Âi in the noncommutative de
scription as

F5F̂1DF̂ (1)1DF̂ (2), ~3.2!

with DF̂ (1) andDF̂ (2) given by
2-4
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DF̂ (1)52
1

4
dukl$Ak ,~] l1Dl !F%2 iadukl@F,Fkl#22bdukl@F,AkAl #, ~3.3!

~3.4!
n

ha

u-
am
t
e
ig

t-

n

cor-
eld

ues

.
ts

Eq.
In Eqs.~3.3! and~3.4!, all the fields are defined atu and all
the products are the * products~we have omitted the hats o
the fields and the * for the products!. We have used the
following simplified notation:

AB[duklAkBl , AFi[duklAkFli , F[duklFkl,
~3.5!

and

ReO[
1

2
~O1O †!, ImO[

1

2i
~O2O †!. ~3.6!

Note that the contraction symbol has the property t

(AB)†52B†A† due to the anti-symmetry ofdukl. We shall
mention theDF̂metric

(2) term in Eq.~3.4! soon below.
The SW map atO(du) ~3.3! contains two ambiguities

parametrized bya andb. They are the gauge-type ambig
ities. On the other hand, there exist three covariant-type
biguities with coefficientsgk (k51,2,3) in the SW map a
O(du2) ~3.4!. This type of ambiguities directly affects th
eigenvalues of the scalar. Note that the gauge-type amb
ities atO(du) have influence on the map atO(du2) and may
possibly change the eigenvalues.

The termDF̂metric
(2) in Eq. ~3.4! represents the covarian

type ambiguities using the metric.1 Note that, in all the terms
written explicitly in Eq. ~3.4!, the upper indices ofu i j are
contracted with the lower ones ofAi and] i without using the

metric. On the other hand, the terms inDF̂metric
(2) are con-

structed by using the metric. There are many terms belo

ing to DF̂metric
(2) . Examples are

1SW map containing the metric was also considered in Ref.@13#
in a different context.
08502
t

-

u-

g-

dkmd lnRe~Fkl @F,Fmn# !u2,

dkmd lnRe~DkF @F,DlF#! umun . ~3.7!

These are obtained by the dimensional reduction of the
responding operators in the SW map for the gauge fi
given in Eq.~A8! of the Appendix.

Now we shall proceed to the evaluation of the eigenval
of the scalarF ~3.2! as a 232 matrix to O(u2). For this
purpose, we expandF in the commutative description in
powers ofu:

F5F (0)1F (1)1F (2), ~3.8!

whereF (n) is of orderun. Let us write explicitly the argu-
ments of the SW map, Eqs.~3.3! and ~3.4!, as

DF̂ (n)@F̂,Âi ,u# with the last argument representing theu
dependence only through the * product~2.4!. Then, using the
noncommutative classical solution~2.5!, we have

F (0)5F̂a(0)
1

2
sa , ~3.9!

F (1)5DF̂ (1)@F̂ (0),Âi
(0) ,u50#, ~3.10!

F (2)5F̂a(2)
1

2
sa1DF̂ (1)@F̂,Âi ,u#uu2

1DF̂ (2)@F̂ (0),Âi
(0) ,u50#. ~3.11!

We shall add some explanations about Eqs.~3.9!–~3.11!.
First, we have setu50 in Eq.~3.10! and the last term of Eq
~3.11!. This implies that we take the commutative produc
among the fields. Next, the second term on the RHS of
~3.11! means the sum of all the terms quadratic inu in
2-5
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DF̂ (1)@F̂,Âi ,u#. There are three sources ofu: dukl52ukl

in Eq. ~3.3!, u in the * product, andu in the noncommutative
classical solution~2.9!.

Then, the two eigenvaluesl6 of the scalarF ~3.8! are
given using the well-known perturbation theory formula a

l65l6
(0)1l6

(1)1l6
(2) , ~3.12!

with

l6
(0)56

H~j!

2r
, ~3.13!

l6
(1)5^6uF (1)u6&, ~3.14!

l6
(2)5^6uF (2)u6&1

^6uF (1)u7&^7uF (1)u6&

l6
(0)2l7

(0)
,

~3.15!

where the ketsu6& are the eigenvectors ofF (0) satisfying

x̂•su6&56u6&. ~3.16!

Plugging the noncommutative classical solution obtain
in Sec. II into Eqs.~3.14! and ~3.15!, we get after a tedious
but straightforward calculation

l1
(1)52

1

4r 3
H~12K2!~u x̂!, ~3.17!

l1
(2)5

1

16r 5 S H22HK21
1

2
H3K21HK4D u2

1
1

16r 5 S 2H23H22HK22
1

2
H3K22HK4D ~u x̂!2

1c1 f 1~x,u!1c2 f 2~x,u!

1^1uDF̂ (2)@F̂ (0),Âi
(0) ,u50#metricu1&, ~3.18!

with

c152
1

2
g11g22

1

2
g31a2, c25

1

2
g3 , ~3.19!

and

f 1~x,u!5
1

r 5
H3K2

„u22~u x̂!2
…,

f 2~x,u!5
1

r 5
~HK22H2K22HK4!„u223~u x̂!2

….

~3.20!

The other eigenvaluel2 is given byl2
(1)5l1

(1) and l2
(2)5

2l1
(2) . The first order eigenvalue~3.17! is already obtained

in Ref. @7#. The origin of thea2 term in c1 Eq. ~3.19! is the
last term of Eq.~3.15!. There are no other contributions t
08502
d

l (2) from the last term of Eq.~3.15! since we have
F (1)ua5b50}1. The terms in the SW map~3.4! quadratic in
a and b do not contribute tol (2) owing to the property

@F (0),A(0)A(0)#50 for the zeroth order solution. All the con
stituents ofl1

(2) ~3.18!, which are polynomials ofH and K
divided by r 5, vanish at the originr 50.

IV. TILTED D-STRING PICTURE

We would like to compare the scalar eigenvalues obtai
in the previous section with those which are obtained
different ways and are expected to describe the same ph
cal situation of the tilted D-string between two parallel D
branes. In the U~1! case, there are three ways giving th
same result@7,8#; the SW map of the noncommutative BP
solution, the nonlinear BPS solution in the commutati
space, and the target space rotation of the linear BPS solu
in the commutative space. In particular, the linear BPS so
tion ~under a constant magnetic field! gives the tilted D3-
brane picture, which is related to the tilted D-string pictu
by the target space rotation~see Fig. 1!. In the non-Abelian
case, the nonlinearly realized supertransformation of the D
theory is not well understood. Therefore, we shall take
target space rotation of the linear BPS solution in the co
mutative space as the object to be compared with the eig
values of Sec. III.

Let us consider the U~2! super Yang-Mills theory in the
commutative space with a constant U~1! magnetic fieldBi .
The BPS equation of this system, which we regard as
scribing the tilted D3-brane in a constant NSNSB-field Bi j
5e i jkBk , is

DiF1
1

2
e i jk S F jk1Bjk

1

2
1D50. ~4.1!

For our present purpose of comparing with the previous s
tion, we should in fact consider the Yang-Mills theory in th
commutative space with the metricgi j related to the metric
Gi j 5d i j in the noncommutative theory of Sec. II by@1#

Gi j 1
u i j

2pa8
5S 1

g12pa8B
D i j

. ~4.2!

However, the desired scalar eigenvalue is obtained by c
sidering the BPS equation~4.1! with gi j 5d i j and coordinate
transforming back to the originalgi j afterwards@8#.

The U~1! part of this equation

FIG. 1. When the gauge group is U~1!, the target space rotation
precisely connects the tilted D3-brane picture~left! with the tilted
D-string picture~right!.
2-6
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] iF
01

1

2
e i jkBjk50, ~4.3!

is easily solved to give

F052
1

2
e i jkBjkxi5

1

~2pa8!2
~ux!, ~4.4!

where the relation 2pa8Bi52u i /2pa81O(u3) has been
used. As a solution to the non-Abelian part, we adopt
ordinary BPS monopole solution~2.6!. We shall attach tilde
to the space coordinates in the present system for dis
guishing them from those in the rotated system to be
cussed below. Then, the~larger! eigenvalue of the scala
field is

L̃5
1

2r̃
H~ j̃ !1

1

~2pa8!2
~u x̃!, ~4.5!

with j̃[C̃r̃ and r̃[ x̃i x̃i (C̃ is the mass scale of the prese
monopole!.

Now let us carry out the target space rotation and turn
the tilted D-string picture~see Fig. 2!:

S 2pa8L

~ûx!
D 5S cosf 2sinf

sinf cosf D S 2pa8L̃

~ û x̃!
D , ~4.6!

whereû i is the unit vectorû i[u i /uuu, and the rotation angle
f is given as tanf5uuu/2pa8. The components perpendicu
lar to u i are common betweenxi andx̃i . Expressing the new
eigenvalueL in the tilted D-string picture as a function o
the coordinatexi , we have

L5
H

2r
2

1

4r 3
H~12K2!~u x̂!1

1

16r 5
~H22H2K2!u2

1
1

16r 5
~2H23H224HK213H2K212H3K212HK4!

3~u x̂!22
1

~2pa8!2

1

4r
$Hu21~12K2!~u x̂!2%, ~4.7!

FIG. 2. The tilted D3-brane picture~A! in the U~2! case is
expected to be related to the tilted D-string picture~B! by a target
space rotation. The dotted curves represent the scalar eigenva

We have omitted 2pa8 which should multiplyL, L̃, C, andC̃ in
the two figures.
08502
e

n-
-

o

where the arguments ofH andK areC̃r with r 25xixi . Now
we make the coordinate transformation in Eq.~4.7! from the
metric d i j to gi j 5d i j 2(u2d i j 2u iu j )/(2pa8)2 correspond-
ing to the open string metricGi j 5d i j adopted in Sec. II. This
is accomplished by the replacement ofr with

~gi j x
ixj !1/25S 12

1

~2pa8!2

1

2
@u22~u x̂!2# D r . ~4.8!

Then, the eigenvalueL in the new coordinate system i
given by Eq.~4.7! with the last 1/(2pa8)2 term omitted and
the arguments ofH andK replaced byCr †see Ref.@8# for
the U~1! case‡. Here, C is the D3-brane separation,C
[C̃ cosf ~see Fig. 2!. We can show that this eigenvalue
exactly the same asL(x) obtained by solving

L~x!5
1

2r
H~ uxi2L~x!u i u!, ~4.9!

which implies the tilted D-string picture in Fig. 2~B!.
Namely, for a given value ofL, the correspondingxi lies on
a sphere with its center atxi5Lu i ~see Refs.@4,6,7#!.

Having finished the preparation of obtaining the eige
value from the target space rotation of the linear BPS so
tion, let us proceed to the comparison between this eig
value L ~4.7! @without the 1/(2pa8)2 term# and the
eigenvalue~3.17! and ~3.18! obtained from the noncommu
tative monopole via the SW map. First, theO(u) terms agree
between them as was already shown in Ref.@7#. Second, the
O(u2) parts coincide perfectly in the asymptotic regionr
→` where we can drop the exponentially decaying ter
@see Eq.~2.8!#. Note in particular that all the ambiguity term
in Eq. ~3.18! disappear in the asymptotic region.@The last
term of Eq. ~3.18! using the metric is also exponentiall
decaying asr→`.#

Let us compare theO(u2) terms in the two eigenvalue
for a generalxi not restricted to the asymptotic region. Sin
the SW map is defined by the gauge equivalence rela
independent of the metric, we shall consider first the simp

case of Eq.~3.18! without the last term̂1uDF̂metric
(2) u1& us-

ing the metric. In this case, by takingc251/16, we can make
Eq. ~3.18! agree with theO(u2) part of Eq.~4.7! except only
the H3K2 terms. However, for the complete agreement b
tween the two eigenvalues, the introduction of the me

term ^1uDF̂metric
(2) u1& is inevitable.

As we mentioned in Sec. III, there are many contributio
to the covariant-type ambiguity using the metric. A comple

analysis shows that the term̂1uDF̂metric
(2) u1& is a sum of

three functions,f 1 and f 2 of Eq. ~3.20! and a new one

f 3~x,u!5
1

r 5
H3K2u2, ~4.10!

each multiplied by an arbitrary coefficient. In fact, we ha
^1udkmd ln Re(Fkl @F,Fmn#) u2u1&52 f 3(x,u). Then, ex-
pressing the RHS ofl1

(2) ~3.18! as the sum of its first two
terms andc1f 11c2f 21c3f 3 with the redefinedc1 and c2,

es.
2-7
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the complete agreement betweenl1
(2) and theO(u2) term of

L ~4.7! is achieved by taking the three parameters asc15
25/32, c251/16, andc351/8. This is the unique choice fo
the coefficientsck . Note that this agreement is a nontrivi
one since we have to tune eight coefficients by using o
three free parameters. Of course, the three coefficientsck do
not completely fix the ambiguity in the SW map since the

are many contributions tock if we allow the DF̂metric
(2) term

using the metric. The use of the metric in the SW map see
not so unnatural if we recall that the noncommutative cl
sical solution@see Eqs.~2.9! and ~2.12!# as well as the BPS
equation~2.1! already contains the metric.

V. SUMMARY AND DISCUSSIONS

In this paper, we considered the noncommutative mo
pole solutions at the second order inu. We solved the non-
commutative version of the BPS equation toO(u2), mapped
the solution to the commutative side, and obtained the eig
values of the resulting scalar field. We saw that the ambi
ities in the SW map have explicit influence on the sca
eigenvalues. We made the brane interpretation to the sc
eigenvalues and examined whether they can reproduce
configuration of a tilted D-string suspended between t
parallel D3-branes. In the asymptotic region, the effect of
ambiguities in the SW map disappears and at the same
the scalar eigenvalue precisely gives the expected D-st
picture. Without the restriction to the asymptotic region,
found that we can tune the free parameters in the SW ma
that the scalar eigenvalues reproduce the desired config
tion. It is necessary to introduce the covariant-type ambigu
term using the metric. The number of free parametersck in
the eigenvalues is just enough to adjust them to the expe
ones.

We would like to make a few comments. Our first com
ment is on the covariant type ambiguity in the SW map.
this paper we have constructed the SW map first in the p
Yang-Mills system without the scalar field and then obtain
the map for the scalar by the dimensional reduction of
map for the gauge field. This is natural if we recall the orig
of the present super Yang-Mills theory via the dimensio
reduction. However, if we forget this origin, there are oth
covariant-type ambiguities treating the scalar fieldF as a
gauge covariant quantity from the start. For example, as
ambiguity for the scalar field atO(u), we havedu i j $F,Fi j %.
However, this term gives the same contribution~with an ar-
bitrary coefficient! to the O(u) eigenvalue as the existin
one~3.17!, and hence even the tilt angle atO(u) becomes a
free parameter.

Next we shall comment on the noncommutative eig
value equation for the scalar field proposed and examine
Refs.@4,6#. At O(u), the eigenvalues of the noncommutati
eigenvalue problem for the scalar gave the same asymp
behavior as those obtained via the SW map@7#. We have
carried out the analysis of the noncommutative eigenva
equation for the classical solution atO(u2) given in Sec. II.
However, the resulting eigenvalues do not agree with th
from the SW map even in the asymptotic region. Therefo
08502
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the noncommutative eigenvalue equation seems to work
only at the first order inu, though it is still an interesting
subject to understand why it gives a good result at this ord

Finally, we would like to emphasize the usefulness of t
analysis using the BPS solutions. The BPS solutions are
pected to remain intact even if we include thea8 corrections.
Thus, the BPS solutions would be helpful for giving a su
port for the equivalence between the noncommutative
scription and the commutative one independently of thea8
expansion. It is a very interesting subject to pursue
method which enables us to examine this equivalence to
orders inu.
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APPENDIX: SEIBERG-WITTEN MAP TO O„du2
…

In this appendix, we present the SW map for the gau
field to second order in the changedu of the noncommuta-
tivity parameteru. The SW map is derived from the gaug
equivalence relation@1#

Ai~Â!1dlAi~Â!5Ai~Â1 d̂ l̂Â!, ~A1!

where the quantities with a hat are defined atu and those
without hat atu1du, a nearby point ofu. This unconven-
tional meaning of hat is for the convenience of the use
Sec. III.

We expandAi andl in powers ofdu:

Ai5Âi1DÂi
(1)1DÂi

(2)1O~du3!,

l5l̂1Dl̂ (1)1Dl̂ (2)1O~du3!. ~A2!

Substituting them into Eq.~A1!, the first order part is solved
in the most general form as@10#

DÂi
(1)52

1

4
dukl$Âk ,] l Âi1F̂ li %1aduklD̂ i F̂kl

2 ibduklD̂ i@Âk ,Âl #, ~A3!

Dl̂ (1)52
1

4
dukl$Âk ,] l l̂%22ibdukl@Âk ,] l l̂ #,

~A4!

wherea andb are arbitrary real coefficients. Note that the
two ambiguity terms are both gauge-type ones. Next,
shall solve the second order part of Eq.~A1!,
2-8
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d̂lDÂi
(2)1 i @DÂi

(2) ,l̂ #2D̂ iDl̂ (2)5
i

8
dukldumn@]k]mÂi ,] l]nl̂ #1

1

2
dukl$]kÂ,] lDl̂ (1)%

1
1

2
dukl$]kDÂi

(1) ,] l l̂%2 i @DÂi
(1) ,Dl̂ (1)#, ~A5!

to obtainDÂi
(2) andDl̂ (2). We solved Eq.~A5! by assuming the most general forms forDÂi

(2) andDl̂ (2). The result is as
follows:2

~A6!

~A7!

where the meanings of the contraction, ReO and ImO are as given by Eqs.~3.5! and~3.6!. We have omitted hats on the RH
of Eqs.~A6! and~A7!. The ambiguities of the SW map atO(u2) are the homogeneous solutions to Eq.~A5!. The terms in Eq.
~A6! multiplied by gk (k51,2,3) are the covariant-type ambiguities which cannot be identified as gauge transformatio
other covariant-type terms are reduced to the threegk terms owing to the Bianchi identity. The termDÂi metric

(2) denotes the
covariant-type ambiguity using the metricGi j . There are many operators belonging to this type; for example,

GkmGln Im~FklDiFmn! u2, GkpGmqGln Im~FklDiFmn!upuq . ~A8!

The SW map for the scalar fieldF used in Sec. III is obtained from Eq.~A6! by the dimensional reduction usingAF5F,
FiF5DiF and DFO52 i @F,O#. The second quantity in Eq.~3.7! is obtained from that in Eq.~A8! by settingi 5F and
taking theGFF part.

2The terms inDF̂ (2) of the form ReO (Im O) with O containing odd~even! number of derivatives do not contribute to the sca
eigenvalue formula~3.15!. Therefore, in Eq.~A6! we have omitted such terms, which would appear as the covariant-type ambiguity
and the terms quadratic ina andb.
085022-9
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