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We study the noncommutative(®?) monopole solution to second order in the noncommutativity parameter
6. We solve the BPS equation in noncommutative super Yang-Mills thea®)( #3), transform the solution
to the commutative description by the Seiberg-Witt&W) map, and evaluate the eigenvalues of the scalar
field. We find that, by tuning the free parameters in the SW map, we can make the scalar eigenvalues precisely
reproduce the configuration of a tilted D-string suspended between two parallel D3-branes. This gives an
example of how the ambiguities inevitable in the higher order SW map are fixed by physical requirements.

PACS numbe(s): 11.27+d

[. INTRODUCTION This map is derived from the requirement of the gauge
equivalence of the two descriptions. Since this is a very weak
An explicit relation between the noncommutative fieldsrequirement, arbitrary parameters appear in the map. There
and the commutative ones has been presented in[Rpf. are two types of ambiguities in it. One is in the form of the
called “the Seiberg-Witte{SW) map.” The noncommuta- gauge transformation and has no physical effect. However,
tive Dirac-Born-Infeld (DBI) theory and the ordinary one the other type of ambiguity consists of gauge covariant quan-
appear as low-energy effective theories of D-branes in a corfities and can cause physical differences.
stant Neveu-Schwarz—Neveu-SchwédSNS B field. They We apply the SW map to the noncommutative monopole
differ by the choice of regularization for the worldsheet solution at the second order thand examine the effects of
theory: the Pauli-Villars regularization for the commutative the ambiguities. Concretely, we compare the eigenvalues of
description and the point-splitting regularization for the non-the scalar field obtained by the SW map with that in the
commutative one. This means that these two descriptions ag@mmutative Yang-Mills theory in a background magnetic
connected by some field redefinition and this is the SW magfield. Note that the ambiguities in the SW map can change
The relation between the commutative and noncommutathe scalar eigenvaludw/hich are gauge invariant quantities
tive DBI theories has been examined in various aspects. No@nd hence change their brane interpretation. It is found that
in particular, let us concentrate on the Bogomol'nyi-Prasadwe can make these two eigenvalues coincide with each other
Sommerfield(BPS solutions and compare them in both the by tuning the free parameters in the SW map. This gives an
descriptions. The reason is that the BPS solutions are coexample of how the ambiguities in the SW map are fixed in
sidered as powerful tools beyond the perturbative underconcrete physical situations.
standing. Noncommutative BPS monopoles describe, by the The rest of this paper is organized as follows. In Sec. II,
brane interpretation of2], the configurations of tilted Wwe solve the noncommutative version of the BPS equation to
D-strings ending on parallel D3-branes in a constant NSNSecond order irg. In Sec. Ill, we apply the SW map to the
B-field [3] and have been investigated in various paperssolution and evaluate the eigenvalues of the scalar field in
[4—-8]. In Ref.[4], noncommutative (2) monopole was con- the commutative description. In Sec. IV, we compare the
sidered at the first order in the noncommutativity parametegcalar eigenvalues of Sec. Il with those in the commutative
6'. The analysis using the noncommutative eigenvalue equatang-Mills theory in a constant magnetic field, and examine
tion for the scalar field successfully reproduced the tiltedthe effect of the ambiguities in the SW map. In Sec. IV, we
D-string picture. In Ref[6], the similar analysis was carried summarize the paper and give some discussions. The SW
out for the string junction and the anticipated result was obmap to second order in the changefs presented in the
tained. Study of the noncommutative monopoles using thé\ppendix.
SW map was carried out in Refg7,8] (see also Ref[9]).
There, the noncommutative BPS solutions were transformed
into the commutative description via the SW map, and then |I. NONCOMMUTATIVE BPS MONOPOLE SOLUTION

the brane interpretation was done for the eigenvalues of the AT 62
mapped scalar field to give the expected tilted D-string pic- ) .
ture. We shall consider th&/=4 U(2) noncommutative super

The purpose of this paper is to extend the analysis of the @g-Mills theory in 3 dimensions with the metriG,,,

noncommutative (2) monopole using the SW map to sec- =diag(—1,1,1,1), and construct the BPS monopole solution
ond order ind. The motivating fact is as follows: the SW to second order in the noncommutativity parameter. The BPS

map possesses some ambiguities in higher ordess[itp]. ~ €guation reads
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where the quantities with a hat denote those in the noncomFhis solution is invariant under the generalized rotation,

mutative description. In particular, we have namely, the simultaneous rotation of the diagona(3@nd
R ) L the indices of the noncommutativity paramefigr. Note that
Fij=di Aj—dj A—IATA+IATA;, (2.2 the noncommutativity has no influence on the scalar solution
at O(0).
biiza@_ iA* d+i ‘i’*Ai , 2.3 Now let us consider the components at the second order in
6 in the expansioti2.5). TheO(6?) part of the BPS equation
where the * product is defined by reads
i R R
(f*g)(x)zf(x)exp<§a'laiaj)g(x) 3PP+ €, 3, AYD=0, (2.10
i ij 5 a(2) Aa(2) ADb(0)F c(2)
=f(X)g(X)+§0 r?lf(X) ﬁjg(x) &lq) +6IJK(9JAk +Eabc(Ai ()]

1 ~ PR 1 ¢ APOAL)
-3 0" 69,9, f(x) 9,0,9(x) + O(63).

1 - - 1 - -
(2 4) ZE aklﬁkq)a(o)(9|A?(l)_ E eijk alm(9|A?(0)o”mAE(l)

In order to solve the BPS equatidB.1), we expand the } Im ppq Ab(0) N0))
fields in powers off: *3 €anctl 07 91IpAT Imdg P

- - « - 1 ~ A 1 1 ~b(0) Ac(0)
(DE((I)a(O)+ (I)a(l)+ (I)a(Z))E O-a+ ((I)O(l)+ (1)0(2))E JL + E 6ijk&|aij ﬁmﬁqu , (211)

where the first equatio(2.10 is the U1) part of Eq.(2.1),
while the second equatio2.11) is the SU2) part. The U1)

(2.5 part has no regular solutions and we shall concentrate on the
SU(2) part(2.17).

- R ~oon 1 . o 1
A= (A0 A3 4 AR2)) S0at (AXM) 4 A0(2) 51

where the SUODGFSCfiQU) denotes the order of. As the so- In order to solve Eq(2.11), we adopt the generalized
lution at O(6"), we adopt the BPS monopol&1,12 with  rotational invariance used in the construction of tRés)
vanishing U1) componentsb®(®=A?®=0: part(2.9), and expandb?? andA? as

~ X ” Xi
PAO="H(g), AMO=¢,; L (1-K(9), (2.6 5 1 ~ . ~\20
 HO €aij (1K), (26 DO = 21 (£)(05) B+ bal £) X+ bal £)(03)%a],

with X;=x;/r and¢=Cr (C is the parameter characterizing
the mass of the monopgleThe functionsH andK are de-

: A 1 - -
fined by A?(z):r_g,[al(f) 07 €ijX; +a2(£)(0X) €45 6;
HE= -2 1, K(f)= o 2.7 A SOT,
(&)= tanh¢ (&)= sinh¢’ ' +az(€) €ajib; X+ aa(€)(0X)“€4ijX;
These two functions behave asymptotically as +a5(£)(0X) €ajiX; Xy, (2.12

s -¢ — —¢ A -
HO=£-110(e), K(O=0+0(e™). (2.8 where we have userﬂiz(l/Z)eijka“‘, 6°= 6,6, and (6x)

Note that the solutiorf2.6) has an invariance under the ro- =#6X;. One can check that this is the most general expres-
tation by the diagonal subgroup & of SO(3)pce SO satisfying the generalized rotational invariance, by using

® SO(3 jauge the identities
The solution at9( ) was constructed in Reff4,5] and it
's given by €2ijX°= (€ijXaT €akiXi T €aikXj) Xk » (2.13
N o a1
AiV=0, APW=gx F(l— K)(1—-K+2H), and the same one witk replaced bys, . Putting the expan-

sion (2.12 into Eqg. (2.11), we obtain the following linear
R R differential equations with inhomogeneous terms for the un-
oM =0, @°M=0. (2.9  known functionse,(£) anday(é):
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D(—a;—az)+¢,+4a;—a,+5a3+as— (1—-K)p,—Ha; =14,
D(p,+a;+az)—6¢,—6a;—6az;—as+(1—K)(¢p,+2a;+az) +Ha;=1,,
Daz+ ¢p1+a,—5az—as—Haz=l3,
D(a,—agz)+2¢3—6a,+6az+2as;+(1—-K)(¢p,+a,—az—as) +Haz=1,,
D(¢pi—az)—6¢,+6az+2a,tas+(1-K)a,+H(a,—as)=Is,

D(—axtazg—ay)+ d3t+6a,—6az+4a,—2as— (1-K)(p1+ ¢3) —H(a+as) =ls,

D(pz+ay) —8phz—8a,+ (1—K)(pz+2a,+as)+H(as+as) =17, (2.19

where the differential operatdp=¢(d/d¢) has been intro-

duced. The seven equatiof’s14) correspond to seven inde-
pendent structures of Eq2.11): 625,, 6°X.Xi, 6.6;, , , , ,
(0X)Xath, (6%) 0%, (6X)265, and (6X)*X.X;, respec- PO S LS S
tively. The functionsl, (k=1,...,7) are theinhomoge- 2 4 2 8
neous terms which are polynomials ldfand K:

11 17H H? 1K
=" T2t

22 7K3 3HK3® K*
B R

13 3H H? 9K 5HK 3H%K
WoO=-gtg 2 T2+t "3

| _ 3H 3H? 13K 31HK 3H%K
sW=lmg gttt T

8 8 8 4 8 H3K 15K2 13HK? 3H2K2+7K3
5 3H2K3 K5 4 4 4 4 4
8 8’ THK3 K4
8 4
15(€) 3+7H+H2 9K _SHK _SH™K HK 3HZ 19K 3HK 3H2K H3K
)= _ _
8 8 2 8 2 8 8 S H+ T _ _
le(§)=2-H+ ===~ 8 8
HK? H?K? H°K? 3HK?®
K |<2+HK2+H2K2+5K3+5HK3
2 4 4 4
H?K3® 3K* HK* K°
: 8 _3T_ 2 g HKE,
8 8’

5 9H H? 1K 5H2K
Is(&)=gtgt5 5 3HK——

H3K 21K2 21HK? 3H%k? 11K®
"2 T8 T8 TTa s

3HK3+K4
4 4
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We can solve the differential equatiof®&14) by the same

polynomial assumption as used in the construction of the

noncommutative 1/4 BPS solutidi®], that is, we assume
that the functionsF= ¢, anda, are given as polynomials of
H andK:

nmax mmax

-7::2 E ]:annKm'
n=0 m=0

(2.19

with suitably largen,,,, andm;,,.. This assumption is owing
to the property oH andK,

DK=—-HK,

DH=1+H—-K?, (2.1

which implies that the operation @ on a polynomial oH

andK just reproduces another polynomial of them. With the

assumption(2.16), the differential equation$2.14) are re-

duced to a set of linear algebraic equations for the coeffi-
cientsF,,, which can be solved straightforwardly. Note that

we originally had seven differential equatiori®.14) for

eight unknown functions, so the solution contains one unde-

PHYSICAL REVIEW D 62 085022

11 3., 3 1 1,
a2(§)=Z+§H—§H _ZK_EHK_I— §H K
1
“w2_ " w3
+-K 4K,
! 1H lH2 3K 1HK 1H2K
(6 =—ggH g Tgh+HKTg
3 1 1
_ _w2_ 2 w3
8K 4HK +8K,
3 1,5 3 1,
a4(§)=— _§H+§H +ZK+§HK+ZH K

~

1 3 1
2_ 2, “ w3, = 3
FHKZ+ Ko+ ZHKS, (2.19

Ill. SW MAP AND THE EIGENVALUES
OF THE SCALAR FIELD

Having obtained the classical solution to the noncommu-

termined function. This is the gauge freedom which pre-tative BPS equation t@(62), our next task is to transform it

serves the generalized rotational invariant fof2nl2), and
the corresponding gauge transformation function is

~ 1
3= Ea|J0|X](9X)r_4)\(§) (218)

Using this freedom to choosm;(¢) =0, the solution to the
O(6?) part (2.11) of the noncommutative BPS equation is
given as follows:

— i the Thes thke
¢1(§)—_Z +Z 8 +Z ,
13 1.1 3 1
—_ _ _ TH2_ T w2, K24 " y22?
$a(§) =g — gH+ gH? = 7K+ gHK?+ SHXK
1
+_ 4
gk
B S TOPORE PO P
Pal)=—gtghHgH TghH+ 3K ~3
1 1
_ T yg2p2_ "4
g H2K?= K,
! 1H 1K lHK lH2K 5K2
a@="graHmghkgHK g3
1 3 .1
- 2_ “w3_ 3
+ 7 HK? = 2KP= 2 HK?,

into the commutative description via the SW map to get the
eigenvalues of the scalar fied]. For this purpose, we first
have to establish the SW map to second order in the change
66 of the noncommutativity parameter.

It was pointed out in Ref[10] that the SW map has in-
herent ambiguities. There are two types of ambiguities in it.
One is of the form identifiable as gauge transformations. The
other type of ambiguity consists of gauge covariant quanti-
ties. The latter can cause physical differences and must be
fixed by some physical requirements. This type of ambigu-
ities comes from the path dependence of the map inéthe
space. In other words, even if we perform the map to go
round in thef space, we do not come back to the original
configuration. This means that the SW map{t562) and
higher has such a type of ambiguities.

The SW map for the gauge field t@(56?), including the
ambiguities, is presented in the Appendix. Here, we need the
SW map for the scalar field from a noncommutative space
with small 8 to the commutative space. This map is obtained
by performing the dimensional reduction of the map for the
gauge field and taking

56 =—gl, (3.1

Then, the scalar field in the commutative description is

expressed in terms ab andA, in the noncommutative de-
scription as

P=D+ADD+ADP), (3.2

with A®® and Ad @ given by

085022-4
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5 (1 1 Kl ; kI kI
AP =— 7 004A (D)@} —iad0[®,Fi] - 256 [ D, AA], (3.3

=(2) 1 ™ 1 /™ 1 ——= 1
AT = ZIm(0A00%) + 7 Re(A0409) ~ { Re(9A AGD)

1 o 1 — 1 —x
-1 Re(A0D® A) + 1 Re(AA8Dd) + 1 Re(AFD®)
1 1 1 — 1 [
t3 Re(AD®F) - 3 Re(0A0A D) + 3 Re(8A ®04)

1 1 1
~gRe(AAAA®) + TRe(AAADA) - cRe(AADAA)

( —+8af+ 16°) Re(AA[®,AA)) + 80 Im(9A [®,AA])

’_I—TI m n 1 n
—v1 Re(F [®, F]) — 72 Re(F [®, F]) + 73 Im(D® DF)

+ A8 + (gauge-type ambiguities). (3.9
T
In Egs.(3.3) and(3.4), all the fields are defined & and all 5km5|nRe(Fk| [®,F,. )62
the products are the * productwe have omitted the hats on
the fields and the * for the produgtsWe have used the SMSINRE D, D [D,D,D]) b0, . 3.7

following simplified notation:

— — A These are obtained by the dimensional reduction of the cor-
AB=60"AB,, AF=60NAF;, F=686"Fy, responding operators in the SW map for the gauge field
(3.5  given in Eq.(A8) of the Appendix.
Now we shall proceed to the evaluation of the eigenvalues
and of the scalar® (3.2 as a 2<2 matrix to O(6?). For this
purpose, we expan@ in the commutative description in

1 1 .
ReOEE(O+ OT)’ Im 055(0_01‘) (36) powers ofe:

P=0O+PpMW+ ) (3.9

Note that the contraction symbol has the property that
(AB)T_ _BTA' due to the anti- _symmetry af¢*'. We shall where®(™ is of order6". Let us write explicitly the argu-
mention theAd ), term in Eq.(3.4) soon below. ments of the SW map, Egs(3.3 and (3.4, as

The SW map at(66) (3.3 contains two ambiguities AP™[®,A;,6] with the last argument representing the
parametrized byr and 8. They are the gauge-type ambigu- dependence only through the * prod@2t4). Then, using the
ities. On the other hand, there exist three covariant-type anroncommutative classical soluti@@.5), we have
biguities with coefficientsy, (k=1,2,3) in the SW map at

O(56%) (3.4). This type of ambiguities directly affects the A 1
s : PO =pa0) _ & (3.9
eigenvalues of the scalar. Note that the gauge-type ambigu- 2 Yas
ities at®(56) have influence on the map & 562) and may
ossibly change the eigenvalues. A Ay a
P Y 2 9 dW=AdM[ PO A g=0], (3.10

The termA®®@), . in Eq. (3.4 represents the covariant-
type ambiguities using the metridJote that, in all the terms
written explicitly in Eq. (3.4), the upper indices o#" are q)(z):(i)a(zﬁa +A<i3(1)[&> A 01l 2
contracted with the lower ones Af andd; without using the 274 e
metric. On the other hand, the terms Atb®), . are con-
structed by using the metric. There are many terms belong-

ing to A®?), .. Examples are We shall add some explanations about E@9)—(3.11).
First, we have sef=0 in Eq.(3.10 and the last term of Eq.
(3.11). This implies that we take the commutative products
1SW map containing the metric was also considered in R& ~ among the fields. Next, the second term on the RHS of Eq.
in a different context. (3.1) means the sum of all the terms quadratic dnin

—I—A(’I\)(Z)[C’I\)(O),Ai(o)ﬁ:()]- (3.11

085022-5
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ADD[D A, ,6]. There are three sources 6f 56K = — g
in Eq.(3.3), #in the * product, and in the noncommutative
classical solutior{2.9).

Then, the two eigenvalues.. of the scalar® (3.8) are
given using the well-known perturbation theory formula as

Ao =AO\ D4\ @) (3.12
with
H(&)
0= 4+_~>2
A= (3.13
A =(x|oW]x), (3.14
+[OWx)(F|dM)]|x)
(2)— (2) ( |
(3.15
where the ket$+) are the eigenvectors db(®) satisfying
X-o|+)=*|*). (3.16

PHYSICAL REVIEW D 62 085022

ROTATION
D-string

>

D-string

D3-brane
D3-brane

FIG. 1. When the gauge group ig1), the target space rotation
precisely connects the tilted D3-brane pictdiest) with the tilted
D-string picture(right).

A?) from the last term of Eq.(3.15 since we have
®M],_ ol The terms in the SW maf8.4) quadratic in
« and B do not contribute tox(®) owing to the property

o .
[®©) AOA©]=0 for the zeroth order solution. All the con-
stituents ofA(? (3.18), which are polynomials oH and K
divided byr®, vanish at the origim=0.

IV. TILTED D-STRING PICTURE

We would like to compare the scalar eigenvalues obtained
in the previous section with those which are obtained by

Plugging the noncommutative classical solution obtainedyifferent ways and are expected to describe the same physi-

in Sec. Il into Egs(3.14) and(3.15, we get after a tedious
but straightforward calculation

1 .
)\(f):—FH(l—KZ)(Gx), (3.17

1 1
NP = E( H2—HK?+ EH3K2+HK4) 6?

1 1 .
+ —(2H—3H2—HK2— —H3K2—HK4)(6x)2
16r° 2

+cq F1(X,0)+cy fo(X, 0)

+(+[ADP[DO, AL, g=0]eiid +), (3.19
with
1 1 )
01:_5’)’1"'72_5’}’3"'“, 022573, (3.19
and

1 “
fﬂxm=FH%%¢—wm%

fo(x,0)= %(HKZ— H2K2—HK*) (62— 3(6%)?).
(3.20

The other eigenvalua _ is given byAV=\1 and\?@=
—\@ . The first order eigenvalug.17) is already obtained
in Ref.[7]. The origin of thea? term inc; Eq. (3.19 is the
last term of Eq.(3.15. There are no other contributions to

cal situation of the tilted D-string between two parallel D3-
branes. In the (1) case, there are three ways giving the
same resulf7,8]; the SW map of the noncommutative BPS
solution, the nonlinear BPS solution in the commutative
space, and the target space rotation of the linear BPS solution
in the commutative space. In particular, the linear BPS solu-
tion (under a constant magnetic figldives the tilted D3-
brane picture, which is related to the tilted D-string picture
by the target space rotatidsee Fig. 1 In the non-Abelian
case, the nonlinearly realized supertransformation of the DBI
theory is not well understood. Therefore, we shall take the
target space rotation of the linear BPS solution in the com-
mutative space as the object to be compared with the eigen-
values of Sec. Ill.

Let us consider the (2) super Yang-Mills theory in the
commutative space with a constantly magnetic fieldB; .
The BPS equation of this system, which we regard as de-
scribing the tilted D3-brane in a constant NSBSield B;;
= eijkBk f iS

1
Diq)+ Efijk (41)

1

For our present purpose of comparing with the previous sec-
tion, we should in fact consider the Yang-Mills theory in the
commutative space with the metig; related to the metric
Gjj= dj; in the noncommutative theory of Sec. Il by]

8
G'+

4.2
2ma’ “2

1 !
g+ 27Ta’B> .

However, the desired scalar eigenvalue is obtained by con-
sidering the BPS equatiod.1) with g;;= &;; and coordinate
transforming back to the origing;; afterwardg8].

The U1) part of this equation

085022-6
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where the arguments &f andK areCr with r?=x'x'. Now
we make the coordinate transformation in E4.7) from the
................. T metric & to g;; =& — (65, — 6,6;)/(2mwa’)? correspond-

d @) ing to the open string metriG;; = &;; adopted in Sec. II. This
is accomplished by the replacementrofvith

D3-brane  —C

1
(27a')? 2

(g xix) 2= 1 [62—(6x)?]|r. (4.8

(B)
) ) ] ] Then, the eigenvalue\ in the new coordinate system is

FIG. 2. The tilted D3-branfe plctur(ﬁ_) in _the U?2) case is given by Eq.(4.7) with the last 1/(276(,)2 term omitted and
expected to be related to the tilted D-string pictiBe by a target the arguments ol andK replaced byCr [see Ref[8] for
space rotation. The dotted curves represent the scalar eigenvalu?ﬁ.e U1) casd. Here, C is the D3-brane separatiorC
We have omitted Z«a’ which should multiplyA, A, C, andC in _2 cose (see Fig. 2 ,We can show that this eigenvalue is
the two figures. = :

9 exactly the same a4 (x) obtained by solving

1
AP 3 EnBy=0, 43 AGO= 5 H(x - (06, (4.9

is easily solved to give
! 'y SOV v which implies the tilted D-string picture in Fig. (B).

1 _ 1 Namely, for a given value ah, the corresponding; lies on
®0=— — €, B xX'= ———(6x), (4.4  a sphere with its center at=A 6; (see Refs[4,6,7)).
2 K= "2 . .. . . .
(2ma’) Having finished the preparation of obtaining the eigen-

. e , 3 value from the target space rotation of the linear BPS solu-
where the relation Za'B;=—6/2ma’+O(0") has been ., et s proceed to the comparison between this eigen-
used. As a solution to the non-Abelian part, we adopt th?/alue A (4.7 [without the 1/(2ra’)? term] and the
ordinary BPS monopole SO!UtiO@'G)‘ We shall attach t"d? . eigenvalue(é.l?) and (3.18 obtained from the noncommu-
to the space coordinates in the present system for d'smt'ative monopole via the SW map. First, te¥é0) terms agree

e s betueen the as was aready shown i Rl Second, the
' ' 9 9 O(6?) parts coincide perfectly in the asymptotic region

field is . )
—o where we can drop the exponentially decaying terms
1 1 [see Eq(2.8)]. Note in particular that all the ambiguity terms
A=—HE+ ———(6x), (4.5 in Eq. (3.18 disappear in the asymptotic regigi.he last
2r (2ma’)? term of Eq.(3.18 using the metric is also exponentially

o - —— decaying ag —.]
with §=Cr andr=x;x; (C is the mass scale of the present et us compare th&(6?) terms in the two eigenvalues

monopole. for a generak; not restricted to the asymptotic region. Since
Now let us carry out the target space rotation and turn tahe SW map is defined by the gauge equivalence relation
the tilted D-string picturdsee Fig. 2 independent of the metric, we shall consider first the simpler
2ma’'A\ [cosd —sind)|(2ma’A case of Eq(3.18 without the last tern{-+ |AD?) | +) us-
R ) :( _ — |, (48 ingthe metric. Inthis case, by takimg=1/16, we can make
(6x) sing  cos¢ (6x) Eq.(3.18 agree with theD(6?) part of Eq.(4.7) except only

A . the H3K? terms. However, for the complete agreement be-
where#, is the unit vecto;= ¢, /| 6|, and the rotation angle tween the two eigenvalues, the introduction of the metric
¢ is given as tath=|6|/2ma’. The c’:“omponents.perpendlcu- term(+|AD®),.|+) is inevitable.
lar to 6; are common betweex) andx; . Expressing the new  As we mentioned in Sec. Il there are many contributions
eigenvalueA in the tilted D-string picture as a function of to the covariant-type ambiguity using the metric. A complete

. | N
the coordinatec, we have analysis shows that the terfn-|[ADZ).1+) is a sum of
H 1 1 three functionsf, andf, of Eq. (3.20 and a new one

A= — ——H(1-K?)(x)+ — (H2—H?K?) #?
or a8 ( )(6x) 16r5( ) )
fa(x,0)= < H3K?6?, (4.10
r

1
+ ——(2H—3H?—4HK?+ 3H?K?+ 2H3K %+ 2HK*)
16r° each multiplied by an arbitrary coefficient. In fact, we have
(+|*M5"™ ReF i [®,Fmnl) 0% +)=—1f5(x,60). Then, ex-
X (6%)2— i{H 62+ (1-K2)(6%3, (a7  Pressing the RHS ok® (3.18 as the sum of its first two
(2ma’)? 4r terms andc,f,+c,f,+c3f3 with the redefinedc; and c,,
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the complete agreement betw@e‘ﬁ) and the®(6?) term of ~ the noncommutative eigenvalue equation seems to work well
A (4.7) is achieved by taking the three parameters:as only at the first order ing, though it is still an interesting

—5/32, c,=1/16, andc,=1/8. This is the unique choice for subject to understand why it gives a good result at this order.
the coefficientsc, . Note that this agreement is a nontrivial Finally, we would like to emphasize the usefulness of the

one since we have to tune eight coefficients by using Onl);malysis using the BPS solutions. The BPS solutions are ex-

three free parameters. Of course, the three coefficignt® pected to remain intact even if we include ke corrections.
not completely fix the ambiguity in the SW map since thereThUS' the BPS s_olut|0ns would be helpful for giving a sup-
port for the equivalence between the noncommutative de-

- : 22
are many contributions toy if we allow the A® (. term scription and the commutative one independently of dhe

using the metric. The use of the metric in the SW map SeeMgypansion. It is a very interesting subject to pursue the

not so unnatural if we recall that the noncommutative clasy,ethod which enables us to examine this equivalence to all
sical solution[see Eqs(2.9) and(2.12] as well as the BPS 4ers ing.

equation(2.1) already contains the metric.
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eigenvalues and examined whether they can reproduce the
configuration of a tilted D-string suspended between two APPENDIX: SEIBERG-WITTEN MAP TO (O(66?)
parallel D3-branes. In the asymptotic region, the effect of the , i
ambiguities in the SW map disappears and at the same time " this appendix, we present the SW map for the gauge
the scalar eigenvalue precisely gives the expected D-strin%ﬁe,Id to second order in the chang® of the noncommuta-
picture. Without the restriction to the asymptotic region, wellVity parameters. The SW map is derived from the gauge
found that we can tune the free parameters in the SW map &fiuivalence relatiopd]
that the scalar eigenvalues reproduce the desired configura- ~ ~ o
tion. It is necessary to introduce the covariant-type ambiguity Ai(A)+ o\AI(A)=Ai(A+ 55A), (A1)
term using the metric. The number of free parametgrs
the eigenvalues is just enough to adjust them to the expectethere the quantities with a hat are definedfaand those
ones. without hat atf+ §6, a nearby point ofd. This unconven-

We would like to make a few comments. Our first com-tional meaning of hat is for the convenience of the use in
ment is on the covariant type ambiguity in the SW map. InSec. lll.
this paper we have constructed the SW map first in the pure We expandA; and\ in powers of56:

Yang-Mills system without the scalar field and then obtained

the map for the scalar by the dimensional reduction of the A=A +AAD+AAP + 0(56°%),

map for the gauge field. This is natural if we recall the origin
of the present super Yang-Mills theory via the dimensional
reduction. However, if we forget this origin, there are other
covariant-type ambiguities treating the scalar fidldas a
gauge covariant quantity from the start. For example, as a
ambiguity for the scalar field a@(6), we haves6"{®,F;;}.
However, this term gives the same contribut{gvith an ar-
bitrary coefficient to the O(6) eigenvalue as the existing AAM = — EMKI{Ak A +F il + as6MDFy
one(3.17), and hence even the tilt angle@{d) becomes a 4

free parameter.

Next we shall comment on the noncommutative eigen-
value equation for the scalar field proposed and examined in
Refs.[4,6]. At O(6), the eigenvalues of the noncommutative
eigenvalue problem for the scalar gave the same asymptotic

A=A+ AND+ AN+ 0O(56°). (A2)

§ubstituting them into EqA1), the first order part is solved
in the most general form 44.0]

—iBSONDi[A AL (A3)

. 1 L. ..
A)\(l)=—Z50k'{Ak,a,)\}—2i,850k'[Ak,&|)\],

behavior as those obtained via the SW nj@h We have (A4)
carried out the analysis of the noncommutative eigenvalue
equation for the classical solution &(6?) given in Sec. Il.  wherea andp are arbitrary real coefficients. Note that these

However, the resulting eigenvalues do not agree with thosewo ambiguity terms are both gauge-type ones. Next, we
from the SW map even in the asymptotic region. Thereforeshall solve the second order part of E41),

085022-8
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< A2) s A2) B $(2) I Kkl mnj A \ = Kkl A L (1)
5}\AAi +|[AA| ,)\]_DlA}\ =§50 50 [&k(?mAi ,(?|(9n)\]+ 550 {ﬁkA,(;|A)\ }

1 . . R .
+5 869 AAD o N} —i[AAD AN, (A5)

to obtainAA{? and AX(®). We solved Eq(A5) by assuming the most general forms fA(?) and AX(?). The result is as
follows:?

~z 1 — 1 — 1 ™M 1 ]
AA” = 1 Im(0A0A;) — 3 Im(0A 89 A) + i Re(ADADA;) — i Re(0A A0A;)
1 . 1 — ] 1 mr 1 ™
~1 Re(AOF; A) + 1 Re(AAQF,) + 1 Re(AFF;) + 1 Re(AFF)

1 — 1 — 1 — 1 [ —

= e N =y
— SRe(AAAAA)+ JRe(AAAAA) ~ SRe(AAAAA)

1 ™ — ™ ™
+ (5 + 806 +46°) In(A A Dy(A A)) + 8o Re(0A4 Di(4 4))

16
M 3 m N
+m Im(F D,F) + ¥ Im(FDzF) + 73 Im(F, DF)

+ A‘Zz('?x)letric + {gauge-type ambiguities), 46)
~ 1 — 1 — | 1 — 1 — —
AN = 5 Im(0A 0ON) — 3 Re(0A AON) — 3 Re(0AON A) + 1 Re(A0AON)
1 — 1 —=
~ g Im(AAAN) + 5 Im(A A0MA)
1 o M — Ao —

+ % +8aB + 40 ) Im(AA(ABA+0MA)) + 8aBRe(0A (AN + 0N A))
+ (gauge-type ambiguities), A7)

where the meanings of the contraction,®and Im© are as given by Eq$3.5 and(3.6). We have omitted hats on the RHS

of Egs.(A6) and(A7). The ambiguities of the SW map &X 6?) are the homogeneous solutions to B&). The terms in Eq.

(A6) multiplied by y, (k=1,2,3) are the covariant-type ambiguities which cannot be identified as gauge transformation. All
other covariant-type terms are reduced to the thre¢éerms owing to the Bianchi identity. The term@\i(znzetriC denotes the
covariant-type ambiguity using the meti®&; . There are many operators belonging to this type; for example,

G*"G!" Im(FyDiF ) 62, GKPG™MIG™ Im(FDiF ) 8,6 (A8)

The SW map for the scalar fiel# used in Sec. lll is obtained from E@¢A6) by the dimensional reduction using, =,
Fio=D;® andD40O=—i[®,0]. The second quantity in Eq3.7) is obtained from that in EqA8) by settingi=® and
taking theG®® part.

2The terms inA®®@ of the form Re® (Im O) with O containing odd(ever) number of derivatives do not contribute to the scalar
eigenvalue formuld3.15. Therefore, in Eq(A6) we have omitted such terms, which would appear as the covariant-type ambiguity terms

and the terms quadratic i and 3.
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