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Recurrent dynamical symmetry breaking and restoration by Wilson lines
at finite densities on a torus

Chung-Chieh Lee and Choon-Lin Ho
Department of Physics, Tamkang University, Tamsui 25137, Taiwan

~Received 16 February 2000; published 27 September 2000!

In this paper we derive the general expression of a one-loop effective potential of the nonintegrable phases
of Wilson lines for an SU~N! gauge theory with a massless adjoint fermion defined on the spactime manifold
R1,d233T2 at finite temperature and fermion density. The phase structure of the vacuum is presented for the
case withd54 and N52 at zero temperature. It is found that gauge symmetry is broken and restored
alternately as the fermion density increases, a feature not found in the Higgs mechanism. It is the manifestation
of the quantum effects of the nonintegrable phases.

PACS number~s!: 11.10.Wx, 11.10.Kk, 11.15.Ex
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I. INTRODUCTION

By now no one would deny that one of our most impo
tant quests is the search for the theory that unifies all
known fundamental interactions. This dream found its par
realization in the Weinberg-Salam-Glashow model of el
troweak theory. From this model one learns of the ironic
important interplay between the requirement in one’s unifi
theory of certain gauge symmetries, and the necessity
breaking them.

One of the most original and beautiful ideas in the sea
of a unified theory is the assumption of the existence of e
compactified dimensions, originated from the works of N
dström, Kaluza, and Klein@1#. These compactified dimen
sions manifest themselves as gauge fields in flat fo
dimensional spactimes. The beauty and simplicity of t
idea fascinated even the great Einstein, who returned
several times in the latter part of his life@2#. The idea, how-
ever, soon met with its demise owing to the lack of expe
mental evidences. It was not until the 1970s that interes
Kaluza-Klein theories were revived by modern attempts
unified theory such as the theories of supergravity and su
strings. In these modern theories, however, gauge fields
usually assumed to be present in higher dimensions. Ne
theless, it is fair to say that the principle of gauge invarian
and the assumption of extra compactified dimensions con
tute the two most important ingredients in most of the mo
ern versions of a unified theory. More recently, in a differe
development, the possibility of extra dimensions has a
attracted the attention of particle phenomenologists@3#: it
was argued that various unification scales might be lo
than what were previously thought of, if extra dimensio
exist.

Inspired by the Kaluza-Klein scenario, properties
gauge theories in nontrivial spacetimes have also rece
considerable interest during the last three decades. Of
various topics considered so far an interesting one is
study of the effects of nonintegrable phases of the Wils
lines. In a gauge theory on a multiply connected space, th
nonintegrable phases become dynamical degrees of free
@4,5#, and have many interesting implications. They lead t
u vacuum in QED on a circle@6#. On toroidal spaces the
0556-2821/2000/62~8!/085021~8!/$15.00 62 0850
e
l
-
t
d
of

h
a
-

r-
s
it

-
in
f
r-
re
r-
,
ti-
-
t
o

r
s

f
ed
he
e
n
se
om
a

induce restriction on the Chern-Simons term@7#, and conse-
quently lead to multicomponent anyon wave functions a
the related braid group structures@8#, and quantum group
symmetry@9#. Last but not least, they cause dynamical gau
symmetry breaking in non-Abelian gauge theory@4,5#.

Dynamical gauge symmetry breaking by Wilson lines in
multiply connected spacetime has been studied with con
erable interests since its introduction in the 1980’s, and
been employed extensively in superstring phenomenol
@10#. Unlike the Higgs mechanism, which relies on the no
vanishing vacuum expectation values of scalar fields,
Wilson line mechanism depends essentially on the nontri
holonomy of the vacuum gauge field configuration aris
from the topology of spacetime. An interesting feature of t
mechanism is that fermion mass generation does not ne
sarily require symmetry to be broken, and vice versa.

However, it is generally very difficult to compute dynam
cally the quantum effects~in terms of the effective poten
tials! that determine the symmetry-breaking patterns, exc
for a few simple compact manifolds, such as the circ
R1,d223S1 @4,11# and the torusR1,d233T2 @12,13#. So far
no computation of the effective potential has been achie
on the Calabi-Yau manifolds which are relevant to sup
string phenomenology. To gain a better understanding of
mechanism, it is therefore useful to explore various aspe
of the mechanism in simple manifolds.

One interesting consideration is the inclusion of the
fects of finite temperature and finite fermion density. Effe
of finite temperatures on Wilson line symmetry breaking h
been studied for circular@14,15# and toroidal@16# compacti-
fied spaces previously. In@17# both the effects of the tem
perature and the fermion density are considered for the
cular case (R1,d223S1). These studies indicate that in a
SU~N! gauge theory with only gauge fields and fermions
the adjoint representation of the group, higher temperatu
always restore the gauge symmetry~on the circle and torus
symmetry is not broken by this mechanism when the fer
ons are in the fundamental representation!.

Our main purpose in this paper is to present the gen
expressions of the one-loop effective potentials for
SU~N! gauge fields and the adjoint fermions on the spa
time manifoldR1,d233T2, with temperature and density e
©2000 The American Physical Society21-1
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fects taken into account. We also consider thed54 dimen-
sional case in detail, and investigate the symmetry-break
patterns as function of the fermion density and the size of
torus at zero temperatures. Even in this simple case an in
esting feature already emerges, namely, the gauge symm
can be broken and restored alternately as the density an
the sizes of the torus change. This is something not note
the Higgs mechanism.

The organization of the paper is as follows. First, we g
a brief review of the essence of the Wilson line mechan
in Sec. II. Section III presents the derivation of the gene
expressions of the effective potentials. In Sec. IV thed54
dimensional case is studied numerically. Section V c
cludes the paper.

II. WILSON LINES MECHANISM

In this paper we consider an SU~N! gauge theory with
adjoint fermions on ad-dimensional spacetime manifol
R1,d23 3T2. Generalizing to the case in higher dimension
torus is straightforward. The Lagrangian is given by

L52
1

2
Tr FmnFmn1 i c̄gmDmc, ~1!

where

Fmn5]mAn2]nAm1 ig@Am ,An#,

Dmc5]mc1 ig@Am ,c#.

As the space is multiply connected, one must specify
boundary conditions of the fields for the two noncontracti
loops. Letxa (a50,1, . . . ,d23) andya (a51,2) label the
Minkowski and the toroidal coordinates, respectively, (m,n
run over botha anda). The boundary conditions are

Am~xa,ya1La!5UaAm~xa,ya!Ua
† , ~2!

c~xa,ya1La!5eibaUac~xa,ya!Ua
† . ~3!

Here La are the lengths of the circumferences ofT2. The
phaseseiba represent the continuous spin structure of
manifold when using Dirac fermions. These phases can
from physical operators constructed bilinearly inc̄ and c,
but contribute to the boundary conditions.

One can then specify a particular SU~N! bundle over the
torus, and determine the vacuum configuration of the c
nection by evaluating the effective potential for^Am&. How-
ever, in this paper, as in@12#, we will confine ourselves to
the trivial bundle with^Am& a constant element of SU~N!.
Even this simple case gives interesting and nontrivial res
on the vacuum structure in the theory.

Suppose that̂Fmn&50 in the vacuum and therefore

^Am&52
i

g
V†]mV. ~4!

This, in general, is physically distinct from̂Am&50 in a
multiply connected space, since there is no gauge trans
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mation which connects these two configurations witho
spoiling the boundary conditions.V(x,y), which is undeter-
mined in classical theory, is determined by quantum effe
as a function of the boundary conditions (Ua ,ba) up to a
global gauge transformation. When the vacuum gauge c
figuration ^Am& is transformed tô Am8 &50, the boundary
conditionsUa are rotated to

Ua
sym5V~xa,ya1La!UaV†~xa,ya!.

As Ua
sym are the boundary condition matrices in the gau

^Am8 &50, the residual gauge symmetry of the theory is ge
erated by those generators of the group which commute w
Ua

sym. This viewpoint of symmetry breaking was stressed
Witten @18#. One must, however, be reminded that the abo
argument is valid only ford>3. In one-dimensional spac
(d52), Am does not take on definite values because of qu
tum fluctuations, and thereforeV andUa

sym are not well de-
fined.

We note thatUa
sym are related to the path-ordered Wilso

line integrals

Wa~x,y!5P expigE
ya

ya1La
A•dx Ua . ~5!

in that they have the same eigenvalueseiu i
a
, the noninte-

grable phases. These nonintegrable phases arise only
topologically nontrivial space and cannot be gauged aw
their values are determined dynamically. The restriction
flat connections greatly constrains the form of^Aa& on the
torus ~we assumêAa&50 on the Minkowski space!, since
all components must commute. Hence in general^Aa& is a
diagonal constant element of SU~N!, and we define

^Aa& i j 5
1

gL
u i

ad i j , (
i 51

N

u i
a50, ~6!

wherei , j are the SU~N! matrix indices.
One must evaluate the effective potential for^Am& ~or

equivalently for the nonintegrable phaseu i
a) in order to de-

termine the residual gauge symmetry of the system.
compute the one-loop effective potentials. For this purpo
it is convenient to take the background gauge with
gauge-fixing function

F@A#5Dm@^A&#Am5]mAm1 ig@^Am&,Am#50, ~7!

and the gauge parametera51. After performing an analyti-
cal continuation to Euclidean spacetime, one obtains the o
loop effective potential for the gauge and ghost fields

Veff
g1gh51

d22

2
ln det~2D2!, ~8!

and for the massless Dirac fermions

Veff
ad52

f ~d!

2
ln det~2D2!, ~9!
1-2
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where f (d)[2[d/2] is the number of components of a Dira
fermion. Here@x# is the integral part ofx. In the vacuum
configuration~6!, the operators2D2 are given by

@2D2# jk52]a]a2 (
a51

2 F]a1
i

La
~u j

a2uk
a!G2

. ~10!

We note here that the toroidal components of2D2 act as
mass terms in the Minkowski space. The effective potent
~8! and ~9! can be evaluated by the zeta function meth
@12,15,17#, according to which one has

ln det~2D2!52z8~0!, ~11!

where the zeta functionz(s) is defined according to the fiel
contents. The next section is devoted to the evaluation of
effective potentials.

III. THE ONE-LOOP EFFECTIVE POTENTIALS

The one-loop effective potentials at finite temperature a
density can be evaluated according to the standard t
niques in finite-temperature field theory@19#. The imaginary-
time formalism appropriate for the study of thermal equil
rium properties is adopted here. In this formalism the ti
coordinate is Wick rotated to the Euclidean timet5 i t . The
real time in the time-evolution operator exp(2itH) for a
HamiltonianH is then related, by analytic continuation,
the inverse temperatureb51/T in the Boltzmann factor
exp(2bH). The ~anti-!commutativity of bosonic~fermionic!
fields then requires the fields be~anti-!periodic in b. The
prescription of deriving the effective potential of fermions
finite density is to modify the Euclidean time derivative]t
by ]t→]t2 im, where m is the chemical potential of the
fermions. In the following sections, we present the results
applying the above techniques to the evaluation of Eqs.~8!
and ~9!.
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A. Gauge and ghost fields

Evaluation of the one-loop effective potential of the gau
and ghost fields is comparatively easy by following the ste
in @15#.

The zeta function for the gauge and ghost fields is

zg1gh~s!5
Sd23

G~s!
E

0

`

dtts21E
0

`dp pd24

~2p!d23

1

bL1L2

3(
j ,k

(
n,m1 ,m252`

`

expF2tH p21F2p

b
nG2

1F 1

L1
~2pm11 ū jk

1 !G2

1F 1

L2
~2pm21 ū jk

2 !G2J G .
~12!

Here ū jk
a [u j

a2uk
a (a51,2), Sd23[2p (d23)/2/G@(d23)/2#

is the surface area of a (d23)-dimensional unit sphere,b
51/T is the inverse temperature, andt is a dummy integra-
tion parameter not to be confused with the time coordina

One can perform thep andt integrations in Eq.~12! using
the identity

(
ma52`

`

expH 2tF 1

La
~2pma1 ū jk

a !G2J
5

Lat21/2

A4p
(

ma52`

`

expS 2
La

2ma
2

4t
1 imaū jk

a D ,

~13!

which can be proven by means of the Poisson sum form
Keeping only the finite part ass→0, one arrives at the ef
fective potential for the gauge and ghost fields:
y

Ve f f
g1gh~T!52

~d22!G~d/2!

pd/2 (
j ,k

H (
m151

` cos~m1ū jk
1 !

L1
dm1

d
1 (

m251

` cos~m2ū jk
2 !

L2
dm2

d
12 (

m151

`

(
m251

` cos~m1ū jk
1 !cos~m2ū jk

2 !

~L1
2m1

21L2
2m2

2!d/2

12(
n51

` F (
m151

` cos~m1ū jk
1 !

~b2n21L1
2m1

2!d/2
1 (

m251

` cos~m2ū jk
2 !

~b2n21L2
2m2

2!d/2
12 (

m151

`

(
m251

` cos~m1ū jk
1 !cos~m2ū jk

2 !

~b2n21L1
2m1

21L2
2m2

2!d/2G J .

~14!

B. Adjoint fermionic field

The zeta function for the adjoint fermion fields is

zad~s!5
Sd23

G~s!
E

0

`

dtts21E
0

`dp pd24

~2p!d23

1

bL1L2
(
j ,k

(
n,m1 ,m252`

`

expF2tH p21F2p

b S n1
1

2D1 imG2

1F 1

L1
~2pm11 û jk

1 !G2

1F 1

L2
~2pm21 û jk

2 !G2J G , ~15!

wherem is the chemical potential of the fermions, andû jk
a [u j

a2uk
a2ba (a51,2). Evaluation of this zeta function is done b

generalizing the steps in@20,17#.
1-3
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Performing thep integration with the help of Eq.~13! and the identity

(
n52`

`

expH 2tF2p

b S n1
1

2D1 imG2J 5
b

A4p
t21/2F112(

n51

`

~21!n cosh~nbm!e2b2n2/4tG , ~16!

one obtains the finite part of the effective potential as follows:

Ve f f
ad 5

f ~d!

2d21p~d22!/2L1L2
E

0

`

dt t2d/2(
j ,k

H (
m1 ,m252`

`

expF2tH F 1

L1
~2pm11 û jk

(1)!G2

1F 1

L2
~2pm21 û jk

(2)!G2J G
12(

n51

`

~21!n cosh~nbm! (
m1 ,m252`

`

expF2tH F 1

L1
~2pm11 û jk

(1)!G2

1F 1

L2
~2pm21 û jk

(2)!G2J 2
b2n2

4t G J . ~17!

The first term on the right-hand side~rhs! of Eq. ~17! is independent of the temperatureT.
Making use of the identity

E
0

`

dt t2d/221e2tM22b2n2/4t52S 2M

nb D d/2

Kd/2~nbM !, ~18!

we now integrate Eq.~17! with respect tot to get

Ve f f
ad ~T,m!5

f ~d!G~d/2!

pd/2 (
j ,k

H (
m151

`
cos~m1û1!

L1
dm1

d
1 (

m251

`
cos~m2û2!

L2
dm2

d
12 (

m151

`

(
m251

`
cos~m1û1!cos~m2û2!

~L1
2m1

21L2
2m2

2!d/2 J
1

f ~d!

2d23p (d22)/2L1L2
(
j ,k

(
n51

`

~21!ncosh~nbm! (
m1 ,m252`

` S 2M jk
m1m2

nb
D (d22)/2

K (d22)/2~nbM jk
m1m2!, ~19!

where

M jk
m1m25H F2pm11 û1

L1
G2

1F2pm21 û2

L2
G2J 1/2

. ~20!

This is the general expression of the effective potential for the adjoint fermion fields at finite temperature and densit
To facilitate the numerical analysis of the symmetry-breaking patterns, it is realized that a different representatio

femionic effective potential is desirable. To this end we shall transform Eq.~19! into an integral form by using the following
integral representation of the modified Bessel function:

Kn~z!5
Ap

GS n1
1

2D S z

2D nE
1

`

e2zx~x221!n21/2dx; Re~z!.0, Re~n!.2
1

2
~21!

and summing overn. This leads to

Ve f f
ad ~T,m!5

f ~d!G~d/2!

pd/2 (
j ,k

F (
m151

`
cos~m1û1!

L1
dm1

d
1 (

m251

`
cos~m2û2!

L2
dm2

d

12 (
m151

`

(
m251

`
cos~m1û1!cos~m2û2!

~L1
2m1

21L2
2m2

2!d/2 G2
f ~d!

2d22p (d23)/2GS d21

2 D
1

L1L2

3(
j ,k

(
m1 ,m252`

`

~M jk
m1m2!d22F E

1

` ~x221!~d23!/2

eb(xM
jk

m1m22m)11
dx1~m→2m!G . ~22!
085021-4
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Equation~22! is valid for those values ofm1 ,m2 such thatM jk
m1m2Þ0. In the case whereM jk

m1m250, a different represen
tation is in order. In this case, the terms with these particular sets of$m1 ,m2% in the second term of the rhs of the~17! become

f ~d!

2d22p (d22)/2

1

L1L2
(
n51

`

~21!ncosh~nbm!E
0

`

dt t2d/2e2b2n2/4t

5
f ~d!

2

GS d22

2 D
p (d22)/2

1

L1L2bd22 F (n51

`
~2ebm!n

nd22
1 (

n51

`
~2e2bm!n

nd22 G

5
f ~d!

2

GS d22

2 D
p (d22)/2

1

L1L2bd22
@Lid22~2ebm!1Lid22~2e2bm!#, ~23!
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where Lis(x)5(n51
` xn/ns is the polylogarithmic function of

order s @21#. This result can also be obtained by using t
asymptotic form of the modified Bessel function

Kn~x!'2n21G~n!
1

xn
, x→01 ~24!

in Eq. ~19! for those terms withM jk
m1m250 @17#. To ensure

better convergence in numerical computation, we express
term Lid22(2ebm) in terms of Lid22(2e2bm) by means of
the identities@21#

Li s~2x!1~21!sLi s~21/x!

52
1

s!
lns~x!12(

r 51

[s/2]
lns22r~x!

~s22r !!
Li 2r~21! ~25!

and

Li2r~21!52
~22r 2121!

~2r !!
p2rBr . ~26!

HereBr are the Bernoulli numbers.

IV. SU„2… GAUGE THEORY ON R1,1ÃT2 MANIFOLD
„TÄ0, µÅ0…

With the expressions of the effective potentials of t
gauge fields, the ghost fields, and the adjoint fermions gi
in the last section, we can study the symmetry structure
the vacuum at different temperatures and densities by lo
ing at the values of the nonintegrable phasesu j

a which mini-
mize the total effective potentialVe f f5Ve f f

g1gh1Ve f f
ad . As the

expressions are rather complicated, the computational ta
08502
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quite involved for large dimensionalityd and gauge group
SU~N!. Interesting features, however, already surface e
for small d and N. In this section, we study the symmetr
patterns of an SU~2! gauge theory with adjoint fermions in
d54 dimensions numerically with finite densities at ze
temperatures. The system with zero density and finite te
perature were considered previously in@16#. Symmetry is
always restored at high temperatures. We see that as
fermion density increases, the gauge symmetry of the sys
is broken and restored alternately.

In the case of SU~2! theory, there are only two indepen
dent nonintegrable phases owing to the traceless conditi

u1
a52u2

a5ua, a51,2. ~27!

For convenience, we setr[L2 /L1.
The effective potential for the gauge and ghost fields w

fixed (ua,r ) now reads

Ve f f
g1gh~ua,r !52

4

p2L1
4 H (

m151

`
cos 2m1u1

m1
4

1 (
m251

`
cos 2m2u2

r 4m2
4

12 (
m151

`

(
m251

`
cos~2m1u1!cos~2m2u2!

~m1
21r 2m2

2!2 J .

~28!

For the fermionic fields, we may use

1

ebx11
→u~2x!, ~29!

whereu(x) is the Heaviside step function, to get
1-5
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Ve f f
ad 5

4

p2L1
4 H F (

m151

` S cosm1~2u12b1!

m1
4

1
cosm1~2u11b1!

m1
4 D 1 (

m251

` S cosm2~2u22b2!

r 4m2
4

1
cosm2~2u21b2!

r 4m2
4 D

12 (
m151

`

(
m251

` S cosm1~2u12b1!cosm2~2u22b2!

~m1
21r 2m2

2!2
1

cosm1~2u11b1!cosm2~2u21b2!

~m1
21r 2m2

2!2 D G
2

p

2r
F (

m150

`

(
m250

` S F ~2pm112u12b1!21S 2pm212u22b2

r
D 2G E

1

mL1/A[ •••]
~x221!1/2dx

1F ~2pm122u12b1!21S 2pm222u22b2

r
D 2G E

1

mL1/A[ •••]
~x221!1/2dxD

1 (
m151

`

(
m250

` S F ~2pm122u11b1!21S 2pm212u22b2

r
D 2G E

1

mL1/A[ •••]
~x221!1/2dx

1F ~2pm112u11b1!21S 2pm222u22b2

r
D 2G E

1

mL1/A[ •••]
~x221!1/2dxD

1 (
m150

`

(
m251

` S F ~2pm112u12b1!21S 2pm222u21b2

r
D 2G E

1

mL1/A[ •••]
~x221!1/2dx

1F ~2pm122u12b1!21S 2pm212u21b2

r
D 2G E

1

mL1/A[ •••]
~x221!1/2dxD

1 (
m151

`

(
m251

` S F ~2pm122u11b1!21S 2pm222u21b2

r
D 2G E

1

mL1/A[ •••]
~x221!1/2dx

1F ~2pm112u11b1!21S 2pm212u21b2

r
D 2G E

1

mL1/A[ •••]
~x221!1/2dxD G J . ~30!
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The symbol@•••# in the upper limit of each integral in Eq
~30! represents the factor inside the square bracket imm
ately in front of the respective integral. In this case this fac
equals zero, and the corresponding term in Eq.~30! is re-
placed by

2
m2

pL1
2r

~31!

obtained from Eq.~23!.
For simplicity we only consider the boundary conditio

b15b250. The vacuum of the system at fixedm and r is
determined by finding the values of the nonintegrable pha
(u1,u2) which correspond to the global minimum of the tot
one-loop effective potentialVe f f . These values of the non
integrable phases in turn, through the Wilson line integr
determine the residual gauge symmetry of the system
described in Sec. II. Therefore, the vacuum and its symm
are determined dynamically. In the present case, the gl
minima are found to be located at one of the following s
of the possible values ofua:
08502
i-
r

es

,
as
ry
al
s

~u1,u2!5~0,0!, ~0,p/2!, ~p/2,0!

or ~p/2,p/2! ~mod p!. ~32!

Of these locations only the case~0,0! ~mod p) represents
unbroken SU~2! symmetry. We present the results as a ph
diagram withmL1 versusr 5L2 /L1 in Fig. 1. One sees tha
the gauge symmetry is broken and restored alternately as
fermion densitym increases at fixedr, or as the size of the
torus changes at fixed density. This is a new feature
noticed so far in the Higgs mechanism, and is the manif
tation of the quantum effect of the nonintegrable phasesua.
In the usual Higgs models, gauge symmetry is usually
stored at zero temperature as the fermion density incre
@22#. Only in gauge theories with neutral currents could
increase in fermion density increase the symmetry break
@23#. However, no Higgs model, as far as we know, exhib
such a recurrent pattern of symmetry breaking and rest
tion. Implications of this feature of the Wilson line mech
nism in particle and string phenomenology, and in astrop
ticle physics have yet to be explored.
1-6
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In the limit r 5L2 /L1→`, the spacetimeR1,13T2 be-
comes the manifoldR1,23S1. From Fig. 1 we see that th
recurrent pattern of symmetry breakings and restorations
sists in this limit. Wilson lines symmetry breaking on th
spacetimeR1,23S1 was studied in@17# at finite temperatures
and densities. The recurrent pattern of symmetry break
and restorations were, however, overlooked in@17# as we did
not extend the range ofm far enough. We, therefore, tak
this opportunity to present in Fig. 2 the correct phase d
gram for the SU~2! theory with the boundary conditionb1

50 at finite temperatures and densities. For future refere
we record here the first few critical values ofm at T50 that
define the boundaries of symmetric and broken pha
mcL1(T50)51.979,6.146,9.140,12.495,15.55, . . . .

FIG. 1. Symmetry patterns of the vacuum in an SU~2! gauge
theory on spacetimeR1,13T2 with boundary conditionsb15b2

50 at zero temperature and finite densitym. The phase diagram is
plotted as a function ofmL1 andr 5L2 /L1, whereL1 andL2 are the
lengths of the torus. Shaded regions represent the symmetric p
while the unshaded ones represent the broken phase.
ei

tt
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V. CONCLUSIONS

In this paper we discuss Wilson line symmetry breaki
of SU~N! gauge theory with adjoint fermions on th
d-dimensional spacetimeR1,d233T2. General expressions o
the one-loop effective potentials of the gauge and gh
fields, and the adjoint fermion fields were presented. Sy
metry patterns of the vacuum structure in ad54 dimen-
sional SU~2! theory at zero temperature is considered in d
tail. It is noted in this case that the gauge symmetry can
broken and restored alternately as the fermion den
changes. We expect this result to be true for all SU~N!
groups and dimensionalityd. This is a new feature not ob
served in the Higgs mechanism, and is the manifestation
the quantum effects of the nonintegrable phases.
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FIG. 2. Symmetry patterns of the vacuum in an SU~2! gauge
theory on spacetimeR1,23S1 with boundary conditionb150 at
finite temperatureT and densitym. The phase diagram is plotted a
a function ofmL andTL, whereL is the length of the circle.
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