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Recurrent dynamical symmetry breaking and restoration by Wilson lines
at finite densities on a torus
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In this paper we derive the general expression of a one-loop effective potential of the nonintegrable phases
of Wilson lines for an SIIN) gauge theory with a massless adjoint fermion defined on the spactime manifold
R4=3x T2 at finite temperature and fermion density. The phase structure of the vacuum is presented for the
case withd=4 and N=2 at zero temperature. It is found that gauge symmetry is broken and restored
alternately as the fermion density increases, a feature not found in the Higgs mechanism. It is the manifestation
of the quantum effects of the nonintegrable phases.

PACS numbs(s): 11.10.Wx, 11.10.Kk, 11.15.Ex

I. INTRODUCTION induce restriction on the Chern-Simons teij, and conse-
quently lead to multicomponent anyon wave functions and
By now no one would deny that one of our most impor-the related braid group structurg8], and quantum group
tant quests is the search for the theory that unifies all theymmetry[9]. Last but not least, they cause dynamical gauge
known fundamental interactions. This dream found its partiasymmetry breaking in non-Abelian gauge thepfy5].
realization in the Weinberg-Salam-Glashow model of elec- Dynamical gauge symmetry breaking by Wilson lines in a
troweak theory. From this model one learns of the ironic yetmultiply connected spacetime has been studied with consid-
important interplay between the requirement in one’s unifiecerable interests since its introduction in the 1980’s, and has
theory of certain gauge symmetries, and the necessity dfeen employed extensively in superstring phenomenology
breaking them. [10]. Unlike the Higgs mechanism, which relies on the non-
One of the most original and beautiful ideas in the searclvanishing vacuum expectation values of scalar fields, the
of a unified theory is the assumption of the existence of extr&Vilson line mechanism depends essentially on the nontrivial
compactified dimensions, originated from the works of Nor-holonomy of the vacuum gauge field configuration arises
dstran, Kaluza, and Klein1]. These compactified dimen- from the topology of spacetime. An interesting feature of this
sions manifest themselves as gauge fields in flat fourmechanism is that fermion mass generation does not neces-
dimensional spactimes. The beauty and simplicity of thissarily require symmetry to be broken, and vice versa.
idea fascinated even the great Einstein, who returned to it However, it is generally very difficult to compute dynami-
several times in the latter part of his lifg]. The idea, how- cally the quantum effect§in terms of the effective poten-
ever, soon met with its demise owing to the lack of experi-tials) that determine the symmetry-breaking patterns, except
mental evidences. It was not until the 1970s that interest ifior a few simple compact manifolds, such as the circles
Kaluza-Klein theories were revived by modern attempts ofR*9~2x S! [4,11] and the toruR*®~3x T? [12,13. So far
unified theory such as the theories of supergravity and supeno computation of the effective potential has been achieved
strings. In these modern theories, however, gauge fields amn the Calabi-Yau manifolds which are relevant to super-
usually assumed to be present in higher dimensions. Nevestring phenomenology. To gain a better understanding of the
theless, it is fair to say that the principle of gauge invariancemechanism, it is therefore useful to explore various aspects
and the assumption of extra compactified dimensions constaf the mechanism in simple manifolds.
tute the two most important ingredients in most of the mod- One interesting consideration is the inclusion of the ef-
ern versions of a unified theory. More recently, in a differentfects of finite temperature and finite fermion density. Effect
development, the possibility of extra dimensions has als@f finite temperatures on Wilson line symmetry breaking has
attracted the attention of particle phenomenologjsis it been studied for circuldrl4,15 and toroidal16] compacti-
was argued that various unification scales might be lowefied spaces previously. IfL7] both the effects of the tem-
than what were previously thought of, if extra dimensionsperature and the fermion density are considered for the cir-
exist. cular case R*~2x S1). These studies indicate that in an
Inspired by the Kaluza-Klein scenario, properties of SUN) gauge theory with only gauge fields and fermions in
gauge theories in nontrivial spacetimes have also receivetthe adjoint representation of the group, higher temperatures
considerable interest during the last three decades. Of thedways restore the gauge symmeton the circle and torus,
various topics considered so far an interesting one is theymmetry is not broken by this mechanism when the fermi-
study of the effects of nonintegrable phases of the Wilsorons are in the fundamental representgtion
lines. In a gauge theory on a multiply connected space, these Our main purpose in this paper is to present the general
nonintegrable phases become dynamical degrees of freedogpressions of the one-loop effective potentials for the
[4,5], and have many interesting implications. They lead to &SU(N) gauge fields and the adjoint fermions on the space-
6 vacuum in QED on a circlg6]. On toroidal spaces they time manifoldR*4~3x T2, with temperature and density ef-
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fects taken into account. We also consider dve4 dimen-  mation which connects these two configurations without
sional case in detail, and investigate the symmetry-breakingpoiling the boundary condition¥.(x,y), which is undeter-
patterns as function of the fermion density and the size of thenined in classical theory, is determined by quantum effects
torus at zero temperatures. Even in this simple case an inteas a function of the boundary conditions {,3,) up to a
esting feature already emerges, namely, the gauge symmetgjobal gauge transformation. When the vacuum gauge con-
can be broken and restored alternately as the density and/figuration (A,) is transformed to(A,)=0, the boundary
the sizes of the torus change. This is something not noted isonditionsU , are rotated to
the Higgs mechanism.

The organization of the paper is as follows. First, we give USYM=V(x®,y2+ LU VT (x%,y3).
a brief review of the essence of the Wilson line mechanism
in Sec. II. Section IlI presents the derivation of the generalAs U3'™ are the boundary condition matrices in the gauge
expressions of the effective potentials. In Sec. IV the4 <A/’L>:0, the residual gauge symmetry of the theory is gen-
dimensional case is studied numerically. Section V conerated by those generators of the group which commute with

cludes the paper. USY™. This viewpoint of symmetry breaking was stressed by
Witten [18]. One must, however, be reminded that the above
[l. WILSON LINES MECHANISM argument is valid only fod=3. In one-dimensional space

(d=2), A, does not take on definite values because of quan-
g tum fluctuations, and therefoké and U3Y™ are not well de-
fined.

In this paper we consider an 8Y) gauge theory with
adjoint fermions on ad-dimensional spacetime manifol
R9-3 x T2, Generalizing to the case in higher dimensional

torus is straightforward. The Lagrangian is given by _ We note that/2’" are related to the path-ordered Wilson
line integrals
1 _
L=—-TrF, F*"+igy"D ¢, (1) . Ayl
2 a VYD Wa(x,y)zPexplgfy TR dx U,. (5)
ya
where .
) in that they have the same eigenvalg$, the noninte-
Fu=0,A,—d,A,+ig[A, Al grable phases. These nonintegrable phases arise only in a
) topologically nontrivial space and cannot be gauged away;
Dug=0,4+ig[A,.¢]. their values are determined dynamically. The restriction to

flat connections greatly constrains the form(#,) on the

As the space IS multiply cqnnected, one must speC|fy. th(%orus (we assum€A,)=0 on the Minkowski spade since
boundary conditions of the fields for the two noncontractible . .
all components must commute. Hence in genéfg)) is a

loops. Letx® (¢=0,1,...d—3) andy? (a=1,2) label the . ,
Minkowski and the toroidal coordinates, respectively, ¢ diagonal constant element of 8U), and we define

run over botha anda). The boundary conditions are 1 N
ALii=— 625, 67=0, 6
AL (X% Y3+ L) =U A, (x*,yH U], 2 (el =g 9 .21 ! ©
(x4, y2+ L) =ePal p(x*,yH) U] . (3)  wherei,j are the SWUN) matrix indices.

One must evaluate the effective potential fgx,) (or
Here L, are the lengths of the circumferences Tf. The  equivalently for the nonintegrable phagP in order to de-
phasese'®a represent the continuous spin structure of thetermine the residual gauge symmetry of the system. We
manifold when using Dirac fermions. These phases cancedompute the one-loop effective potentials. For this purpose,

from physical operators constructed bilinearly gnand ¢, it is convenient to take the background gauge with the
but contribute to the boundary conditions. gauge-fixing function

One can then specify a particular @8 bundle over the )
torus, and determine the vacuum configuration of the con- F[A]=D[(A)]JA*=0,A*+ig[(A,),A*]=0, (7)

nection by evaluating the effective potential {@,,). How-
ever, in this paper, as ifil2], we will confine ourselves t
the trivial bundle with(A,) a constant element of SN).
Even this simple case gives interesting and nontrivial result
on the vacuum structure in the theory.

o @and the gauge parameter= 1. After performing an analyti-
cal continuation to Euclidean spacetime, one obtains the one-
loop effective potential for the gauge and ghost fields

Suppose thatF ,,)=0 in the vacuum and therefore varoh= 4 d—_2 In de( —D?) )
2 1
i
(Ap)=— aVT%V- (4)  and for the massless Dirac fermions
Th|s3 in general, is physmallly distinct _fror(Aﬂ)—O in a vad— — (d) Inde{( —D?), 9)
multiply connected space, since there is no gauge transfor- 2
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wheref(d)=2[9?l is the number of components of a Dirac A. Gauge and ghost fields
fermion. Here[x] is the integral part ok. In the vacuum

: | > : Evaluation of the one-loop effective potential of the gauge
configuration(6), the operators-D< are given by

and ghost fields is comparatively easy by following the steps
in [15].

2 . 2
D+ '_(ga_ 03)} (10) The zeta function for the gauge and ghost fields is
Ly ! '

[—D?]j=— 3,0~ >
&1

. van o Saea(* oo, (*dp pT* 1
We note here that the toroidal components-ob? act as ~ {%79"(s)= s, dtt —

d-3
mass terms in the Minkowski space. The effective potentials 0 (2m)*% Blila
(8) and (9) can be evaluated by the zeta function method

2
[12,15,17, according to which one has X D > exp{ —t! p2+ 2_7Tn
j,k n,my,my=—o ﬂ
Inde{ —D?)=—¢'(0), (11) L 2 14 )
-1 )

where the zeta functiofi(s) is defined according to the field + L_l(2”m1+ Oi) | + |__2(27TmZ+ 6’jk)} H
contents. The next section is devoted to the evaluation of the
effective potentials. (12

Ill. THE ONE-LOOP EFFECTIVE POTENTIALS Here 6= 6°— 6% (a=1,2), Sy_s=27""9T[(d-3)/2]

) i . is the surface area of a( 3)-dimensional unit sphergd
The one-loop effective potentials at finite temperature and_ {1 is the inverse temperature, ahis a dummy integra-

density can be evaluated according to the standard teclyyn harameter not to be confused with the time coordinate.
niques in finite-temperature field theddg]. The imaginary- One can perform thp andt integrations in Eq(12) using
time formalism appropriate for the study of thermal equilib- 4 identity

rium properties is adopted here. In this formalism the time
coordinate is Wick rotated to the Euclidean timeit. The - 1 )
real time in the time-evolution operator exg(H) for a —a

. . . . . . exp —t| —(27m,+ 6
HamiltonianH is then related, by analytic continuation, to maZiw La( mMa+ G
the inverse temperatur@=1/T in the Boltzmann factor

exp(—BH). The (anti-)commutativity of bosonig¢fermionic) _ Lt 12 Lam3 —

fields then requires the fields Hanti-)periodic in 8. The T an mazfx exp — g TiMabiy ],
prescription of deriving the effective potential of fermions at

finite density is to modify the Euclidean time derivative (13

by d,—d,.—iu, where u is the chemical potential of the

fermions. In the following sections, we present the results ofvhich can be proven by means of the Poisson sum formula.
applying the above techniques to the evaluation of Eg)s. Keeping only the finite part as—0, one arrives at the ef-
and (9). fective potential for the gauge and ghost fields:

o -1 o 2 o -1 2
ngﬁgh(T)z B (d—=2)I'(d/2) cogmy ;) N cos(m; &) N cogmy 0} )cog m, ;)
¢ w42 Tk |mm1 o L9md m=1  LIm3 mi=1m,=1  (Lim2+L2m3)9?2
4o % - cog mlgjlk) = cog m2§j2k) = cog mlgjlk)cosi ngjzk)
=1 (i1 (22 LZmd) 92 i (B2 LZmE)2  “nia wpta (B7n?+ LIme +L3md) 92 |
(14
B. Adjoint fermionic field
The zeta function for the adjoint fermion fields is
Sy_s =dp pi* 1 - F{ [ 277( 1) Nk
ad — s—1 2
S)= dtt —_— exp —typ+|— | n+=|+i
&) I'(s) Jo 0 (2m)973 BL4iL, % n,ml,%:—w P B 2) T H
1 L 1P a2

whereu is the chemical potential of the fermions, ahjijz 0?— 0f — Ba (a=1,2). Evaluation of this zeta function is done by
generalizing the steps i20,17).
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Performing thep integration with the help of Eq13) and the identity

2}:it1/2

Jan

one obtains the finite part of the effective potential as follows:

1
2

Zex —t

n=-—o

[277'
+ip

5 1+ 221 (—1)" cosh n,B,LL)eBZHZMt}, (16)

f(d) oc ” 1 1
Val= J dt t92 ex;{—t” 2my+ 65) | +| —(2amy+ 6 ”
eff 2dfl,n_(d72)/2|_1|_2 0 % m1»m§2:=*°° Ll( T ) 2( i )
S n S 1 e L aon || A

+2> (=1)"coshnBu) X,  expg—t{|—(2mmy+ ) S RS A el | PR/

n=1 my,my=—o I—l 2 4t

The first term on the right-hand sidehs) of Eq. (17) is independent of the temperatufe
Making use of the identity
. 2M d/i2

fo dt td’“e‘MZﬁZ“Z"“:z(ﬁ) Kaa(NBM), (19

we now integrate Eq(17) with respect ta to get

§ f(d)I'(d/2) “cogm At & cogm,6?) Z < cogm; 6t cogm,6?)
erf(Top) = dr2 aa aad T2 dr2
a jk |m=1 Limj my=1  L,m, mp=1my=1 (L m1+|-2m2)
- - (d-2)/2
f(d) (ZMT””)
+ —1)"coshn — Kg_o(NBM™™) (19
where
27m, + ot 2 27m,+ 62 2) 12
mym 1 2

This is the general expression of the effective potential for the adjoint fermion fields at finite temperature and density.

To facilitate the numerical analysis of the symmetry-breaking patterns, it is realized that a different representation of the
femionic effective potential is desirable. To this end we shall transform(H).into an integral form by using the following
integral representation of the modified Bessel function:

ﬁ;)

r 1
V+E

Ky(2)=

Vfooeizx(xz_l)y—lmdx; Re(z)>0, RE{V)>_% (21
1

and summing oven. This leads to

f(d)T'(d/2) cogm;#Y) & co¥m,H?)
Veff(Tllu’): dr2 2 : 2
T % [mm1 o Limd m=1  Lm§
cos(mlbl)cos(mzbz) f(d) 1

+2 >
m=1 my=1 (L %-i— Lzmz)d/2

2d-2(d- 3)/21~<d 1) Lilo
2

x> X (M

j,k my,my=—o

(22

. (X2_ 1)(d—3)/2
f dX+(pu——w)|.

1 @BOM™2- ) | g
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Equation(22) is valid for those values af,,m, such thatV ]mlmzaéo In the case wher# Jmlm"‘—o, a different represen-

tation is in order. In this case, the terms with these particular sdt®gfm,} in the second term of the rhs of ti&7) become

©

f(d 1
2d- 2((3 2)i2 L, L 2 1)ncosl’(nl[3’u)f dt -2 B2t
2 n=

d-2
_f@d) (T) 1

o (- S (mefY
2 gd=2)2 L,L,B9 2 Z nd-2 =1 pd-2
T d—2
)72 L et b s
- 2 W(d—Z)/Z LleBd_Z[ Id—2( € ) Id—2( € )]! ( )

where Li(x)=X,_,x"/n® is the polylogarithmic function of quite involved for large dimensionalitg and gauge group
orders [21]. This result can also be obtained by using theSU(N). Interesting features, however, already surface even
asymptotic form of the modified Bessel function for small d and N. In this section, we study the symmetry
patterns of an S(2) gauge theory with adjoint fermions in
d=4 dimensions numerically with finite densities at zero
temperatures. The system with zero density and finite tem-
perature were considered previously [ib6]. Symmetry is
always restored at high temperatures. We see that as the
in Eq. (19) for those terms withM m1m2_0 [17]. To ensure fermion density increases, the gauge symmetry of the system

better convergence in numerical computation, we express t 3 tl)rr]otlaeenczr;(l gsg)(gdtsggrmattﬁgre are onlv two indepen-
term Liy_,(—e®*) in terms of Li,_,(—e #*) by means of Y, y P

1
K, (x)~2" 1 (v)—, x—0% (24)
XV

the identities[21] dent nonintegrable phases owing to the traceless conditions:
Lig(—x)+(—1)Lig(— 1) b1=—0=6" a=12 @7)
[s/2] | s 2r(x) For convenience, we set=L,/L;.
nS(x) + 22 ———— i, (—1) (25 The effective potential for the gauge and ghost fields with
(s—2r)! fixed (62,r) now reads
and
1 *© 2
. VIFaN ga 1) = _ cos2m, 6 N Cos 2n, 6
_ (2 t-1) Verr m2LT (mi=1 mf Mp=1  r*mj
ler(—l)Z—(ZTW B, . (26)
cog2m;, #*)cog2m,6?)
HereB, are the Bernoulli numbers. 22 > 12 2 2.2 2
mi=1my=1 (mi+r<m;3)
IV. SU(2) GAUGE THEORY ON R'XT? MANIFOLD 28)
(T=0, u#0)

With the expressions of the effective potentials of the FOr the fermionic fields, we may use
gauge fields, the ghost fields, and the adjoint fermions given
in the last section, we can study the symmetry structures of
the vacuum at different temperatures and densities by look-
ing at the values of the nonintegrable phaé%svhu:h mini- ef*4+1
mize the total effective potentiades =V 9"+ V2% . As the
expressions are rather complicated, the computational task vghere 6(x) is the Heaviside step function, to get

— 6(—X), (29
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cosmy (26— B;) cosmy(26*+ ;) ) ~ ( cosm,(26%— f3,)
+ + > +
my=1

4 4
m; my

cosmy(26°+ B,) )

4.4 4.4
rms r'm;

(m2+r2m3)2
'

5 (27my+26*— B,)%+
r

S 5|

m;=0 my,=0

+ (27Tm1—201—,31)2+

r

+ > D> ( (27my— 26+ By)%+

my=1 my=0

+|(2mmy+ 261+ B1)%+

r

+ > > ( (27my+ 26— B1)2+

my=0 my=1

) i 2mmy+26°+ B,
+| (2mmy =200 By | —————

+ > > ( (27my— 26"+ B1)%+

mp=1 my=1

27Tm2+202+B2

+|(2mmy+ 2601+ B1) 2+

The symbol - - -] in the upper limit of each integral in Eq.

27Tm2+ 202—ﬁ2) 2
r

27Tm2_292_32) 2

27Tm2_202_ﬁ2) 2:|

27my—26%+ 3,

27my—26%+ 3,

} [ e 1)1’2dx)

- ( cosmy (26— B1)cosm,(26°— B,) ) cosmy(26*+ B1)cosm,(26%+ B,)

(m{+r?m})? )]

fﬂLlle(Xz_ 1)1/2dX

JMLlIVm(XZ— 1)1’2dx)

1

2_ 2 T
sl NS
1

fMLllvm(xz— 1)1’2dx)

1

2 R
}fﬂLllvl["‘](xz_l)l/zdx
1

1

T jMLllvm(xz—l)l’zdx)

2 —
:|f#L1/V[-.‘](X2_1)l/2dX
1

1

] : (30

(6*,6%)=(0,0), (0,7/2), (m/2,0)

(30) represents the factor inside the square bracket immedi-
ately in front of the respective integral. In this case this factor

equals zero, and the corresponding term in 8%) is re-

placed by

2
M

2
wLir

(31

obtained from Eq(23).

or (w/2,7/2) (mod ). (32

Of these locations only the ca$8,0) (mod 7) represents
unbroken SW2) symmetry. We present the results as a phase
diagram withuL ; versusr=L,/L4 in Fig. 1. One sees that
the gauge symmetry is broken and restored alternately as the
fermion densityu increases at fixed, or as the size of the
torus changes at fixed density. This is a new feature not

For simplicity we only consider the boundary conditions noticed so far in the Higgs mechanism, and is the manifes-

B1=B,=0. The vacuum of the system at fixedandr is

tation of the quantum effect of the nonintegrable pha#es

determined by finding the values of the nonintegrable phase® the usual Higgs models, gauge symmetry is usually re-
(6*,6%) which correspond to the global minimum of the total stored at zero temperature as the fermion density increases
one-loop effective potentidV.¢;. These values of the non- [22]. Only in gauge theories with neutral currents could an
integrable phases in turn, through the Wilson line integralsincrease in fermion density increase the symmetry breaking
determine the residual gauge symmetry of the system, d23]. However, no Higgs model, as far as we know, exhibits
described in Sec. Il. Therefore, the vacuum and its symmetrguch a recurrent pattern of symmetry breaking and restora-
are determined dynamically. In the present case, the globdion. Implications of this feature of the Wilson line mecha-
minima are found to be located at one of the following setsnism in particle and string phenomenology, and in astropar-

of the possible values af®:

ticle physics have yet to be explored.
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SUE)

. ‘U<1) | | | | J

0 02 04 06 08 1 12 14
TL

FIG. 2. Symmetry patterns of the vacuum in an(3Ugauge
FIG. 1. Symmetry patterns of the vacuum in an(8lUgauge  theory on spacetim®-*x< S' with boundary condition;=0 at
theory on spacetim®Y X T? with boundary conditions8;= g, finite temperaturd and densityu. The phase diagram is plotted as
=0 at zero temperature and finite density The phase diagram is a function ofuL andTL, wherelL is the length of the circle.
plotted as a function g&L, andr=L,/L,, whereL; andL, are the
lengths of the torus. Shaded regions represent the symmetric phase,
while the unshaded ones represent the broken phase. In this paper we discuss Wilson line symmetry breaking
of SU(N) gauge theory with adjoint fermions on the
In the limit r=0,/L,—, the spacetimeR-1xT2 be- d-dimensional space.tirriélvd‘3><.T2. General expressions of
comes the manifolR>?x S. From Fig. 1 we see that the the one-loop effe_ct}ve potgnnal_s of the gauge and ghost
recurrent pattern of symmetry breakings and restorations pefi€'ds: and the adjoint fermion fields were presented. Sym-
sists in this limit. Wilson lines symmetry breaking on the metry patterns of the vacuum structure 'nda“.l d|me_n-
spacetimeR>?x S! was studied if17] at finite temperatures spnal _Su2) the_ory gt zero temperature is considered in de-
and densities. The recurrent pattern of symmetry breakingta"' It is noted in this case that the gauge symmetry can _be
- ) ; Broken and restored alternately as the fermion density
and restorations were, however, overlookefilir] as we did

changes. We expect this result to be true for all(I$U
not extend the range qi far enough. We, therefore, take .0 \ng and dimensionalitg. This is a new feature not ob-
this opportunity to present in Fig. 2 the correct phase diasened in the Higgs mechanism, and is the manifestation of
gram for the SU2) theory with the boundary conditioB;  {he quantum effects of the nonintegrable phases.
=0 at finite temperatures and densities. For future reference

V. CONCLUSIONS
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