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Chern-Simons reduction and non-Abelian fluid mechanics
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We propose a non-Abelian generalization of the Clebsch parametrization for a vector in three dimensions.
The construction is based on a group-theoretical reduction of the Chern-Simons form on a symmetric space.
The formalism is then used to give a canoni¢gymplecti¢ discussion of non-Abelian fluid mechanics,
analogous to the way the Abelian Clebsch parametrization allows a canonical description of conventional fluid
mechanics.

PACS numbgs): 03.50.Kk, 11.10.Ef, 47.16.9g, 47.75:+f

. INTRODUCTION [4], the Abelian Chern-Simons densityla also appears as a
total divergence. This in turn indicates that the Clebsch pa-
In a recent papefl], a pureSU(2) gauge potential rametrization fora,
=g 'dg, whose Chern-Simons term
a=do+ adg, 1.9

CS(A)ZJ w(A) can be readily constructed. This parametrization of an Abe-
lian potentiala ensures that the corresponding Chern-Simons
1 densityada is a total divergence:
w(A)=— —tr(AdA+5A%)
8 ada=d@dedB=d(fdadB)=—d(ddadB)=d(d0dap).
1.5

In this paper we discuss how the above structures extend
to the non-Abelian situation. Also we use our non-Abelian
measures the quantized winding numbegd#], quantities to construct a canonical theory of non-Abelian

fluid mechanics, analogous to the way in which the Abelian
1 Clebsch parametrization is used in ordinary fluid mechanics.
CS(g 'dg)= ftr(g—ldg)SEW(g) (1.2 We begin, in Sec. Il, with a pure gaugg *dg in some
2472 non-Abelian groupG (called the Ur-group and the Chern-
Simons term again coincides with the winding numbegof
was used to generateliy(1) potentiala, by projection onto as in Egs.(1.1),(1.2. We consider a normal subgroukp,
an Abelian direction: with generatord ¢, and construct a non-Abelian gauge field
by projection.

1 aqpaa_ 1 _abcpapbpc
T S (APdA?+ 5 e3P °APAPAC) (1.1
T

a=—2 trt3g~ldg 1.3
A%octr(1%g~1dg). (1.6
[t? are anti-Hermitian generators of ti84J(2) group, nor-
malized by tt?t°= — 1 52]. The Abelian potentiah is nota  Within H, this is not a pure gauge. We determine the group
pure gauge, and it contains three arbitrary functifowre-  structure that is needed to ensure that the Chern-Simons
sponding to the three parameters #)(2)]; hence,a can  3-form w(A) of A is proportional to tr¢~1dg)?, so that the
represent an arbitrary Abelian 3-vector. The Chern-Simonghern-Simons number &&“ equals the winding number of
3-form for a coincides with that of itsSU(2) pure gauge g. In this way we construct non-Abelian gauge fields, be-
antecedent, by virtue of the SU(2) identity longing to the grougH, with quantized Chern-Simons num-
tr(t3g~1dg) dtr(t3g 1dg) = (1/3!)tr(g*dg)®. Thus the con- ber. Moreover, we describe the properties of the Ur-giGyup
structed Abelian potential possesses quantized Chern-Simotisat are needed so that the projected potemialenjoys
number (or magnetic helicity [3] (1/1672) [ada, equal to  sufficient generality to represent an arbitrary potentiaHin
W(g), the winding number ofy. Because, withinSU(2), Since trg 'dg)? is a total derivative for an arbitrary
tr(g~1dg)® can be explicitly presented as a total divergencegroup (although this fact cannot in general be expressed in
finite terms [5] our construction ensures that the formAdf,
which is achieved through the projectidh.6), produces a
*Permanent address: Physics Department, City College of thtotal derivative expression for its Chern-Simons density
CUNY, New York, NY 10031. o(A).
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With the above mentioned properties for the potential, it [SA,SB]=ch*AB|« (2.20

is appropriate to considdil.6) as a “non-Abelian Clebsch

parametrization.” (h*)AB form a (possibly reducible representation of the
In explicit examples, which we present in Sec. lll, it is H-generatord ®. The constant depends on normalizations.

found that the “total derivative” form for the Chern-Simons More explicitly, if the structure constants for the Ur-groBp
density ofA* is achieved in two steps. The parametrizationg,e namedf@®® ab.c=1,....dinG, then the conditions
(1.6) directly leads to an Abelian form of the Chern-Simons

; cabc ;
density (2.289—(2.29 require thatf?¢ vanishes whenever an odd

number of indices belongs to the orthogonal complement
labeled byA,B, ... . Moreover,f*?” are taken to be the
conventional structure constants fidrand this may render

them proportional tarather than equal iof “A?.
We define the traces of the generators by

A*dAY+ 2 fABYACAPAY= ydy (1.7
for somey. Then Darboux’s theorerf6] (or usual fluid dy-
namical theory[7]) ensures thaty can be presented in
Clebsch form, so thaydy, is explicitly a total derivative.
We also observe that at least 8tJ(2) one can do with-
out the above general discussion and directly present a pa-
rametrization for arbitrarp U(2) potentials, which produces
a total derivative expression for tieU(2) Chern-Simons
density. The parametrization is a natural generalization intdVe can evaluate the quantityf &,S°]1“=trS[S",1] us-
the non-Abelian context of the Clebsch parametrizationind the commutation rules and E.3). This immediately

tr(141%)=—as*?, tr(S"SP)=—bs"B

tr(19SA)=0. (2.3

(1.4), which achieves the total derivative form for Abelian
Chern-Simons densities.
In Sec. IV, we construct a non-Abelian version of fluid

mechanics and magnetohydrodynamics, which may be useful

gives the relatiorac=bh.
Expandingg ~'dg in terms of generators, we write

as an effective description for the long wavelength degrees

of freedom in a quark-gluon plasma.

II. PARAMETRIZATION OF POTENTIALS AND THE
CHERN-SIMONS 3-FORM

A. General considerations

As stated in the Introduction, we consider the parametrilating

zation of gauge potentials for a groug of the form
tr(1%g~*dg), whereg is an element of a grouf, H being a
subgroup ofG andl “ are the generators &f. Conditions on
the Ur-groupG, which we take to be compact and semi-
simple, are the following. First of alb has to be so chosen

that it has sufficient number of parameters to make

tr(1*g~1dg) a generic potential foH. Since we are in three
dimensions, arH-potential A{* has 3x<dimH independent
functions; so a minimal requirement will be

dimG=3 dimH. (2.2
Secondly we require that thd-Chern-Simons form foA“
should coincide with that of ~*dg, thereby ensuring that the
H-potential possessegguantized Chern-Simons number
equal toW(g) and also that théel-Chern-Simons density is a

total derivative, or at least can be brought to an Abelian form

as in Eq.(1.7). As we shall show in a moment, this is
achieved ifG/H is a symmetric space. In this case, if we
split the Lie algebra ofs into the H-subalgebra spanned by
¢, «=1,...,dim H, and the orthogonal complement
spanned bys*, A=1,...,(dimG—dim H), the commuta-
tion rules are of the form

[12,18]=f«BrY (2.2a

[19,SA]=heABSB (2.2b

g ldg=(1“A*+ Sha?) (2.9
which defines thed-potential A*. Equivalently
1
Aaz—atr(lagfldg). (2.5

(Such projected potentials have been used before in formu-
sigma models; see[8].) From d@ dg)
—g 'dgg 'dg, we get the Maurer-Cartan relations

C
Fe=dA®+ %f“'ByAﬁAV: _ EhaABaAaB

da®+h®BAA*aB=0. (2.6)

Using these results, the following chain of equations shows
that the Chern-Simons 3-form for thé-gauge group is pro-
portional to tr@~1dg)®:

1 1
w(A)=—— (A“dA"+ ;fPTAYAPAY)
167

= Joa (ATIATH2AF)

Jp7 (ATdAT+ch™PATa%a®)

=182 (A“dA“+ cdaa?)

1 c
8.2 atl’(AdA) + Btr(daa)
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1
5 tr(AdA+ ada)
a

48

1
5—trg~'dgd(g ™~ *dg)
a

8w

! tr(g~1dg)2. (2.7
8ma

In the above sequence of manipulations, we have used the

Maurer-Cartan relation&2.6), which rely on the symmetric
space structure of Eq§2.29—(2.20, and the trace relations
(2.3, along withac=b.

We thus see thatw(A) is indeed the winding number of
the configuratiorge G. Since trg~'dg)? is a total deriva-
tive locally on G, the potential(2.5), with the symmetric
space structure of Eq$2.29—(2.29, does indeed obey the
requirement of making (A) a total derivative. It is therefore
appropriate to call our constructiof2.5 a “non-Abelian
Clebsch parametrization.”

B. Choosing the Ur-group G

In explicit realizations, given a gauge group of interdst
we need to choose a gro@such that the condition&.1),

(2.29—(2.29 hold. In general this is not possible. However,

PHYSICAL REVIEW D 62 085018

rerf+rAre=25*f

YAy +yly=280. (2.9
We construct
i

aB:_ 1 ﬁ

3= ST 1]

I

ol =207\ ¥] (2.10
Sai:Fa,yi.

> %8 are (Hermitian generators oD(n), qi_j are generators
of O(n—1). The set of matricesX“?,¢'/,S*") form the
generators 00(2n—1). From Eq.(2.10 we find thatS*' is
a vector ofO(n) and a vector oO(n—1) and also that

(2.1)

We have thus the required structi&29—(2.29. We con-
struct theO(n)-gauge potential as

i[SY,SPI1=2813 2B+ 25

A“ﬁ=|5tr(E“Bg‘ldg). (2.12

one can proceed recursively. Let us suppose that the desirddhe number of arbitrary functions presentAfi’ defined by

result has been established for a group, which we Hdall
Then we formHCG obeying Eqs(2.28—(2.29 asH=H;

Eq. (2.12 is 2 n(n—1), which is exactly the right number
for an O(n)-gauge potential in three dimensions, so that Eq.

X H,, whereH; is the gauge group of interest, satisfying (2.1) is satisfied in just the right wagas an equality This

dimG=3 dimH;. For this choice ofH, the resul{Sec. Il A)
becomes

w(Hy) +w(Hy)=

! tr(g~tdg)3. (2.9
48ma

But sincew(H,) is already known to be a total derivative,
Eq. (2.8) shows the desired resulii(H) is a total deriva-
tive.

As a specific example, consider the orthogonal groups

O(n) for which we can us€&5=0(2n—1) andH=0(n)
X0O(n—1). The casen=2, with O(1)=1, reproduces the
previous results of the Abelian constructio@(3) [or
SU(2)]—0(2) [1]. Forn=3, G is O(5), H;=0(3) and
H,=0(2). Since [ O(2)] is already known to be a total
derivative, we learn from Eq(2.8) that the Chern-Simons
density forO(3) [SU(2)] is also a total derivative(Ex-

result is seen as follows. Th@(2n—1) group elemeny
depends onr{—1)(2n—1) parameters. However the trace
with = removes dependence on thén—1)(n—2) pa-
rameters of th&©(n—1) subgroup. This is a consequence of
the fact thatA“? is unchanged wheg is replaced bygk,
with ke O(n—1).

tr(3*#g~'dg) -t X “#(gk) ~*d(gk)]
=tr[S*P(k g ldg) k+k tdk)]
=tr(k= *Pk~1g~1dg) + tr(S *Pk ~1dk).
(2.13

The second term on the right vanishes due to the orthogonal-
ity of traces ofO(n) with O(n—1) generators, whilé& dis-
appears from the first since it commutes WiH?.

In the above construction, one can also defineCqim

plicit formulas for this case are presented in the next sec=1)-potential
tion.) Evidently the procedure can be continued for arbitrary

O(n), but we have not found a simple sequence of embed-

dings for other groups.

To see that the algebra &=0(2n—1) andH=0(n)
X0(n—1) satisfies Eqs(2.2a—(2.29 we proceed as fol-
lows. LetI'® denote the set of Dirac gamma matricesnin

dimensions and let' denote the set of Dirac gamma matri-

o -
All =5tr( olg~tdg). (2.14
Indeed, this is the potential that enteess(H,)=w[O(n

—1)]. This potential depends on the functions used to con-
struct A%? in Eq. (2.12. Thus Eq.(2.14 does not give an

ces in —1) dimensions. These are considered as acting omdependenO(n— 1)-potential. But this is immaterial since

different vector spaces. We have

we are really interested in th®(n)-potential; Eq.(2.14
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enters our discussion only in the formula for the Chern-tary one, and a similar condition on the dimensions holds.
Simons density, namelyw[O(n)]=(1/482a)tr(g‘dg)® is interesting to note that we have a parametrization of the
—w[O(n—1)]. gauge potential with the minimal number of parameters,

As we have already noted, the potenfall?2 depends on namely, 3 din, which is significantly smaller than what
just the right number of arbitrary functions. We shall now appears in the construction of universal connections. It may
show explicitly that it is sufficiently general to reproduce anbe that our parametrization does not capture all the topologi-
arbitrary O(n)-gauge potential that lies close to the trivial cal subtleties that gauge fields in three dimensions can have.
gauge orbitA*=0 (or A“= pure gauge [For compactness It should also be pointed out that any parametrization, and
we renameéA®? of Eq.(2.12 simply asA“.] Potentials in the  not just ours, has drawbacks. This is because the configura-
neighborhood of the trivial gauge orbit may be obtained bytion space’, for non-Abelian groups, has nontrivial topology
writing g=exp(Sa#")-hk heH;=0(n), keH,=0(n  and hence one cannot choose coordinates globally valid on
—1). Expanding in powers of*, we then find (In the Abelian case is topologically trivial for fields orR®

and globally valid parametrizations exjst.
A*=R*’(h)a’+ (h~tdh)®

Ill. THE O(3) GAUGE POTENTIAL

We take G=0(5),H=0(3)X0O(2). We consider the
4-dimensional spinorial representation 6f(5). With the
generators normalized by tA?)=— 52°, the Lie algebra

Cc
ar~ EhVABaBd0A+ e (2.15

whereR*?(h) is defined by

hi*h~1=ReY(h)I” (2.16 generators oD(5) are given by
(ke H, drops out of the expression for the potential as dis- 1{c% 0
cussed earlier.Equation(2.15 tells us thatA“ is the gauge I“=E( 0 0a>
transform of the potentiah?. For small #’s, this can be
brought to the Clebsch form for each value of the Lie algebra
index y. We can see this as follows. There aren—1) 1/-1 0
=2dimH, functionsé” in the expression foa”. [Additional IO:E( 0 l) (3.9
in(n—1) parameters are containedhingiving the total of
3n(n—1) parameters for the potentié?.12.] h”*B is anti-
symmetric inA,B. By choosing an appropriate basis one can N 0 O ! 0 o"
present the commutatd@.29 in the form[S",SM]x|?, S :ﬁ(o_A 0,) S :ﬁ(o 0)-

y=1,2,...,dinH;=3n(n—1).(There is no summation over
y. S, 8" are selected linear combinations of ®f¥s.) In , _ o ,
this basis, for eachy, a’~a"dg™, (no summation over o’s are Fhe 22 Pauli matricesl genera(;te_O(S), with the
y), wherea” and 8 are independent combinations of the conventlongl structure constar®®”, and|? is the generator
¢*'s. This manifestly displays? in the Clebsch form for 0f O(2). S,S are the coset generators. -
each value ofy. Since we know that any vector in three A general group element i@(5) can be written in the
dimensions can be brought to the Clebsch form, @q15  form g=Mhk wherehe O(3), ke O(2), and

tells us that any gauge potential, which is sufficiently close to

the trivial one, can be brought to the forf@.5). In other 1

words, Eq.(2.5 [or Eq.(2.12] is a general parametrization M =

for gauge potentials in a small neighborhood /&0 (or . 1 o
pure gauggin the spaceA of three-dimensional gauge po- 1+w-w— Z(WXW)Z

tentials. SinceA is an affine space, it may be possible to

extend this result over a larger neighborhood. A different i

way of stating this result is as follows. The arbitrary func- 1- —(WXWw)- o —W- o

tions appearing in the expression for the potential, namely,

the gauge parameters containedhiand the coset parameters x i o 3.2

6", give a choice of coordinates oA. This choice of coor- wW-o 1+ =(wXw)- o

dinates is valid near the trivial gauge orbit or near the origin 2

in the gauge-invariant configuration spate A/ G, the space

of gauge potentials modulo gauge transformations. w is a complex 3-dimensional vector, with the bar denoting
It is a well-known theorem, in the context of universal complex  conjugation. w-w=ww® and (WXw)®

connections, that any gauge potential can be written in the 5 ,—, h ial ai log-1d

form (2.5) for a sufficiently large grougs [9]. In general, € w”w?. The gauge potential given by tr(1“g~"dg)

this requires dirG=(d+ 1)(2d+ 1)(dimH)2 for gauge po- eads

tentials of unitary groups in d dimensior@he case of or-

thogonal groups can be realized as a special case of the uni- A*=R*F(h) af+(h ldh)«
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1
a“=

— 1 _
1+w-w— Z(WXW)Z

WeW- (WX W) +Wedw - (WX W)
2

+ e (dwPw—whdw?) | . (3.3
A% is the h—gaugf transform o&® which depends on six
parameters W*,w®). The thre_e gauge parameters bf

e O(3), along with the six w%,w*®), give the nine functions
needed to parametrize a gengfq3)- [or SU(2)-] potential
in three dimensions. The Chern-Simons form is

1
W(A)= 5 (AdAT+ 1e*BYACAPAY)

6

_ adqay L aByqagBay
16772(a da“+ 3e*F7a“a”a?)

d ! (dhh™1) +
J— aaa
1672

1
_tr(h~1dh)®.
T

(3.9

PHYSICAL REVIEW D 62 085018

The O(3)-potential (3.3) can also be written in a more
compact form as

2i o
a :m{d@ £—£3°dé—NJI“dN} (3.9

where N“=£J*E,wg=12 &5. (3%)5,= —i€*F7 is the ad-
joint representation of the Lie algebra $1J(2).

The Abelian gauge potential obtained[i] by projection
from SU(2), in other words the potentidll.3), can also be
written in a form very similar to the above expressiondér
With g parametrized as

Vi+(ge2 2 ¢

_ _ _ Ca—icer
the projection(1.3) gives
P — R
[1+2&6+(£9)°)] '

where¢ is now just a single complex functiofiThe Clebsch
parametersy, 3 are given byé=\/pe'f,a=4p/(1+p)2.]

At least for the case dD(3) [or SU(2)], there is another
way of parametrizing the potentials, without considering em-
beddings in a larger group. This also leads to the reduction of

The second equality reflects the usual response of the Cherkﬁﬁ Chern;/?/imons for_m as above. The key observation is the
Simons density to gauge transformations. Using the explicit® ©WINg. We can write
form of a® as given in Eq(3.3), we can further reduce this.

Indeed we find that
a%da“+ 3 e*fva%afa?

(WX dw) - p+ (WX dw)-p

=(-2)

2
1+w-w— Z(WXVV)Z}

o (3.9
px= %eijdeIdWJ-
Defining an Abelian potential
w- dw—w- dw
a= (3.6

1 _
1+w-w— Z(WXW)z

we can easily check thada reproduces Eq(3.5). In other
words

(dhh~1)?a®
2

ada+d

w(A)=
16712

167

J’_

1 -1 3
Zpatr(h~tdn)? (3.7

If desired, the Abelian potentia can now be written in the
Clebsch form makingda into a total derivative.

dy“=—3e"PVxx? (311

for x*=itr(c®g 'dg),ge SU(2). Further, SU(2) being
three-dimensional, we have

1
XXX =5 €I XEXT= = Xt = = X=Xy

' (3.12

We take each Lie algebra component of the potential to be
proportional toy*,

AY=f y* (3.13

with no summation ovew, i.e., Eq.(3.13 holds for each
component separately. Using E¢3.12),(3.13 we then find

w(A)= (2f1fofs—FI— 3= FDX" XX

1672

1
= (2= 2f,f,f5) x3dy®= ——ada
16m 16m?

(3.19

wherea=\f?—2f,f,f5 x°. We thus get the Abelian form
again for a suitably defined Abelian potental A* of Eq.
(3.13 contains six parameters, three fragnand the three
f,'s. These, along with the three gauge paramdieos dis-
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played in(3.13], give the requisite number of nine param- rametrization(for the vector fieldv) is to provide this ca-
eters. The Abelianization of the Chern-Simons form &ia nonical formulation of fluid mechanid42]. One verifies that
works only in regions WhereEf§>2flf2f3, so that the if v is presented as

square root is well defined. If this is not the case, one needs

to use the absolute value éffi—2f1f2f3 to get a reala. v=Vo+aVp, (4.9
This can lead to some nonanalyticityaras a function of the

spatial coordinates. where the canonical pairs of variables are identifiedgag)(

and (pa,B), i.e.,
IV. TOWARDS A NON-ABELIAN FLUID MECHANICS
We now turn to the question of whether our results can be {0(r),p(r)}=o(r—r’) (4.5
used in a physical context. First of all, there has recently
been renewed interest in general parametrizations of gauge {B(r),pa(r’)}=8(r—r") (4.5b

fields, with the hope that the low energy physics of gauge
theories might be clearer in certain cleverly chosen paramg on the algebré4.33,(4.3b) is reproduced.

etrizations[10]. Our work certainly fits in with this general A Lagrangian that incorporates the canonical 1-form and

philosophy. the parametrizatioid.4) is
Secondly, notice that the Clebsch parametrization and the P -4

consequent reduction of the Chern-Simons form are very

useful in analyzing the evolution of magnetic helicfty]. L:f & [Epv2+ 6 p+V-(pv)]—pa(B+v-VB)].
Considerations of a non-Abelian analogue of magnetic helic-

ity, which may be relevant in the symmetry restored phase of (4.6
the standard electroweak theory, for example, can be signifi-

cantly aided by our analysis. The time-derivative termgdenoted by the over-dpsupply

However, we now turn to a possible third application of the 1-form, while variation with respect toyields Eq.(4.4).
our results: the construction of non-Abelian fluid mechanicsApart from total derivativesl. can also be presented as
that may be relevant to the analysis of collective modes in
the quark-gluon plasma. The free Hamiltonian for nonrela- ) . i?
tivistic fluid mechanics is given by |-=f dr [—P(9+ aB)=j-(Vo+aVp)+ 2

(4.7)
H= f d®r 3pv? (4.1)
where we now usg instead ofpv and the Clebsch variables
. o . I have been clearly exposed. Since the construg¢fidd) of an
wherep is the matter density field andis the velocity field. Abelian vector from ar8U(2) pure gauge presents that vec-

The free evolution equations that these quantities satisfy a1 Clebsch form, we may replace E@.7) by

ap
—+V-(pv)=0
ot (pV) sz o [2j#tr(t*g719,9) —Vi*i, ] (4.8

ov

it V) v=0. (4.2 where now the kinetic term has also been generalized to the
relativistic expression anf“=(p,j) [13]. In the nonrelativ-
istic limit

The first is the continuity equation linking the current
=pv to the density; the second is the free Euler equation
stating that the acceleration vanishes. These equations can be

obtained by Poisson bracketing with provided the nonva-  'The following observation allows understanding the need of the

nishing brackets fop,v are Clebsch parametrization for a canonical formulation. Although the
algebra(4.39,(4.3b satisfies the Jacobi identity, it is nevertheless
9 singular in that the Chern-Simons form constructed from the veloc-

i(n),p(r)y=—78r=r") (433 ity

CSV):fdgrEiijiﬁjUk.

— w”_(r)é(r_r,) (4.3b Poisson commutes with andv; in other words, the Poisson alge-
p(r) bra(4.33,(4.3b has a kernel given by the Chern-Simons form for

the velocity. This is an obstruction to the construction of a symplec-

where w;; = div; — djv; is the vorticity[11]. A natural ques- tic 2-form. The obstruction is removed whanis taken in the

tion is whether there exists a canonical 1-form and a correclebsch parametrization, for then the Chern-Simons density is a

sponding symplectic 2-form that give the Poisson bracketotal derivative and the Chern-Simons integral becomes a surface

algebra(4.33,(4.3b. Theraison d'dre for the Clebsch pa- term with no bulk contribution.

{vi(r),v;(r")}=
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_J'dSr /j;Lj’uE_ d3r /p2_j2

j2
3 3
— fdrp+fdr 25

(The contributionfd®r p to L is immaterial; it is a constant
of motion)

The formula(4.8) suggests a non-Abelian generalization.
j* is promoted to an index-carrying “color” currenj*,
and it is coupled to a non-Abelian, “Clebsch parametrized,”
vector constructed as in EQ.5),

L=Jd3r

4.9

1'a A~ — fauy @
— (99,0 — Vit }
(4.10

PHYSICAL REVIEW D 62 085018

1
g'=gh, A’=h"!'Ah+ Eh‘ldh

(4.13

wherej,=j,1%

We expect that the Lagrangidgd.11) will describe non-
Abelian magnetohydrodynamics, namely the dynamics of a
fluid with non-Abelian charge coupled to non-Abelian fields.
The current density will bg® as given by its equation of
motion. This gluon hydrodynamics can be useful for non-
Abelian plasmas, such as the quark-gluon plasma. Details of

Interaction with a dynamical gauge field can be included byEd- (4.11) and possible applications are under further study.
promoting the derivative off to a gauge-covariant deriva- In a related investigation, conventional fluid mechanics is

tive, gauged on the right, i.e.,

L=f d®r [—Ej““tr(lag‘lD 9)
a M

g |- [ Ry, @
with
D,9=4d,9—€egA,. (4.12

generalized so that it enjoys a supersymmgtd).

ACKNOWLEDGMENTS

Conversations with S. Deser and A. Polychronakos initi-
ated the research by one of (&.J), who also benefited from
the suggestion by J. Mickelsson that a promising route to a
non-Abelian Clebsch parametrization could be through
group-theoretic reduction of the Chern-Simons term. V.P.N.
thanks I. Singer for useful comments. This work is supported
in part by funds provided by the U.S. Department of Energy

A,= Ajl" are independent non-Abelian gauge potential§D.O.E) under contract DE-FC02-94ER40818, DE-FG02-

(not given byg) leading to the field strengthB;,,. The
gauge transformation properties are

91ER40676 and by NSF grant PHY-9605216. MIT-CTP-
2971, BU HEP-00-06.

[1] R. Jackiw and S.-Y. Pi, Phys. Rev. @1, 105015(2000.

[2] S. Deser, R. Jackiw, and S. Templeton, Ann. PliMsY.) 140,
372(1982; 185 406E) (1985.

[3] L. Woltier, Proc. Natl. Acad. Sci. USA#4, 489 (1958; H.
Moffatt, J. Fluid Mech.35, 117 (1969; M. Berger and G.
Field, ibid. 147, 133(1984.

[4] R. Jackiw, in S. Treiman, R. Jackiw, B. Zumino, and E. Wit-
ten, Current Algebra and AnomaliegPrinceton University
Press/World Scientific, Princeton, NJ/Singapore, 1985

[5] C. Cranstrom and J. Mickelsson, J. Math. Phy&, 2528
(1983; 27, 419E) (1986.

[6] A constructive derivation of Darboux’s theorem is given by R.
Jackiw, inConstraint Theory and Quantization Methoasl-
ited by F. Colomo, L. Lusanna, and G. Marrfi&orld Scien-
tific, Singapore, 1994 reprinted in R. JackiwDiverse Topics
in Theoretical and Mathematical Physi¢8Vorld Scientific,
Singapore, 1995

[7] H. Lamb, Hydrodynamic§Cambridge University Press, Cam-
bridge, UK, 1932.

[8] A.P. Balachandran, A. Stern, and C.G. Trahern, Phys. Rev. D
19, 2416(1979 and references therein.

[9] M.S. Narasimhan and S. Ramanan, Am. J. Md&h, 563
(1961); 85, 223(1963.

[10] L. Faddeev and A. Niemi, Phys. Lett. 4854, 90 (1999; Phys.
Rev. Lett.82, 1624(1999.

[11] P.J. Morrison and J.M. Greene, Phys. Rev. Ldf, 790
(1980; 48, 569E) (1982.

[12] C.C. Lin, inProceedings of the International School of Physics
“Enrico Fermi” (XXI), edited by G. CarerfAcademic, New
York, 1963.

[13] R. Jackiw and A. Polychronakos, Commun. Math. PIR@,
107 (1999.

[14] R. Jackiw and A. Polychronakos, Phys. Rev.6R, 085019
(2000.

085018-7



