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Chern-Simons reduction and non-Abelian fluid mechanics
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We propose a non-Abelian generalization of the Clebsch parametrization for a vector in three dimensions.
The construction is based on a group-theoretical reduction of the Chern-Simons form on a symmetric space.
The formalism is then used to give a canonical~symplectic! discussion of non-Abelian fluid mechanics,
analogous to the way the Abelian Clebsch parametrization allows a canonical description of conventional fluid
mechanics.

PACS number~s!: 03.50.Kk, 11.10.Ef, 47.10.1g, 47.75.1f
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I. INTRODUCTION

In a recent paper@1#, a pureSU(2) gauge potentialA
5g21dg, whose Chern-Simons term

CS~A!5E v~A!

v~A!52
1

8p2
tr~AdA1 2

3 A3!

5
1

16p2
~AadAa1 1

3 eabcAaAbAc! ~1.1!

measures the quantized winding number ofg @2#,

CS~g21dg!5
1

24p2E tr~g21dg!3[W~g! ~1.2!

was used to generate aU(1) potentiala, by projection onto
an Abelian direction:

a522 trt3g21dg ~1.3!

@ ta are anti-Hermitian generators of theSU(2) group, nor-
malized by trtatb52 1

2 dab#. The Abelian potentiala is not a
pure gauge, and it contains three arbitrary functions@corre-
sponding to the three parameters ofSU(2)]; hence,a can
represent an arbitrary Abelian 3-vector. The Chern-Sim
3-form for a coincides with that of itsSU(2) pure gauge
antecedent, by virtue of the SU(2) identity
tr(t3g21dg)dtr(t3g21dg)5(1/3!)tr(g21dg)3. Thus the con-
structed Abelian potential possesses quantized Chern-Sim
number~or magnetic helicity! @3# (1/16p2)*ada, equal to
W(g), the winding number ofg. Because, withinSU(2),
tr(g21dg)3 can be explicitly presented as a total divergen
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@4#, the Abelian Chern-Simons densityada also appears as
total divergence. This in turn indicates that the Clebsch
rametrization fora,

a5du1adb, ~1.4!

can be readily constructed. This parametrization of an A
lian potentiala ensures that the corresponding Chern-Simo
densityada is a total divergence:

ada5dudadb5d~udadb!52d~duadb!5d~dudab!.
~1.5!

In this paper we discuss how the above structures ext
to the non-Abelian situation. Also we use our non-Abeli
quantities to construct a canonical theory of non-Abel
fluid mechanics, analogous to the way in which the Abel
Clebsch parametrization is used in ordinary fluid mechan

We begin, in Sec. II, with a pure gaugeg21dg in some
non-Abelian groupG ~called the Ur-group!, and the Chern-
Simons term again coincides with the winding number og
as in Eqs.~1.1!,~1.2!. We consider a normal subgroupH,
with generatorsI a, and construct a non-Abelian gauge fie
by projection.

Aa}tr~ I ag21dg!. ~1.6!

Within H, this is not a pure gauge. We determine the gro
structure that is needed to ensure that the Chern-Sim
3-form v(A) of Aa is proportional to tr(g21dg)3, so that the
Chern-Simons number ofAa equals the winding number o
g. In this way we construct non-Abelian gauge fields, b
longing to the groupH, with quantized Chern-Simons num
ber. Moreover, we describe the properties of the Ur-groupG,
that are needed so that the projected potentialAa enjoys
sufficient generality to represent an arbitrary potential inH.

Since tr(g21dg)3 is a total derivative for an arbitrary
group ~although this fact cannot in general be expressed
finite terms! @5# our construction ensures that the form ofAa,
which is achieved through the projection~1.6!, produces a
total derivative expression for its Chern-Simons dens
v(A).
e
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With the above mentioned properties for the potential
is appropriate to consider~1.6! as a ‘‘non-Abelian Clebsch
parametrization.’’

In explicit examples, which we present in Sec. III, it
found that the ‘‘total derivative’’ form for the Chern-Simon
density ofAa is achieved in two steps. The parametrizati
~1.6! directly leads to an Abelian form of the Chern-Simo
density

AadAa1 1
3 f abgAaAbAg5gdg ~1.7!

for someg. Then Darboux’s theorem@6# ~or usual fluid dy-
namical theory@7#! ensures thatg can be presented in
Clebsch form, so thatgdg, is explicitly a total derivative.

We also observe that at least forSU(2) one can do with-
out the above general discussion and directly present a
rametrization for arbitrarySU(2) potentials, which produce
a total derivative expression for theSU(2) Chern-Simons
density. The parametrization is a natural generalization
the non-Abelian context of the Clebsch parametrizat
~1.4!, which achieves the total derivative form for Abelia
Chern-Simons densities.

In Sec. IV, we construct a non-Abelian version of flu
mechanics and magnetohydrodynamics, which may be us
as an effective description for the long wavelength degr
of freedom in a quark-gluon plasma.

II. PARAMETRIZATION OF POTENTIALS AND THE
CHERN-SIMONS 3-FORM

A. General considerations

As stated in the Introduction, we consider the parame
zation of gauge potentials for a groupH of the form
tr(I ag21dg), whereg is an element of a groupG, H being a
subgroup ofG andI a are the generators ofH. Conditions on
the Ur-groupG, which we take to be compact and sem
simple, are the following. First of allG has to be so chose
that it has sufficient number of parameters to ma
tr(I ag21dg) a generic potential forH. Since we are in three
dimensions, anH-potential Ai

a has 33dimH independent
functions; so a minimal requirement will be

dim G>3 dimH. ~2.1!

Secondly we require that theH-Chern-Simons form forAa

should coincide with that ofg21dg, thereby ensuring that th
H-potential possesses~quantized! Chern-Simons numbe
equal toW(g) and also that theH-Chern-Simons density is
total derivative, or at least can be brought to an Abelian fo
as in Eq. ~1.7!. As we shall show in a moment, this
achieved ifG/H is a symmetric space. In this case, if w
split the Lie algebra ofG into theH-subalgebra spanned b
I a, a51, . . . ,dim H, and the orthogonal complemen
spanned bySA, A51, . . . ,(dim G2dim H), the commuta-
tion rules are of the form

@ I a,I b#5 f abgI g ~2.2a!

@ I a,SA#5haABSB ~2.2b!
08501
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@SA,SB#5chaABI a ~2.2c!

(ha)AB form a ~possibly reducible! representation of the
H-generatorsI a. The constantc depends on normalizations
More explicitly, if the structure constants for the Ur-groupG

are namedf̄ abc, a,b,c51, . . . ,dimG, then the conditions
~2.2a!–~2.2c! require that f̄ abc vanishes whenever an od
number of indices belongs to the orthogonal complem
labeled byA,B, . . . . Moreover,f abg are taken to be the
conventional structure constants forH and this may render
them proportional to~rather than equal to! f̄ abg.

We define the traces of the generators by

tr~ I aI b!52adab, tr~SASB!52bdAB

tr~ I aSA!50. ~2.3!

We can evaluate the quantity tr@SA,SB#I a5trSA@SB,I a# us-
ing the commutation rules and Eq.~2.3!. This immediately
gives the relationac5b.

Expandingg21dg in terms of generators, we write

g21dg5~ I aAa1SAaA! ~2.4!

which defines theH-potentialAa. Equivalently

Aa52
1

a
tr~ I ag21dg!. ~2.5!

~Such projected potentials have been used before in for
lating sigma models; see @8#.! From d(g21dg)
52g21dgg21dg, we get the Maurer-Cartan relations

Fa[dAa1 1
2 f abgAbAg52

c

2
haABaAaB

daA1haBAAaaB50. ~2.6!

Using these results, the following chain of equations sho
that the Chern-Simons 3-form for theH-gauge group is pro-
portional to tr(g21dg)3:

v~A!5
1

16p2
~AadAa1 1

3 f abgAaAbAg!

5
1

48p2
~AadAa12AaFa!

5
1

48p2
~AadAa1chaABAaaAaB!

5
1

48p2
~AadAa1cdaAaA!

52
1

48p2 F1

a
tr~AdA!1

c

b
tr~daa!G
8-2
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52
1

48p2a
tr~AdA1ada!

52
1

48p2a
trg21dgd~g21dg!

5
1

48p2a
tr~g21dg!3. ~2.7!

In the above sequence of manipulations, we have used
Maurer-Cartan relations~2.6!, which rely on the symmetric
space structure of Eqs.~2.2a!–~2.2c!, and the trace relation
~2.3!, along withac5b.

We thus see that*v(A) is indeed the winding number o
the configurationgPG. Since tr(g21dg)3 is a total deriva-
tive locally on G, the potential~2.5!, with the symmetric
space structure of Eqs.~2.2a!–~2.2c!, does indeed obey th
requirement of makingv(A) a total derivative. It is therefore
appropriate to call our construction~2.5! a ‘‘non-Abelian
Clebsch parametrization.’’

B. Choosing the Ur-groupG

In explicit realizations, given a gauge group of interestH,
we need to choose a groupG such that the conditions~2.1!,
~2.2a!–~2.2c! hold. In general this is not possible. Howeve
one can proceed recursively. Let us suppose that the de
result has been established for a group, which we callH2.
Then we formH,G obeying Eqs.~2.2a!–~2.2c! asH5H1
3H2, where H1 is the gauge group of interest, satisfyin
dimG>3 dimH1. For this choice ofH, the result~Sec. II A!
becomes

v~H1!1v~H2!5
1

48p2a
tr~g21dg!3. ~2.8!

But sincev(H2) is already known to be a total derivative
Eq. ~2.8! shows the desired result:v(H1) is a total deriva-
tive.

As a specific example, consider the orthogonal gro
O(n) for which we can useG5O(2n21) and H5O(n)
3O(n21). The casen52, with O(1)51, reproduces the
previous results of the Abelian constructionO(3) @or
SU(2)]→O(2) @1#. For n53, G is O(5), H15O(3) and
H25O(2). Sincev@O(2)# is already known to be a tota
derivative, we learn from Eq.~2.8! that the Chern-Simons
density for O(3) @SU(2)# is also a total derivative.~Ex-
plicit formulas for this case are presented in the next s
tion.! Evidently the procedure can be continued for arbitra
O(n), but we have not found a simple sequence of emb
dings for other groups.

To see that the algebra ofG5O(2n21) andH5O(n)
3O(n21) satisfies Eqs.~2.2a!–~2.2c! we proceed as fol-
lows. Let Ga denote the set of Dirac gamma matrices inn
dimensions and letg i denote the set of Dirac gamma mat
ces in (n21) dimensions. These are considered as acting
different vector spaces. We have
08501
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GaGb1GbGa52dab

g ig j1g jg i52d i j . ~2.9!

We construct

Sab5
i

2
@Ga,Gb#

s i j 5
i

2
@g i ,g j # ~2.10!

Sa i5Gag i .

Sab are ~Hermitian! generators ofO(n), s i j are generators
of O(n21). The set of matrices (Sab,s i j ,Sa i) form the
generators ofO(2n21). From Eq.~2.10! we find thatSa i is
a vector ofO(n) and a vector ofO(n21) and also that

i @Sa i ,Sb j #52d i j Sab12dabs i j . ~2.11!

We have thus the required structure~2.2a!–~2.2c!. We con-
struct theO(n)-gauge potential as

Aab5
i

a
tr~Sabg21dg!. ~2.12!

The number of arbitrary functions present inAab defined by
Eq. ~2.12! is 3

2 n(n21), which is exactly the right numbe
for anO(n)-gauge potential in three dimensions, so that E
~2.1! is satisfied in just the right way~as an equality!. This
result is seen as follows. TheO(2n21) group elementg
depends on (n21)(2n21) parameters. However the trac
with Sab removes dependence on the1

2 (n21)(n22) pa-
rameters of theO(n21) subgroup. This is a consequence
the fact thatAab is unchanged wheng is replaced bygk,
with kPO(n21).

tr~Sabg21dg!→tr@Sab~gk!21d~gk!#

5tr@Sab
„k21~g21dg! k1k21dk…#

5tr~kSabk21g21dg!1tr~Sabk21dk!.

~2.13!

The second term on the right vanishes due to the orthogo
ity of traces ofO(n) with O(n21) generators, whilek dis-
appears from the first since it commutes withSab.

In the above construction, one can also define anO(n
21)-potential

Ai j 5
i

a
tr~s i j g21dg!. ~2.14!

Indeed, this is the potential that entersv(H2)5v@O(n
21)#. This potential depends on the functions used to c
struct Aab in Eq. ~2.12!. Thus Eq.~2.14! does not give an
independentO(n21)-potential. But this is immaterial sinc
we are really interested in theO(n)-potential; Eq.~2.14!
8-3
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enters our discussion only in the formula for the Che
Simons density, namelyv@O(n)#5(1/48p2a)tr(g21dg)3

2v@O(n21)#.
As we have already noted, the potential~2.12! depends on

just the right number of arbitrary functions. We shall no
show explicitly that it is sufficiently general to reproduce
arbitrary O(n)-gauge potential that lies close to the trivi
gauge orbitAa50 ~or Aa5 pure gauge!. @For compactness
we renameAab of Eq. ~2.12! simply asAa.# Potentials in the
neighborhood of the trivial gauge orbit may be obtained
writing g5exp(iSAuA)•h k, hPH15O(n), kPH25O(n
21). Expanding in powers ofuA, we then find

Aa5Rag~h!ag1~h21dh!a

ag'
c

2
hgABuBduA1••• ~2.15!

whereRag(h) is defined by

hIah215Rag~h!I g ~2.16!

(kPH2 drops out of the expression for the potential as d
cussed earlier.! Equation~2.15! tells us thatAa is the gauge
transform of the potentialag. For small u ’s, this can be
brought to the Clebsch form for each value of the Lie alge
index g. We can see this as follows. There aren(n21)
52dimH1 functionsuA in the expression forag. @Additional
1
2 n(n21) parameters are contained inh, giving the total of
3
2 n(n21) parameters for the potential~2.12!.# hgAB is anti-
symmetric inA,B. By choosing an appropriate basis one c
present the commutator~2.2c! in the form @S(g),S̃(g)#}I g,
g51,2, . . . ,dimH15 1

2 n(n21). ~There is no summation ove

g. S(g), S̃(g) are selected linear combinations of theSA’s.! In
this basis, for eachg, ag'a (g)db (g), ~no summation over
g), wherea (g) andb (g) are independent combinations of th
uA’s. This manifestly displaysag in the Clebsch form for
each value ofg. Since we know that any vector in thre
dimensions can be brought to the Clebsch form, Eq.~2.15!
tells us that any gauge potential, which is sufficiently close
the trivial one, can be brought to the form~2.5!. In other
words, Eq.~2.5! @or Eq. ~2.12!# is a general parametrizatio
for gauge potentials in a small neighborhood ofA50 ~or
pure gauge! in the spaceA of three-dimensional gauge po
tentials. SinceA is an affine space, it may be possible
extend this result over a larger neighborhood. A differe
way of stating this result is as follows. The arbitrary fun
tions appearing in the expression for the potential, nam
the gauge parameters contained inh and the coset paramete
uA, give a choice of coordinates onA. This choice of coor-
dinates is valid near the trivial gauge orbit or near the ori
in the gauge-invariant configuration spaceC5A/G, the space
of gauge potentials modulo gauge transformations.

It is a well-known theorem, in the context of univers
connections, that any gauge potential can be written in
form ~2.5! for a sufficiently large groupG @9#. In general,
this requires dimG>(d11)(2d11)(dimH)3 for gauge po-
tentials of unitary groups in d dimensions.~The case of or-
thogonal groups can be realized as a special case of the
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tary one, and a similar condition on the dimensions holds! It
is interesting to note that we have a parametrization of
gauge potential with the minimal number of paramete
namely, 3 dimH, which is significantly smaller than wha
appears in the construction of universal connections. It m
be that our parametrization does not capture all the topol
cal subtleties that gauge fields in three dimensions can h
It should also be pointed out that any parametrization, a
not just ours, has drawbacks. This is because the config
tion spaceC, for non-Abelian groups, has nontrivial topolog
and hence one cannot choose coordinates globally valid oC.
~In the Abelian case,C is topologically trivial for fields onR3

and globally valid parametrizations exist.!

III. THE O„3… GAUGE POTENTIAL

We take G5O(5),H5O(3)3O(2). We consider the
4-dimensional spinorial representation ofO(5). With the
generators normalized by tr(tatb)52dab, the Lie algebra
generators ofO(5) are given by

I a5
1

2i S sa 0

0 saD
I 05

1

2i S 21 0

0 1D ~3.1!

SA5
1

iA2
S 0 0

sA 0,D , S̃A5
1

iA2
S 0 sA

0 0 D .

s ’s are the 232 Pauli matrices.I a generateO(3), with the
conventional structure constantseabg, andI 0 is the generator
of O(2). S,S̃ are the coset generators.

A general group element inO(5) can be written in the
form g5Mhk wherehPO(3), kPO(2), and

M5
1

A11w̄•w2
1

4
~w3w̄!2

3S 12
i

2
~w3w̄!•s 2w•s

w̄•s 11
i

2
~w3w̄!•s

D ~3.2!

wa is a complex 3-dimensional vector, with the bar denoti
complex conjugation. w•w̄5waw̄a and (w3w̄)a

5eabgwbw̄g. The gauge potential given by2tr(I ag21dg)
reads

Aa5Rab~h! ab1~h21dh!a
8-4
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aa5
1

11w•w̄2
1

4
~w3w̄!2

3H wadw̄•~w3w̄!1w̄adw•~w̄3w!

2

1eabg~dwbw̄g2wbdw̄g!J . ~3.3!

Aa is the h-gauge transform ofaa which depends on six
parameters (wa,w̄a). The three gauge parameters ofh

PO(3), along with the six (wa,w̄a), give the nine functions
needed to parametrize a generalO(3)- @or SU(2)-] potential
in three dimensions. The Chern-Simons form is

v~A!5
1

16p2
~AadAa1 1

3 eabgAaAbAg!

5
1

16p2
~aadaa1 1

3 eabgaaabag!

2dF 1

16p2
~dhh21!aaaG1

1

24p2
tr~h21dh!3.

~3.4!

The second equality reflects the usual response of the Ch
Simons density to gauge transformations. Using the exp
form of aa as given in Eq.~3.3!, we can further reduce this
Indeed we find that

aadaa1 1
3 eabgaaabag

5~22!
~w̄3dw̄!•r1~w3dw!• r̄

F11w•w̄2
1

4
~w3w̄!2G2

~3.5!
rk5 1

2 e i jkdw̄idw̄j .

Defining an Abelian potential

a5
w•dw̄2w̄•dw

11w•w̄2
1

4
~w3w̄!2

~3.6!

we can easily check thatada reproduces Eq.~3.5!. In other
words

v~A!5
1

16p2
ada1dF (dhh21)aaa

16p2 G
1

1

48p2
tr~h21dh!3. ~3.7!

If desired, the Abelian potentiala can now be written in the
Clebsch form makingada into a total derivative.
08501
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The O(3)-potential~3.3! can also be written in a more
compact form as

aa5
2i

~112j̄•j1N2!
$dj̄Jaj2 j̄Jadj2NJadN% ~3.8!

where Na5 j̄Jaj,wb5A2 jb . (Ja)bg52 i eabg is the ad-
joint representation of the Lie algebra ofSU(2).

The Abelian gauge potential obtained in@1# by projection
from SU(2), in other words the potential~1.3!, can also be
written in a form very similar to the above expression foraa.
With g parametrized as

g5S A11~ j̄j !2 A2 j

2A2 j̄ A11~ j̄j !2D •e2 is3u/2 ~3.9!

the projection~1.3! gives

a5du1
2i

@112j̄j1~ j̄j !2#
~dj̄j2 j̄dj! ~3.10!

wherej is now just a single complex function.@The Clebsch
parametersa,b are given byj5Areib,a54r/(11r)2.#

At least for the case ofO(3) @or SU(2)], there is another
way of parametrizing the potentials, without considering e
beddings in a larger group. This also leads to the reductio
the Chern-Simons form as above. The key observation is
following. We can write

dxa52 1
2 eabgxbxg ~3.11!

for xa5 i tr(sag21dg),gPSU(2). Further, SU(2) being
three-dimensional, we have

x1x2x35
1

3!
eabgxaxbxg52x1dx152x2dx252x3dx3.

~3.12!

We take each Lie algebra component of the potential to
proportional toxa,

Aa5 f axa ~3.13!

with no summation overa, i.e., Eq. ~3.13! holds for each
component separately. Using Eqs.~3.12!,~3.13! we then find

v~A!5
1

16p2
~2 f 1f 2f 32 f 1

22 f 2
22 f 3

2!x1x2x3

5
1

16p2 ~ f 222 f 1f 2f 3!x3dx35
1

16p2
ada

~3.14!

wherea5Af 222 f 1f 2f 3 x3. We thus get the Abelian form
again for a suitably defined Abelian potentiala. Aa of Eq.
~3.13! contains six parameters, three fromg and the three
f a’s. These, along with the three gauge parameters@not dis-
8-5
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played in~3.13!#, give the requisite number of nine param
eters. The Abelianization of the Chern-Simons form viaa
works only in regions where( f a

2>2 f 1f 2f 3, so that the
square root is well defined. If this is not the case, one ne
to use the absolute value of( f a

222 f 1f 2f 3 to get a reala.
This can lead to some nonanalyticity ina as a function of the
spatial coordinates.

IV. TOWARDS A NON-ABELIAN FLUID MECHANICS

We now turn to the question of whether our results can
used in a physical context. First of all, there has recen
been renewed interest in general parametrizations of ga
fields, with the hope that the low energy physics of gau
theories might be clearer in certain cleverly chosen par
etrizations@10#. Our work certainly fits in with this genera
philosophy.

Secondly, notice that the Clebsch parametrization and
consequent reduction of the Chern-Simons form are v
useful in analyzing the evolution of magnetic helicity@1#.
Considerations of a non-Abelian analogue of magnetic he
ity, which may be relevant in the symmetry restored phas
the standard electroweak theory, for example, can be sig
cantly aided by our analysis.

However, we now turn to a possible third application
our results: the construction of non-Abelian fluid mechan
that may be relevant to the analysis of collective modes
the quark-gluon plasma. The free Hamiltonian for nonre
tivistic fluid mechanics is given by

H5E d3r 1
2 rv2 ~4.1!

wherer is the matter density field andv is the velocity field.
The free evolution equations that these quantities satisfy

]r

]t
1“•~rv!50

]v

]t
1~v•“ ! v50. ~4.2!

The first is the continuity equation linking the currentj
[rv to the density; the second is the free Euler equati
stating that the acceleration vanishes. These equations c
obtained by Poisson bracketing withH, provided the nonva-
nishing brackets forr,v are

$v i~r !,r~r 8!%5
]

]r i d~r2r 8! ~4.3a!

$v i~r !,v j~r 8!%52
v i j ~r !

r~r !
d~r2r 8! ~4.3b!

wherev i j 5] iv j2] jv i is the vorticity @11#. A natural ques-
tion is whether there exists a canonical 1-form and a co
sponding symplectic 2-form that give the Poisson brac
algebra~4.3a!,~4.3b!. The raison d’être for the Clebsch pa-
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rametrization~for the vector fieldv) is to provide this ca-
nonical formulation of fluid mechanics@12#. One verifies that
if v is presented as

v5“u1a“b, ~4.4!

where the canonical pairs of variables are identified as (r,u)
and (ra,b), i.e.,

$u~r !,r~r 8!%5d~r2r 8! ~4.5a!

$b~r !,ra~r 8!%5d~r2r 8! ~4.5b!

then the algebra~4.3a!,~4.3b! is reproduced.1

A Lagrangian that incorporates the canonical 1-form a
the parametrization~4.4! is

L5E d3r †

1
2 rv21u@ṙ1“•~rv!#2ra~ḃ1v•“b!‡.

~4.6!

The time-derivative terms~denoted by the over-dot! supply
the 1-form, while variation with respect tov yields Eq.~4.4!.
Apart from total derivatives,L can also be presented as

L5E d3r F2r~u̇1aḃ!2 j•~“u1a“b!1
j2

2rG
~4.7!

where we now usej instead ofrv and the Clebsch variable
have been clearly exposed. Since the construction~1.3! of an
Abelian vector from anSU(2) pure gauge presents that ve
tor in Clebsch form, we may replace Eq.~4.7! by

L5E d3r @2 j mtr~ t3g21]mg!2Aj m j m # ~4.8!

where now the kinetic term has also been generalized to
relativistic expression andj m[(r,j ) @13#. In the nonrelativ-
istic limit

1The following observation allows understanding the need of
Clebsch parametrization for a canonical formulation. Although
algebra~4.3a!,~4.3b! satisfies the Jacobi identity, it is neverthele
singular in that the Chern-Simons form constructed from the ve
ity

CS~v!5E d3r e i jkv i] jvk .

Poisson commutes withr andv; in other words, the Poisson alge
bra ~4.3a!,~4.3b! has a kernel given by the Chern-Simons form f
the velocity. This is an obstruction to the construction of a sympl
tic 2-form. The obstruction is removed whenv is taken in the
Clebsch parametrization, for then the Chern-Simons density
total derivative and the Chern-Simons integral becomes a sur
term with no bulk contribution.
8-6
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2E d3r Aj m j m[2E d3r Ar22 j2

→2E d3rr1E d3r
j2

2r
. ~4.9!

~The contribution*d3r r to L is immaterial; it is a constan
of motion.!

The formula~4.8! suggests a non-Abelian generalizatio
j m is promoted to an index-carrying ‘‘color’’ current,j am,
and it is coupled to a non-Abelian, ‘‘Clebsch parametrized
vector constructed as in Eq.~2.5!,

L5E d3r F2
1

a
j amtr~ I ag21]mg!2Aj am j m

a G .
~4.10!

Interaction with a dynamical gauge field can be included
promoting the derivative ofg to a gauge-covariant deriva
tive, gauged on the right, i.e.,

L5E d3r F2
1

a
j amtr~ I ag21Dmg!

2Aj am j m
a G2 1

4 E d3rF amnFmn
a ~4.11!

with

Dmg5]mg2egAm . ~4.12!

Am5 Am
a I a are independent non-Abelian gauge potenti

~not given by g) leading to the field strengthsFmn
a . The

gauge transformation properties are
it-

R.

08501
.

’

y

s

g85gh, A85h21Ah1
1

e
h21dh

~4.13!

j m8 5h21 j mh

where j m5 j m
a I a.

We expect that the Lagrangian~4.11! will describe non-
Abelian magnetohydrodynamics, namely the dynamics o
fluid with non-Abelian charge coupled to non-Abelian field
The current density will beja as given by its equation o
motion. This gluon hydrodynamics can be useful for no
Abelian plasmas, such as the quark-gluon plasma. Detail
Eq. ~4.11! and possible applications are under further stu
In a related investigation, conventional fluid mechanics
generalized so that it enjoys a supersymmetry@14#.
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