PHYSICAL REVIEW D, VOLUME 62, 085017
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A combinatorial formula to generaté(N) character expansions is presented. It is shown that the resulting
character expansion formulas greatly simplify a number of problems where integrals over the group manifolds
need to be calculated. Several examples are given, including direct and very quick calculations of the ltzykson-
Zuber integral and the finite volume effective partition function of QCD in the sector with a given topological
charge.

PACS numbds): 11.15.Ha, 11.15.Pg

[. INTRODUCTION partition into N parts f11,n,, ...,ny) wheren;=n,=---
=ny (see for example Ref2]). The characte(trace of the
Expansion of a periodic function into its Fourier compo- representation matrixof the irreducible representation cor-
nents is widely used in physics. Since sines and cosines carsponding to the partitiomng ,n,, . .. ,ny) of non-negative
be considered as the characters of thel) group, Fourier integers is given by Weyl's formulg2]
expansion is the simplest character expansion. In general ex-

pansion of an invariant function of a group into its characters de(ti”ﬁij)
(traces of the representation matricés not an easy task. Xy g, ... ny(U)= ) 2.0
. . . ; 1:N2 N Aty tn)
Some time ago the author had given a combinatorial formula
to write character expansions for thgN) group[1]. The . .
: e . wheret;,i=1, ... N, are the eigenvalues of the group ele-
purpose of this paper is first to extend this formula to more . +U'in the fundamental representation abt, . . . . ty)

general situations than those covered in RE[, and then to
show that this formula can be profitably used to simplify a
number of situations where integrals over the group mani-1' "~
folds need to be calculated. _ N-j

The derivation of the general character expansion formula Alty, ... ty) =de(t7™). 22
is given in the next section. In Sec. Ill we give some ex-
amples of character expansions obtained using our formul
The examples given there are meant to be illustrative of th
technique, but not exhaustive of all the character expansio
one can obtain. Some related determinantal identities ar
placed in the Appepdices for easy referer)ce. In Sec. IV we X o no(U)=deth, ), 2.3
show that our techniques can be used to directly calculate the 12 N J
Itzykson-Zuber integral and its various extensions. In Sec. \</vhere h

is the Vandermonde determinant in the arguments
I

In these equations the arguments of the determinants indicate
Fhe (ij)-th element of the matrix the determinant of which is
Ralculated. An alternative form for the character formula is
ven by

n is the complete symmetric function in the argu-

we use our technique to calculate the finite volume EﬁeCtiVEfnentst t\, of degreen. (For a review of its properties
partition function of QCD in the sector with a given topo- o Aplp,e.n.d.i;(',\lb) '
logical charge. Even though the results presented in Secs. I?F :

; : > 7 We now consider the power series expansion
and V were previously obtained by other methods, it is P P

shown that our method greatly simplifies the calculations.

Finally in Sec. VI a brief discussion of the results, including G(x,t)zE ALt (2.9
extension of our results into tHeé(N/M)-type supergroups, n

and directions for future work concludes the paper. For con-

tinuity of the text several mathematical formulas, namely, aVhere the range af in the sum is not yet specifies.stands

review of the properties of the symmetric functions and sevi0r all the parameters needed to specify the coefficiénts

eral determinantal identities are placed in two appendices. W€ assume that this series is convergenttior 1. GivenN
different t's: tq, ... ty, We next write down the equality
usingN copies of Eq.{(2.4)
Il. CHARACTER EXPANSION FORMULAS

N
First we review and extend the main result of Rf]. N N+n-j
Consider the representations of tiéN) group labeled by a Alt, -ty ,1:[1 G(X’t')) _de{; An(X)t; '
(2.9
*Electronic address: baha@nucth.physics.wisc.edu Changing the variable in the sums pe=n+N—j, we can
TPermanent address. rewrite Eq.(2.5) as
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N yet another transformation of indices in EQ.13 to those
Atty, ...t 1 G(x,ti)) =deff;(t)], (2.6)  that take only non-negative values. This is achieved by in-
i=1 troducing the quantities
where
=2 mj=n—-ny, i=1,...N-1, (2.143
j=i
f](Z)ZE Ap+j*sz' (27)

P Iy=0. (2.14b

The range oh in Eq. (2.4), which is so far completely un-
restricted, determines the rangei Eg. (2.7). Using the
properties of determinantsee for example Ref3]) and Eq.

Then the second determinant on the right-hand side of Eq.
(2.13 can be written as

(B2) of the Appendix B Eq(2.6) can be written as de(t?J+N_j)=(t1t2~ )™ de(t:i+N‘i)_ (2.19
Substituting Eq(2.15 into Eq.(2.13 and then inserting the
A(ty, ...ty |1;[1 G(x,t) resulting expression into E§2.8) one obtains
N
= > detA i n)de(t). (2.8 Alty, ... tl 11 G(x,ti)>
ky>ko> - - - >ky ! i=1
In Eq. (2.8) the range(but not the orderingof the variables _ det A
Ki,Ks, ... Ky are still determined by the range ofin Eq. mzo mzo mNzl 0 HEN el ni i)

(2.4). First we introduce .
X (tyty- - -ty)™ dett] TN ). (2.16
ni=k—N+i. (2.9
We can now take;’s to be the eigenvalues of the fundamen-
The ordering of the variables indicated in the sum of Eq.al representation dfi(N). Dividing both sides of Eq(2.16)

(2.8) now becomes with the Vandermonde determinant and using Ej1) we
obtain
n;=n,=---=ny. (2.10
N
This transformation is necessary since the partitions (H G(x,ti)> = > >y de(An )
(nq, ...,ny) that label the representations O{N) should i=1 mi=0 my=0  my_1=0 ny
satisfy the condition in Eq(2.10), i.e., it is then;’s, not the n
k;'s that label the irreducible representations. Next we want X(detU)™xq, 1y, 1 (Y)- (2.17

to show that because of the condition in E2.10 only one . ) _ . _ .
of the sums in Eq(2.8) still spans the original range ofin This is the main result of this paper. In writing this equation

Eq. (2.4). To this end we introduce the non-negative quanti-& used the fact that the matrix can always be diagonal-

ties ized by a unitary transformation which leaves the character
mvarlant Equatior{2.17) is a generalization of the character
m=n;—n.;, j=1,... N-1, (2.1 expansion given in Refl]. If the sum ovem in the expres-
sion Eg. (2.4 we started with is restricted to the non-
one can write negative values oh (i.e., A,=0 whenn<Q0), thenny is
non-negative and we can absorb the term (Bt into the
Ni=Mi+Mj g +---+My_g+ny. (212 character to obtain the result given in REf]:
As a result the right-hand side of E@.8) takes the form N
11 Gty
|=
2 3 e XX delAydett .,
my =0 my= mMN-1=0 NN
(2.13 = 2 E E de(An +i— ])X(n1 Ny, ... nN)(U)-
n;=0 n,=0 nny=0
The upper range of the,; throughmy_; sums are still de- (2.18

termined by the range af in Eq. (2.4), but these sums start

with m;=0. The entire range of thay sum is still deter- Note that the summation in EQR.18 is over all irreducible
mined by the range af in Eq. (2.4). At this point we wantto  representations ofJ(N), but in Eq.(2.17) is restricted to

use Weyl's formula, Eq(2.1), to write the last term in the those representations where the number of boxes in the last
right-hand side of Eq(2.13 as the character. Sincg, may  row of the Young Tableau is zeland an additional summa-
take negative values, we cannot yet use @dl), where all  tion overny, which, in general can take both positive and
then;’s are non-negative. To achieve our goal we need to dmegative values. An application of E®.18 to the thermo-
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dynamics of two-dimensional QCD in the larbelmit was (detU)exTrY
given in Ref.[4]. In the next section we give some explicit L
examples of character expansions. Y Xn1+~--+nNNv( det )
T (nj—v+i—j)!
lll. EXAMPLES OF CHARACTER EXPANSIONS
Xan ..... nN(U) (3.5

For our first example we choogg(x,t) =expkt). Then
A,=x"n! for n=0 andA,=0 for n<0. We can then use

Eqg. (2.18 to write and
(detu)fvex Tru
exp(x TrU)=2 a,(x)x,(U), (3.9 L
' :Z Xn1+-~~+nN+NV( det )
where the sum is over all irreducible representatipns
stands for ,n,, ... ,ny)] and XXny, ... ny(Y)- (3.6
an+ifj .
ar(x)=det( _ ):an+n2+-~-+nN _For our.second examplg we pmik(x,_t) to be the gener-
(nj+i—j)! ating function of the Hermite polynomials
i ! ! . “ Hp(x)
N (n,=1)! (ng—2)! G(x,t) =exp(2tx—t2)= >, " t" (3.7)
1 1 1 "
X | (ng+21)! n,! (ng—1)! . The corresponding character expansion can again be found
1 1 1 using Eq.(2.18:
(n1+2)! (ny+1)! ns! expa TrU—b Tr UZ)
Hp +i-j(a/2\b)
(32) 22 b(n1+n2+--~+nN)/2 de ! Xr(U)
r (nj +i—j)!
This particular character expansion can also be obtained by
explicit integration over the group manifold]. It will be (3.8
increasingly difficult to obtain more complicated character
expansions by explicit integration. Using Eq&.17) and For the next example we choo&x,t) to be the gener-
(2.18 provides a much easier alternative to the explicit inte-ating function of the modified Bessel functions
gration over the group manifold. The determinant in Eq.
(3.2) can also be written in terms of the dimensions of the X 1 tee
group representations G(x,t)=ex;{§ t+ T = E [(x)t". (3.9
n=—ox
Hnynp, .. nnt . . . .
Since the indexh takes negative as well as positive values
N (N=i)! we need to use Eq2.17) which yields the character expan-
=M1ty H—.d{n h sion
i=t (N+n;j—i)! ERCR
(3.3 X
ex;{— Tr(U+U")
whered{nl,nz ,,,,, Ny} is the dimension of the representation 2
corresponding to the partitiom,,n,, . .. ,ny}. (The dimen- toe A te te
sions can be evaluated by calculating the character of the = X X X deflyi (0]
identity. See, e.g., Ref6] for explicit formulas) A related m=0m=0  my_;=0ny=-= :
character expansion can be obtained by noting X(dEtU)nNX(ll,lz, N ,IN)(U)- (3.10
® mev
treXt= E tm. (3.4)  This expansion was previously obtained by direct integration
m=v (M—v)! for SU(N) group (detJ=1) [7]. Because of the symmetry
in the argument of the exponential, £8.10 can be equiva-
Using Eq.(2.18 we immediately get lently written as
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Using Eqgs.(4.2) and(4.3) one gets

eX[{gTI’(U-ﬁ-UT)
e
J dU exd B Tr(M;UM,UT) =2 X (MDx(M2),

r

=> > - 2 2 defly +i-;(x)] (4.5

m;=0 my=0 my-1=0 ny=—=

+ oo + oo

which, using Eq(3.3) can be written as

X (detUT)™y, y(UT). (3.11

Loy

N

In using these expressions it is useful to remember thatf dU exgd BTr(M;UM,UT)]

(detU)" for n=0 is the character of the representation N .

where alln;=n,i=1,... N: (N—=1i)!
i=1 (N+ni_i)!

(detU)"=x(nn, ... m(Y). (3.12

This can be proven rewriting Eq2.3) in terms of the el- _ .
ementary symmetric functions and conjugate partitions; folJsing Weyl's formula, Eq(2.1), one can rewrite Eq4.6) as
the definitions see Appendix A and for a proof see, e.g., Ref.

Xr(M1)x,(My).

:2 Bn1+n2+--~+nN
r

(4.9

[8]. f dU exp[ B8 Tr(M;UM,UT)]
IV. ITZYKSON-ZUBER INTEGRALS NoO(N=i)!
_ Z grtnzt .ty H T
In 1980 lItzykson and Zuber were able to calculate the ny=n,= - =ny 25 (N+n,—i)!
group integral 9] .
det A Ny det V)
4.
f dU exd BTr(M;UM,UT)] AN)A() @7

Replacingn; by k; of Eq. (2.9), the above equation takes the

defexp(BAiv)]
—, 42 form

—N(N-1)/2
p AN)A(v)

N—-1
IT p
p=o0

;
where\ and v are eigenvalues of the matrichs; andM,, J dU exd B Tr(M,UM,UT) ]

respectively. This result, which is a special case of a more
general formula by Harish-Chandfd0] was extensively
used in the theory of matrix models. Here we present a very
simple direct derivation using the character expansions.

N ON=i)
Bk1+k2+ ...+kNN(N1)/2< H ! )

ki>ko>--->ky

To derive the ltzykson-Zuber formula using E.1) we de()\.ki)de( ,}i)
expand the integrand v (4.9
AN)A(v)
ex B Tr(MUM,UN =2 a x(M;UM,UT). Using the power series expansion of the exponential function
r

and the theorem EdB2) in the Appendix B one can easily

(4.2 rewrite the right-hand side of Eq4.8) to yield the result

In writing Eq. (4.2 we assumed that the constant matrices9'Ven in Eq.(4.1):

M, andM, belong to the group algebra. The group integra-

tion is easily carried out using the formula f dU exgd B Tr(M,;UM,U™)]
N—1

_ defexp B\ v;
f duu s —5” OryOps (4.3 :( I1 pg)gN(Nl)/z getexpriv,)) 'V')]} 4.9

p=o0 AMA(Y)

wherel/(") is the group matrix element in the representation

r, d, is the dimension of the representation, and the Greelﬁn
|nd|ces run from 1 tad,. A proof of Eq. (4.3 is given in
standard texts, see, e.g., RgL1l]. Since the character is
given byy,(U)=3,, u“) settingo=y and= 6 in Eq. (4.3 |:J dUJ dV exdi Re T(UxV'y)].  (4.10
gives the orthogonahty formula for the characters:

In a later work a generalized form of the Itzykson-Zuber
egral was calculatefll2,13. The integral in question is

(This integral for complex rectangular ordinary matrices was

! reviously given in Ref[14].) To calculate this integral we
f dUx (U)x,(U)=6"". (4.4) \E’Vme Y9 [14].) g
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1
Re(UxV'y)= 5(uXvaervXuT) (4.1

and expand the resulting exponentials using BdL):

exfi Re T(UxV'y)]

i\ nutngt .y
(E) arXr(UXVTy)

r

X

>

r/

i\ nitngt g
(E) ar/Xr/(yVXUT)

(4.12

Inserting Eq.(4.12 into Eq. (4.10, the group integrations
can easily be carried out using Eg.3) to obtain

1=> i

r

5 X (X3 x (y?).

(4.13

(i>2(nl+n2+...+nN) :
42
dr

Using Egs.(2.9), (3.3, and Weyl's character formula this

equation takes the form
N

2
_1)nl+n2+ "'+”N{i=1 (N_i)!l

ST

(4.14)

-3

X

detx?kJ’)dety?ki)]
ACHAY?D) |

PHYSICAL REVIEW D 62 085017

topological charger can be written as an integral over
U(Ny) [15]

zv=f dU(detU)”exd VS Re TAMUT)], (5.1

whereX, is a constant related to the value of the quark con-
densate in the chiral limit andA is the quark mass matrix.
In Ref.[15] it was shown that for equal quark masses BiRd
flavors this partition function is a particular determinant with
modified Bessel function entries. A similar form for different
quark masses was conjectured in Ré&8], but only proven
for v=0. A proof for different masses was given in the case
v#0 was given in Refg[16-18§.

To calculate the partition function for the case of equal
masses we rewrite it as

1
zZ,= f dU(detU)Vex;n[EvzmTr(u+uT)

. (52

Using the character expansion in E8.11) this takes the
form

+ o0 + o0 + o0 + o0
Z=|duXY > ... > >
m;=0 my=0 my_1=0 ny=—=
Xde(Inj+i7,-(V2m)](detU)”_”N)((|1,|2,_,_JN)(UT),
(5.3

where we used dét'=(detU) !. Rewriting (detJ)”™"~
= X(v-nyv-ny. ..., V,nN)(U), and carrying out the group in-
tegration using Eq4.3) we getv—ny=1;=0 for all i. Equa-
tions (2.11) and (2.14 then indicate that the only surviving
partition is (v,v, ...,r) and we get

Z,=defl,.i_;(VZm)], (5.4

Using the power series expansion of the ordinary Bessel

function of zeroth order

© (_1)n X 2n
Jo(x) =2 —— (—) , (4.19
n=0 (n!) 2

and the theorem in the Appendix B, Ed.14) can be evalu-
ated to be

N-1 72
| = (20N D) E i de(JO(Xiyj)]’
i A(X?)A(y?)

i=0

(4.19

which, up to the normalization factors, is the result obtained

in Refs.[12,13.

V. EFFECTIVE QCD PARTITION FUNCTIONS

In this section we show that character expansions can be
used to calculate some group integrals which appear in
studying effective QCD partition functions. The finite vol-
ume effective partition function of QCD in the sector with

which is the desired result.
For unequal masses we rewrite the partition function as

1
zV:J dU(detU)Vexp{ETr(MTU+UTM)} (5.5

Note that in this case we cannot use the character expansion
in Eq. (3.11) since in generaM TU is not a unitary matrix.
Instead, using Eq.3.1) we write

expx Trut™M)=> a,(x)x,(UTM). (5.6)
r
Similarly using Eq.(3.5 we write
(detM TU)Vex TrmTu
1
— z NUREE .+nN—Nv( det—)

r (n]_ V+|_])|
Xan ..... nN(MTU)- (5.7

085017-5
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Inserting Eqs(5.6) and(5.7) into Eq.(5.5) the group integral
can easily be done:

1 2(ny+ ... +ny)—Nv
Z,=(detM") 7>, (E)
1 NoO(N=i)!
- t
% det(n—vﬂ—”'){[[ (N+n;—i)! X((MTM).
(5.8

Changing the labels; into k; of Eq. (2.9 and rewriting
x:(MTM) as a ratio of two determinanfsee Eq(2.1)] we
rewrite the partition function as

1)\ ~N(N-1)-N»
Z,=(detM") 77| =
——r
N
1
<[ TT (N=i)! . .
i=1 A(pi, - mn)

1

de
k1>k2>2...>kN {kjl(kJ_N_V‘FU'
2k;

X

Mi
xde{ —

where u; are the eigenvalues of the matii. Noting the
power series expansion of the Bessel function

; (5.9

1 o
N k
@mzfy) 2 aoror

and using Eq(B4) of the Appendix B, Eq(5.9 takes the
form

(5.10

1)\ ~N(N-1)12
zZ,=|-
2)
N
1
x| TT (N=i)! . .
i=1 A(pt, - pn)

xdef ) -y onsi(m)] (5.13)
which is the desired result. Using the fdgt=1_,,, the de-
terminant in the Eq(5.11) can be rearranged to yield the
often-quoted form

zV:(E>N(Nl)/2{fN[ (N—i)!]

2

1

A(pf, . ml)

x deful Meja(u)]l (512

PHYSICAL REVIEW D 62 085017

VI. CONCLUSIONS

Character expansion is a powerful group theoretical tech-
nique which should have more widespread use than it cur-
rently enjoys[19]. One obstacle was the difficulty in calcu-
lating the coefficients of the characters in the expansions and
the formulas presented in this paper should help in this re-
gard. We tried to illustrate the utility of the method by red-
eriving a number of results in the literature in a much more
direct way. In the future papers we will cover new applica-
tions of the character expansion technique. For example, in
Ref. [20] some remarkable relations are derived among the
effective partition functions relevant for describing micro-
scopic Dirac spectrum. Our method can be used to explore
the nature of such relations and derive new ones.

The character expansions derived using our formula can
be generalized to the supergrodgN/M). The characters of
the covariant class | representations of this supergroup are
given by a formula similar to Eq2.3) except that the com-
plete symmetric functions are replaced by the graded homo-
geneous symmetric functiof§]. The former can be written
in terms of the traces of the fundamental representation. The
latter are given by similar expressions except that traces are
replaced by supertracg8,21]. Since our character expansion
formulas are basically combinatorial in nature they are appli-
cable in principle to the covariant representations of the su-
pergroupU(N/M). More general representations d{1/1)
were considered in Ref22]. One should however note that
the characterf21] and the invariant integratiof23] for the
orthosymplectic supergrou®@sp(N/2M) are much more
complicated than those @&f(N/M). However an approach
based on Gelfand-Tzetlin coordinates may be gainfully uti-
lized for bothU(N/M) and Osp(N/2M) type supergroups
[24]. A detailed analysis of the extension of our character
expansion formula to supergroups will de deferred to later
work.

Another possible application of our formulas is in the ran-
dom matrix theory. It was shown that random-matrix theo-
ries provide common concepts to various aspects of quantum
phenomend25]. Using random-matrix theory concepts it is
possible to study various aspects of the QCD Dirac operator
[26,16,27. In this case symmetry considerations lead to not
only chiral unitary, but also chiral Gaussian orthogonal and
symplectic ensembles, which in turn require generalization
of our character expansion formula to orthogonal and sym-
plectic groups.
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APPENDIX A: SYMMETRIC FUNCTIONS

The complete homogeneous symmetric functibg(x),
of degreen in the argumentx; ,i=1, ... N, is defined as
the sum of the products of the variabbes takingn of them
at a time. For three variables , X, ,x3, the first few complete
homogeneous symmetric functions are

h1(X) =X+ X+ X3,
h L2122
2(X) =XT+ X5+ X5+ X1 Xo+ X1 X3+ XXz,
3 2
h3(x)=2 X; +2_ X Xj + X1 XoXs.
i i#]

One can write the generating function fog as

1
=2 (02"

- (A1)
IT (1-x2)
i=1

If X;,X5,X5 are the eigenvalues of a mati the symmetric
functions can be written in terms of traces of power®Bof

e.g.,
h,(x)=Tr B,

1
hy(x)= E[Tr B2+ (Tr B)?],

and so on.

The elementary symmetric functions,(x), are defined
in a similar way except that ng, can be repeated in any
product. Again for three variables;,x,,X3, the first few
elementary symmetric functions are

a;=hy,
Ay = X1 X5+ X1 X3+ XoX3,
az=X1X9X3.
One takesa,=0 if n>N andag=hy=1. The generating

function fora, is given by

N
IT 1-x2=2 (-1 a,(x)z". (A2)

i=1

PHYSICAL REVIEW D 62 085017

Note that, since the generating functions in E¢sl) and
(A2) are inverses of each other one can whitein terms of
a;,i=1,... kand vice versa. If one takes,i=1, ... N to
be eigenvalues of aN X N matrix A, thenay(x) =detA. If A
is an element otJ(N), then one can consider Eq&1) and
(A2) as character expansions since

hn(U):X(n,O ..... 0)(U)
[see Eq(2.3)] and

an(U)=xaa,..., 1fU).

One can associate a Young Tableau with a given partition
(nq, ...,ny) where the number of boxes at tia row of

the Young Tableau isn;. A conjugate partition
(mq,m,, ... my) is defined such than; is the number of
the boxes at théth column. One can either write the Weyl's
formula using Eq(2.3) in terms ofh,’s as written[in terms

of the partition fi1,n,, ... ,ny)] or in terms of the conju-
gate partition by replacing,’s with a,’s (for details see Ref.

(8.
APPENDIX B: DETERMINANT EXPANSION THEOREMS

Here we state the expansion theorem we use in the text. A
proof is given in Ref[3]. Consider the power series expan-
sion

f(z)=ag+a;z+a,z2?+ ..., (B1)
convergent folz|<p. Then for|x;y;|<p,i,j=1,... N one
can write
deff(xy)l= > ayay, - - - ay, delx)dety)).

ky>ko> .. >y

(B2)

A generalization of this result is known as the Binet-Cauchy
formula. If the power series

oo

fi(z)= 2 afz"
k=0

(B3)

is convergent fotz|<p, then for|z|<p,Vi we have

>

ki>ko> ... >ky

detf(z)= (detaf))(detz).  (B4)

A proof is given again in Ref.3].
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