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Character expansions, Itzykson-Zuber integrals, and the QCD partition function
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A combinatorial formula to generateU(N) character expansions is presented. It is shown that the resulting
character expansion formulas greatly simplify a number of problems where integrals over the group manifolds
need to be calculated. Several examples are given, including direct and very quick calculations of the Itzykson-
Zuber integral and the finite volume effective partition function of QCD in the sector with a given topological
charge.
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I. INTRODUCTION

Expansion of a periodic function into its Fourier comp
nents is widely used in physics. Since sines and cosines
be considered as the characters of theU(1) group, Fourier
expansion is the simplest character expansion. In genera
pansion of an invariant function of a group into its charact
~traces of the representation matrices! is not an easy task
Some time ago the author had given a combinatorial form
to write character expansions for theU(N) group @1#. The
purpose of this paper is first to extend this formula to m
general situations than those covered in Ref.@1#, and then to
show that this formula can be profitably used to simplify
number of situations where integrals over the group ma
folds need to be calculated.

The derivation of the general character expansion form
is given in the next section. In Sec. III we give some e
amples of character expansions obtained using our form
The examples given there are meant to be illustrative of
technique, but not exhaustive of all the character expans
one can obtain. Some related determinantal identities
placed in the Appendices for easy reference. In Sec. IV
show that our techniques can be used to directly calculate
Itzykson-Zuber integral and its various extensions. In Sec
we use our technique to calculate the finite volume effec
partition function of QCD in the sector with a given top
logical charge. Even though the results presented in Secs
and V were previously obtained by other methods, it
shown that our method greatly simplifies the calculatio
Finally in Sec. VI a brief discussion of the results, includi
extension of our results into theU(N/M )-type supergroups
and directions for future work concludes the paper. For c
tinuity of the text several mathematical formulas, namely
review of the properties of the symmetric functions and s
eral determinantal identities are placed in two appendice

II. CHARACTER EXPANSION FORMULAS

First we review and extend the main result of Ref.@1#.
Consider the representations of theU(N) group labeled by a
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partition into N parts (n1 ,n2 , . . . ,nN) where n1>n2>•••
>nN ~see for example Ref.@2#!. The character~trace of the
representation matrix! of the irreducible representation co
responding to the partition (n1 ,n2 , . . . ,nN) of non-negative
integers is given by Weyl’s formula@2#

x (n1 ,n2 , . . . ,nN)~U !5
det~ t i

nj 1N2 j
!

D~ t1 , . . . ,tN!
, ~2.1!

where t i ,i 51, . . . ,N, are the eigenvalues of the group el
mentU in the fundamental representation andD(t1 , . . . ,tN)
is the Vandermonde determinant in the argume
t1 , . . . ,tN :

D~ t1 , . . . ,tN!5det~ t i
N2 j !. ~2.2!

In these equations the arguments of the determinants ind
the (i j )-th element of the matrix the determinant of which
calculated. An alternative form for the character formula
given by

x (n1 ,n2 , . . . ,nN)~U !5det~hnj 1 i 2 j !, ~2.3!

where hn is the complete symmetric function in the arg
mentst1 , . . . ,tN of degreen. ~For a review of its properties
see Appendix A.!

We now consider the power series expansion

G~x,t !5(
n

An~x!tn, ~2.4!

where the range ofn in the sum is not yet specified.x stands
for all the parameters needed to specify the coefficientsAn .
We assume that this series is convergent forutu51. GivenN
different t ’s: t1 , . . . ,tN , we next write down the equality
usingN copies of Eq.~2.4!

D~ t1 , . . . ,tN!S )
i 51

N

G~x,t i !D 5detF(
n

An~x!t i
N1n2 j G .

~2.5!

Changing the variable in the sums top5n1N2 j , we can
rewrite Eq.~2.5! as
©2000 The American Physical Society17-1
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D~ t1 , . . . ,tN!S )
i 51

N

G~x,t i !D 5det@ f j~ t i !#, ~2.6!

where

f j~z!5(
p

Ap1 j 2Nzp. ~2.7!

The range ofn in Eq. ~2.4!, which is so far completely un
restricted, determines the range ofp in Eq. ~2.7!. Using the
properties of determinants~see for example Ref.@3#! and Eq.
~B2! of the Appendix B Eq.~2.6! can be written as

D~ t1 , . . . ,tN!S )
i 51

N

G~x,t i !D
5 (

k1.k2.•••.kN

det~Akj 1 i 2N!det~ t i
kj !. ~2.8!

In Eq. ~2.8! the range~but not the ordering! of the variables
k1 ,k2 , . . . ,kN are still determined by the range ofn in Eq.
~2.4!. First we introduce

ni5ki2N1 i . ~2.9!

The ordering of the variables indicated in the sum of E
~2.8! now becomes

n1>n2>•••>nN . ~2.10!

This transformation is necessary since the partitio
(n1 , . . . ,nN) that label the representations ofU(N) should
satisfy the condition in Eq.~2.10!, i.e., it is theni ’s, not the
ki ’s that label the irreducible representations. Next we w
to show that because of the condition in Eq.~2.10! only one
of the sums in Eq.~2.8! still spans the original range ofn in
Eq. ~2.4!. To this end we introduce the non-negative quan
ties

mj5nj2nj 11 , j 51, . . . ,N21, ~2.11!

one can write

ni5mi1mi 111•••1mN211nN . ~2.12!

As a result the right-hand side of Eq.~2.8! takes the form

(
m150

(
m250

••• (
mN2150

(
nN

det~Anj 1 i 2 j !det~ t i
nj 1N2 j

!.

~2.13!

The upper range of them1 throughmN21 sums are still de-
termined by the range ofn in Eq. ~2.4!, but these sums star
with mi50. The entire range of thenN sum is still deter-
mined by the range ofn in Eq. ~2.4!. At this point we want to
use Weyl’s formula, Eq.~2.1!, to write the last term in the
right-hand side of Eq.~2.13! as the character. SincenN may
take negative values, we cannot yet use Eq.~2.1!, where all
thenj ’s are non-negative. To achieve our goal we need to
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.

s

t

-

o

yet another transformation of indices in Eq.~2.13! to those
that take only non-negative values. This is achieved by
troducing the quantities

l i5 (
j 5 i

N21

mj5ni2nN , i 51, . . . ,N21, ~2.14a!

l N50. ~2.14b!

Then the second determinant on the right-hand side of
~2.13! can be written as

det~ t i
nj 1N2 j

!5~ t1t2•••tN!nN det~ t i
l j 1N2 j

!. ~2.15!

Substituting Eq.~2.15! into Eq. ~2.13! and then inserting the
resulting expression into Eq.~2.8! one obtains

D~ t1 , . . . ,tN!S )
i 51

N

G~x,t i !D
5 (

m150
(

m250
••• (

mN2150
(
nN

det~Anj 1 i 2 j !

3~ t1t2•••tN!nN det~ t i
l j 1N2 j

!. ~2.16!

We can now taket i ’s to be the eigenvalues of the fundame
tal representation ofU(N). Dividing both sides of Eq.~2.16!
with the Vandermonde determinant and using Eq.~2.1! we
obtain

S )
i 51

N

G~x,t i !D 5 (
m150

(
m250

••• (
mN2150

(
nN

det~Anj 1 i 2 j !

3~detU !nNx ( l 1 ,l 2 , . . . ,l N)~U !. ~2.17!

This is the main result of this paper. In writing this equati
we used the fact that the matrixU can always be diagonal
ized by a unitary transformation which leaves the charac
invariant. Equation~2.17! is a generalization of the characte
expansion given in Ref.@1#. If the sum overn in the expres-
sion Eq. ~2.4! we started with is restricted to the non
negative values ofn ~i.e., An50 when n,0), then nN is
non-negative and we can absorb the term (detU)nN into the
character to obtain the result given in Ref.@1#:

S )
i 51

N

G~x,t i !D
5 (

n150
(

n250
••• (

nN50
det~Anj 1 i 2 j !x (n1 ,n2 , . . . ,nN)~U !.

~2.18!

Note that the summation in Eq.~2.18! is over all irreducible
representations ofU(N), but in Eq. ~2.17! is restricted to
those representations where the number of boxes in the
row of the Young Tableau is zeroandan additional summa-
tion over nN , which, in general can take both positive an
negative values. An application of Eq.~2.18! to the thermo-
7-2
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CHARACTER EXPANSIONS, ITZYKSON-ZUBER . . . PHYSICAL REVIEW D 62 085017
dynamics of two-dimensional QCD in the large-N limit was
given in Ref.@4#. In the next section we give some explic
examples of character expansions.

III. EXAMPLES OF CHARACTER EXPANSIONS

For our first example we chooseG(x,t)5exp(xt). Then
An5xn/n! for n>0 andAn50 for n,0. We can then use
Eq. ~2.18! to write

exp~x Tr U !5(
r

a r~x!x r~U !, ~3.1!

where the sum is over all irreducible representations@r
stands for (n1 ,n2 , . . . ,nN)] and

a r~x!5detS xnj 1 i 2 j

~nj1 i 2 j !!
D 5xn11n21•••1nN

3U 1

n1!

1

~n221!!

1

~n322!!
•••

1

~n111!!

1

n2!

1

~n321!!
•••

1

~n112!!

1

~n211!!

1

n3!
•••

A A A �

U .

~3.2!

This particular character expansion can also be obtained
explicit integration over the group manifold@5#. It will be
increasingly difficult to obtain more complicated charac
expansions by explicit integration. Using Eqs.~2.17! and
~2.18! provides a much easier alternative to the explicit in
gration over the group manifold. The determinant in E
~3.2! can also be written in terms of the dimensions of t
group representations

a$n1 ,n2 , . . . ,nN%

5xn11n21•••1nNF)
i 51

N
~N2 i !!

~N1ni2 i !!
Gd$n1 ,n2 , . . . ,nN% ,

~3.3!

whered$n1 ,n2 , . . . ,nN% is the dimension of the representatio

corresponding to the partition$n1 ,n2 , . . . ,nN%. ~The dimen-
sions can be evaluated by calculating the character of
identity. See, e.g., Ref.@6# for explicit formulas.! A related
character expansion can be obtained by noting

tnext5 (
m5n

` xm2n

~m2n!!
tm. ~3.4!

Using Eq.~2.18! we immediately get
08501
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~detU !nex Tr U

5(
r

xn11•••1nN2NnS det
1

~nj2n1 i 2 j !!
D

3xn1 , . . . ,nN
~U ! ~3.5!

and

~detU !2nex Tr U

5(
r

xn11•••1nN1NnS det
1

~nj1n1 i 2 j !!
D

3xn1 , . . . ,nN
~U !. ~3.6!

For our second example we pickG(x,t) to be the gener-
ating function of the Hermite polynomials

G~x,t !5exp~2tx2t2!5 (
n50

` Hn~x!

n!
tn. ~3.7!

The corresponding character expansion can again be fo
using Eq.~2.18!:

exp~a Tr U2b Tr U2!

5(
r

b(n11n21•••1nN)/2 detS Hnj 1 i 2 j~a/2Ab!

~nj1 i 2 j !!
D x r~U !.

~3.8!

For the next example we chooseG(x,t) to be the gener-
ating function of the modified Bessel functions

G~x,t !5expF x

2
S t1

1

t
D G5 (

n52`

1`

I n~x!tn. ~3.9!

Since the indexn takes negative as well as positive valu
we need to use Eq.~2.17! which yields the character expan
sion

expF x

2
Tr~U1U†!G

5 (
m150

1`

(
m250

1`

••• (
mN2150

1`

(
nN52`

1`

det@ I nj 1 i 2 j~x!#

3~detU !nNx ( l 1 ,l 2 , . . . ,l N)~U !. ~3.10!

This expansion was previously obtained by direct integrat
for SU(N) group (detU51) @7#. Because of the symmetr
in the argument of the exponential, Eq.~3.10! can be equiva-
lently written as
7-3
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A. B. BALANTEKIN PHYSICAL REVIEW D 62 085017
expF x

2
Tr~U1U†!G

5 (
m150

1`

(
m250

1`

••• (
mN2150

1`

(
nN52`

1`

det@ I nj 1 i 2 j~x!#

3~detU†!nNx ( l 1 ,l 2 , . . . ,l N)~U†!. ~3.11!

In using these expressions it is useful to remember
(detU)n for n>0 is the character of the representati
where allni5n,i 51, . . . ,N:

~detU !n5x (n,n, . . . ,n)~U !. ~3.12!

This can be proven rewriting Eq.~2.3! in terms of the el-
ementary symmetric functions and conjugate partitions;
the definitions see Appendix A and for a proof see, e.g., R
@8#.

IV. ITZYKSON-ZUBER INTEGRALS

In 1980 Itzykson and Zuber were able to calculate
group integral@9#

E dU exp@bTr~M1UM2U†!#

5S )
p5o

N21

p! D b2N(N21)/2Fdet@exp~bl in j !#

D~l!D~n!
G , ~4.1!

wherel andn are eigenvalues of the matricesM1 andM2,
respectively. This result, which is a special case of a m
general formula by Harish-Chandra@10# was extensively
used in the theory of matrix models. Here we present a v
simple direct derivation using the character expansions.

To derive the Itzykson-Zuber formula using Eq.~3.1! we
expand the integrand

exp@b Tr~M1UM2U†!#5(
r

a rx r~M1UM2U†!.

~4.2!

In writing Eq. ~4.2! we assumed that the constant matric
M1 andM2 belong to the group algebra. The group integ
tion is easily carried out using the formula

E dUU sb
(r )U gd* (r 8)5

1

dr

d rr 8dsgdbd , ~4.3!

whereU (r ) is the group matrix element in the representat
r, dr is the dimension of the representation, and the Gr
indices run from 1 todr . A proof of Eq. ~4.3! is given in
standard texts, see, e.g., Ref.@11#. Since the character i
given byx r(U)5(aU aa

(r ) settings5g andb5d in Eq. ~4.3!
gives the orthogonality formula for the characters:

E dUx r~U !x r 8~U !5d rr 8. ~4.4!
08501
at

r
f.

e

e

ry

s
-

k

Using Eqs.~4.2! and ~4.3! one gets

E dU exp@b Tr~M1UM2U†!#5(
r

a r

dr

x r~M1!x r~M2!,

~4.5!

which, using Eq.~3.3! can be written as

E dU exp@b Tr~M1UM2U†!#

5(
r

bn11n21•••1nNF)
i 51

N
~N2 i !!

~N1ni2 i !!
Gx r~M1!x r~M2!.

~4.6!

Using Weyl’s formula, Eq.~2.1!, one can rewrite Eq.~4.6! as

E dU exp@b Tr~M1UM2U†!#

5 (
n1>n2>•••>nN

bn11n21 . . . 1nNF)
i 51

N
~N2 i !!

~N1ni2 i !!
G

3Fdet~l i
nj 1N2 j

!det~n i
nj 1N2 j

!

D~l!D~n!
G . ~4.7!

Replacingni by ki of Eq. ~2.9!, the above equation takes th
form

E dU exp@b Tr~M1UM2U†!#

5 (
k1.k2.•••.kN

bk11k21 . . . 1kN2N(N21)/2S )
i 51

N
~N2 i !!

ki !
D

3Fdet~l i
kj !det~n i

kj !

D~l!D~n!
G . ~4.8!

Using the power series expansion of the exponential func
and the theorem Eq.~B2! in the Appendix B one can easil
rewrite the right-hand side of Eq.~4.8! to yield the result
given in Eq.~4.1!:

E dU exp@b Tr~M1UM2U†!#

5S )
p5o

N21

p! D b2N(N21)/2Fdet@exp~bl in j !#

D~l!D~n!
G . ~4.9!

In a later work a generalized form of the Itzykson-Zub
integral was calculated@12,13#. The integral in question is

I 5E dUE dV exp@ i Re Tr~UxV†y!#. ~4.10!

~This integral for complex rectangular ordinary matrices w
previously given in Ref.@14#.! To calculate this integral we
write
7-4
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Re~UxV†y!5
1

2
~UxV†y1yVxU†! ~4.11!

and expand the resulting exponentials using Eq.~3.1!:

exp@ i Re Tr~UxV†y!#

5F(
r

S i

2
D n11n21 . . . 1nN

a rx r~UxV†y!G
3F(

r 8
S i

2
D n181n281 . . . 1nN8

a r 8x r 8~yVxU†!G .

~4.12!

Inserting Eq.~4.12! into Eq. ~4.10!, the group integrations
can easily be carried out using Eq.~4.3! to obtain

I 5(
r

S i

2
D 2(n11n21 . . . 1nN)Fa r

2

dr
2Gx r~x2!x r~y2!.

~4.13!

Using Eqs.~2.9!, ~3.3!, and Weyl’s character formula thi
equation takes the form

I 5(
r

S 21

4
D n11n21 . . . 1nN

F)
i 51

N

~N2 i !! G 2

F)
i 51

N

ki ! G 2

3F det~xi
2kj !det~yi

2kj !

D~x2!D~y2!
G . ~4.14!

Using the power series expansion of the ordinary Bes
function of zeroth order

J0~x!5 (
n50

`
~21!n

~n! !2
S x

2
D 2n

, ~4.15!

and the theorem in the Appendix B, Eq.~4.14! can be evalu-
ated to be

I 5~2i !N(N11)F (
i 50

N21

i ! G 2 det@J0~xiyj !#

D~x2!D~y2!
, ~4.16!

which, up to the normalization factors, is the result obtain
in Refs.@12,13#.

V. EFFECTIVE QCD PARTITION FUNCTIONS

In this section we show that character expansions can
used to calculate some group integrals which appea
studying effective QCD partition functions. The finite vo
ume effective partition function of QCD in the sector wi
08501
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topological chargen can be written as an integral ove
U(Nf) @15#

Zn5E dU~detU !n exp@VS Re Tr~MU†!#, ~5.1!

whereS is a constant related to the value of the quark co
densate in the chiral limit andM is the quark mass matrix
In Ref. @15# it was shown that for equal quark masses andNf
flavors this partition function is a particular determinant w
modified Bessel function entries. A similar form for differe
quark masses was conjectured in Ref.@13#, but only proven
for n50. A proof for different masses was given in the ca
nÞ0 was given in Refs.@16–18#.

To calculate the partition function for the case of equ
masses we rewrite it as

Zn5E dU~detU !n expF1

2
VSm Tr~U1U†!G . ~5.2!

Using the character expansion in Eq.~3.11! this takes the
form

Zn5E dU (
m150

1`

(
m250

1`

. . . (
mN2150

1`

(
nN52`

1`

3det@ I nj 1 i 2 j~VSm!#~detU !n2nNx ( l 1 ,l 2 , . . . ,l N)~U†!,

~5.3!

where we used detU†5(detU)21. Rewriting (detU)n2nN

5x (n2nN ,n2nN , . . . ,n2nN)(U), and carrying out the group in

tegration using Eq.~4.3! we getn2nN5 l i50 for all i. Equa-
tions ~2.11! and ~2.14! then indicate that the only surviving
partition is (n,n, . . . ,n) and we get

Zn5det@ I n1 i 2 j~VSm!#, ~5.4!

which is the desired result.
For unequal masses we rewrite the partition function a

Zn5E dU~detU !n expF1

2
Tr~M†U1U†M !G . ~5.5!

Note that in this case we cannot use the character expan
in Eq. ~3.11! since in generalM†U is not a unitary matrix.
Instead, using Eq.~3.1! we write

exp~x Tr U†M !5(
r

a r~x!x r~U†M !. ~5.6!

Similarly using Eq.~3.5! we write

~detM†U !nex Tr M†U

5(
r

xn11 . . . 1nN2NnS det
1

~nj2n1 i 2 j !!
D

3xn1 , . . . ,nN
~M†U !. ~5.7!
7-5
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Inserting Eqs.~5.6! and~5.7! into Eq.~5.5! the group integral
can easily be done:

Zn5~detM†!2n(
r

S 1

2
D 2(n11 . . . 1nN)2Nn

3S det
1

~nj2n1 i 2 j !!
D F)

i 51

N
~N2 i !!

~N1ni2 i !!
Gx r~M†M !.

~5.8!

Changing the labelsni into ki of Eq. ~2.9! and rewriting
x r(M†M ) as a ratio of two determinants@see Eq.~2.1!# we
rewrite the partition function as

Zn5~detM†!2nS 1

2
D 2N(N21)2Nn

3F)
i 51

N

~N2 i !! G 1

D~m1
2 , . . . ,mN

2 !

3 (
k1.k2. . . . .kN

detF 1

kj ! ~kj2N2n1 i !!
G

3detF S m i

2
D 2kjG , ~5.9!

where m i are the eigenvalues of the matrixM. Noting the
power series expansion of the Bessel function

1

Ayl
I l~2Ay!5 (

k50

` 1

k! ~l1k!!
yk, ~5.10!

and using Eq.~B4! of the Appendix B, Eq.~5.9! takes the
form

Zn5S 1

2
D 2N(N21)/2

3F)
i 51

N

~N2 i !! G 1

D~m1
2 , . . . ,mN

2 !

3det@m j
N2 i I 2n2N1 i~m j !# ~5.11!

which is the desired result. Using the factI n5I 2n , the de-
terminant in the Eq.~5.11! can be rearranged to yield th
often-quoted form

Zn5S 1

2
D 2N(N21)/2F)

i 51

N

~N2 i !! G
3

1

D~m1
2 , . . . ,mN

2 !
det@m i

j 21I n1 j 21~m i !#. ~5.12!
08501
VI. CONCLUSIONS

Character expansion is a powerful group theoretical te
nique which should have more widespread use than it c
rently enjoys@19#. One obstacle was the difficulty in calcu
lating the coefficients of the characters in the expansions
the formulas presented in this paper should help in this
gard. We tried to illustrate the utility of the method by re
eriving a number of results in the literature in a much mo
direct way. In the future papers we will cover new applic
tions of the character expansion technique. For example
Ref. @20# some remarkable relations are derived among
effective partition functions relevant for describing micr
scopic Dirac spectrum. Our method can be used to exp
the nature of such relations and derive new ones.

The character expansions derived using our formula
be generalized to the supergroupU(N/M ). The characters of
the covariant class I representations of this supergroup
given by a formula similar to Eq.~2.3! except that the com-
plete symmetric functions are replaced by the graded ho
geneous symmetric functions@6#. The former can be written
in terms of the traces of the fundamental representation.
latter are given by similar expressions except that traces
replaced by supertraces@6,21#. Since our character expansio
formulas are basically combinatorial in nature they are ap
cable in principle to the covariant representations of the
pergroupU(N/M ). More general representations ofU(1/1)
were considered in Ref.@22#. One should however note tha
the characters@21# and the invariant integration@23# for the
orthosymplectic supergroupOsp(N/2M ) are much more
complicated than those ofU(N/M ). However an approach
based on Gelfand-Tzetlin coordinates may be gainfully u
lized for bothU(N/M ) and Osp(N/2M ) type supergroups
@24#. A detailed analysis of the extension of our charac
expansion formula to supergroups will de deferred to la
work.

Another possible application of our formulas is in the ra
dom matrix theory. It was shown that random-matrix the
ries provide common concepts to various aspects of quan
phenomena@25#. Using random-matrix theory concepts it
possible to study various aspects of the QCD Dirac oper
@26,16,27#. In this case symmetry considerations lead to n
only chiral unitary, but also chiral Gaussian orthogonal a
symplectic ensembles, which in turn require generalizat
of our character expansion formula to orthogonal and sy
plectic groups.
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APPENDIX A: SYMMETRIC FUNCTIONS

The complete homogeneous symmetric function,hn(x),
of degreen in the argumentsxi ,i 51, . . . ,N, is defined as
the sum of the products of the variablesxi , takingn of them
at a time. For three variablesx1 ,x2 ,x3, the first few complete
homogeneous symmetric functions are

h1~x!5x11x21x3 ,

h2~x!5x1
21x2

21x3
21x1x21x1x31x2x3 ,

h3~x!5(
i

xi
31(

iÞ j
xi

2xj1x1x2x3 .

One can write the generating function forhn as

1

)
i 51

N

~12xiz!

5(
n

hn~x!zn. ~A1!

If x1 ,x2 ,x3 are the eigenvalues of a matrixB, the symmetric
functions can be written in terms of traces of powers ofB,
e.g.,

h1~x!5Tr B,

h2~x!5
1

2
@Tr B21~Tr B!2#,

and so on.
The elementary symmetric functions,an(x), are defined

in a similar way except that noxi can be repeated in an
product. Again for three variablesx1 ,x2 ,x3, the first few
elementary symmetric functions are

a15h1 ,

a25x1x21x1x31x2x3 ,

a35x1x2x3 .

One takesan50 if n.N and a05h051. The generating
function for an is given by

)
i 51

N

~12xiz!5(
n

~21!nan~x!zn. ~A2!
,

ex
-

,

08501
Note that, since the generating functions in Eqs.~A1! and
~A2! are inverses of each other one can writehk in terms of
ai ,i 51, . . . ,k and vice versa. If one takesxi ,i 51, . . . ,N to
be eigenvalues of anN3N matrix A, thenaN(x)5detA. If A
is an element ofU(N), then one can consider Eqs.~A1! and
~A2! as character expansions since

hn~U !5x (n,0, . . . ,0)~U !

@see Eq.~2.3!# and

aN~U !5x (1,1, . . . ,1)~U !.

One can associate a Young Tableau with a given parti
(n1 , . . . ,nN) where the number of boxes at thei th row of
the Young Tableau is ni . A conjugate partition
(m1 ,m2 , . . . ,mN) is defined such thatmi is the number of
the boxes at thei th column. One can either write the Weyl’
formula using Eq.~2.3! in terms ofhn’s as written@in terms
of the partition (n1 ,n2 , . . . ,nN)] or in terms of the conju-
gate partition by replacinghn’s with an’s ~for details see Ref.
@8#!.

APPENDIX B: DETERMINANT EXPANSION THEOREMS

Here we state the expansion theorem we use in the tex
proof is given in Ref.@3#. Consider the power series expa
sion

f ~z!5a01a1z1a2z21 . . . , ~B1!

convergent foruzu,r. Then foruxiyj u,r,i , j 51, . . . ,N one
can write

det@ f ~xiyj !#5 (
k1.k2. . . . .kN

ak1
ak2

. . . akN
det~xi

kj !det~yi
kj !.

~B2!

A generalization of this result is known as the Binet-Cauc
formula. If the power series

f i~z!5 (
k50

`

ak
( i )zk ~B3!

is convergent foruzu,r, then foruzi u,r,; i we have

det f i~zj !5 (
k1.k2. . . . .kN

~detakj

( i )!~detzi
kj !. ~B4!

A proof is given again in Ref.@3#.
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