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Two-time physics with gravitational and gauge field backgrounds
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It is shown that all possible gravitational, gauge and other interactions experienced by particles in ordinary
d dimensions~one time! can be described in the language of two-time physics in a spacetime withd12
dimensions. This is obtained by generalizing the world line formulation of two-time physics by including
background fields. A given two-time model, with a fixed set of background fields, can be gauged fixed from
d12 dimensions to (d21)11 dimensions to produce diverse one-time dynamical models, all of which are
dually related to each other under the underlying gauge symmetry of the unified two-time theory. To satisfy the
gauge symmetry of the two-time theory the background fields must obey certain coupled differential equations
that are generally covariant and gauge invariant in the target (d12)-dimensional spacetime. The gravitational
background obeys a closed homothety condition while the gauge field obeys a differential equation that
generalizes a similar equation derived by Dirac in 1936. Explicit solutions to these coupled equations show that
the usual gravitational, gauge, and other interactions ind dimensions may be viewed as embedded in the higher
(d12)-dimensional space, thus displaying higher spacetime symmetries that otherwise remain hidden.

PACS number~s!: 11.30.Pb, 04.62.1v, 11.25.Hf
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I. INTRODUCTION

Two-time physics@1–6# is an approach that provides
new perspective for understanding ordinary one-time dyn
ics from a higher dimensional, more unified point of vie
including two timelike dimensions. This is achieved by i
troducing new gauge symmetries that ensure unitarity, c
sality and the absence of ghosts. The new phenomeno
two-time physics is that the gauge symmetry can be use
obtain various one-time dynamical systems from the sa
simple action of two-time physics, through gauge fixing, th
uncovering a new layer of unification through higher dime
sions.

The principle behind two-time physics is gauge symme
@1#. The basic observation in its simplest form is that for a

theory the Lagrangian has the formL5 1
2 ( ẋp2 ṗx)

2H(x,p) up to an inessential total time derivative. The fir
term has a global Sp(2,R) symmetry that transforms (x,p) as
a doublet. The basic question we pose is, what modifica
of the Lagrangian can turn this global symmetry into a lo
symmetry? The reason to be interested in such a local s
metry is that duality symmetries in M theory andN52 super
Yang-Mills theory have similarities to gauge symplec
transformations, and their origin in the fundamental theor
in physics remains a mystery. Understanding them may w
be the key to constructing M theory. Independent of
theory, the question is a fundamental one in its own rig
and its investigation has already led to a reformulation
ordinary one-time dynamical systems in a new language
two-time physics. This has uncovered previously unnotic
higher symmetries in well-known one-time dynamical sy
tems, and provided a new level of unification through high
dimensions for systems that previously would have b
considered unrelated to each other@2#. The simplest Sp(2,R)
gauge symmetry has generalizations when spin@3#, super-
symmetry@4,5#, and extended objects~branes! @6# are part of
0556-2821/2000/62~8!/085015~10!/$15.00 62 0850
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the theory. Recent works have given an indication that
domain of unification of two-time physics can be enlarged
additional directions in field theory@7# including interactions
and in the world of branes@8#.

In the two-time physics approach the familiar one-time
a gauge dependent concept. From the point of view o
two-time observer the true gauge invariants are identical
variety of one-time dynamical systems that are unified by
same two-time action. Such gauge invariant quantities ca
used to test the validity of the underlying unification. A
important gauge invariant concept is the global symmetry
the two-time action, which must be shared by all the gau
fixed one-time dynamical systems. In the simplest case
global symmetry is SO(d,2), but this can be different in the
presence of background fields as we will see in the curr
paper. In the simple case, the SO(d,2) symmetry has been
shown to be presentin the same irreducible representationin
all the one-time dynamical systems derived from the sa
two-time action. The presence of such symmetries, wh
remained unknown even in elementary one-time systems
til the advent of two-time physics, can be considered as a
of the underlying unification within a two-time theory@2#.

Two-time physics has been generalized to include glo
space time supersymmetry and local kappa supersymm
with two times@4#. This led to a framework which sugges
that M theory could be embedded in a two-time theory in
dimensions, with a global OSp~1u64! symmetry. In this sce-
nario the different corners of M theory correspond to gau
fixed sectors of the 13D theory, and the dualities in M theo
are regarded as gauge transformations from one fixed ga
to another fixed gauge. Then the well known supersymm
tries of various corners of M theory appear as subsup
groups of OSp(1u64). This mechanism has been illustrat
through explicit examples of dynamical particle models@5,9#
which may be regarded as a toy M theory. In the 11D co
riant gauge fixed corner, the supergroup OSp(1u64) is inter-
preted as the conformal supergroup in 11 dimensions, w
©2000 The American Physical Society15-1
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32 supersymmetries and 32 superconformal symmetries.
in other gauge fixed sectors, the same OSp(1u64) symmetry
of two-time physics is realized and interpreted different
thus revealing various corners of the toy M theory on wh
a subsupergroup is linearly realized while the rest is n
linearly realized. Indeed OSp(1u64) contains various embed
dings that reveal 13,12,11 dimensional supersymmetries
well as the usual 10-dimensional type-IIA, type-IIB, he
erotic, type-I, and AdSD ^ Sk type supersymmetries inD1k
511,10 and lower dimensions. The explicit models provid
by @5,9# illustrate these ideas while beginning to realize d
namically some of the observations that suggested two-t
physics in the framework of branes, dualities and exten
supersymmetries in M theory,F theory, andS theory @10–
20#.

In this paper we generalize the world line formulation
two-time physics by including background gravitational a
gauge fields and other potentials. To keep the discus
simple we concentrate mainly on particles without supersy
metry. For spinless particles, as in the case of the free the
local Sp(2,R) gauge symmetry is imposed as the underly
principle. For the gauge symmetry to be valid, the grav
tional and gauge fields and other potentials must obey ce
differential equations. We show that the gauge field obeys
equation that generalizes a similar one discovered by D
in 1936 @21# in the flat background, while the gravitation
field satisfies a closed homothety condition. When all fie
are simultaneously present they obey coupled equations.
amples of background fields that solve these equations
provided.

A similar treatment for spinning particles in backgrou
fields is given. As in the free theory, local OSp~nu2) gauge
symmetry is imposed as the underlying principle. The se
background fields is now richer. The generalizations
Dirac’s equation and the closed homothety conditions in
presence of spin are derived. Instead of OSp(nu2) gauge
symmetry it may also be possible to consider other sup
groups that contain Sp(2,R)[SL(2,R).

In the presence of the background fields one learns
much larger classes of one-time dynamical systems can
be reformulated as gauge fixed versions of the same t
time theory. This extends the domain of unification of on
time systems through higher dimensions and a sort of dua
symmetry@the Sp(2,R) gauge symmetry and its generaliz
tions in systems with spin and/or spacetime supersymm
and branes#. Furthermore, with the results of this paper
becomes evident that all one-time particle dynamics can
reformulated as particle dynamics in two-time physics. T
provides a much broader realm of possible applications
the two-time physics formalism.

One possible practical application of the formulation is
provide a tool for solving problems by transforming a co
plicated one-time dynamical system~one fixed gauge! to a
simpler one-time dynamical system~another fixed gauge!, as
in duality transformations in M theory. Although this ma
turn out to be the computationally useful aspect of this f
mulation, it is not explored in the present paper since
main aim here is the formulation of the concepts.

The two-time formulation also has deeper ramificatio
08501
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By providing the perspective of two-time physics for ord
nary physical phenomena, the familiar ‘‘time’’ dimensio
appears to play a less fundamental role in the formulation
physics. Since the usual ‘‘time’’ is a gauge dependent c
cept in the new formulation, naturally one is led to a r
examination of the concept of ‘‘time’’ in this new setting.

II. LOCAL AND GLOBAL SYMMETRY

We start with a brief summary of the world line formula
tion of two-time physics for the simplest case of spinle
particle dynamics without background fields and withou
Hamiltonian @1–5# ~i.e. the ‘‘free’’ case!. Just demanding
local symmetry for the first term in the Lagrangian gives
surprisingly rich model based on Sp(2,R) gauge symmetry
described by the action

S05
1

2E dt DtXi
MXj

N« i j hMN ~1!

5E dtS ]tX1
MX2

N2
1

2
Ai j Xi

MXj
NDhMN .

~2!

Here Xi
M(t) is an Sp(2,R) doublet, consisting of a coordi

nate and its conjugate momentum (X1
M[XM andX2

M[PM).
The indicesi , j 51,2 denote the doublet of Sp(2,R); they are
raised and lowered by the antisymmetric Levi-Civita´ symbol
« i j . The covariant derivativeDtXi

M that appears in Eq.~1! is
defined as

DtXi
M5]tXi

M2« ikAklXl
M , ~3!

whereAi j (t) are the three Sp(2,R) gauge potentials in the
adjoint representation written as a 232 symmetric matrix.
The local Sp(2,R) acts as dXi

M5« ikvklXl
m and dAi j

5v ik«klA
k j1v jk«klA

ik1]tv
i j , where v i j (t) are the

Sp(2,R) gauge parameters. The second form of the action~2!
is obtained after an integration by parts so that onlyX1

M

appears with derivatives. This allows the identification
X,P by the canonical procedure (X1

M[XM and X2
M[PM

5]S0 /]Ẋ1M). A third form of the action can be obtained b
integrating outX2

M and writing it in terms ofXM and ẊM

@1,22#. Then the local Sp(2,R)5SO(1,2) can also be re
garded as the local conformal group on the world line~in-
cluding t reparametrization, local scale transformations, a
local special conformal transformations! and the theory can
be interpreted as conformal gravity on the world line@1,6#.

The gauge fieldsA11, A12, andA22 act as Lagrange mul
tipliers for the following three first class constraints:

Qi j
0 5Xi•Xj50→X25P25X•P50, ~4!

as implied by the local Sp(2,R) invariance. From the basic
quantum rules for (XM,PM) one can verify that theQi j

0 form
the Sp(2,R) algebra:

@Qi j ,Qkl#5 i« jkQil 1 i« ikQjl 1 i« j l Qik1 i« i l Qjk ~5!
5-2
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or

@Q11,Q22#54iQ12, @Q11,Q12#52iQ11,

@Q22,Q12#522iQ22. ~6!

The two timelike dimensions are not put in by hand; th
are implied by the local Sp(2,R) symmetry. It is precisely
the solution of the constraintsQi j

0 50 that requires the globa
metric hMN in Eq. ~1! to have a signature with two timelik
dimensions: ifhMN were purely Euclidean the only solutio
would be the vanishing vectorsXi

M ; if it had Minkowski
signature~one time!, the only solution would be the two
lightlike parallel vectorsXi

M without any angular momen
tum; and if it had more than two timelike dimensions, the
would be ghosts that would render the theory non-unita
The local Sp(2,R) is just enough gauge symmetry to remo
the ghosts due to two timelike dimensions. Thus,hMN stands
for the flat metric on a (d,2) dimensional space-time. It is th
only signature consistent with the absence of ghosts, uni
ity or causality problems.

We now turn to the global symmetries that are gau
invariant under Sp(2,R). The metrichMN is invariant under
SO(d,2). Hence the action~1!,~2! has an explicit global
SO(d,2) invariance. Like the two times, the SO(d,2) sym-
metry of the action~1! is also implied by the local Sp(2,R)
symmetry when background fields are absent. The SO(d,2)
Lorentz generators

LMN5XMPN2XNPM5« i j Xi
MXj

N ~7!

commute with the Sp(2,R) generators; therefore they a
gauge invariant. As we mentioned above, different ga
choices lead to different one-time particle dynamics~ex-
amples are free massless and massive particles, H atom
monic oscillator, particle in AdSD3Sk, etc.!, all of which
have SO(d,2) invariant actions that are directly obtained
from Eqs. ~1!,~2! by gauge fixing. Since the action~1!,~2!
and the generatorsLMN are gauge invariant, the global sym
metry SO(d,2) is not lost by gauge fixing. This explains wh
one should expect a hidden~previously unnoticed, non
linearly realized! global symmetry SO(d,2) for each of the
one-time systems that result by gauge fixing.1 Furthermore,
all of the resulting one-time dynamical systems are quan
mechanically realized in thesame unitary representationof
SO(d,2) @1,2#. This fact can be understood again as a sim
consequence of representing the same quantum mecha

1A well-known case is the SO(4,2) conformal symmetry of t
massless particle. Less well known is the SO(4,2) symmety of
H-atom action, which acts as the dynamical symmetry for the qu
tum H atom. Previously unknown is the SO(4,2) symmetry of

massive non-relativistic particle actionS5*dt ẋ2 /2m. Others are
the SO(10,2) symmetry of a particle in the AdS53S5 background
or the SO(11,2) symmetry in the AdS73S4 and the AdS43S7

backgrounds, etc. These and more examples of such non-lin
realized SO(d,2) hidden symmetries for familiar systems in an
spacetime dimensiond are explicitly given in@2#.
08501
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two-time system in various fixed gauges. The gauge cho
merely distinguish one basis versus another basis within
same unitary representation of SO(d,2) without changing the
Casimir eigenvalues of the irreducible representation. S
relations among diverse one-time systems provide evide
that there is an underlying unifying principle behind the
The principle is thelocal Sp(2,R) symmetry and its unavoid
able consequence of demanding a spacetime with two ti
like dimensions which provides a basis for theglobal sym-
metry.

To describe spinning systems, world line fermio
ca

M(t), with a51,2, . . . ,n, are introduced. Together with
XM,PM, they form the fundamental representatio
(ca

M ,XM,PM) of the supergroup OSp(n/2). Gauging this su-
pergroup@3# instead of Sp(2,R) produces a Lagrangian tha
hasn local supersymmetries plusn local conformal super-
symmetries on the world line, in addition to local Sp(2,R)
and local SO(n). The full set of first class constraints tha
correspond to the generators of these gauge~super!symme-
tries is, at the classical level,

X•X5P•P5X•P5X•ca5P•ca5c [a•cb]50. ~8!

The classical solution of these constraints, with a flat spa
time metrichMN, requires a signature with two timelike d
mensions. Therefore, as in the spinless case the global s
metry of the theory is SO(d,2). It is applied to the labelM on
(ca

M ,XM,PM). The global SO(d,2) generatorsJMN that
commute with all the OSp(n/2) gauge generators~8! now
include the spin

JMN5LMN1SMN, SMN5
1

2i
~ca

Mca
N2ca

Nca
M !. ~9!

As in the spinless case, by gauge fixing the bosons as we
the fermions, one finds a multitude of spinning one-time d
namical systems that are unified by the same two-time s
tem both at the classical and quantum levels. All of the
have SO(d,2) hidden symmetry realized in the same rep
sentation, where the representation is different for eacn
~number of local supersymmetries on the world line, whi
is related also to the spin of the particle!.

III. INTERACTIONS WITH BACKGROUND FIELDS

The simple action in Eq.~2! is written in a flat two-time
spacetime with metrichMN which could be characterized a
a ‘‘free’’ theory. Interactions in the one-time system
emerged because of the first class constraintsX25P25X
•P50, not because of explicit interactions in the two tim
theory. The constraints generate the Sp(2,R) gauge symme-
try. This symmetry was realized linearly on the doubletXi

M

5(XM,PM) and its generators wereQi j
0 5Xi•Xj .

We now generalize the ‘‘free’’ theory to an ‘‘interacting’
theory by including background gravitational and gau
fields and other potentials. This will be done by generaliz
the world line Hamiltonian~canonical conjugate tot) Q22

0

5PMPN hMN to a more general form that includes a met

e
n-
e

rly
5-3
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ITZHAK BARS PHYSICAL REVIEW D 62 085015
GMN(X), a gauge potential2 to gauge-covariantize the mo
mentumPM1AM(X), and an additional potentialU(X) that
is added to the kinetic term. GeneralizingQ22 in this way
requires also generalizing allQi j

0 to Qi j (X,P) whose func-
tional form will be determined. The Lagrangian is formal
similar to the ‘‘free’’ case~2!:

S5E dtS ]tX
MPM2

1

2
Ai j Qi j ~X,P! D . ~10!

Whatever the expressions forQi j (X,P) are, by the equations
of motion of the gauge potentialsAi j , they are required to
form first class constraints that close under the Sp(2,R) com-
mutation rules~5!, which should follow from the basic com
mutation rules of (XM,PM). Furthermore, the local Sp(2,R)
transformation properties of the dynamical variables sho
be given by these generators under commutation rules

dXM5
i

2
v i j ~t!@Qi j ~X,P!,XM#5

1

2
v i j ~t!

]Qi j ~X,P!

]PM
~11!

dPM5 iv i j ~t!@Qi j ~X,P!,PM#52
1

2
v i j ~t!

]Qi j ~X,P!

]XM

~12!

dAi j 5]tv
i j 1v ik«klA

l j 1v jk«klA
li . ~13!

These certainly hold for the free case withQi j
0 5Xi•Xj , but

now we discuss the general case. Substituting these tran
mation laws into the Lagrangian we have~ignoring orders of
operators at the classical level!

dL5]t~dXM !PM1]tX
MdPM2

1

2
dAi j Qi j ~X,P!

2
1

2
Ai j dQi j ~X,P! ~14!

where dQi j (X,P)5(]Qi j /]XM)dXM1(]Qi j /]PM)dPM .
After an integration by parts of the first term, using Eq
~11!–~13! this becomes

dL52
1

2
]t~v i j Qi j !2

1

2
~v ik«klA

l j 1v jk«klA
li !Qi j

2
1

4
Ai j vkl$Qi j ,Qkl%, ~15!

where$Qi j ,Qkl% are the Poisson bracket:

$Qi j ,Qkl%5
]Qi j

]XM

]Qkl

]PM
2

]Qi j

]PM

]Qkl

]XM
. ~16!

2It is possible to generalize this discussion by promotingA to a
non-Abelian Yang-Mills potential coupled to a non-Abelian charg
which is an additional dynamical degree of freedom. To keep
discussion simple we take an AbelianA in the present paper.
08501
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Thus, if the Qi j satisfy the Sp(2,R) algebra~5!, then the
Poisson bracket term cancels the second term, anddL is a
total derivative. Hence to ensure the gauge invariance of
actionS we must require the differential constraints

]Qi j

]XM

]Qkl

]PM
2

]Qi j

]PM

]Qkl

]XM
5« jkQil 1« ikQjl 1« j l Qik1« i l Qjk .

~17!

With these restrictions we look forQi j (X,P), which can be
interpreted as dynamics with background fields, as oppo
to dynamics in flat spacetime. To be able to integrate out
momentaPM we restrict these expressions to contain at
most two powers ofPM ~this restriction could be lifted to
construct even more general systems3!. Also, keeping the
analogy to the flat case, we will takeQ11 to have no powers
of PM, Q12 to have at most one power ofPM, andQ22 to
have at the most two powers ofPM, as follows:

Q115W~X!,

Q125
1

2
VM~PM1AM !1

1

2AG
~PM1AM !AGVM,

~18!

Q225
1

AG
~PM1AM !AGGMN~PN1AN!1U~X!.

~19!

The functionsW(X),VM(X),GMN(X),AN(X),U(X) will sat-
isfy certain constraints. The expression forQ22 is a generali-
zation of the free world line ‘‘Hamiltonian’’ in flat space
hMNPMPN . The factors ofAG are inserted to ensure He
miticity of the operators in a quantum theory as applied
wave functions with a norm*AGc* c. In the classical
theory the factors ofAG in Q12,Q22 cancel since orders o
operators are neglected, but in any case a reordering amo
to a redefinition ofAM(X) andU(X).

The combinationPM1AM(X) is gauge invariant unde
dLAM(X)5]ML(X) and dLPM52]ML(X), where
L„X(t)… is a gauge function of spacetime. The Lagrang
has this gauge symmetry since it transforms into a total
rivative under the gauge transformation dLL
52]tX

M]ML(X)52]tL. Furthermore, the Lagrangian i
a scalar under spacetime general coordinate transformat
since theQi j are scalars when all the background fields a
transformed as tensors, while the term]tX

MPM is invariant
underd«XM52«M(X) andd«PM5]M«NPN . Of course, if
the background fields are fixed, the general covariance
gauge symmetries are not generally valid, and only a s
group that corresponds to Killing symmetries of the co
bined gauge and reparametrization transformations survi

,
e 3The coefficients of higher powers ofPM have the interpretation
of higher spin fields.
5-4
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By integrating outPM we can rewrite the Lagrangia
purely in terms ofXM(t) and its derivativesẊM(t)

L5
1

2A22
~ẊM2A12VM !GMN ~ẊN2A12VN!

2
A22

2
U2

A11

2
W2ẊMAM . ~20!

By inspection of Eq.~19! or ~20! we interpretAM(X) as a
gauge field,GMN(X) as a spacetime metric andU(X) as an
additional potential. The functionW(X);0 is the constraint
that replacesX•X;0 and the vectorVM(X) can be thought
of as a general coordinate transformation since the actio
Q12 on phase space isd12X

M5VM(X) and d12PM
5]MVKPK1]M(V•A) which looks like a general coordinat
transformation up to a gauge transformation.

The classical local Sp(2,R) transformation laws for
(XM,PM) in phase space follow from Eqs.~11!,~13!:

dXM5v12~t!VM1v22~t!GMN~PN1AN! ~21!

dPM52
1

2
v11~t!]MW2v12~t!@~]MVN!PN1]M~V•A!#

2
1

2
v22~t!@~]MGKL!~PK1AK!~PL1AL!1]MU

12GKL]MAK~PL1AL!#. ~22!

This, together with Eq.~13!, is a local symmetry of the ac
tion provided Eq.~17! is satisfied. These conditions give th
following differential constraints on the functionsW(X),
VM(X), GMN(X), AN(X), U(X). From $Q11,Q22%54Q12
we learn

VM5
1

2
GMN]NW. ~23!

From $Q11,Q12%52Q11 we learn

VM]MW52W or GMN~]MW!~]NW!54W. ~24!

Finally from $Q22,Q12%522Q22 we learn~from the coeffi-
cients of each power ofPM) that

£VGMN522GMN, VM]MU522U, VMFMN50,
~25!

where £VGMN is the Lie derivative ofGMN ~an infinitesimal
general coordinate transformation!,

£VGMN[VK]KGMN2]KVMGKN2]KVNGMK, ~26!

andFMN5]MAN2]NAM is the gauge field strength. The di
ferential equation £VGMN522GMN together with Eq.~23!
was called a ‘‘closed homothety’’ condition on th
08501
of

geometry.4 We have added a generalization of the gau
field AM in our case. When all fields are present they a
coupled to each other.

The differential equation for the gauge field may also
rewritten in terms of the Lie derivative on the vector £VAM
5]M(V•A), where the Lie derivative on the vector
£VAM5VK]KAM1]MVKAK ~an infinitesimal general coor
dinate transformation!. Using the gauge invariance of th
physics, without loss of generality one may choose an a
gaugeV•A50. There still is a remaining gauge symmet
dLAM5]ML, for all L that satisfyVK]KL50. Thus, the
gauge field equation may be rewritten in the form

£VAM50, V•A50, ~27!

with a remaining gauge symmetry of these equations$L;
VK]KL50% which we will make use of later.

Any solution to the coupled equations~23!, ~24!, ~25!,
~27! gives an action with local Sp(2,R) symmetry. Such an
action provides a two-time physics theory including intera
tions with background fields. The global symmetries cor
spond to Killing symmetries in the presence of backgroun
which is a subgroup embedded in general coordinate tra
formations combined with gauge transformations. This is
global symmetry, which in the flat and free case becom
SO(d,2).

The Sp(2,R) gauge symmetry may be gauge fixed to d
fine a ‘‘time’’ and analyze the system from the point of vie
of one-time physics. The global symmetry described in
previous paragraph survives after gauge fixing the Sp(2R)
local symmetry, since it commutes with it~recall theQi j are
invariant under general coordinate and gauge transfor
tions!. This global symmetry would then become the no
linearly realized hidden global symmetries in each of t
one-time dynamical systems that emerge after gauge fix
@in the ‘‘free’’ case it is SO(d,2)]. The symmetry must be
realized in the same representation for each one-time
namical system that belongs to the same class, where
class is fixed by a given set of background fields.

4I learned this term when I came across Ref.@26#, after having
derived these equations independently some time ago. The phy
problem in the present paper is quite different than@26# where our
spacetime indexM @with ~d, 2! signature# is replaced by a particle
label for multiparticles in@26# ~with Euclidean signature!; neverthe-
less, the mathematics formally coincides with Ref.@26#. After the
current paper was submitted for publication I was informed t
similar equations were obtained in@27# in the context of confor-
mally invariant sigma models on a (p11)-dimensional world vol-
ume, using a very different approach than ours. Although the c
of p50 ~world line! relevant for our case was missed by the
authors, when their expressions are continued top50 they agree
with our results. While there are formal similarities, an importa
difference between our work and those of@26# and @27# is that we
have local SO~1,2!5Sp~2! symmetry as opposed to their glob
symmetry. This requires the constraintsQi j (X,P)50 which de-
mand a spacetime with two timelike dimensions, thus leading
conceptually very different physics.
5-5
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IV. PURE GAUGE FIELD BACKGROUND

When the background metric is flatGMN5hMN the only
solution of the homothethy condition £VGMN522GMN is
VM5XM. This immediately givesW5X•X, and U is any
homogeneous function ofXM of degree22. The global
symmetry of the metric is SO(d,2). If we want to keep the
SO(d,2) symmetry,U could only beU5g/X•X @however,
without the SO(d,2) symmetry one can allow some otherU
of degree22].

The equations for the gauge field~27! simplify in flat
space. The remaining gauge symmetry parameter is hom
neous of degree zeroX•]L50 in d12 dimensions. This is
sufficient to fix further the gauge]MAM50 since according
to the equationsAM also is homogeneous of degree21 in
this gauge. The three equations satisfied by the gauge
are now

X•A~X!50, ~X•]11!AM~X!50, ]MAM50. ~28!

There still remains gauge symmetry in these equations foL
that satisfyX•]L5]•]L50. The content of these equation
for L is still non-trivial.

These equations were proposed by Dirac in 1936@21# as
subsidiary conditions to describe the usual 4-dimensio
Maxwell theory of electromagnetism~in the Lorentz gauge!,
as a theory in 6 dimensions which automatically displa
SO~4,2! symmetry. Dirac’s aim was to linearize the confo
mal symmetry of the 4 dimensional Maxwell theory. Th
subsidiary conditions can be regarded as ‘‘kinematics’’ wh
dynamics is given by a Klein-Gordon type equation in
dimensions that may include interactions with other fiel
As Dirac showed, the linear SO~4,2! Lorentz symmetry of
the 6 dimensional theory is indeed the non-linear conform
symmetry of the Maxwell theory.

Actually, in the framework of two-time physics, confo
mal symmetry is only one of the possible interpretations
the SO~4,2! global symmetry of these equations. In two-tim
physics this interpretation relies on a particular choice
‘‘time’’ among the two available timelike dimensions, whil
with other gauge choices the interpretation of the SO~4,2!
symmetry is completely different than conformal symmet
To illustrate this, denote the components of the 6 dimensi
as XM5(X18,X28,Xm) with metric X•X522X18X28

1XmXm. The Sp(2,R) gauge choicesP18(t)50, X18(t)
51 eliminate one timelike and one spacelike dimension
bring down the two-time formulation ind12 dimensions to
a one time formulation ind dimensions. It is convenient to
use the electromagnetic gauge choiceA18(X)50 ~instead of
Dirac’s ]MAM50). Then the solution of the gauge choic
and constraints~including Q115Q1250), X•X5X•P5X
•A50, is given in the following form

XM~t!5„1, x2/2, xm~t!…, PM5„0,x•p, pm~t!…,
~29!

AM~X!5~ 0, x•A, Am
„x~t!… !. ~30!
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The dynamics of the remaining degrees of freed
„xm(t),pm(t)… are obtained by substituting these solutio
into the gauge invariant 6-dimensional action~20!. The result
is the standard 4-dimensional action for the massless rela
istic particle coupled to the electromagnetic gauge poten
Am(x):

L5
1

2A22
~ ẋm!22 ẋmAm~x!. ~31!

Thus the original two-time action displays explicitly the hi
den SO~4,2! symmetry of the one-time action. The gener
coordinate transformation of the previous section, spec
ized to«M5«MNXN with constant antisymmetric«MN, is the
SO~4,2! global Lorentz symmetry of the 6-dimensional a
tion, including the gauge field. This 6-dimensional Loren
symmetry is also the non-linearly realized conformal sy
metry of the gauge fixed action above, since the global sy
metry commutes with the gauge symmetry, and gauge fix
of the gauge invariant action could not destroy the glo
symmetry. Indeed the generators of conformal transform
tions are the gauge invariantLMN5XMPN2XNPN now ex-
pressed in terms of the gauge fixed coordinates and mom
as shown in@1,2#. This agrees with Dirac’s interpretation o
the conformal SO~4,2! symmetry as being the Lorentz sym
metry of 6 dimensions.

However, if one chooses another gauge for time instea
X18(t)51, as was done with many illustrations in@1,2#,
otherd-dimensional dynamical systems arise, which now
coupled to a gauge potential. Then the SO(d,2) symmetry
generated by the sameLMN has a different interpretation tha
conformal symmetry, as explained in@1,2#. The presence of
the gauge field background now produces a large clas
dynamical systems with hidden SO(d,2) symmetries and
Sp(2,R) duality relations among them.

The two-time physics approach@1–6# was developed
without being aware of the field equations invented by Dir
While Dirac was interested in linearizing conform
symmetry,5 the motivation for the work in@1–6# came inde-
pendently from duality and signals for two-timelike dime
sions in M theory and its extended superalgebra includ
D-branes@11,12,13#. Driven by different motivations and un
aware of Dirac’s approach to conformal symmetry, two-tim
physics produced new insights that include conformal sy
metry but go well beyond it. Besides providing a deep

5I thank Vasilev for informing me of Dirac’s work and the line o
research that followed the same trend of thought in relation to c
formal symmetry@21,23–25#. A field theoretic formulation of two-
time physics has been derived recently@7# and its relation to Dirac’s
work has been established. It is shown in@7# that two-time physics
in a field theoretic setting, as in the particle dynamics setting, u
fies different looking one-time field theories as being the same t
time field theory, while simultaneously revealing previously unn
ticed hidden symmetries in field theory, including interactions. Su
duality and global symmetry properties of two-time physics go w
beyond Dirac’s goal of linearizing conformal symmetry.
5-6
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TWO-TIME PHYSICS WITH GRAVITATIONAL AND . . . PHYSICAL REVIEW D 62 085015
Sp(2,R) gauge symmetry as the fundamental basis
Dirac’s approach~see further@7#!, two-time physics unifies
classes of one-time physical systems ind dimensions that
previously would have been thought of as being unrelate
each other. The SO(d,2) symmetry is interpreted as confo
mal symmetry in a certain one-time system, but in oth
dually related dynamical systems it is a hidden symme
with a different interpretation, but realized in exactly th
same irreducible representation. The unifying aspect in
the interpretations is that the symmetry is the underly
spacetime symmetry in a spacetime that includes two ti
like dimensions.

V. GRAVITATIONAL BACKGROUND

We now seek a solution of Eqs.~23!–~27! that includes
gravity in d dimensions. It is convenient to make a change
variablesXM5XM(k,w,xm) such that the functionW(X) is
identified with the product of new coordinates22wk, while
the coordinatexm is in d dimensions. The inverse of thi
change of variables isk5K(X), w52W(X)/2K(X) and
xm5xm(X). Before we look for a solution to Eqs.~23!–~27!
it is instructive to consider the example of the flat case t
has componentsXM5(X18,X28,Xm) with the constraint
W(X)5X•X522X18X281XmXm. The change of variable
and the inverse relations for this case are

X185k, X285
kx2

2
1w, Xm5kxm, ~32!

k5X18, w5
X•X

22X18
, xm5

Xm

X18
.

~33!

This change of variables is a special case of a general c
dinate transformation. The flat metric in the new variab
takes the form

ds25dXMdXNhMN522dX18dX281dXmdXnhmn
~34!

522dkdw1k2dxmdxnhmn . ~35!

For this choice of basis we haveVM5(k,w,0) and W
522kw and the homothety conditions are easily verifie
Taking this form as a model we seek a similar solution. W
a choice of coordinates we can always takeVM5(k,w,0). In
the new coordinate systemW(k,w,xm) needs to be deter
mined consistently with the closed homothety conditio
We will make an ansatz which may not be the most gene
but is adequate to provide a sufficiently large set of solutio
Thus, we will takeW(k,w,x)522wk to have the same
form as the free case, and insert these forms ofV,W in the
closed homothety conditions with a generalGMN. The ho-
mothety condition reads

~k]k1w]w!GMN2dk
MGkN2dw

MGwN2dk
NGkM2dw

NGwM

522GMN. ~36!
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From VM5 1
2 GMN]NW(X) we learn further

Vm5052Gmkw2Gnwk→Gmk5
1

k
Wm, Gmw52

w

k2
Wm,

~37!

Vk5k52Gkkw2Gkwk, →Gkk52
k

w
~11Gkw!,

~38!

Vw5w52Gwkw2Gwwk, →Gww52
w

k
~11Gkw!.

~39!

Specializing the indices in the homothety condition gives
solutions for all components ofGMN in the form

GMN5S k

w
~g21! 2g

1

k
Wn

2g
w

k
~g21! 2

w

k2
Wn

1

k
Wm 2

w

k2
Wm

gmn

k2

D ~40!

where the functionsg(x,w/k), Wm(x,w/k), gmn(x,w/k)
are arbitrary functions of onlyxm and the ratiow/k.

In this coordinate system we can also solve the kinem
conditions for the gauge field~27!, which become

~w]w1k]k!AM1dM
w Aw1dM

k Ak50, wAw1kAk50.
~41!

The general solution is

Aw5
1

k
BS w

k
,xD , Ak52

w

k 2
BS w

k
,xD , Am5AmS w

k
,xD .

The remaining gauge symmetryVM]ML50 is just sufficient
to setB50 in this solution, if so desired. Finally the solutio
for U(w,k,x) that satisfiesVM]MU522U is

U5
1

k2
uS w

k
,xD . ~42!

For this solution, the generators of Sp(2,R) in Eqs.
~18!,~19! become, in the gaugeB50,

Q11522kw, Q125kpk1wpw , ~43!

Q22522gpwpk1S pk
2 k

w
1pw

2 w

k D ~g21!

1
2

k2
~kpk2wpw!Wmpm1

H

k2
, ~44!

where
5-7
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ITZHAK BARS PHYSICAL REVIEW D 62 085015
H5
1

A2g
~pm1Am!A2ggmn~pn1An!1u. ~45!

It is easy to verify directly that they close correctly for an
background fieldsg,gmn ,Wm,Am ,u, which are arbitrary
functions of (w/k,xm).

Imposing the Sp(2,R) constraintsQi j 50 is now easy. It
is convenient to choose a Sp(2,R) gauge, which we know
will produce a one-time theory. A gauge choice that
closely related to the massless relativistic particle is taken
analogy to the flat theory. At the classical level we choo
the Sp(2,R) gaugesk(t)51 andpw(t)50, and solveQ11
5Q1250 in the formw(t)5pk(t)50. There remains un
fixed one gauge subgroup of Sp(2,R), which corresponds to
t reparametrization, and the corresponding Hamiltonian c
straintH;0, which involves the background fieldsgmn(x),
Am(x), u(x) that now are functions of only thed dimen-
sional coordinatesxm, sincew/k50. In this gauge, the back
ground fieldsg,Wm decouple from the dynamics that go
erns the time development ofxm(t). The two-time theory
described by the original Lagrangian~20! reduces to a one
time theory

L5
1

2A22
ẋmẋngmn~x!2

A22

2
u~x!2 ẋmAm~x!,

which controls the dynamics of the remaining degrees
freedomxm(t). Evidently this Lagrangian describes a pa
ticle moving in arbitrary gravitational, electromagnetic gau
fields and other potentialgmn(x), Am(x), u(x) in the remain-
ing d dimensional spacetime.

We have therefore demonstrated thatall usual interac-
tions experienced by a particle, as described in the one-t
formulation of dynamics, can be embedded in two tim
physics as a natural solution of the two-time equations~23!–
~27!, taken in a fixed Sp(2,R) gauge.

VI. SPINNING PARTICLES IN BACKGROUND FIELDS

To describe spinning particles in two time physics w
need local superconformal symmetry instead of local con
mal symmetry, as demonstrated in flat space in@3#. There the
Sp(2,R) gauge group was replaced by the supergro
OSp(nu2) as described at the end of Sec. II of this paper.
generalize this approach to curved space we need a sold
form EM

a and its inverseEa
M ~analogue of vierbein! that

transforms curved base space indices to flat tangent s
indices and vice versa. The metric in tangent space ishab

while the general metric is given byGMN5EM
a EN

b hab . Next
consider phase space including spin degrees of free
(XM,PM ,ca

a) where a is a tangent space index anda
51,2, . . . ,n denote then supersymmetries. The canonic
commutation rules are

@XM,PN#5 idN
M , $ca

a ,cb
b%5habdab . ~46!

The ca
a form a Clifford algebra and may be represented

gamma matrices if so desired.
08501
y
e

n-

f

e

e

r-

p
o
ing

ce

m

y

A Lagrangian that has the desired OSp(nu2) local sym-
metry has the same form as the flat case given in@3# with
some modifications:

L5ẊMPM1
i

2
ca

a ċa
bhab2

1

2
Ai j Qi j 1 iF iaQia2

1

2
BabQab .

~47!

The OSp(nu2) gauge fields may be arranged into the form
a (n12)3(n12) supermatrix

S B[ab] Fa i

« i j F
j b Ai j D , A,B5Bose, F5Fermi. ~48!

They obey the standard transformation rules for gauge fie
as given in@3#. The OSp(nu2) generatorsQi j ,Qia ,Qab are
to be taken as non-linear functions in phase space, includ
background fields. As in the purely bosonic case, our tas
to find the forms of the background fields that have an int
pretation as gravitational, gauge or other interactions exp
enced by spinning particles in two-time physics. The gau
field equations of motion require the first class constrai
Qi j ;Qia;Qab;0, whose solution will require two time
like dimensions, as in the flat theory or as in the curv
purely bosonic theory. These are then the generators o
finitesimal transformations that tell us how to transfor
dXM,dPM ,dca

M under the local OSp(nu2). As in the purely
bosonic theory treated earlier in this paper, it is easy to sh
that the Lagrangian has local symmetry provided these
class constraints close into the algebra of OSp(nu2). This
requirement gives the differential equations for the ba
ground fields.

In the flat case the OSp(nu2) generators are given b
Qi j

0 5Xi•Xj , Qia
0 5Xi•ca , andQab

0 5( i /2)c [a•cb] . To in-
clude background fields we first generalize the fermio
generatorsP•ca (n local supersymmetries! and X•ca (n
local superconformal symmetries! by introducing a tangen
space vectorVa(X), a soldering fromEM

a (X), a spin connec-
tion vM

ab(X), a gauge fieldAM(X), and replacing the momen
tum by the covariant momentum

Pa~X,P,c!5Ea
MS PM1AM1

1

2
vM

abSabD . ~49!

The spin connection, which generally includes torsion,
coupled to the spin operatorSab5(1/2i )(ca

aca
b2ca

bca
a) to

form the covariant momentum. The generalized fermio
generators are as follows:

Q1a5ca
aVa~X!, Q2a5

1

2
~ca

aPa1P̃aca
a !. ~50!

The bosonic generators are computed from the closure o
OSp(nu2) commutation relations

$Q1a ,Q1b%5dabQ11, $Q2a ,Q2b%5dabQ22,

$Q1a ,Q2b%5dabQ121Qab , ~51!
5-8
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whereQab is the antisymmetric SO(n) generator, andQi j
are the symmetric Sp(2) generators. Note thatQ2a contains
up to cubic terms in the fermions.P̃a is given by P̃a

5(AG)21PaAG, where the factors ofAG ensure Hermitic-
ity in a quantum theory with correct factor ordering, but f
the invariance of the classical action, where we only ne
Poisson brackets instead of the commutators as explaine
the spinless case, these factors may be neglected.

For simplicity we will impose the flatQab5Qab
0 ,

Qab5
i

2
c [a•cb] , ~52!

but will computeQi j as a function of the background fields6

This condition requires thatEM
a be determined in terms o

Va,vM
ab ,

EM
a 5DMVa5]MVa1vM

abVb , ~53!

while

Q115VaVbhab , Q125
1

2
~VaPa1P̃aVa!,

Q225
1

n F1

2
~ca

aPa1P̃aca
a !G2

. ~54!

Note thatQ22 contains several powers of the fermions. T
closure~51! is possible provided the gauge field strength a
the curvature are transverse toV:

VMFMN50, VMRMN
ab 50, ~55!

where

VM5Ea
MVa ~56!

and

FMN5]MAN2]NAM1@AM ,AN#,

RMN
ab 5]MvN

ab2]NvM
ab1@vM ,vN#ab.

~57!

Furthermore, sinceEM
a 5DMVa the torsion is determined in

terms of the curvature andV as

TMN
a 5DMEN

a 2DNEM
a 5RMN

ab Vb , ~58!

6We could have included alsoEI
MWM

abQab
0 as part ofP I , with

WM
ab a gauge field that acts in the SO~n! space within OSp(nu2). In

that case we could also introduce a vielbeinEa
A for an internal

space. For simplicity we will omit these complications and see
solution with a ‘‘flat’’ SO~n! space, implying that the metric in
SO~n! space isdab instead of a curved space metricGAB5EA

aEB
a .

Recall that in the final analysis we are interested in imposingQab

50 as part of the singlet condition. In the presence of non-sin
background fields such asEA

a ,WM
ab this condition is harder to

satisfy.
08501
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and is automatically transverse toV provided the curvature
is.

There remains to check the Sp(2)3SO(n) closure of the
bosonic generators. The SO~n! part is trivial. The Sp~2! part
is similar to the purely bosonic case of the previous sect
and is subject to the same conditions~23!–~25! discussed
there. However, nowW,GMN are given byW5VaVa and
GMN5EM

a EN
b hab andU50. These forms automatically sa

isfy Eqs.~23!–~25! providedEM
a is of the form~53!. In par-

ticular, Eq.~23! is satisfied as follows:

VM5
1

2
GMN]NW5GMN~DNVa!Va5GMNEN

a Va5Eb
MVb

~59!

which agrees with the definition~56!. Meanwhile, the homo-
thety condition~25! is equivalent to

£VEM
a 5EM

a ~60!

where £VEM
a 5VNDNEM

a 1]MVNEN
a . This is also satisfied

automatically for the geometry constructed above in terms
Va andvM

ab as follows:

£VEM
a 5VNDNEM

a 1]MVNEN
a

5VNTNM
a 1VNDMEN

a 1]MVNEN
a ~61!

5VNTNM
a 1DM~VNEN

a !5VNTNM
a 1DMVa

~62!

5EM
a ~63!

where we have used the orthogonality ofV to the curvature
or torsion. Related equations appear in@25#, but our ap-
proach provides a OSp(nu2) gauge symmetry basis for intro
ducing Eq.~53! and the rest of the geometrical equation
Also, a similar problem was discussed in@26# in a less geo-
metrical formalism and in the absence of the gauge fieldAM .
In our case we are interested in solutions of the equati
that permit the imposition of the constraintsQi j ;Qia
;Qab;0.

The geometry described byEM
a is fully determined by the

functionsvM
ab(X) andVa(X) which are constrained only by

the transversality conditionVMRMN
ab 50, but are otherwise

arbitrary. The solution space includes the most general gr
tational metric ind dimensions as already seen in the pre
ous section. The formalism in this section provides a m
covariant solution and permits the construction of the gen
interacting two-time physics for spinning particles.

VII. CONCLUSION AND DISCUSSION

The choice of coordinatesk,w,xm and the solution of
background fields used above emphasize a basis that is
venient for deriving the free massless relativistic parti
from two time physics in the case of zero background fiel
In this basis it was easy to eliminate one timelike and o
spacelike coordinates through the gauge choicesk(t)51,
pw50, leaving the usual timelike coordinate as a compon

a

t

5-9
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of the d-dimensional vectorxm(t). With this choice of time
we interpreted the theory and the background fields, as
cussed above. However, as we have already seen in th
case, other choices of the time coordinate produce very
ferent physical interpretations from the point of view of t
one-time observer, even though the two time physics the
is the same. In the general theory it is also possible to w
in other coordinates that are convenient to solve the Sp(2R)
constraints in other Sp(2,R) gauges. Then the choice o
‘‘time’’ embedded in the two-time theory is different.

It follows that thesame background fieldsgiven above
would give rise to a very different interpretation of the d
namics in one-time physics in different Sp(2,R) gauges. For
example, in the flat spinless case, withg5gmn5Wm5Am
5u50, different Sp(2,R) gauges produced a class of relat
one-time dynamics that included the free massless relativ
particle, the free massive relativistic particle, the free m
sive non-relativistic particle, the H atom, the harmonic os
lator in one fewer dimension, the particle in AdSd2k3Sk

backgrounds for anyk50,1, . . . ,d22, etc. In a similar way,
’

.
.

in
X
D

08501
is-
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in the general theory all possible choices of time define
class of one-time dynamical theories related to the same t
time dynamics with afixed set of background fields. Chang-
ing the background fields changes the class of related o
time dynamical models.

In the flat case the global symmetry was SO(d,2). In the
general case the Killing symmetries of the background fie
~which are embedded in the general coordinate and ga
transformations! replace the global SO(d,2) symmetry. The
global symmetries should be realized in the same repre
tation for all of the different one-time dynamical models
the same class derived from the same two-time phy
theory.
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