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Two-time physics with gravitational and gauge field backgrounds

Itzhak Bars
Department of Physics and Astronomy and CIT-USC Center for Theoretical Physics, University of Southern California,
Los Angeles, California 90089-0484
(Received 22 February 2000; published 26 September)2000

It is shown that all possible gravitational, gauge and other interactions experienced by particles in ordinary
d dimensions(one timg can be described in the language of two-time physics in a spacetimedwith
dimensions. This is obtained by generalizing the world line formulation of two-time physics by including
background fields. A given two-time model, with a fixed set of background fields, can be gauged fixed from
d+2 dimensions tod—1)+1 dimensions to produce diverse one-time dynamical models, all of which are
dually related to each other under the underlying gauge symmetry of the unified two-time theory. To satisfy the
gauge symmetry of the two-time theory the background fields must obey certain coupled differential equations
that are generally covariant and gauge invariant in the tadye®2()-dimensional spacetime. The gravitational
background obeys a closed homothety condition while the gauge field obeys a differential equation that
generalizes a similar equation derived by Dirac in 1936. Explicit solutions to these coupled equations show that
the usual gravitational, gauge, and other interactiortsdimensions may be viewed as embedded in the higher
(d+2)-dimensional space, thus displaying higher spacetime symmetries that otherwise remain hidden.

PACS numbgs): 11.30.Pb, 04.62:v, 11.25.Hf

[. INTRODUCTION the theory. Recent works have given an indication that the
domain of unification of two-time physics can be enlarged in
Two-time physics[1-6] is an approach that provides a additional directions in field theory’] including interactions
new perspective for understanding ordinary one-time dynamand in the world of branef8].
ics from a higher dimensional, more unified point of view In the two-time physics approach the familiar one-time is
including two timelike dimensions. This is achieved by in- a gauge dependent concept. From the point of view of a
troducing new gauge symmetries that ensure unitarity, cauwo-time observer the true gauge invariants are identical in a
sality and the absence of ghosts. The new phenomenon kgriety of one-time dynamical systems that are unified by the
two-time physics is that the gauge symmetry can be used t88me two-time action. Such gauge invariant quantities can be
obtain various one-time dynamical systems from the sam#Sed to test the validity of the underlying unification. An
simple action of two-time physics, through gauge fixing, thusmportant gauge invariant concept is the global symmetry of

uncovering a new layer of unification through higher dimen-th€ two-time action, which must be shared by all the gauge
sions. fixed one-time dynamical systems. In the simplest case the

The principle behind two-time physics is gauge symmetryglobal symmetry is SQI,2), but this can be different in the

[1]. The basic observation in its simplest form is that for anypresence of ba_ckground fields as we will see in the current
paper. In the simple case, the S¥) symmetry has been

theory the Lagrangian has the fornh= %(xp— PX)  shown to be presein the same irreducible representation
term has a global Sp(R) symmetry that transforms(p) as  two-time action. The presence of such symmetries, which
a doublet. The basic question we pose is, what modificatiofremained unknown even in elementary one-time systems un-
of the Lagrangian can turn this global symmetry into a localil the advent of two-time physics, can be considered as a test
symmetry? The reason to be interested in such a local synof the underlying unification within a two-time theofg].

metry is that duality symmetries in M theory aNd=2 super Two-time physics has been generalized to include global
Yang-Mills theory have similarities to gauge symplectic space time supersymmetry and local kappa supersymmetry
transformations, and their origin in the fundamental theoriewith two times[4]. This led to a framework which suggests

in physics remains a mystery. Understanding them may welthat M theory could be embedded in a two-time theory in 13
be the key to constructing M theory. Independent of Mdimensions, with a global O$H64) symmetry. In this sce-
theory, the question is a fundamental one in its own rightnario the different corners of M theory correspond to gauge
and its investigation has already led to a reformulation offixed sectors of the 13D theory, and the dualities in M theory
ordinary one-time dynamical systems in a new language oére regarded as gauge transformations from one fixed gauge
two-time physics. This has uncovered previously unnoticedo another fixed gauge. Then the well known supersymme-
higher symmetries in well-known one-time dynamical sys-tries of various corners of M theory appear as subsuper-
tems, and provided a new level of unification through highergroups of OSp(fi64). This mechanism has been illustrated
dimensions for systems that previously would have beethrough explicit examples of dynamical particle modé&®]
considered unrelated to each oth2}. The simplest Sp(R) which may be regarded as a toy M theory. In the 11D cova-
gauge symmetry has generalizations when $8in super-  riant gauge fixed corner, the supergroup O$64} is inter-
symmetry[4,5], and extended objectbrane$[6] are part of  preted as the conformal supergroup in 11 dimensions, with
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32 supersymmetries and 32 superconformal symmetries. Blgy providing the perspective of two-time physics for ordi-

in other gauge fixed sectors, the same O$§4)L symmetry nary physical phenomena, the familiar “time” dimension

of two-time physics is realized and interpreted differently,appears to play a less fundamental role in the formulation of

thus revealing various corners of the toy M theory on whichphysics. Since the usual “time” is a gauge dependent con-

a subsupergroup is linearly realized while the rest is noncept in the new formulation, naturally one is led to a re-

linearly realized. Indeed OSp{@4) contains various embed- €xamination of the concept of “time™ in this new setting.

dings that reveal 13,12,11 dimensional supersymmetries, as

well as the usual 10-digkensional type-lIA, type-lIB, het- [l. LOCAL AND GLOBAL SYMMETRY

erotic, type-l, and AdS® S° type supersymmetries iD +k . . .

=11,10 gnd lower din%ensions. Thepexplicit models provided. We start V.V'th a bnef summary O.f the world line formula-

by [5,9] illustrate these ideas while beginning to realize dy-t'on.Of two-time thS'CS for the S|mple§t case of §p|nless

namically some of the observations that suggested two-tim artlt;le d_ynamlcs W'thOUt b‘:clckg'r’ound fields and W'th.OUt a

physics in the framework of branes, dualities and extende amiltonian [1-9] (i.e. the free _case}. Just dgmandmg

supersymmetries in M theorf theory, andS theory[10— ocal -symmet.ry for the first term in the Lagrangian gives a

20]. surprlslngly rich merI based on SpR},gauge symmetry
In this paper we generalize the world line formulation of described by the action

two-time physics by including background gravitational and 1

gauge fields and other potentials. To keep the discussion So== erTXi’V'X}\'s” TN (1)

simple we concentrate mainly on particles without supersym- 2

metry. For spinless particles, as in the case of the free theory,

local Sp(2R) gauge symmetry is imposed as the underlying :f MyN } iy My N
principle. For the gauge symmetry to be valid, the gravita- dr| I XXz 2A XEXT) -
tional and gauge fields and other potentials must obey certain (2)

differential equations. We show that the gauge field obeys an
equation that generalizes a similar one discovered by Diratlere X{"(7) is anSp(2,R) doublet, consisting of a coordi-
in 1936[21] in the flat background, while the gravitational nate and its conjugate momentum'i’(zx"" andxg"EPM).
field satisfies a closed homothety condition. When all fieldsThe indices,j= 1,2 denote the doublet of Sp®), they are
are simultaneously present they obey coupled equations. Exaised and lowered by the antisymmetric Levi-Civgianbol
amples of background fields that solve these equations agg; . The covariant derivativ® X" that appears in Ed1) is
provided. defined as
A similar treatment for spinning particles in background
fields is given. As in the free theory, local O&f2) gauge D XM=9XM—g; AKXM, (3)
symmetry is imposed as the underlying principle. The set of
background fields is now richer. The generalizations ofwhere All(7) are the three Sp(R) gauge potentials in the
Dirac’s equation and the closed homothety conditions in theadjoint representation written as a<2 symmetric matrix.
presence of spin are derived. Instead of OBR| gauge The local Sp(R) acts as oXM=gj 0 'X" and SAl
symmetry it may also be possible to consider other super= kg, AKi+ wlke, A¥+ 9 0!, where o'i(7) are the
groups that contain Sp®)=SL(2,R). Sp(2R) gauge parameters. The second form of the a¢@on
In the presence of the background fields one learns thag optained after an integration by parts so that ol

much larger classes of one-time dynamical systems can nowhpears with derivatives. This allows the identification of
be reformulated as gauge fixed versions of the same tWog p py the canonical procedurex'=xM and X¥'=pM

time theory. This extends the domain of unification of one-_ : . . .
time systems through higher dimensions and a sort of duality aso/a_xl'\")' A Llh'rd form_qf th‘_a gcnon can beMobtaln.e'\c/Jll by
symmetry[the Sp(2R) gauge symmetry and its generaliza- Integrating outX; and writing it in terms ofX™ and X
tions in systems with spin and/or spacetime supersymmetrid.22. Then the local Sp(R)=S0(1,2) can also be re-
and branek Furthermore, with the results of this paper it 9arded as the local conformal group on the world liive
becomes evident that all one-time particle dynamics can peluding = reparametrization, local scale transformations, and
reformulated as particle dynamics in two-time physics. Thigdocal special conformal transformatignand the theory can
provides a much broader realm of possible applications ob€ interpreted as conformal gravity on the world I[1g6].
the two-time physics formalism. The gauge fieldA!!, A2 andA?? act as Lagrange mul-
One possible practical application of the formulation is totipliers for the following three first class constraints:
provide a tool for solving problems by transforming a com- 0 S
plicated one-time dynamical systefone fixed gaugeto a Qij=Xi- X;=0—-X*=P*=X-P=0, (4)
simpler one-time dynamical systef@nother fixed gaugeas o ) _ )
in duality transformations in M theory. Although this may @s implied by the local Sp(R) invariance. From the basic
turn out to be the computationally useful aspect of this for-quantum rules forX™,P™) one can verify that th@;} form
mulation, it is not explored in the present paper since outhe Sp(2R) algebra:
main aim here is the formulation of the concepts.
The two-time formulation also has deeper ramifications. [Qij . Qul=1ejQi+ieyQj+ie;Qu+iesQu (5
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or two-time system in various fixed gauges. The gauge choices
merely distinguish one basis versus another basis within the

[Q11,Q2]=4iQ1, [Q11,Q12]=2iQy;, same unitary representation of S) without changing the
Casimir eigenvalues of the irreducible representation. Such
[Q22,Q12]= —2iQ. (6)  relations among diverse one-time systems provide evidence

o ) ) ) that there is an underlying unifying principle behind them.
The two timelike dimensions are not put in by hand; theyThe principle is thdocal Sp(2R) symmetry and its unavoid-
are implied by the local Sp(R) symmetry. It is precisely aple consequence of demanding a spacetime with two time-
the solution of the constraintsﬂ =0 that requires the global |ike dimensions which provides a basis for thiebal sym-
metric 77y in Eq. (1) to have a signature with two timelike metry.
dimensions: ifpyy were purely Euclidean the only solution ~ To describe spinning systems, world line fermions
would be the vanishing vectorXiM; if it had Minkowski lﬁy(T), with «=1,2, ... n, are introduced. Together with
signature(one time, the only solution would be the two XM PM  they form the fundamental representation
lightlike parallel vectorsX™ without any angular momen- (™ XM PMy of the supergroup OSp(2). Gauging this su-
tum; and if it had more than two timelike dimensions, therepergroup[3] instead of Sp(R) produces a Lagrangian that
would be ghosts that would render the theory non-unitaryhasn local supersymmetries plus local conformal super-
The local Sp(R) is just enough gauge symmetry to remove symmetries on the world line, in addition to local SpRR,
the ghosts due to two timelike dimensions. Thygy stands  and local SOG). The full set of first class constraints that
for the flat metric on aq,2) dimensional space-time. Itis the correspond to the generators of these gaisyg@ejsymme-
only signature consistent with the absence of ghosts, unitragries is, at the classical level,
ity or causality problems.
We now turn to the global symmetries that are gauge X-X=P-P=X-P=X-¢),=P- =1, h5=0. (8
invariant under Sp(R). The metricnyy is invariant under
SO(d,2). Hence the action(1),(2) has an explicit global The classical solution of these constraints, with a flat space-
SO(d,2) invariance. Like the two times, the S@R) sym-  time metric MV, requires a signature with two timelike di-
metry of the action(1) is also implied by the local Sp(R)  mensions. Therefore, as in the spinless case the global sym-
symmetry when background fields are absent. ThedSD(  metry of the theory is SQ{2). It is applied to the labd¥l on
Lorentz generators (M XM, PM). The global SO¢,2) generatorsJMN that
o commute with all the OSp(2) gauge generator&) now
'-MN:XMPN_XNPM:guxi’leJN (™ include the spin

commute with the Sp(R) generators; therefore they are 1

gauge invariant. As we mentioned above, different gauge JMN—| MN_ gMN SMN:—-(WZAI/IE—'PZ'(PZA)- (9)
choices lead to different one-time particle dynamiex- 2i

amples are free massless and massive particles, H atom, har-

monic oscillator, particle in Ad$x S, etc), all of which ~ As in the spinless case, by gauge fixing the bosons as well as
have SO(,2) invariant actionsthat are directly obtained the fermions, one finds a multitude of spinning one-time dy-
from Egs.(1),(2) by gauge fixing. Since the actiofl),(2) namical systems that are unified by the same two-time sys-
and the generato“sMN are gauge invariant, the g|oba| sym- tem both at the classical and quantum levels. All of these
metry SO,2) is not lost by gauge fixing. This explains why have SO@,2) hidden symmetry realized in the same repre-
one should expect a hiddefpreviously unnoticed, non- sentation, where the representation is different for each
|inear|y rea”zed g|oba| Symmetry Sm,Z) for each of the '(numbel’ of local Supers'ymmetries on the world Iine, which
one-time systems that result by gauge fixingurthermore, is related also to the spin of the particle

all of the resulting one-time dynamical systems are quantum

mechanically realized in theame unitary representatioof IIl. INTERACTIONS WITH BACKGROUND EIELDS

S0(d,2) [1,2]. This fact can be understood again as a simple

consequence of representing the same quantum mechanical The simple action in Eq(2) is written in a flat two-time
spacetime with metriayy,\ Which could be characterized as

a “free” theory. Interactions in the one-time systems
1 . emerged because of the first class constraitfts: P2=X
A well-known case is the SO(4,2) conformal symmetry of the 5_ 5 "ot pecause of explicit interactions in the two time

massless particle. Less well known is the SO(4,2) symmety of th - )
H-atom action, which acts as the dynamical symmetry for the quan?heory' The constraints generate the SRjjauge symme

tum H atom. Previously unknown is the SO(4,2) symmetry of thetry' -I;Ah'SMSymme_try was realized “n%a‘rly on the doub(é({
massive non-relativistic particle actids= fdri(z /2m. Others are =(X",P") and its _generaaors \f‘,’e'@ii :Xi'xj e o
the SO(10,2) symmetry of a particle in the AJSS® background We now _gener_allze the “free theory_to an interacting

or the SO(11,2) symmetry in the AdSS" and the Ad$x S’ theory by including packgroynd. gravitational and gauge
backgrounds, etc. These and more examples of such non-linearfie!ds and other potentials. This will be done by generalizing
realized SOG,2) hidden symmetries for familiar systems in any the world line Hamiltonian(canonical conjugate ta) Q3,
spacetime dimensiod are explicitly given in[2]. =P, Py 7MN to a more general form that includes a metric
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GMN(X), a gauge potentialto gauge-covariantize the mo- Thus, if the Qj; satisfy the Sp(&R) algebra(5), then the

mentumPy, + Ay (X), and an additional potential (X) that  Poisson bracket term cancels the second term,&nds a

is added to the kinetic term. Generalizifdp, in this way total derivative. Hence to ensure the gauge invariance of the

requires also generalizing aDﬂ- to Q;;(X,P) whose func- actionSwe must require the differential constraints

tional form will be determined. The Lagrangian is formally

similar to the “free” case(2): 90:: 9 90:: 9
(93\/11 ;PQ:: —ag; aghk,,l =& Qi +&iQji + & Qik &)1 Qjk -

S=f dr

1
I XMPy— EA”Qij(XyP) . (10 (17)

Whatever the expressions f@; (X, P) are, by the equations With these restrictions we look fap;;(X,P), which can be

of motion of the gauge potentials', they are required to interpreted as dynamics with background fields, as opposed
form first class constraints that close under the Sg(2pm- O dynamlchsﬂ in flat spacetime. To be able to integrate out the
mutation ru|e15)’ which should follow from the basic com- momentaP" we restrict these expressions to contain at the
mutation rules of X™,P™). Furthermore, the local Sp() most two powers oPM (this restriction could be lifted to
transformation properties of the dynamical variables shoul§onstruct even more general systémslso, keeping the

be given by these generators under commutation rules ~ analogy to the flat case, we will takg,; to have no powers
of PM, Q,, to have at most one power &, and Q,, to

[ 1 . 9Q;(X,P have at the most two powers B, as follows:
BV = 2 0 (P[Q(X.P) XM= 3 () "2 ! "o P "
2 ! 2 IPm
(11) Q11=W(X),
N 1 . dQi(X,P)
M_j il - M= — Z il () —2 2 7 1 1
SPY =i (1[Q;j(X,P),PM]=~ 5 w'(7) X" QlZ:EVM(PM—i—AM)—i-—(PM+AM)\/6VM,
1 2\G
(12) (18)
SAT =0 0w+ w¥e Al + wke Al (13
1
These certainly hold for the free case wili =X;- X;, but Q22:\/_—(PM +AwVGGMN(Py+Ay) +U(X).
now we discuss the general case. Substituting these transfor- (19)

mation laws into the Lagrangian we hatignoring orders of

operators at the classical leyel The functionsW(X),VM(X),GMN(X),Ay(X),U(X) will sat-

1 isfy certain constraints. The expression @y, is a generali-
SL=09(SXMYPy+ 9. XM6Py— EEA”Q”(X,P) zation of the free world line “Hamiltonian” in flat space
7MNP,, Py . The factors of\G are inserted to ensure Her-
miticity of the operators in a quantum theory as applied on
wave functions with a normf\Gy¢* . In the classical
theory the factors of/G in Q;,,Q,, cancel since orders of
where  6Q;;(X,P)=(dQj; 19XM) 5XM + (9Qij /dPn) 0Py - operators are neglected, but in any case a reordering amounts
After an integration by parts of the first term, using Egs.to a redefinition ofA),(X) andU(X).

1
- 5AT6Q;j(X,P) (14

(11)—(13) this becomes The combinationPy, + Ay, (X) is gauge invariant under
1 1 5AAM(X)_= IuA(X) and_ S\Pu= —QMA(X), where _

L= — =9 (00— =(w e Al + wike L ATYO.. A(X(7)) is a gauge function of spacetime. The Lagrangian

2 0(@7Qij) ~ 5 (@Al + 0 eAT)Q; has this gauge symmetry since it transforms into a total de-

1 rivative y under the gauge transformation §,L
_ ZA”wkl{Q” Qul, (15) ;chIT;(r jr,;ﬂd/(\;);)— QTA. Furthermore,.the Lagrangian IS
pacetime general coordinate transformations,
since theQ;; are scalars when all the background fields are
transformed as tensors, while the tesnX™P,, is invariant
under 8, XM= —eM(X) and §,Py=dye"Py. Of course, if
[Qy . Qul= 9Qij IQu  IQjj an'. (16  the background fields are fixed, the general covariance and
axXM Py dPy gxM gauge symmetries are not generally valid, and only a sub-
group that corresponds to Killing symmetries of the com-
bined gauge and reparametrization transformations survive.

where{Q;; ,Qy} are the Poisson bracket:

2lt is possible to generalize this discussion by promotintp a
non-Abelian Yang-Mills potential coupled to a non-Abelian charge,
which is an additional dynamical degree of freedom. To keep the °The coefficients of higher powers & have the interpretation
discussion simple we take an Abelidnin the present paper. of higher spin fields.
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By integrating outP,, we can rewrite the Lagrangian geometry® We have added a generalization of the gauge

purely in terms ofXM(7) and its derivativeX™(7)

L= L(>'<M—A12\/M)GMN (XN—AAN)

2A22
A22 All u
— 5 U= W-X"Ay. (20)

By inspection of Eq.(19) or (20) we interpretAy(X) as a
gauge fieldGyn(X) as a spacetime metric atdX) as an
additional potential. The functiow/(X)~0 is the constraint
that replaces- X~0 and the vectow™(X) can be thought

of as a general coordinate transformation since the action of

Q, on phase space isd;XM=VM(X) and &,,Py

field Ay, in our case. When all fields are present they are
coupled to each other.

The differential equation for the gauge field may also be
rewritten in terms of the Lie derivative on the vectoyA,
=du(V-A), where the Lie derivative on the vector is
£uAy=VRaAy+ dyVRAL (an infinitesimal general coor-
dinate transformation Using the gauge invariance of the
physics, without loss of generality one may choose an axial
gaugeV-A=0. There still is a remaining gauge symmetry
S\Au=duA, for all A that satisfyV€g A =0. Thus, the
gauge field equation may be rewritten in the form

£,Ay=0, V-A=0, (27)

=9y VKP+ du(V-A) which looks like a general coordinate with a remaining gauge symmetry of these equatipis

transformation up to a gauge transformation.
The classical local Sp(R) transformation laws for
(XM,Py,) in phase space follow from Eql1),(13):

XM= )VM+ 0?A( 7)GMN(P+Ay) (21

1
oPy=— Ewll(T)al\AW— 0 (D[N PN+ an(V-A)]

1
- szz(T)[(ﬁmGKL)(PK+AK)(PL+AL)+5’MU

+2GK o A(PL+AD]. (22

This, together with Eq(13), is a local symmetry of the ac-
tion provided Eq(17) is satisfied. These conditions give the

following differential constraints on the function&/(Xx),

VM(X), GMN(X), An(X), U(X). From {Q11,Qz5}=4Q1,
we learn

1

VMZEGMNaNW. (23
From{Q11,Q1,}=2Q4; we learn

VMauW=2W or GMN(9,,W)(a\W)=4W. (24

Finally from {Q,,,Q1,5}= —2Q,, we learn(from the coeffi-
cients of each power d®?y,) that
£,G"N=—2GMN,

VMouU=-2U, VMF,\y=0,

(29

where £GMN is the Lie derivative oGMN (an infinitesimal
general coordinate transformatjon

£,GMN=VKg, GMN— 5, VMGKN— 5, VNGMK  (26)

andFyn=3duAn— dnAw is the gauge field strength. The dif-

ferential equation §GMN=—2GMN together with Eq(23)

VKgx A =0} which we will make use of later.

Any solution to the coupled equatiori23), (24), (25),

(27) gives an action with local Sp(R) symmetry. Such an
action provides a two-time physics theory including interac-
tions with background fields. The global symmetries corre-
spond to Killing symmetries in the presence of backgrounds,
which is a subgroup embedded in general coordinate trans-
formations combined with gauge transformations. This is the
global symmetry, which in the flat and free case becomes
S0(d,2).

The Sp(2R) gauge symmetry may be gauge fixed to de-
fine a “time” and analyze the system from the point of view
of one-time physics. The global symmetry described in the
previous paragraph survives after gauge fixing the $(2,
local symmetry, since it commutes with(iecall theQ;; are
invariant under general coordinate and gauge transforma-
tions). This global symmetry would then become the non-
linearly realized hidden global symmetries in each of the
one-time dynamical systems that emerge after gauge fixing
[in the “free” case it is SO(,2)]. The symmetry must be
realized in the same representation for each one-time dy-
namical system that belongs to the same class, where the
class is fixed by a given set of background fields.

4l learned this term when | came across R&b], after having
derived these equations independently some time ago. The physical
problem in the present paper is quite different thaé] where our
spacetime indeM [with (d, 2) signaturé is replaced by a particle
label for multiparticles if26] (with Euclidean signatueneverthe-
less, the mathematics formally coincides with R&6]. After the
current paper was submitted for publication | was informed that
similar equations were obtained [27] in the context of confor-
mally invariant sigma models on g ¢ 1)-dimensional world vol-
ume, using a very different approach than ours. Although the case
of p=0 (world line) relevant for our case was missed by these
authors, when their expressions are continueg+d they agree
with our results. While there are formal similarities, an important
difference between our work and those[@6] and[27] is that we
have local S@L,2=Sp2) symmetry as opposed to their global
symmetry. This requires the constrair@;(X,P)=0 which de-
mand a spacetime with two timelike dimensions, thus leading to

was called a *“closed homothety” condition on the conceptually very different physics.
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IV. PURE GAUGE FIELD BACKGROUND

When the background metric is fl&"N= 7N the only
solution of the homothethy condition,&MN=—2GMN is
VM=xXM This immediately givesV=X-X, andU is any
homogeneous function oXM of degree—2. The global
symmetry of the metric is S@(2). If we want to keep the
S0(d,2) symmetry,U could only beU=g/X-X [however,
without the SO{@,2) symmetry one can allow some othér
of degree—2].

The equations for the gauge fiel@7) simplify in flat

space. The remaining gauge symmetry parameter is homog

neous of degree zerd- dA =0 in d+ 2 dimensions. This is
sufficient to fix further the gaugé,, AM=0 since according
to the equationg\, also is homogeneous of degreel in

this gauge. The three equations satisfied by the gauge fie

are now

X-A(X)=0, (X-9+1)Ay(X)=0, dyAM=0. (28)
There still remains gauge symmetry in these equationg for
that satisfyX- A =3d- JA =0. The content of these equations
for A is still non-trivial.

These equations were proposed by Dirac in 1834 as
subsidiary conditions to describe the usual 4-dimension
Maxwell theory of electromagnetisiim the Lorentz gauge

PHYSICAL REVIEW D 62 085015

The dynamics of the remaining degrees of freedom

(x*(7),p"(7)) are obtained by substituting these solutions

into the gauge invariant 6-dimensional acti@g). The result

is the standard 4-dimensional action for the massless relativ-
istic particle coupled to the electromagnetic gauge potential
A, (x):

A7 (31

(XH)2=XMA,(X).

Phus the original two-time action displays explicitly the hid-
den S@4,2) symmetry of the one-time action. The general
coordinate transformation of the previous section, special-
ized toeM=eMNX,, with constant antisymmetrie"N, is the
Q4,2 global Lorentz symmetry of the 6-dimensional ac-
tion, including the gauge field. This 6-dimensional Lorentz
symmetry is also the non-linearly realized conformal sym-
metry of the gauge fixed action above, since the global sym-
metry commutes with the gauge symmetry, and gauge fixing
of the gauge invariant action could not destroy the global
symmetry. Indeed the generators of conformal transforma-
tions are the gauge invariaht'N=XPN—XNPN now ex-
pressed in terms of the gauge fixed coordinates and momenta

S shown i 1,2]. This agrees with Dirac’s interpretation of

the conformal S@4,2) symmetry as being the Lorentz sym-

as a theory in 6 dimensions which automatically displaysMetry of 6 dimensions.

SQ(4,2) symmetry. Dirac’s aim was to linearize the confor-
mal symmetry of the 4 dimensional Maxwell theory. The

However, if one chooses another gauge for time instead of
X*'(7)=1, as was done with many illustrations fa,2],

subsidiary conditions can be regarded as “kinematics” whileotherd-dimensional dynamical systems arise, which now are
dynamics is given by a Klein-Gordon type equation in 6coupled to a gauge potential. Then the 8@§ symmetry

dimensions that may include interactions with other fields
As Dirac showed, the linear S@2) Lorentz symmetry of

generated by the sané'N has a different interpretation than
conformal symmetry, as explained[ih,2]. The presence of

the 6 dimensional theory is indeed the non-linear conformathe gauge field background now produces a large class of

symmetry of the Maxwell theory.
Actually, in the framework of two-time physics, confor-

mal symmetry is only one of the possible interpretations of

the S@4,2) global symmetry of these equations. In two-time

dynamical systems with hidden S@R) symmetries and
Sp(2R) duality relations among them.

The two-time physics approacHl—6] was developed
without being aware of the field equations invented by Dirac.

physics this interpretation relies on a particular choice ofWhile Dirac was interested in linearizing conformal

“time” among the two available timelike dimensions, while
with other gauge choices the interpretation of the(g2)

symmetry is completely different than conformal symmetry.

symmetry’ the motivation for the work ifi1—6] came inde-
pendently from duality and signals for two-timelike dimen-
sions in M theory and its extended superalgebra including

To illustrate this, denote the components of the 6 dimensionB-braneqd11,12,13. Driven by different motivations and un-

as XM=(X"",X"',Xx*) with metric X-X=-2X"'X"
+X,X*. The Sp(2R) gauge choiceP*'(7)=0, X*'(7)
=1 eliminate one timelike and one spacelike dimension an
bring down the two-time formulation id+2 dimensions to

a one time formulation ird dimensions. It is convenient to

use the electromagnetic gauge cho@c*e'(x) =0 (instead of
Dirac’s dyAM=0). Then the solution of the gauge choices
and constraintgincluding Q;;=Q,=0), X-X=X-P=X
-A=0, is given in the following form

XM(r)=(1, %12, x*(7)), PM=(0,x-p, p*(7)),

(29

AM(X)=(0, x-A, A*(X(7))). (30

aware of Dirac’s approach to conformal symmetry, two-time
physics produced new insights that include conformal sym-

dmetry but go well beyond it. Besides providing a deeper

% thank Vasilev for informing me of Dirac’s work and the line of
research that followed the same trend of thought in relation to con-
formal symmetry[21,23-25. A field theoretic formulation of two-
time physics has been derived recefffyand its relation to Dirac’s
work has been established. It is showr{ T that two-time physics
in a field theoretic setting, as in the particle dynamics setting, uni-
fies different looking one-time field theories as being the same two-
time field theory, while simultaneously revealing previously unno-
ticed hidden symmetries in field theory, including interactions. Such
duality and global symmetry properties of two-time physics go well
beyond Dirac’s goal of linearizing conformal symmetry.
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Sp(2R) gauge symmetry as the fundamental basis fofromVM=3GMNg W(X) we learn further

Dirac’'s approachsee furthe{7]), two-time physics unifies

classes of one-time physical systemsdirdimensions that . ) 1 W
previously would have been thought of as being unrelated t§° — 0= ~G**W=G - G* =W GH=— PWM'
each other. The S@(2) symmetry is interpreted as confor- (37)
mal symmetry in a certain one-time system, but in other

dually related dynamical systems it is a hidden symmetry P

with a different interpretation, but realized in exactly the V¥=x=—-G"“w—G""k, —G"“=—-—(1+G""),
same irreducible representation. The unifying aspect in all W

the interpretations is that the symmetry is the underlying (38)
spacetime symmetry in a spacetime that includes two time- W
like dimensions. VW=w=-G""w—-G"Wk, —GYW=——(1+G"Y),
K
(39

V. GRAVITATIONAL BACKGROUND

Specializing the indices in the homothety condition gives the

We now seek a solution of Eq&23)—(27) that includes s :
482327 golutions for all components @&"" in the form

gravity ind dimensions. It is convenient to make a change o
variablesX™=XM(«k,w,x*) such that the functioW(X) is 1
. v . . . K

identified with the product of new coordinate®2w«, while —(y—1) -y —W?
the coordinatex” is in d dimensions. The inverse of this w K
change of variables ix=K(X), w=—W(X)/2K(X) and

w w
x*=x*(X). Before we look for a solution to Eq&23)—(27) GMN= - ;(7— 1) - —2W" (40)
it is instructive to consider the example of the flat case that K
has component9(M=(X+',X",X“) with the constraint 1 w grr
W(X)=X-X=—2X""X""+X,X*. The change of variables PAL EWM 2
and the inverse relations for this case are
2 where the functionsy(x,w/«), WH(x,w/«), g*”(X,w/ )
Xt =k X"=ﬁ+w XA = pexh (32) are arbitrary functions of only* and the ration/ «.
' 2 ' ' In this coordinate system we can also solve the kinematic
conditions for the gauge fiel(27), which become
o XX y XH w .
k=X", W= o X v (Wt Kk, )Am+ AL+ SNA=0, WA, + kA, =0.

(33 “y

. . . . The general solution is

This change of variables is a special case of a general coor- g
w w o [w w
—,x), AK=——B<—,X>, A =AM(—,X).
K K K

dinate transformation. The flat metric in the new variables 1
takes the form A,=—B "
K

d?=dXMdXNpyy=—2dX""dX" +dX*dX 7,
" o (34  The remaining gauge symmet)' g, A =0 is just sufficient
to setB=0 in this solution, if so desired. Finally the solution

= —2dkdw+ kdx*dx’7,,, . (357  for U(w,«,x) that satisfies/MayU=—2U is
For this choice of basis we have™=(«,w,0) and W 1 (w
= —2«w and the homothety conditions are easily verified. U= =YX (42)

Taking this form as a model we seek a similar solution. With
a choice of coordinates we can always t&Ré=(«,w,0). In For this solution, the generators of SPR2,in Egs.
the new coordinate systeW(«,w,x*) needs to be deter- (18),(19) become, in the gaugg=0,

mined consistently with the closed homothety conditions.

We will make an ansatz which may not be the most general, Q= —2kW, Qi,=KP,+Wpy, (43
but is adequate to provide a sufficiently large set of solutions.

Thus, we will takeW(k,w,x)=—2wk to have the same

form as the free case, and insert these form¥ &% in the Q2= = 2yPuPt
closed homothety conditions with a gene@!N. The ho-
mothety condition reads

2K oW
pKW+pWK)(7 1)

2 H
+ _(KpK_Wp )WMp +—, (44)
(K3, + W) GMN— SMGN— s GWN— NGM — sllGWM K2 TR 2

=—2GMN, (36)  where
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1
H=—(p,+A)V—9g*"(p,+A,)+u. (49

V=g

It is easy to verify directly that they close correctly for any

background fieldsy,g,,, ,W*,A,,u, which are arbitrary

PHYSICAL REVIEW D 62 085015

A Lagrangian that has the desired OBJX) local sym-
metry has the same form as the flat case givefBinwith
some modifications:

L=XMPyy+ = g2 —EA”Q-»—HFWQ- —EB“‘;Q
M 2 Ta alab 2 ij ia 2 af -

functions of (/«,x*). (47)
Imposing the Sp(R) constraintsQ;; =0 is now easy. It

is convenient to choose a Spkg, gauge, which we know  the 0gpa|2) gauge fields may be arranged into the form of

will produce a one-time theory. A gauge choice that is, (n+2)X (n+2) supermatrix

closely related to the massless relativistic particle is taken by

analogy to the flat theory. At the classical level we choose (

BleBl g
the Sp(2R) gaugesk(7)=1 andp,(7)=0, and solveQ,; 8 Al
SijFJ AJ

=Q,=0 in the formw(7)=p,(7)=0. There remains un-

fixed one gauge subgroup of SpPR2, which corresponds to . .

- reparam?atrizgation, gnd t[?]e coﬁponding Hamiﬁonian Con'_l'hey obey the standard transformation rules for gauge fields,

suarti1~0, which ivolves he bacground fel (1), o7 1L Toe OSPN) S, 9 Qe

A."(X)’ u(x) .that now are functions Of. only thd dimen- background fields. As in the purely bosonic case eur task is

sional coordinates*, sincew/x=0. In this gauge, the back- 9 purety b ' ;
round fieldsy. W# aecou le frorﬁ the d namice that gov- © find the forms of the background fields that have an inter-

g 4 P y 9 pretation as gravitational, gauge or other interactions experi-

erns the time development of(7). The two-time theory enced by spinning particles in two-time physics. The gauge
described by the original Lagrangi#®0) reduces to a one- y sp g part . - physics. gaug
field equations of motion require the first class constraints

, AB=Bose, F=Fermi. (498

time theory Qij~Qia~Q.p~0, whose solution will require two time-
1 22 like dimensions, as in the flat theory or as in the curved
= 2250“)-(]}91“/()()__U(X)_).(MAM(X)’ purely bosonic theory. These are then the generators of in-
2A 2 finitesimal transformations that tell us how to transform

. . o XM 6Py ,5<//'\a" under the local OSm(2). As in the purely
which controls the dynamics of the remaining degrees ofosonic theory treated earlier in this paper, it is easy to show
freedomx*(7). Evidently this Lagrangian describes a par-that the Lagrangian has local symmetry provided these first
ticle moving in arbitrary gravitational, electromagnetic gaugec|ass constraints close into the algebra of OfpJ. This

fields and other potenti@,, ,(x), A,(x), u(x) in the remain-  requirement gives the differential equations for the back-
ing d dimensional spacetime. ground fields.

We have therefore demonstrated tladit usual interac- In the flat case the OSp[2) generators are given by
tions experienced by a particle, as described in_the one—_timegg)j =X;-X;, Q% =X;-4,, and Qgﬁ=(i/2)¢[a- g - Toin-
formulation of dynamics, can be embedded in two timeg) ge hackground fields we first generalize the fermionic
physics as a natgral solution of the two-time equati@8— generatorsP- i, (n local supersymmetrigsand X- i, (n
(27), taken in a fixed Sp(R) gauge. local superconformal symmetrjeby introducing a tangent
space vectoW(X), a soldering fronE$,(X), a spin connec-
tion wﬁ‘,,b(X), a gauge field\,(X), and replacing the momen-

To describe spinning particles in two time physics wefUm by the covariant momentum
need local superconformal symmetry instead of local confor-
mal symmetry, as demonstrated in flat spack8inThere the T(X,P, )= Eg/l Py + Ay + Ew?/lbsab .
Sp(2R) gauge group was replaced by the supergroup 2
OSp(n|2) as described at the end of Sec. Il of this paper. To
generalize this approach to curved space we need a solderifi§€ Spin connection, which generally inC':)JdeSb torsion, is
form E2, and its inverseEY (analogue of vierbeinthat ~ coupled to the spin operat@"= (L/2) (45— ¥oi3) to
transforms curved base space indices to flat tangent spaé@m the covariant momentum. The generalized fermionic
indices and vice versa. The metric in tangent space,js 9enerators are as follows:
while the general metric is given 6§y n=Ef, Eﬁ Nap- Next
consider phase space including spin degrees of freedom
(XM Py ,¢%) where a is a tangent space index and
=1,2,...n denote then supersymmetries. The canonical
commutation rules are

[XM.Pul=ioN, {42, =128,

The ¢% form a Clifford algebra and may be represented by
gamma matrices if so desired.

VI. SPINNING PARTICLES IN BACKGROUND FIELDS

(49

1 ~
Qla:¢iva(x)v 2a:§(¢2na+na‘//i)- (50

The bosonic generators are computed from the closure of the
OSp([n|2) commutation relations
(46)
1Q14 anﬁ}: 5aﬂQllv 1Q2. ,Qz;a}: 5a,8Q22=

{Q14,Q2p) = 8,5Q12F Qup., (51
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where Q,z is the antisymmetric S@() generator, and;; and is automatically transverse Yoprovided the curvature
are the symmetric Sp(2) generators. Note g} contains is.
up to cubic terms in the fermiondl, is given by II, There remains to check the Sp(2$O(n) closure of the

=(\/€)’1Ha\/6, where the factors of/G ensure Hermitic- _bos_on_ic generators. The 89 part is trivial. The S_p'Z) part _
ity in a quantum theory with correct factor ordering, but for IS Similar to the purely bosonic case of the previous section
the invariance of the classical action, where we only nee@nd is subject to the same conditio(®3)—(25) discussed

. . . MN : _
Poisson brackets instead of the commutators as explained fiere. However, nowV,G™" are given byw=V®V, and

the spinless case, these factors may be neglected. Gun=EW EN 775 andU =0. TQe;e forms automatically sat-
For simplicity we will impose the flaQ,z=Q%, isfy Eqs.(23)—(25) providedEy, is of the form(53). In par-
ticular, Eq.(23) is satisfied as follows:
i
Qa :_l//a'lﬂ ’ (52) 1
SR V=2 GMNGW=GYN(D V)V, = GVNERV, = EN'V?
but will computeQ;; as a function of the background fieldls. (59
This condition requires thaE}, be determined in terms of ) ) - )
V2 ab which agrees with the definitiofb6). Meanwhile, the homo-
M thety condition(25) is equivalent to
a _ a_ a ab
M DMV aMV +(1)M Vb, (53) £VEKIA:E:/I (60)
while a N a Nea o -
where £E,=V"D\Ey+duV EyN. This is also satisfied
. 1 _ automatically for the geometry constructed above in terms of
Qu=V*V’7ap, Q=5 (VI +11v?), V2 and 08 as follows:
11 _ 2 £VEY =VND\ER + duVNER
N B aE-} a
Q22 n 2(¢aHa+Ha¢a) . (54) :VNT§M+VNDME§+ (QMVNEﬁ (61)
Note thatQ,, contains several powers of the fermions. The =VNT2,,+ Du(VNER) =VNT2 | + D), V2
closure(51) is possible provided the gauge field strength and (62)
the curvature are transverse\o
=Ej) (63)

VMEyW=0, VMR2A =0, (55)
where we have used the orthogonality\oto the curvature
where or torsion. Related equations appear[R®5], but our ap-
VM= EMy/a (56) progch provides a OSp[2) gauge symmetry b_asis for inf[ro-
a ducing Eq.(53) and the rest of the geometrical equations.
Also, a similar problem was discussed[6] in a less geo-
metrical formalism and in the absence of the gauge figld
Fun=mAN— InAM+ [Av  Axd, In our case we are interested in solutions of the equations
that permit the imposition of the constrain®;;~Q;,
RED = 9y 08P — Iyl +[ oy, on]2P. ~Qup~0. . _ .
(57) The geometry described £, is fully determined by the
. a . o ) . functionSwﬁ‘,,b(X) andV&(X) which are constrained only by
Furthermore, sinc&), =D, V* the torsion is determined in e transversality conditioV™R22,=0, but are otherwise
terms of the curvature and as arbitrary. The solution space includes the most general gravi-
a _p Ea_p pd_Raby (58) tational metric ind dimenlsion_s as.alread.y seen i_n the previ-
MN™=MEN =N=M T BEMN T ous section. The formalism in this section provides a more
covariant solution and permits the construction of the general
interacting two-time physics for spinning particles.

and

éWe could have included alsBMW3PQ2, as part ofIl,, with
Wﬁ‘,lb a gauge field that acts in the 8@ space within OSp{|2). In VII. CONCLUSION AND DISCUSSION
that case we could also introduce a vielb@&f for an internal . ) .
space. For simplicity we will omit these complications and seek a 1h€ choice of coordinates,w,x* and the solution of
solution with a “flat” SO(n) space, implying that the metric in Packground fields used above emphasize a basis that is con-
SQM) space isd,, instead of a curved space metig—E2E3.  Venient fo_r derlvmg the free massless relativistic pa_rtlcle
Recall that in the final analysis we are interested in impo§yg  from two time physics in the case of zero background fields.
=0 as part of the singlet condition. In the presence of non-singletn this basis it was easy to eliminate one timelike and one
background fields such a2 ,W3P this condition is harder to spacelike coordinates through the gauge choiegs =1,
satisfy. p,= 0, leaving the usual timelike coordinate as a component
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of the d-dimensional vectok*( 7). With this choice of time in the general theory all possible choices of time define a
we interpreted the theory and the background fields, as diszlass of one-time dynamical theories related to the same two-
cussed above. However, as we have already seen in the fkatne dynamics with dixed set of background field€hang-
case, other choices of the time coordinate produce very difing the background fields changes the class of related one-
ferent physical interpretations from the point of view of the time dynamical models.
one-time observer, even though the two time physics theory In the flat case the global symmetry was (2. In the
is the same. In the general theory it is also possible to worlgeneral case the Killing symmetries of the background fields
in other coordinates that are convenient to solve the &)(2, (which are embedded in the general coordinate and gauge
constraints in other Sp(R) gauges. Then the choice of transformationsreplace the global S@(2) symmetry. The
“time” embedded in the two-time theory is different. global symmetries should be realized in the same represen-
It follows that thesame background fieldgiven above tation for all of the different one-time dynamical models in
would give rise to a very different interpretation of the dy- the same class derived from the same two-time physics
namics in one-time physics in different SpR2,gauges. For theory.
example, in the flat spinless case, wigh=g,,=W*=A,
=u=0, different Sp(ZR) gauges produced a class of related
one-time dynamics that included the free massless relativistic
particle, the free massive relativistic particle, the free mas- | thank E. Witten for a discussion on the homothety con-
sive non-relativistic particle, the H atom, the harmonic oscil-ditions. This research was partially supported by the U.S.
lator in one fewer dimension, the particle in Ad$xS¢  Department of Energy under Grant No. DE-FGO03-
backgrounds for ank=0,1, ... d—2, etc. In a similar way, 84ER40168.
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