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Instanton-induced effects in QCD high-energy scattering
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We evaluate a number of new instanton-induced phenomena in QCD, starting with static dipole-dipole
potentials, and proceeding to quark-quark and dipole-dipole scattering at high energy. We use a nonperturba-
tive formulation of the scattering amplitude in terms of a correlator of two Wilson ljgaarks or Wilson
loops(dipoleg and analyze the Euclidean amplitudes with both perturbative gluons and instantons. The results
are analytically continued to Minkowski geometry by interpreting the angle between the Wilson lines as
rapidity. We discuss the relevance of our results for the phenomenology of near-forward hadronic processes at
high energy, especially for processes with multiple color exchanges.

PACS numbsdis): 12.38.Lg

[. INTRODUCTION instantons. In order to be able to do so, one should start in
Euclidean space-time, where those solutions are the saddle
Significant progress reached in the realm of non-points of the functional integrals. The results are then ana-
perturbative QCD has been mostly related to approachedstically continued back to Minkowski space. Although it
based on the Euclidean formulation of the theory: numericalvas not done before in this form, there are similar ap-
simulations using lattice gauge theory, instantons, monoproaches in the perturbative conteégtg.[7] and references
poles, etc. By now, we know a great deal about the importantherein. Another methodically close approach to our analy-
or even dominant role of instanton-induced effects for corresis is [8,9] where recent progress on the non-perturbative
lation functions in a variety of hadronic channels, hadronicdynamics inN=4 super Yang-Mills(SYM) theory was
wave functions and form factors; for a review 4d¢. Un-  used. In particular, the AdS conformal field thedi@FT)
fortunately so far many of those results have not been transsorrespondence has been used to evaluate the partonic cross
lated to Minkowski space, a crucial step for understandingsection geometrically, using a deformed string in the curved
hadronic high-energy processes. It is however clear that the@nti—de Sitter space.
must be a very general and direct relationship between the The instanton-induced processes to be considered in this
hadronic substructure and the details of high energy reacwork are eitherlastic scattering of partons ajuasi-elastic
tions. Indeed, the non-perturbative modification of QCDones, with color transfer between them. They are very dif-
vacuum fields induced by the valence quarks studied in Euferent from(and should not be confused witmulti-quanta
clidean space-time should look like parton correlations in theproduction processes originally discussed in electroweak
transverse plane in a boosted frame. Many known features dfieory[10] in connection with baryon number violation and
partonic distributions, including spin and flavor of the sealater in QCD in connection to DI$11]. Such phenomena,
guarks, point to their non-perturbative origin. Many moreassociated with small-size instantons, are easier to evaluate
featureg(such adluctuationsof these cross sections andr-  and also they should lead to much more spectacular events.
relations in the parton positions in the transverse planeHowever, those lead to much smaller cross sections in com-
which we briefly discuss at the end of the papae still to  parison to the processes to be discussed below.
be studied in detalil. In this paper, we will not aim at a development of a real-
The first systematic step towards a semi-classical but noristic model for high-energy hadronic reactions based on in-
perturbative formulation of high-energy scattering in QCDstanton physics. Instead, we will answer few questions of
was suggested by Nachtmafi, who has related the scat- principle, such as the following: Is it possible to assess non-
tering amplitude to expectations of pairs of Wilson lines.perturbatively scattering amplitudes using the Euclidean for-
Semi-classical expressions with a similar pair of Wilsonmulation of the theory? How is the analytical continuation
lines for deep inelastic scatterin@®IS) structure functions enforced on the non-perturbative amplitudes? What is the
were also proposed by Mull¢B]: in contrast with their tra- magnitude of the instanton induced effects in comparison to
ditional interpretation as partonic densities, they were treatethe perturbative effects in the scattering of near-forward high
as cross sections for targets penetrated by small dipole-likenergy partons?
probes at high energy. One systematic way to use these semi- In Sec. Il we review the perturbative effects on the dipole-
classical expressions is to go back to the perturbative domaidipole potential, including the derivation of a renormaliza-
and try to improve on_the diagrammatic approadsegh as tion group solution that can be tested using QCD lattice
the celebrated BalitskiFadin-Kuraev-Lipatov(BFKL) [4]  simulations. In Sec. Ill we extend the perturbative analysis in
re-summatiofi see e.g. calculations of the anomalous di-Euclidean space to the case of scattering between two quarks
mension of the cross-singularity between two Wilson linesand two dipoles. Particular issues regarding the analytical
[5] or the analysis of the path exponentd &j. continuation of the perturbative results to Minkowski space
The approach we will follow in this paper is different: the are discussed. In Sec. IV, we discuss the effects of instantons
Wilson lines in question are evaluated semi-classically usingn the static potentials for quarks and dipoles. At large dis-
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tances the results resemble perturbation theory apart from thdpole emission returns the system back. The energies of the
large classical enhancement of £8g%)?~10%, which is intermediate state sets the characteristic lifetirge- 1/(Ep
partially compensated by the diluteness faa‘(@pém(lls)“ —Eg).

[12] of the instantons in the vacuum. In Sec. V, we calculate However, for static dipoles the situation is different in
the scattering amplitudes for quarks and dipoles in the oneQED and QCD. In QED the emission times of two ex-
instanton approximation. The color preserving part of thechanged quanta are independent, but in QCD they are not.
amplitude is real and vanishes at high energy. The coloEven astaticdipole can change its color degrees of freedom.
exchange part is real but finite at high energy, thereby conBecause different total color states of the dipole have differ-
tributing to the near-forward inelastic scattering or re-ent energies, thanks to the Coulomb interaction, we again
scattering of partons. In Sec. VI, we extend our discussion thave excited intermediate states. Therefore the characteristic
two instantons. We found that for two quarks the cross sectime is determined by the difference in Coulomb energy be-
tion is of the order ofrqq~(nopg)2pgz, \évhiAIle for two dipoles  tween the singlet and octet states:

it is further suppressedyq~ o4q(d7d5/pg). These results
are supported by our caIcuIatigr?s. %n 2Se(é. VII, we discuss the Ury=AE=(3a/2)/d. 2)
possible role of instantons in cross-section fluctuations. OuA

conclusions and recommendations are in Sec. VIII. tthough the dipoles may bemall d<R, this time may still

be long because in the perturbative domain the coupling con-

stant is smalg?(d)<1. As a result, there are two different

Il. PERTURBATIVE ANALYSIS OF POTENTIALS regimes, when the distanéis large(i) R> 7, or small(ii)

R<7y. In the former case again the power is 7 and the po-

larizability is' a=4md%/3. The latter case is the van der
We start with the simplest analysis in Euclidean space, irwalls domain.

which the perturbative expansion of two Euclidean Wilson

lines leads to the well-known result for the potential between B. RGE analysis of the dipole-dipole potential

static charges. Indeed, by expanding two Wilson lines to first i i _

order in the gauge coupling, using the Euclidean propaga- On general grounds, the potential between two interacting

tor (A (X)A (y))~1/(x—y)? with x,y located on two paral- dipoles can be shown to obey the following equation:

A. Dipole-dipole potential

lel but straight lines, and finally integrating over the relative WV(b) 1
time Xo—Yyo, we readily obtain the Coulomb potential ag——=— _J d3x(Tr F2(x) Vb (3)
V(R)~ ay(R)/R. das 2

Now, consider the case of the interaction between two . . : o
color neutral objects, such asvo static color dipolesThe Wwhereas is the QCD running coupling and the averaging in

simplest perturbative process in this case includes doublg.q't@) :asbcarrleidén the. prl?sence of the two static dipoles a
photon-gluon exchange. The problem was solved in QED b IStanceb apart. Lenerically,
gtalz:gg gins?alzg(ladaegis], who have shown that the potential V(b)=V(b,a, u,ag)~u (ma)* F(ub,ay) ()

oo where . is the renormalization scale. Hence,
142

V(R)=~ 57 M

2%

Jda

where the polarizabilities «, , are of the order ofa,, ° b
~ 702, d is the dipole size andy, is some characteristic where B=dag/dInu is the QCD beta function. Inserting
time (see below. This result differs from the van der Waals Eq. (5) into Eq. (3) yields
potential 1R® (valid at smallelR) because of the time delay
effects. These observations were generalized to perturbative v B 3 )
QCD in [14,13 (K+1) V+b%:£f d X<TrF (X)>b, (6)

The Euclidean approach leads to the 7th poweRdf a °
simple way, provided that the following conditions are satis-which is the renormalization group equatitRGE) satisfied
fied: (i) d; ;<R which justifies the dipole approximation and by the dipole-dipole potential. At large separations we may
identifies the relevant field operatoré-E)z; (i) bothex-  assume the dipole-dipole potential in quenched QCD to fol-
changed photongor gluong are emitted and absorbed at low like a power law, i.e.
close xg and y, times. As a result, the perturbative field

av)
(k+1) V+b% (5)

correlator{ E2(x) E?(y))~ 1/(x—y)®=1/(R*+ 7%)*, once in- V(b)~u (na)*(ub)?, (7)
tegrated over the relative time=xy—Y,, leads the result ) ) ) )
1R, turning Eq.(6) into an algebraic equation

The condition(ii) can be understood for complex systems
like atoms or hadrons in the following way: the first dipole
emission excites the system frausually anS-wave ground IAmusingly, the result is just the volume of a sphere of radius
state to(usually aP-wave excited state, while the second from which the perturbative coupling constantiropped out.
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B following the decompositionN.® N.= 1@(N§—1). For
(1+y+x)Vb)= gj dx (TrF2(x))y - (8 gluon-gluon scattering the lines are doubled in color space
s (adjoint representatiorand further gauge-invariant contrac-
Alternatively, the potential between two dipoles is a measuréions are possible. For quark-quark scattering the singlet ex-
of the energy density in the presence of two dipoles: change in the channel is  (Pomeron while for quark-
antiquark scattering it is 0 (odderon as the two differ by
charge conjugation.
A quark with large momenturp travels on a straight line

with 4-velocity 5<=v=p/m andv?=1. In the eikonal ap-
proximation an ordinary quark transmutes to a scalar quark.
The argument applies to any charged particle in a back-
ground gluon field, with the following amendments: for anti-

V(b)zf d3x (O oo(X) ) - 9

The combination of the RGEB) and the definitior(9) yields
a constraint between the exponertsand y in Eq. (7) as-
ymptotically, namely

B 1-R quarks the 4-velocity is reversed in the Wilson line and for
7=—1—x+a—m (10 gluons the Wilson lines are in the adjoint representation.
s Quark-quark scattering can be also extended to quark-
with antiquark, gluon-gluon or scalar-scalar scattering. For quark-

antiquark scattering the elastic amplitude dominates at large

oy J/s since the annihilation part is down by—t/s.
f dx(B“(X))p It can be described in Minkowski geometry in the c.m.
R=———"—— (1)  frame with p;/m= (coshy/2,sinhy/2,0,) and p,/m
f d3x(E2(x))p = (coshy/2,—sinhy/2,0,) with the rapidity y defined

through coshy/2= \/s/2m. For s>m? the rapidity gap be-

a measure of the magnetic-to-electric ratio in the configuralV€en the receding scatterers becomes large wjth

tion composed of two static dipoles a distaficaway from ~ ~'09(sM?). The momentum transfer between the scatterers
each other. For a self-dual fieR=1 andy=—1—« if the 1S d=P1—ki, with do=0s~t/\s and g% =tu/(s—4m?)

asymptotic(7) is assumed. ~—t. Henceq=(0,0g,) with g’=—q?=t. Although the
partons or dipoles change their velocities after scattering, this
IIl. PERTURBATIVE SCATTERING IN EUCLIDEAN Change is small fos>—t. This is the kinematical assump-
GEOMETRY tion behind the use of the eikonal approximation. _
_ In Euclidean geometry, the kinematics is fixed by noting
A. Quark-quark scattering that the Lorenz contraction factor translates to
Generically, we will refer to quark-quark scattering as
1 ]
Qa(p1) +Qs(P2) —Qc(k1) +Qp(ky). (12 coshy= —=, " 1—cosé. (16)
-v m

We denote byAB andCD, respectively, the incoming and

outgoing color and spin of the quarkgolarization for glu-  gcattering at high energy in Minkowski geometry follows
ong. Using the eikonal approximation and Lehmann-from scattering in Euclidean geometry by analytically con-
Symanzik-ZimmermaniiLSZ) reduction, the scattering am- tinying 9——iy in the regimey~log (¥mA)>1 [7]. It is

plitude 7 for quark-quark scattering reafi3,5,16 sufficient to analyze the scattering fqr; /m= (1,0,0,),
p,/m= (cos#,—sind,0,), q=(0,09,) andb=(0,0p,).
TAB,CD(SfE)”—ZiSJ d2b €a.-b The Minkowski scattering amplitude at high energy can be
altogether continued to Euclidean geometry through
X([W1(b) = 1] ac[W2(0)—1]gp) (13)
where as usuad= (p,+p,)?, t=(p;—Ky)?, s+t+u=4m? Tag.co(6,9)~4m?sin 0f d’b €a:°P
and
X{([W(6,b) —1]ac[W(0,0)—1]gp)
+
lez(b)chexy{ ig f drA(b+vy27) v1,|. (14 17
where

The 2-dimensional integral in Eq13) is over the impact
parameterb with t= —qf, and the averaging is over the
gauge configurations using the QCD action. The color bear- W(b,a)chexp( igf dTA(b+vT)~U) (18)
ing amplitude(13) allows for scattering into a singlet or an 0

octet configuration, i.e.

with v =p/m. The line integral in Eq(18) is over a straight

- a a
=1 1e1+ 77“?‘1 (Fer), (15 line sloped at an anglé away from the vertical.
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hence the infrared sensitivity of the quark-quark scattering
amplitude in perturbation theory. This sensitivity drops from
the cross sectiorisee below. We note that the ordeg?
contribution to Eq.(21) is of orders® after analytical con-
tinuation, in agreement with the general energy-spin assign-
ment for vector exchange. We recall that the expected behav-
ior is s’ * for a spind exchange.

The contribution of Eq(21) to 7 follows after integrating

FIG. 1. One-gluon exchange between two receding partons, a&3Ver the impact parametér The result in Euclidean geom-

discussed in Eq(19) (a) and Eq.(20) (b).

In QCD perturbation theory, different time-ordering con-
tributions to quark-quark scattering are shown in Fig. 1 to
order g2. They contribute to thd matrix as7=27;+ 27,

with? (T—)

g®> (T T
7.(0,b)= — J dle d7,
472 Jo 0

cosd

X
(71— 75 C0SH) 2+ 75sir? O+ b?

0 92| T
“tang2 9 b

etry is
7(9,q)=4m25inef d’b €9°° 77 6,b)
g% 4m? (=
=—Ccosf—= —f dx Jp(x) logx (22
2 q2 0

which can be translated into Minkowski geometry by ana-
lytical continuation throughd— —iy with g=—t. In both
geometries7is purely real and divergent &s-0, leading to

a differential cross section of the orderddé/dt~g*/t? with

a corresponding divergent Coulomb cross sectiong?/
(—tmin). In perturbation theory, th matrix acquires ab-
sorptive parts and turns complex to higher-order, ize.

=g?/t+ig#t+---. The Euclidean perturbative analysis can
and be carried out to higher orders as well, in close analogy with
analytically continued Feynman diagrafg.

gz T 0
TZ(G,b)=—2J dTlJ d7'2
4m=Jo -T B. Dipole-dipole scattering

cosé We now consider dipole-dipole scattering
X
(71— 7, c080)?+ 755ir? 0+ b? Da(p1)+Dg(pa)—Dc (k1) +Dp (ky) (23
_ 2
= m| g(I (20) emphasizing its color degrees of freedom. For simplicity we
tand 42 b will assume both dipoles to have siagsand(in this section

average over their orientations. For pedagogical reasons, we
with 7,(6,b)=—7;(m— 6,b) as expected from geometly. start with a “naive” Euclidean approach at large impact pa-
We note that the overall linear dependencefineflects on  rameterb, analogous to the calculation of the dipole-dipole
the range of the gluon exchanged in rapidity space caused [potential above. This would be shown to lead to an incorrect
our ordering in time. This dependence becomies(m—6)  answer for the high energy scattering amplitude. The reason
= in the sum7, i.e. will be given below along with the correct answer.
We will assume that the impact parameteis large in
_ 9° comparison to the typical time characteristic of the Coulomb
70,0)= 22 mlog b/’ (2D interaction inside the dipole, i.6> ro~d/g?. In the elastic
dipole-dipole amplitude the dipoles remain color neutral, and
as the ordering is unrestricted between 0 andAll gluons ~ We may argue that the leading order is 2-gluon dominated. In

between the spatial distandeand T are also exchanged; analogy to the potential, one may rely on the Coulomb inter-
action inside the dipole to write the dipole-dipole effective
vertex in the form

2The color factors can be restored trivially.
%The reader may be puzzled by why we are emphasizing this

simple point. We note that for more involved multi-gluon processes
this cancellation is spoiled by color factors and powers of the angle
survive in the answer: after the analytic continuation to Minkowski
space these powers become powers of rapidity. They exponentiatéhere the electric polarizabilitye~ (g d)?/& with E~g?/d
and produce powers of the collision energy characteristic ofts Rydberg energy14]. (Higher order operators are sup-
Reggeon behavidto be described elsewhgre pressed by powers of the dipole sidg

Seft= ag J_ d7x,%, F3, Fa.(x) (24)

085014-4



INSTANTON-INDUCED EFFECTS IN QCD HIGH. .. PHYSICAL REVIEW D 62 085014

In leading order in the dipole size, the scattering ampli-6 with respect to the vertical direction. To leading order in
tude then reduces to the dipole interaction7 can be assessed by expanding each
Wilson line (28) in powers ofg, and treating the resulting
T 0.b)~ aé Xluklykzxxzaf dr, d7, 2-gluon correlations perturbatively. The result is
NZ2—1 (gd)* cotarf 6
a ra b b . _C
X(FﬂaFm(xl) FABF(rB(X2)>' (25 7(6,b)~ N 3272 o

C

(29

with X;=v 4,7, andx,=v,7,+b. The last expectation value

can be unwound using free field theory to obtain for two identical dipolesi; =d,=d with polarizations along
the impact parametds. For small size dipoles, Eq29) is
the dominant contribution to the scattering amplitude. The

. (26)  analytical continuation shows that cotén- —i, leading to a
finite total cross section as expected.

(Ng—l)aé(ll 1 8cosh

00~ 52556 ' 5 sing

We note that the resu(@26) diverges a®)— 0. For the case
0=0, we obtain the Casimir-Polder-type amplitude IV. INSTANTON EFFECTS ON THE POTENTIALS

(N2 )T 2 23 A. Generalities
c g

7’(O,b)%—3 7 8 (27 Instantons are self-dual solutions to the classical Yang-
™ b Mills equations in vacuum originally discovered in Rgf7].
They are classical paths describing tunneling between topo-
logically inequivalent vacua of the gauge theory. In QCD,
' < _ . ) instantons were argued to be responsible for observable phe-
The analytical continuation of Eq26) to Minkowski  3mena such as the resolution of théllbroblem(large 7'
space shows that the first contribution is of ordes, While 1,555 18] and the spontaneous breaking of chiral symmetry
the second contribution is of order This implies that the [12,19. The interacting instanton liquid mod@ILM ) has
total cross section is unbound, i.e~s, which is clearly peen shown to reproduce multiple correlation functions, in-
incorrect. Indeed, on physical grounds the total cross SeCt'OBIuding hadronic spectra and coupling constafts a re-
should be constant at largeIn Minkowski space it is easy \jew seef1)).
to understand what went wrong. The electric field of a |ystantons are also commonly used in other gauge theo-
boosted dipole looks like a Lorenz contracted disk with &g especially in supersymmetric gauge theories where su-
very small longitudinal widthb/coshy<b. Clearly, at high  nersymmetry ‘makes their effects dominant in the non-
energy the interaction time of two dipoles is of this order of hertrhative regime. Indeed, some exact ressiteh as the
magmtud_e, Whlch_ls much shorterthgn t_he Coulomb tigle  affective low energy Lagrangian fdd=2 supersymmetric
During this short time, the color rotation induced by the Cou-theories derived by Seiberg and Witten and also the AdS/
lomb interaction can be ignored. Therefore, the use of EqepT correspondence suggested by Maldateoa the N
(24) in the form of a local 2-gluon exchange is mcor'réct. =4 super-conformal theoyyan be exactly reproduced using
This point is actually missed in the Euclidean formulation aSexclusively the instanton calculus developed26].
the Lorenz factor is cog~1. Although any particular inte- For the purpose of this paper the topology of instantons is
gral can be analytically continued from Euclidean 106t important: heavy quarks do not interact with fermionic
Minkowski space, kinematical approximations can only be;arg modes, and high energy quarks for all purposes behave
inferred from the Minkowski domain where all parameters 55 heavy quarks. What is important instead is the following
have their physical values. This will be understood throughyechnical point: in the instanton field the path-ordered expo-
out. , , . ) . nents can be evaluateghalytically, since the color phase
So ignoring the Coulomb interaction and using the eiko-qations take place around the same axis for a fixed (aeh
nal approximation, LSZ reduction and the analytical continu-,stanton is a hedgehog in color-spacehe self-duality of

ation discussed above, we can write the dipole-dipole scagye instanton field will also have an effect on some of our
tering amplitude7 in Euclidean geometry similarly to Eq. resylts, Once a path-ordered exponent is evaluated in the
(17) with one-instanton field, the vacuum averages follow through the
instanton ensemble average representing the QCD vacuum
PCeXp(igf dTA(X)~v> (29) (dilute phasg This includes averaging over the instanton
Co
wherex is an element of,. In Euclidean geometrg, is a

center positiorg,, and sizep. Specifically, we will use the
closed rectangular loop of widith that is sloped at an angle

with T—oo, which differs from thed+ 0 by the occurrence
of the infrared sensitive factor/b.

1
W(0,b)= <-Tr
C

measure

SIn fact, the 5-dimensional anti—de Sitter space emerges from the
space of the instanton collective coordinatése center position
“Note that the result27) is not based on this approximation, and and sized*zdp/p®) which will be extensively used for averaging
therefore is still valid. below.
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04 ‘ ; ; ; ; can be used for averaging in any integral over the instanton
density. Typically, the string tensiom~(0.440 MeVY, so
that

03 -
(p?)=(0.28 fm)?,
02 (p*=~(0.31 fm*4,
(p°)~(0.32 fm)°®, (35)
01 -
which shows that the difference between the realistic aver-
ages and simple powers pf, is relatively small. We will
ignore these differences below.
In the analysis to follow, the parameters capturing the
FIG. 2. (8 The instanton densitdn/dpd*z [fm~5] versus its  instanton physics will appear as two dimensionless quanti-
sizep [fm]. (b) The combinatiorp~®dn/dpd*z, in which the main ties: (i) a smalldilutenesgparameter andii) a largeaction of
one-loop behavior drops out fdf.=3,N;=0. The points are from gn instanton(per#):
the lattice work{22], for this theory, withg="5.85 (diamond$, 6.0
(squares and 6.1(circles. Their comparison should demonstrate 4 1\4
that the results are rather lattice independent. The line corresponds Nopo™ 3 So=m~(10—15. (36)
to [21].

0.0 . . . .
0.0 0.1 0.2 0.3 0.4 0.5

[n]

2

The small factor is a penalty for finding the instanton, and
dnedo g4z 2% (39 the large factor is a classical enhancement relative to pertur-
P p° bation theory. Their interplay would cause particular effects

. - . to be parametrically large or small.
for both instantons and anti-instantons. The integral aver

can be sometimes carried out analytically, but most of the
time will be done numerically. The understanding of the in-

stanton size distributio® (p) remains an open problem. Na- At the one instanton level, the various potentials for a
ive semi-classical results suggest fié] static quark-antiquark potential have been assessed long ago

[23], including the spin-dependent part. We will briefly re-
82 | 2Ne 8m? (LA, (23N view this assessment for completeness. We recall that the
m - m ~(pA) ¢ ! various components of the potential follow from the rectan-
(31  9gularTXR Wilson loop

B. Static quarks

Do(p)~Ch,

. . 1
whereCNC is a constant depending on the number of colors V(R)= — - limIn (W(T,R)) 37

N.. We have used the asymptotic freedom formula in the Too

exponent to show that this density dramatically grows with

the instanton size. However, in the true QCD vacuum in- evaluated in a classical instanton field, after averaging over

stantons and anti-instantons interact with each other anthe instanton position. In the Wilson loop, the path-ordered

other quantum fields, so that the real functd(p) deviates exponentsP exp(gfA,dx,) can be evaluated analytically as

from the semi-classical one for large sizes. the instanton locks the color orientation to space. Indeed, the
For qualitative estimates we will often use parameters ostatic potentials involveA§~ 7§ (x—z),~(x—2)* where

the instanton liquid mode]l12], which assumes that all in- (3 _ 7y yefers to the distance between the quark position and

stantons have the same size the 3D coordinate of the instanton cerftefhe resulting

(32 color rotation anglex [23] and the unit vecton? around

= 4 —
dn(p)=no dz dp 5(p~ po) which the rotation takes place are defined through

whereng is the total instantoriplus anti-instantonwith a .
i i - . TH(Z5— T 3)
typical radiuspg, i.e. W=exp< _”T[( a” la

_ 2 271/2
no~1 fm* po=~1/3 fm. (33 ra=2Za)“+p°]

=exp(—imrn,a).

(39

These values were deduced from phenomenological data &% all relevant distances are com arable, — 7, ~ the
tracted from the QCD sum rules, the topological susceptibil- P a—Z%al " Pos

ity and the chiral condensate long before direct lattice dat&2:2HO" angle is @), showing that the expansion in field

became available. In Fig. 2 we show a sample of such Iattic%ireen%ttgr:fa'ln. gerr:]e;;) rFLOt J(;Jsﬂféaezd. '.:nocreat;énag;ﬁ'é? dg'r%?jle’
measurements, together with the parametrization for the in- P laris s (R=0)~R%, si path-
stanton suppression suggestedad]. Specifically,

dn(p) =dn0(p)e*2’“’”2 (34 5The time position of the instantazy, is irrelevant.
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lines in W are close enough to cause partial cancellation.
However whenR=~p,, and both path-ordered lines happen
to be on the opposite sides of the instanton center, the color
rotations on both lines adds up and the potential becomes
roughly linear in R and more sizable. Finally, when the di-
pole is too large, the potential saturafes.

The quark-antiquark potential calculated [i23] can be
expressed as

<W>

V(R)= f dn(p)p*F(Rip) (39

where the dimensionless functiénis defined as

3

d°z
-

——Tr(1—W,W)).
Ncp3 1vV2

(40)

d/rho

3.0

The trace part of the integrand is
2(1—cosa; COSay— Ny -NySiNary Sinay) (41)
20
where the angleg; and vectors? are defined in Eq(38).
This function is shown in Fig. 3a. In order to emphasize the
smallR “dipole limit” V(R)~R? (to be important for what
follows), we have also plotted the ratio of this function to its
dipole limit in Fig. 3b. One can see that the dipole approxi-
mation has an unexpectedly large range of applicability: this
ratio does not change apprecialilgss than 25%until R
~po. One may expect a similar accuracy of the dipole ap-
proximation in other applications to be discussed.
For largeR the potential[23] goes to a constant plus a
Coulomb term

<Ws/d"2

1.0

0.0

0.0 2.0 3.0
d/rho

FIG. 3. (a) F as defined in Eq(39) as a function of the quark-
antiquark distanc& measured in units of the instanton sjzg (b)
the rescaled functiofF (R/po)/R? to exhibit the accuracy of the
dipole approximation at smaR.

473 dp
FD(P)Jr i

3R (42

d
V(R_m):s?fp—gD(p)—

which can be interpreted as the instanton contribution to the . .
massand chargerenormalization, respectively. It is instruc- sated by the classical enhancement, so that the instanton cor-

tive to compare the magnitude of the latter to the perturbal€ctions aR~p, are actually comparable to the perturbative

tive potential, through Coulomb effect. .
However, instantons are not the only non-perturbative ef-

V. ) 82 fects contributing to the static quark-antiquark potential. At
ﬁ:_(nopg)<_2_ ' (43 large R confinement in the form of a QCD string with
Vpert 2 9°(po) Veoni~0R dominates. In fact, already fdR~py~0.3 fm

confinement is dominant, with the instanton-induced poten-
| { . _ tial accounting for only 10-15%.For a detailed study of
ness parametér(the fraction of space-time occupied by in- these issues at the multi-instanton level, one can consult

stanton}stimes theclagsical enhancemerhrough the instan-  Refs. [24] for a numerical analysis ani®5] for analytical
ton action(per #). Using the phenomenological parametersyegyits.

discussed above, we observe that the diluteness is compen-

with Vo =4a4/3R. The ratio is the product of thdilute-

C. Static dipoles

Unlike the quark-antiquark potential, the dipole-dipole

7 . . . . . _
In Ref. [31] one of us has noficed that this behavior is surpris potential is insensitive to confinement, and the instanton-

ingly similar to that experimentally observed in deep inelastic scat
tering, if theQ? dependence of structure functions is treated as the
dependence of the cross section on the dipole size.

8The coefficient in front ofr?p*/2 happens to be the volume of a
4-sphere.

%The claim made ir[26], that instanton effects account for the
confining potential, is incorrect.
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induced interaction may be easier to identify. In the latter
case, we will consider two cases where the characteristic
time within the dipole is eithefi) short, 7o~ d/g?<p, or (i)
long, 79> pg, in comparison to the instanton size. These two
cases translate to a magnitude of the dipole figjd-g/d 6]
which is large(i) or small(ii) in comparison to that of the
instanton fieldA ,~ 1/gp.

In case(i) the static potential can be written in terms of 4]
the polarizabilities and the correlator of gluo-electric fields

V(R) = a;a; J dr(E2(7,R)E2(0,0)). (44) ]
This field str'ength corrglator can pe eyaluated by substituting ) T I Y
the expression for the instanton field:
30
- - 96p* 1 2
E2(x)=B?(x)= . 45 26
( ) ( ) g2 [(X_Z)2+p2]4 ( ) el
22
The averaging of the correlator over the location of the in- =
stanton positiorz can be carried out analytical[{27]: 18]
164
384g* "
([9GL, (09GO = 7 & +(Nopo) Hinsd X/ p) P, !
(46) 8
6
where the last term was added to account for the perturbative ¢
contribution. The dimensionless function describing the in-
stanton contribution is ° : T T T
Y
1228872 8 6 . 5 FIG. 4. (a) Field strength correlatd;,s; as defined in Eq(47)
ITins(y)= 2 &Y +28y°—94y*—160y-—120 versus the distance in units of the instanton sige,. (b) Ratio of
y>(y*+4) the instanton-induced term in the correlator to the perturbative one
240 versus the distance.
+ —2(y6+ 2y*+3y2+2)arcsintiy/2) | .
yVy“+4 gluon exchanges, and that instanton-induced processes can

(47) become dominant in this case.

In casel(ii), the dipoles can be considered quasi-static in
Its behavior is shown in Fig. 4a. Its ratio to the perturbativetime, 7o~d/g?>pq, and the time evolution of the color de-
contribution to the same correlattior g=2 or ag=0.32) is  9rees of freedom due to the Cou_lom_b interaction can be ig-
shown in Fig. 4b. As expected, it is small at small distanceg'ored. In other words, the dynamics is driven entirely by the
x<po. At large distances, the instanton-induced contributiorinstanton field. The potential between two dipoles is now
has the same behavidl;,,~1/R® as the perturbative one.
Furthermore, the ratio of the two is about 30, much more
than the “instanton-induced charge renormalizatiof#3) Vdd(R):f dn(p)p°Fad(R/p) (49)
we discussed in the preceding subsection. About the same is
found in the potentials themselvéhe correlator integrated \yith
over the time differengeas shown in Fig. 4d. The perturba-

tive behavior is dominated biwo gluons rather than one, a3z
and therefore the instanton effect occurs with a classical en- Fdd:J' $(1=TrW,;TrW,). (50)
hancemensquared Nep
Vinst 8m? \? HereW are rectangular Wilsolvopsfor each dipole, traced
VpertN(”OPO) gi(po) ' (48) separately. Averaging over the instanton position can be

done numerically. The results are shown in Fig. 5. The out-
This feature implies that instanton effects are much morgome is proportional talfd3 (dipole momentsrather than
important for dipole-dipole interactions &~p,~0.3 fm  a; a, (electric polarizabilities whend is reasonably small
than the perturbative Casimir-Polder effects. We will arguein comparison tgg. The large distance potential is a few %

below that this is generic for all processes demanding multithat of V(R)~d?d3p2/R’. Note that it is larger than the
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O‘XX wor +C+D) with thexy one(or A+ B/2) and see a clear differ-

Oxx, d=0.4 ence. In(b) we note the dependence on the rotation angle for
16000 | o ] one of the dipoles, which shows a clear t8$ehavior ex-

pected from the expression above.

1e-01 | V. ONE-INSTANTON EFFECT ON SCATTERING

<wiw2>

A. Quark-quark scattering

Our first step now is the generalization of E§8) to an
arbitrary orientatiorg of the Wilson line. The analytical con-
tinuation to Minkowski space follows fromd—iy with y
identified as the rapidity difference between the receding par-
tons. The untraced and tilted Wilson line in the one-instanton
background reads

1e-02 |

1e-03
0.0

130 [ 1 W(6,b)=cosa—ir- nsina (52
®—@d=0.4, R=1

120 - 04d=0.1, R=1, random points 1
—— d=0.1,R=1 where

1.10

n*=R* 5> x,(z—b),=R*n® (53

1.00
[,

<W1Ww2>

0.20 -

and a= my/\y?+ p? with

Y?=n-n=n-n=(z,8in 0—z3c080)%>+ (b—2z,)?. (54

0.80 -

0.70 -

0.60 : : : The one-instanton contribution to the untraced

0.0 1.0 20 3.0
. ) QQ-scattering amplitude follows from the following cor-
FIG. 5. (8 Two correlated Wilson loops as a function of the (g|ator

distanceR between their centers, divided lfd3 for two dipole

sizes,d;=d,=0.1 (circles and 0.4p, (squares The agreement (W ac(8,0)Wpp(0,0))

between the points shows that the dipole scaling holds well for such

sizes. Also two dipole orientations are shown. The open points are

for both dipoles oriented in thedirection(the same direction as the ~ Ny f d4z< cosa cosalaclgp
distance between theR) while the closed points for they orien- -

tation. The disagreement between those means that the dipole-

dipole forces depend on the orientations. Further details on the ori- _ 1
entation dependence are shown (). Fy4(R=py) shows the N2—1
dependence on the orientation angle of one dipole irktlyeplane. ¢
The solid points and curves are for a 4D lattice-type integratior\/\lhere the(undejbar notation means the same as the corre-
over the instanton center, and the open points are for the alternative . - o .

Monte Carlo integration: their spread from the curve shows theSpondlng un-bar notation witti=0 andb=0.

magnitude of the uncertainties involved. Furthermore,

ﬁ-ﬁsinasina(ra)Ac(ra)BD>, (55

perturbative one sincpﬁ is assumed to be much larger than <iTr[W(0,b) W(0,0)]> :@J' d*z(cosa cosa
d,d,, but both answers have the safzeroth power ofg. N¢ N¢ —

In general the dipole-dipole potential cannot be approxi-
mated by the correlator of scalaE’, as can be checked
through its dependence on the relative orientation of the di-
poles. Even in the dipol&uadrati¢ approximations for suf-  The integrand in Eq(56) can be simplified by changing
ficiently small dipoles §j<p) one can define 4 invariant Variable @,sin6#—z3cos6)—z, and dropping the terms that
functions for the dipole-dipole interaction vanish under the integration. Hence

—n-nsinasina).  (56)

V(R)=d;d}dbdfTA(R) 8 i+ 3B(R)(N'NI 8+ n'NMS;)) 1 2ng [, [ 1 o
N—Tr[W(a,b) W(0,0)] :N_f d*z| ——cosa cosa
C C -

+C(R)n'n'8;,+ D(R)n'nin'n™]. (52) sing
The first functionA(R) accounts for the spin-zero gluonic 1 . _Z-zb
operatorE? discussed at the beginning of this subsection. Ttang XSS
However, as one can see from Fig 5, other functions also (4
contribute. In(a) we compare thexx orientation(or A+B (57)
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B. Dipole-dipole and multi-parton scattering

One can directly generalize the calculation of the quark-
quark scattering amplitude to that of any number of partons.
For that, we assume that they all move with high energy in
10° some reference frame and opposite direction: in Euclidean
space those would propagate along two directions, with par-
ton numbers$\N; andN, respectively. Any one of them, pass-
ing through the instanton field, is rotated in color space by a

10° different anglea; around a different axis] , depending on

the shortest distance between its path and the instanton cen-
ter. Integration over all possible color orientations of the in-
stanton leads then to global color conservation.

107 Before discussing specific cases in details, let us make a
. . . general qualitative statement about such processes. We have
0.0 20 40 6.0 found in the previous section thdthe color-changing
quark-quark instanton-induced scattering has a finite high en-
ergy limit. For perturbativen-gluon exchange a factor af]

000 1 ] is paid, while for an instanton mediated scattering a factor of
nopg is paid (the price to find the instanton at the right
place, no matter how many partons participate. Since the
instanton vacuum is dilute, the one-gluon mediated process
dominates the instanton one. However, the situation dramati-
cally changes for two or more gluon exchanges: the
instanton-induced amplitude is about the same for any num-
ber of partons, provided that all of them pass at a distance
~p, from the instanton center.

-0.05 |

ooy Now, consider a dipole configuration of sidechosen in
the transverse plane ofcg) located on a straight line sloped
at an angled in Euclidean space. L&A be the initial color

o1s of the dipole andCD its final color. The Wilson loop with

0.0 20 40 60 open color for the dipole configuration in the one-instanton
bio background is
FIG. 6. (8 and (b) show the two functionsigF.. and nyFgg
defined in Eq.(58) versus the impact parameter(in units of the
instanton radius

Wia(8,b)=cosa_ cosa, lcp
' - bab
+icosa_ sina R*n; (7%)pc

The tilded parameters follow from the un-tilded ones by set- —isina_ cosa,R*n° (7%)pc
ting 6= /2. We note thaty=y=|z|. After analytical con-
tinuation, the first term produces the elastic amplitude which
decays as %/with the energy. The second term corresponds (59
to the color-changing amplitude. It is of ordgf and domi- We have defined

nates at high energy. Specifically

+sina_sina, R®RNP n? (7°7%)pc.

Y+
ai:—
. Vya+p?
<—Tr[W(0,b) W(O,O)]> d\?
N¢ 2 _ i 2 —h+—
vi =(24SiN6—2z3c080) + |z, —b= )
2
20 L hipe)— ——F (bl 58
_Nc sing cc(b/po) tané ssb/po) | (58 . ) ) d?
n,-n_=|(z4siNn6—2z3c0s86)°+(b—-2z)) by (60)

We show in Fig. 6 the numerical behavior of the two contri-With n..-n.. =% . The scattering amplitude of an initial di-
butions in Eq.(58). Note that the second functiofwhich pole through an instanton after averaging over the global

describes color-inelastic collisions and survives in the highcoIor orientatiorR is

energy limi) changes sign, before decreasing to zero at large 2 L

b. This limit corresponds to the instanton-induced renormal- N (Cosa-_cosa,+n_-n;sina_sina,)lep (61)
ization of the one-gluon exchange, and it has therefore loga- ¢

rithmic behavior inb, as described in Sec. Il A. which reduces to the color-singlet channel. Specifically,
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2 ~ A
W(6,b)= N—(COSa,co:Sa+ +n_-n,sina_sina,). S
¢ 62) o L —60=0.25
The 6 dependence in Eq&1),(62) can be readily eliminated
by carrying the integration over the instanton position
through the same change of variable discussed in the quark-
guark scattering, resulting in an amplitude that depends only -
on 1/sind. In Minkowski space this translates tosiwhich
vanishes at high energy. Indeed, the dipole-dipole scattering
amplitude through a single instanton is
n ~ ~
(W(6,b) W(0,0)~ —= | d*z711(6,b)74(0,0) (63) - ‘ ‘ ‘
sing 0.0 20 4.0 6.0
b/rho
where )V follows from W by setting 6= /2. Note that in FIG. 7. (@) Fy2-1(b,d) defined in Eq.(39) versus the dipole-
this caseV(0,0)=/(0,0). dipole impact parametds (in units of the instanton sizg,). Each

It is clear from Eq.(59) that while scattering through an curve corresponds to a different dipole siz¢same units
instanton, the dipole has to flip color to keep track of the
velocity of the quarks in the dipole. The process is coloras in the case of quark-quark scattering, tielor) elastic
inelastic and therefore only contributes to the inelastic amyjinole-dipole amplitude scales as 1/§irand vanishes at
plitude to first order in the instanton density and to the  high energy after analytical continuation. However, the
e_Iastip amplit'U(_je to second order in the instanton density, fcolon inelastic part of the amplitude does not. After per-
situation reminiscent of one- and two-gluon exchange. forming the shift of variables described before, theepen-
The dipole-dipole scattering amplitude with open-color in yence drops from all the angles There is a remaining
the final state can be constructed by using two dipole CONgependence in the four combinationsn. In general, thed
figurations as given by E@59) with a relative angle). After dependence in the latter is linear in Sior cosf, and one
averaging over the instanton color orientations we obtain may worry that the last term in E¢66) may invoive higher
o powers of the trigonometric functions, which would yield to
Wan(6,b) Wi, R (0,0 an unphysical cross section growingssafter analytical con-
tinuation. We have checked that this is not the case, since

— a a
—N_Wlch 1C’D’+—N2 1WN§71(7' Joc (™)prers
¢ c n_-n_n+'n+—n_~n+n+-n_ﬂd2(z§—cosez3zg)

(64)

wherez, is the newz, after the change of variable. More-

with the singlet part : -
over, the co® term drops in the integral over (@dd under

W, =COSa_COSa, COSa_COSa z3— — Z3), making this contribution to Eq66) subleading
— — at high energy after analytical continuatithFinally, we
+n_-nyn_-n,sina_sina, Sina_sina, note that all si@ contributions in Eq.(66) drop following
- ) T - similar parity considerations. As a result, the pertinent octet
+E—'E+ COSa_ COSa.SIna_sina, contribution to the scattering amplitude is proportional to

cotand which is 11 tany=1/iv after analytical continuation.

+ . i i . .
e (69 We have assessed numerically the function

and the octet part

__0 4
WN§,1= —CoSa_ sina+cosE, singm+ ‘N, FNﬁ—l(pO’ pO) - cosﬁf d ZWN§—1 (67)

—sina_ coSa,Sina_ coSa,N_-Nn_
_ T - - which is shown in Fig. 7 for different dipole sizes. We find
+COosa_ sina, SINa_ COSa . N -N_ that the dipole approximation scalifigz2_,~ d? works well,
— — - c

+sina_ cosa,cosa_ sina.n_-n, even for sizes as large as the instanton size.

—Sina_ sina,sina_ sina,.
0This cancellation is not generic. Indeed, the square of this con-

X(N_-n_Ny-ny=n_-nyn.-no). 68 tribution would be leading.
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VI. TWO-INSTANTON EFFECT Clearly, the present analysis generalizes to the dipole-

. I ipole scattering amplitude by using E&4) instead of Eq.
We have shown above that the instanton contribution a?SS) and proceeding as before. The outcome is a finite scat-
large s but smallt behaves in a way similar to one-gluon

) . . O . tering cross section
exchange: only color-inelastic channels survive in the high
energy limit. This means that the contribution to the total 412 .
cross section appears in the amplitude squared, leading natyy(t=0)~ z_of do? f db da-b FN2—1<_1_
rally to the concept of two-instanton exchange. The latter (N;—1)Jo ¢ "\ po Po
contribution to each Wilson line is more involved. To (74
streamline the discussion we will present the analysis of the . . ) )
two instanton contribution to the differential cross section ofcenerically, the dipole-dipole cross section relates to the
quark-quark scattering at high energy. Similar consideration§u@rk-quark cross section in the forward direction through
apply to dipole-dipole scattering as we briefly mention at the )
end of this section. Indeed, for the quark-quark scattering, i~ o (dydy) (75)
unitarity implies that the two-instanton contribution to the T Tad 4
differential cross section is

2

o

It is instructive to compare our instanton results to those
do 1 780 2 developed by Dosch and collaborat¢?$] in the context of
a”;g | Tac (68) the stochastic vacuum modeéVM). In brief, in the SVM

model the Wilson lines are expanded in powers of the field

with the averaging over the initial coloi,B understood. strength using a non-Abelian form of the Stokes theorem in

Inserting Eq.(13) after the substitutiori55), we obtain the Gaussian approximation. A typical hadronic cross section
in the SVM is
d—(’m(ﬁ)z f dbdb e ®b) g+ —— K o~{(gG)?)%a'%F (R, /a) (76)
dt 1 Ne (Ne—1)

(69 where the first factor is the “gluon condensat&is a fitted
correlation length, an& is some dimensionless function de-
pending on the hadronic radil®,. Although our assump-

tions and those df28] are very different regarding the char-
J= f d*z(cosa—1)(cosa—1) f d*z’(cosa’ — 1) acter of the vacuum state, it is amusing to note the agreement
- between Eqs(75) and(76). Indeed, the correlation lengtn
X (cosa’ —1) of the SVM model is relatedand in fact numerically cloge
— to our instanton radiupy~1/3 fm, while the gluon conden-
o o sate((gG)?) of the SVM is simply proportional to the in-
K=f d*zn-nsine Sinaf d*z’ n’-n’sina’ sine’. stanton density, in the instanton model.
N B - B (70) The most significant difference between these two ap-
proaches apart from their dynamical content and the way we

The primed variables follow from the unprimed ones throughhave carried the analytical continuation is the fact that we do

the substitutionz,b—z’,b’. For large /s, J~(1—F.J)(1 not expand in field strength. In fact, in the instanton model

—FlJ)/s?, ! andK =F F/,, so that there is no parameter which would allow to do so for strong

instanton fields. This difference is rather important as it is on
do 16n§ b b\l|2 it that our conclusion regarding multiple color exchanges is
T NNZ—1) f db € Fss( %) (71)  based[In the SVM with Wick-theorem-like decomposition,
ct e those would be just products of single exchanges, like in
perturbative QCDPQCD.]

with

VII. CROSS SECTION FLUCTUATIONS
2
So far, we have considered thgeragevalue of the cross

In particular, the forward scattering amplitude in the two-
instanton approximation is
6n5 (=, o [ D
0'('[:0)%#‘[ dq; J db g9 Fss(_) . ; ) .
Ng(Ng—1)Jo Po section for a parton in a state of unit probability. However,

(72 partons and, in general, hadrons are complex quantum me-

chanical state¥? Hence, the quantum system is characterized

which is finite at largey's. Hence, for forward scattering by some amplitude of probability through its wave function,
partons in the instanton vacuum model, we have and its corresponding scattering cross section is proba-

Taq=(No pg)? . (73

12A truly elementary particle may have only one state and non-
fluctuating cross section: it may have diffraction but no inelastic
yp to self-energies. diffraction.
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bilistic with a probability distribution R o). This idea was
originally suggested by Good and WalK&9], who empha-
sized that inelastic diffraction is a way to quantify this dis-
tribution via the second momento?={(a?—{))?).

The extraction of this and the nefdubic) moment for the
pion and the nucleon using available data was carried out
years latef30], allowing for a reconstruction of the distribu-
tion P(o). A striking aspect of these results is that the
nucleon fluctuations are large and comparable to the pion
fluctuations. This outcome does not fit with the constituent
guark model where the pion is a 2-body system, and the
nucleon is a 3-body system, with more degrees of freedom.
One of us[31] had already noticed that this can be a further
indication for strongly correlated scalar diquarks in a
nucleon. An experimental test for this idea is to measure -
cross section fluctuations for a decuplet baryon sucf as L

. . ¢} 0.2 0.4 0.6 0.8 1 1.2
In the latter there are no diquarks, and smaller fluctuations Fss(b=1)’
(typical of a 3-body stajeare expected. Another aspect of
these fluctuations worth mentioning here is that they seem to FIG. 8. The distribution|Fs(b=po)|? with instantons filling
be maximal for\/§~ 100 GeV, decreasing at very large en- homoggneously the 4D “Wigner-Seitz sph.ere” of radius pg.z
ergies. It supports well the idea that the “most fluctuating” (solid histogramor the smaller sphere of radius pdd(dashed his-
partons are ax~ 102, while at much smallex one basi- °9am-
cally approaches a non-fluctuating black disk.

Although in the present paper we have limited our discus- VIll. CONCLUSIONS AND OUTLOOK
sion to issues of methodology, it is worth pointing out that
the present concept of fluctuations in cross sections can be
used to discriminate between the instanton effects herein de- Several new instanton-generated phenomena have been
scribed and other descriptions based either on perturbativ&udied in this work: static potentials for color dipoles, and
multi-gluon exchange or non-perturbative vacuum structureshigh energy quark-quark and dipole-dipole scattering. The

Indeed, the standard multi-photon exchange in QED leadsature of the instanton effects makes their contribution to
to an (eikonalized exponential scattering amplitude, with these processes different from the contribution expected in
Poisson-like fluctuations. If the mean number of quanta experturbation theory.
changedn)>1 (e.g. for heavy ions with largé~1/), the Overall, the magnitude of the instanton contribution is
distribution becomes narrow and we approach a classicgjoverned by two competing factoré) a diluteness factor
limit, with weakly fluctuating scattering. Modulo color fac- nopé<1, reflecting the fact that their density in the QCD

tors, the same conclusion applies to multi-gluon exchange i(} . 4 - -
’ . . acuum is small <1), and(ii) a classical enhancement
QCD. In contrast, the instanton-induced effects have com; topo=<1) (i)

pletely different statistical properties. The field of the instan—zitor’Ntk:e |r|1|st3;2ton act|0ntof wh|ch |sllar§§00ﬁ%%0 |
ton itself is classical, hence coherent. However, the distribuZ ). Naturally, the more partons are involved in a particular

tion over the instanton size and position is quantGm Process, the more powers ef appear in the perturbative
contrast to the Coulomb field of the ion just mentioped "€Sult for a particular process. This penalty does not apply to
thereby leading to cross section fluctuations. The latter arf€ instanton contribution. One way to quantify this differ-
further enhanced by thdilutenesf the instanton ensemble: €nce is to note that the ratio of the instanton-to-perturbative
the quark may appear very black, provided a tunneling everftontributions contains a power of the classical enhancement
happens to be close to it, and rather transparent otherwise. Agrameter, and this power grows with the number of partons
noticed already if12], quarks are “twinkling” objects, as involved. Typically the first power due to the classical in-
the associated gauge and quark fields are strongly fluctuastanton enhancement cannot really compensate for the small
ing. diluteness of the instantons in the vacuum. However, the
To quantify some of these statements we show in Fig. &econd power is already sufficient to make the instanton ef-
how such a distribution looks. We plfe (b=1)|?, atfixed fects larger than the perturbative ones as we have now estab-
impact parameten=p,. The distribution corresponds to in- lished for the potentials. Indeed, the dipole-dipole instanton-
stantons being homogeneously distributed in the 4D spherigduced potential exceeds significantlyy a factor of~ 25)
around the center of the collision point, with a radils  the perturbative contribution for distancBs> p,.
~2.2p, such thatr?R%/2= 1/n, or in a smaller sphere within Based on these ideas, we have extended the analysis to
R<po. However, the resulting amplitude is highly inhomo- near-forward parton-parton scattering amplitudes, treating in
geneous, with a large peak at small amplitude and a long tailetail the case of quark-quark and dipole-dipole scattering.
at large amplitude. Comparing the solid and dashed curveghe key to our analysis was the concept of analytical con-
one can see that the latter is due to instantons sitting near thiguation in the rapidity variable, which we have applied to
center of the system. both the perturbative and instanton analysis for comparison.

counts, arbitrary units

A. Conclusions
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In the perturbative analysis, one- and two-gluon ex-
changes differ fundamentally in the sense that the former is
color changindinelastig, while the latter is color preserving
(elastig. Indeed, the two-gluon exchange mechanisg]
constitutes the starting ground for the soft Pomeron approach
to dipole-dipole scattering. Since the instantons can be
viewed as multi-gluon configuration&lassical fields we
have suggested that they maybe a viable starting point to
analyze soft parton-parton scatterings. We have shown that
the instanton-induced amplitudes involve also color-elastic
and color-inelastic channels. After analytical continuation,
the one-instanton contribution to the color-elastic channel is
purely real and vanishes as\& (much like a scalar ex-
change. In other words, in this work a single instanton is not
“cut” and its multi-gluon content is not used. Instantons
contribute to soft parton-parton scattering like thehannel
gluons mostly through color exchange channels or through
re-scattering in the elastic channel. The leading instanton
contribution involves a two-instanton-prong channel, and 10+
yields a finite elastic parton-parton scattering amplitude after
analytical continuation in rapidity space. Our result is remi-
niscent of the one reached in the stochastic vacuum model o 1 RV
[28], although our assumptions and methodology are differ- N/N)
ent.

Vs = 200 GeV
Vs = 546 GeV
Vs = 900 GeV
Vs = 1800 GeV

gonme

Normalized Cross Section

FIG. 9. Multiplicity distribution inpp collisions, at 4 different
energies fron]33]. At each energy the cross section and multiplic-

B. Outlook ity are rescaled, to put the lolN-part at the universal KNO curve
(solid line). This is done to see better the behavior of the “second

The results we have derived were achieved in EuclideaffoMPonent discussed in the text.

space prior to our pertinent analytical continuation. There-

fore, they are testable from first principles by repeating ouformed with basicallyunit probability,* so that one can ig-
analysis using instead lattice QCD simulations. Indeed, th&0re them in the calculation of the cross section. Such as-
non-perturbative dipole-dipole forces could be studied. InSUmption is implied in any perturbative approacuch as
contrast to the quark-antiquark potential and to the best of"® LOW-Nussinov gluon-exchange mod8P]), and we as-
our knowledge, those forces have not been investigated me that the same is true for instanton-induced color ex-
the lattice. Also, the various scattering amplitudes discusseff1anges as wel.

in the present work can and should be looked at, leading to Our main suggestion for_furthe_r work is t.hat although the
) . o ; nstanton-induced mechanism vyields relatively small cross
multi-parton amplitudes as we have qualitatively discusse

; : -Sections, this mechanism is likely to dominate oe®ents
Note that not only can the potentials and scattering ampli- y

. ; with multiple color rearrangementds there experimental
tudes themselves be derived, but the degree of their Correl%’vidence for this assertion in high-energy hadronic colli-

tion with the presence of instantons in the underlying con;yns? An answer is provided by Fig.(@aken from[33))

figurations can be revealed as well, using lattice techniqueghich shows aspecially normalizedcompilation of multi-

such as “cooling” and alike to help discriminate instantons . .~ . . . . .- . .
by their topological charge. plicity distributions mpp'colllsmns at various energies. .The
pata show that there is indeé¢at least two componentsti)

Regarding the applications of our results, we admit tha . . .
there remains a significant distance to the description of re ne with the cross sectiam,(s) and standard Koba-Nielsen-
lesen(KNO) distribution (well known from lower energy

hadronic processes. Although we hope to cover further phe: collisions, as indicated by the solid curve, afid) an-
nomenological applications elsewhere, we still would like topt% "th diff i y " ’ d h
comment on two broad but important dynamical issués: other one with a different cross sectian,(s) and muc

the mechanism of color rearrangemeritshigh energy col- fli%hser multi_pli?ity. IAscribing the main pegk a;wNC%
lisions and(ii) the issue ohadronic substructuref the non- —_ *- to asingle color rearrangement reactior=2 Q

perturbative effects in the hadronic wave functions. strings formed one can conclude that at the highest energy
It is generally accepted that high energy hadronic pro—‘/g_z 1800 GeV the multiplicity seen may amount to up to 10

cesses can be split into three stagdsormation of hadronic ~ Strings.

wave function (to which we turn latex (ii) color re-

arrangements of partons in a collision, aiid) decay of the

arising system into multi-hadron final states. It is further be- *The fluxes are described by multiple phenomenological models

lieved that at stagéiii) color flux tubes(QCD string$ are  and codes, e.g. the Lund model.

085014-14
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The existence of the second component with double an@e.g. recent work[34]) to mixed gluon-hadron ladders
triple multiplicity was anticipated by physicists doing Regge[35,31]. Unfortunately, none of these approaches have lead
theory decades ago, in the form of multi-Pomeron ex-so far to a quantitative theory.
changes. However, the multiplicity data shown in Fig. 9 do  Results and estimates made in this work lead to the con-
not really fit well into this description. The second compo- clusion that instanton-induced color exchanges should domi-
nent simply does not look as iterations of the first one. Therg,ate over PQCD-channel gluons starting from théouble
are no separate peaks and, more importantly,stdepen-  exchange amplitudes. It is therefore logical to conjecture that
dence is completely different. The first component is in facthe second high-multiplicity component pp collisions may
consistent with the approximation used above, namely aRe generated by this mechanism. That would explain why
asymptotically constant cross secti@ero Pomeron inter- njtiple-string events are not just an iteration of the first
cept, while the latter grows with/s very strongly. ~ component, and even consistent with where the transition

Attempts to solve this puzzle in PQCD, by summing gppears to be. Needless to say that much more work is still

ladder-type diagrams in leading logy(approximation are needed for a further test of this conjecture.
well known[4], and they do indeed produce strongly grow-

ing cross sections and multi-parton states. So the second ACKNOWLEDGMENTS

component may well be due to those perturbative processes.
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