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Instanton-induced effects in QCD high-energy scattering
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~Received 30 May 2000; published 26 September 2000!

We evaluate a number of new instanton-induced phenomena in QCD, starting with static dipole-dipole
potentials, and proceeding to quark-quark and dipole-dipole scattering at high energy. We use a nonperturba-
tive formulation of the scattering amplitude in terms of a correlator of two Wilson lines~quarks! or Wilson
loops~dipoles! and analyze the Euclidean amplitudes with both perturbative gluons and instantons. The results
are analytically continued to Minkowski geometry by interpreting the angle between the Wilson lines as
rapidity. We discuss the relevance of our results for the phenomenology of near-forward hadronic processes at
high energy, especially for processes with multiple color exchanges.

PACS number~s!: 12.38.Lg
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I. INTRODUCTION

Significant progress reached in the realm of no
perturbative QCD has been mostly related to approac
based on the Euclidean formulation of the theory: numer
simulations using lattice gauge theory, instantons, mo
poles, etc. By now, we know a great deal about the impor
or even dominant role of instanton-induced effects for cor
lation functions in a variety of hadronic channels, hadro
wave functions and form factors; for a review see@1#. Un-
fortunately so far many of those results have not been tra
lated to Minkowski space, a crucial step for understand
hadronic high-energy processes. It is however clear that t
must be a very general and direct relationship between
hadronic substructure and the details of high energy re
tions. Indeed, the non-perturbative modification of QC
vacuum fields induced by the valence quarks studied in
clidean space-time should look like parton correlations in
transverse plane in a boosted frame. Many known feature
partonic distributions, including spin and flavor of the s
quarks, point to their non-perturbative origin. Many mo
features~such asfluctuationsof these cross sections andcor-
relations in the parton positions in the transverse pla
which we briefly discuss at the end of the paper! are still to
be studied in detail.

The first systematic step towards a semi-classical but n
perturbative formulation of high-energy scattering in QC
was suggested by Nachtmann@2#, who has related the sca
tering amplitude to expectations of pairs of Wilson line
Semi-classical expressions with a similar pair of Wils
lines for deep inelastic scattering~DIS! structure functions
were also proposed by Muller@3#: in contrast with their tra-
ditional interpretation as partonic densities, they were trea
as cross sections for targets penetrated by small dipole
probes at high energy. One systematic way to use these s
classical expressions is to go back to the perturbative dom
and try to improve on the diagrammatic approaches@such as
the celebrated Balitskiiˇ-Fadin-Kuraev-Lipatov~BFKL! @4#
re-summation#: see e.g. calculations of the anomalous
mension of the cross-singularity between two Wilson lin
@5# or the analysis of the path exponents in@6#.

The approach we will follow in this paper is different: th
Wilson lines in question are evaluated semi-classically us
0556-2821/2000/62~8!/085014~15!/$15.00 62 0850
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instantons. In order to be able to do so, one should star
Euclidean space-time, where those solutions are the sa
points of the functional integrals. The results are then a
lytically continued back to Minkowski space. Although
was not done before in this form, there are similar a
proaches in the perturbative context~e.g. @7# and references
therein!. Another methodically close approach to our ana
sis is @8,9# where recent progress on the non-perturbat
dynamics in N54 super Yang-Mills ~SYM! theory was
used. In particular, the AdS conformal field theory~CFT!
correspondence has been used to evaluate the partonic
section geometrically, using a deformed string in the curv
anti–de Sitter space.

The instanton-induced processes to be considered in
work are eitherelasticscattering of partons orquasi-elastic
ones, with color transfer between them. They are very
ferent from~and should not be confused with! multi-quanta
production processes originally discussed in electrow
theory @10# in connection with baryon number violation an
later in QCD in connection to DIS@11#. Such phenomena
associated with small-size instantons, are easier to eval
and also they should lead to much more spectacular eve
However, those lead to much smaller cross sections in c
parison to the processes to be discussed below.

In this paper, we will not aim at a development of a re
istic model for high-energy hadronic reactions based on
stanton physics. Instead, we will answer few questions
principle, such as the following: Is it possible to assess n
perturbatively scattering amplitudes using the Euclidean
mulation of the theory? How is the analytical continuati
enforced on the non-perturbative amplitudes? What is
magnitude of the instanton induced effects in comparison
the perturbative effects in the scattering of near-forward h
energy partons?

In Sec. II we review the perturbative effects on the dipo
dipole potential, including the derivation of a renormaliz
tion group solution that can be tested using QCD latt
simulations. In Sec. III we extend the perturbative analysis
Euclidean space to the case of scattering between two qu
and two dipoles. Particular issues regarding the analyt
continuation of the perturbative results to Minkowski spa
are discussed. In Sec. IV, we discuss the effects of instan
on the static potentials for quarks and dipoles. At large d
©2000 The American Physical Society14-1
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tances the results resemble perturbation theory apart from
large classical enhancement of (8p2/g2)2'102, which is
partially compensated by the diluteness factorn0r0

4'(1/3)4

@12# of the instantons in the vacuum. In Sec. V, we calcul
the scattering amplitudes for quarks and dipoles in the o
instanton approximation. The color preserving part of
amplitude is real and vanishes at high energy. The co
exchange part is real but finite at high energy, thereby c
tributing to the near-forward inelastic scattering or r
scattering of partons. In Sec. VI, we extend our discussio
two instantons. We found that for two quarks the cross s
tion is of the order ofsqq;(n0r0

4)2r0
2, while for two dipoles

it is further suppressedsdd;sqq(d1
2d2

2/r0
4). These results

are supported by our calculations. In Sec. VII, we discuss
possible role of instantons in cross-section fluctuations.
conclusions and recommendations are in Sec. VIII.

II. PERTURBATIVE ANALYSIS OF POTENTIALS

A. Dipole-dipole potential

We start with the simplest analysis in Euclidean space
which the perturbative expansion of two Euclidean Wils
lines leads to the well-known result for the potential betwe
static charges. Indeed, by expanding two Wilson lines to fi
order in the gauge couplingg, using the Euclidean propaga
tor ^A (x)A (y)&;1/(x2y)2 with x,y located on two paral-
lel but straight lines, and finally integrating over the relati
time x02y0, we readily obtain the Coulomb potentia
V(R);as(R)/R.

Now, consider the case of the interaction between t
color neutral objects, such astwo static color dipoles. The
simplest perturbative process in this case includes do
photon-gluon exchange. The problem was solved in QED
Casimir and Polder@13#, who have shown that the potenti
at large distancesR is

V~R!52
a1a2

R7 ~1!

where the polarizabilities a1,2 are of the order ofa1,2
;t0d2, d is the dipole size andt0 is some characteristic
time ~see below!. This result differs from the van der Waa
potential 1/R6 ~valid at smallerR) because of the time dela
effects. These observations were generalized to perturba
QCD in @14,15#.

The Euclidean approach leads to the 7th power ofR in a
simple way, provided that the following conditions are sat
fied: ~i! d1,2!R which justifies the dipole approximation an
identifies the relevant field operators (dW •EW )2; ~ii ! both ex-
changed photons~or gluons! are emitted and absorbed
close x0 and y0 times. As a result, the perturbative fie
correlator̂ E2(x)E2(y)&;1/(x2y)851/(R21t2)4, once in-
tegrated over the relative timet5x02y0, leads the result
1/R7.

The condition~ii ! can be understood for complex system
like atoms or hadrons in the following way: the first dipo
emission excites the system from~usually anS-wave! ground
state to~usually aP-wave! excited state, while the secon
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dipole emission returns the system back. The energies o
intermediate state sets the characteristic lifetimet0'1/(EP
2ES).

However, for static dipoles the situation is different in
QED and QCD. In QED the emission times of two e
changed quanta are independent, but in QCD they are
Even astaticdipole can change its color degrees of freedo
Because different total color states of the dipole have diff
ent energies, thanks to the Coulomb interaction, we ag
have excited intermediate states. Therefore the characte
time is determined by the difference in Coulomb energy
tween the singlet and octet states:

1/t05DE5~3as /2!/d. ~2!

Although the dipoles may besmall d!R, this time may still
be long because in the perturbative domain the coupling c
stant is smallg2(d)!1. As a result, there are two differen
regimes, when the distanceR is large~i! R@t0 or small~ii !
R!t0. In the former case again the power is 7 and the
larizability is1 a54pd3/3. The latter case is the van de
Walls domain.

B. RGE analysis of the dipole-dipole potential

On general grounds, the potential between two interac
dipoles can be shown to obey the following equation:

as

]V~b!

]as
52

1

2E d3x ^Tr F2~x! &b ~3!

whereas is the QCD running coupling and the averaging
Eq. ~3! is carried in the presence of the two static dipole
distanceb apart. Generically,

V~b![V~b,a,m,as!'m ~m a!k F~m b,as! ~4!

wherem is the renormalization scale. Hence,

]V
]as

52
1

b S ~k11! V1b
]V
]bD ~5!

where b5das /d ln m is the QCD beta function. Inserting
Eq. ~5! into Eq. ~3! yields

~k11! V1b
] V
]b

5
b

2as
E d3x ^Tr F2~x!&b , ~6!

which is the renormalization group equation~RGE! satisfied
by the dipole-dipole potential. At large separations we m
assume the dipole-dipole potential in quenched QCD to
low like a power law, i.e.

V~b!'m ~ma!k ~mb!g, ~7!

turning Eq.~6! into an algebraic equation

1Amusingly, the result is just the volume of a sphere of radiusd,
from which the perturbative coupling constantg dropped out.
4-2
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~11g1k! V~b!5
b

2as
E d3x ^Tr F2~x!&b . ~8!

Alternatively, the potential between two dipoles is a meas
of the energy density in the presence of two dipoles:

V~b!5E d3x ^Q00~x!&b . ~9!

The combination of the RGE~8! and the definition~9! yields
a constraint between the exponentsk and g in Eq. ~7! as-
ymptotically, namely

g5212k1
b

as

12R

11R
~10!

with

R5

E d3x^B2~x!&b

E d3x^E2~x!&b

~11!

a measure of the magnetic-to-electric ratio in the configu
tion composed of two static dipoles a distanceb away from
each other. For a self-dual fieldR51 andg5212k if the
asymptotic~7! is assumed.

III. PERTURBATIVE SCATTERING IN EUCLIDEAN
GEOMETRY

A. Quark-quark scattering

Generically, we will refer to quark-quark scattering as

QA~p1!1QB~p2!→QC~k1!1QD~k2!. ~12!

We denote byAB and CD, respectively, the incoming an
outgoing color and spin of the quarks~polarization for glu-
ons!. Using the eikonal approximation and Lehman
Symanzik-Zimmermann~LSZ! reduction, the scattering am
plitude T for quark-quark scattering reads@2,5,16#

TAB,CD~s,t !'22isE d2b eiq'•b

3^@W1~b!21#AC@W2~0!21#BD& ~13!

where as usuals5(p11p2)2, t5(p12k1)2, s1t1u54m2

and

W1,2~b!5PcexpS igE
2`

1`

dt A~b1v1,2t!•v1,2D . ~14!

The 2-dimensional integral in Eq.~13! is over the impact
parameterb with t52q'

2 , and the averaging is over th
gauge configurations using the QCD action. The color be
ing amplitude~13! allows for scattering into a singlet or a
octet configuration, i.e.

T5T1 1^ 11TN
c
221 ~ta

^ ta!, ~15!
08501
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following the decompositionNc^ Nc51% (Nc
221). For

gluon-gluon scattering the lines are doubled in color sp
~adjoint representation! and further gauge-invariant contrac
tions are possible. For quark-quark scattering the singlet
change in thet channel is 01 ~Pomeron! while for quark-
antiquark scattering it is 02 ~odderon! as the two differ by
charge conjugation.

A quark with large momentump travels on a straight line
with 4-velocity ẋ5v5p/m and v251. In the eikonal ap-
proximation an ordinary quark transmutes to a scalar qu
The argument applies to any charged particle in a ba
ground gluon field, with the following amendments: for an
quarks the 4-velocityv is reversed in the Wilson line and fo
gluons the Wilson lines are in the adjoint representati
Quark-quark scattering can be also extended to qu
antiquark, gluon-gluon or scalar-scalar scattering. For qua
antiquark scattering the elastic amplitude dominates at la
As since the annihilation part is down byA2t/s.

It can be described in Minkowski geometry in the c.m
frame with p1 /m5 (coshg/2, sinhg/2,0') and p2 /m
5 (coshg/2,2sinhg/2,0') with the rapidity g defined
through coshg/25As/2m. For s@m2 the rapidity gap be-
tween the receding scatterers becomes large withg
' log(s/m2). The momentum transfer between the scatter
is q5p12k1, with q0'q3't/As and q'

2 5tu/(s24m2)
'2t. Henceq5(0,0,q') with q252q'

2 5t. Although the
partons or dipoles change their velocities after scattering,
change is small fors@2t. This is the kinematical assump
tion behind the use of the eikonal approximation.

In Euclidean geometry, the kinematics is fixed by noti
that the Lorenz contraction factor translates to

coshg5
1

A12v2
5

s

2m2
21→cosu. ~16!

Scattering at high energy in Minkowski geometry follow
from scattering in Euclidean geometry by analytically co
tinuing u→2 ig in the regimeg' log (s/m2)@1 @7#. It is
sufficient to analyze the scattering forp1 /m5 (1,0,0'),
p2 /m5 (cosu ,2sinu, 0'), q5(0,0,q') and b5(0,0,b').
The Minkowski scattering amplitude at high energy can
altogether continued to Euclidean geometry through

TAB,CD~u,q!'4m2 sinuE d2b eiq'•b

3^@W~u,b!21#AC@W~0,0!21#BD&

~17!

where

W~b,u!5PcexpS igE
u

dt A~b1vt!•v D ~18!

with v5p/m. The line integral in Eq.~18! is over a straight
line sloped at an angleu away from the vertical.
4-3
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In QCD perturbation theory, different time-ordering co
tributions to quark-quark scattering are shown in Fig. 1
order g2. They contribute to theT matrix asT52T112T2
with2 (T→`)

T1~u,b!5
g2

4p2 E
0

T

dt1E
0

T

dt2

3
cosu

~t12t2 cosu!21t2
2sin2 u1b2

5
u

tanu

g2

4p2
logS T

bD ~19!

and

T2~u,b!5
g2

4p2E0

T

dt1E
2T

0

dt2

3
cosu

~t12t2 cosu!21t2
2sin2 u1b2

5
~p2u!

tanu

g2

4p2
logS T

bD ~20!

with T2(u,b)52T1(p2u,b) as expected from geometry3

We note that the overall linear dependence inu reflects on
the range of the gluon exchanged in rapidity space cause
our ordering in time. This dependence becomesu1(p2u)
5p in the sumT, i.e.

T~u,b!5
g2

2p2

p

tanu
logS T

bD , ~21!

as the ordering is unrestricted between 0 andp. All gluons
between the spatial distanceb and T are also exchanged

2The color factors can be restored trivially.
3The reader may be puzzled by why we are emphasizing

simple point. We note that for more involved multi-gluon proces
this cancellation is spoiled by color factors and powers of the an
survive in the answer: after the analytic continuation to Minkow
space these powers become powers of rapidity. They exponen
and produce powers of the collision energy characteristic
Reggeon behavior~to be described elsewhere!.

FIG. 1. One-gluon exchange between two receding partons
discussed in Eq.~19! ~a! and Eq.~20! ~b!.
08501
o
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hence the infrared sensitivity of the quark-quark scatter
amplitude in perturbation theory. This sensitivity drops fro
the cross section~see below!. We note that the orderg2

contribution to Eq.~21! is of orders0 after analytical con-
tinuation, in agreement with the general energy-spin ass
ment for vector exchange. We recall that the expected beh
ior is sJ21 for a spin-J exchange.

The contribution of Eq.~21! to T follows after integrating
over the impact parameterb. The result in Euclidean geom
etry is

T~u,q!54m2 sinu E d2b eiq•b T~u,b!

52cosu
g2

2

4m2

q2 E
0

`

dx J0~x! logx ~22!

which can be translated into Minkowski geometry by an
lytical continuation throughu→2 ig with q252t. In both
geometries,T is purely real and divergent ast→0, leading to
a differential cross section of the order ofds/dt'g4/t2 with
a corresponding divergent Coulomb cross sections'g4/
(2tmin). In perturbation theory, theT matrix acquires ab-
sorptive parts and turns complex to higher-order, i.e.T
5g2/t1 ig4/t1•••. The Euclidean perturbative analysis ca
be carried out to higher orders as well, in close analogy w
analytically continued Feynman diagrams@7#.

B. Dipole-dipole scattering

We now consider dipole-dipole scattering

DA ~p1!1DB ~p2!→DC ~k1!1DD ~k2! ~23!

emphasizing its color degrees of freedom. For simplicity
will assume both dipoles to have sizesd, and~in this section!
average over their orientations. For pedagogical reasons
start with a ‘‘naive’’ Euclidean approach at large impact p
rameterb, analogous to the calculation of the dipole-dipo
potential above. This would be shown to lead to an incorr
answer for the high energy scattering amplitude. The rea
will be given below along with the correct answer.

We will assume that the impact parameterb is large in
comparison to the typical time characteristic of the Coulo
interaction inside the dipole, i.e.b@t0'd/g2. In the elastic
dipole-dipole amplitude the dipoles remain color neutral, a
we may argue that the leading order is 2-gluon dominated
analogy to the potential, one may rely on the Coulomb int
action inside the dipole to write the dipole-dipole effecti
vertex in the form

Se f f5aE E
2`

`

dt ẋmẋn Fma
a Fna

a ~x! ~24!

where the electric polarizabilityaE'(gd)2/E with E'g2/d
its Rydberg energy@14#. ~Higher order operators are sup
pressed by powers of the dipole sized.!
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In leading order in the dipole size, the scattering amp
tude then reduces to

T~u,b!' aE
2 ẋ1mẋ1nẋ2lẋ2sE

2`

`

dt1 dt2

3^Fma
a Fna

a ~x1! Flb
b Fsb

b ~x2!&, ~25!

with x15v1t1 andx25v2t21b. The last expectation valu
can be unwound using free field theory to obtain

T~u,b!'
~Nc

221!

p3

aE
2

b6 S 11

25

1

sinu
1

8

5

cos2u

sinu D . ~26!

We note that the result~26! diverges asu→0. For the case
u50, we obtain the Casimir-Polder-type amplitude

T~0,b!'
~Nc

221!

p3

TaE
2

b7

23

8
~27!

with T→`, which differs from theuÞ0 by the occurrence
of the infrared sensitive factorT/b.

The analytical continuation of Eq.~26! to Minkowski
space shows that the first contribution is of order 1/s, while
the second contribution is of orders. This implies that the
total cross section is unbound, i.e.s;s, which is clearly
incorrect. Indeed, on physical grounds the total cross sec
should be constant at larges. In Minkowski space it is easy
to understand what went wrong. The electric field of
boosted dipole looks like a Lorenz contracted disk with
very small longitudinal widthb/coshy!b. Clearly, at high
energy the interaction time of two dipoles is of this order
magnitude, which is much shorter than the Coulomb timet0.
During this short time, the color rotation induced by the Co
lomb interaction can be ignored. Therefore, the use of
~24! in the form of a local 2-gluon exchange is incorrec4

This point is actually missed in the Euclidean formulation
the Lorenz factor is cosu;1. Although any particular inte-
gral can be analytically continued from Euclidean
Minkowski space, kinematical approximations can only
inferred from the Minkowski domain where all paramete
have their physical values. This will be understood throu
out.

So ignoring the Coulomb interaction and using the eik
nal approximation, LSZ reduction and the analytical contin
ation discussed above, we can write the dipole-dipole s
tering amplitudeT in Euclidean geometry similarly to Eq
~17! with

W~u,b!5
1

Nc
TrFPcexpS igE

Cu

dt A~x!•v D G ~28!

wherex is an element ofCu . In Euclidean geometryCu is a
closed rectangular loop of widthd, that is sloped at an angl

4Note that the result~27! is not based on this approximation, an
therefore is still valid.
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u with respect to the vertical direction. To leading order
the dipole interaction,T can be assessed by expanding ea
Wilson line ~28! in powers ofg, and treating the resulting
2-gluon correlations perturbatively. The result is

T~u,b!'
Nc

221

Nc
2

~gd!4

32p2

cotan2 u

b4
~29!

for two identical dipolesd15d25d with polarizations along
the impact parameterb. For small size dipoles, Eq.~29! is
the dominant contribution to the scattering amplitude. T
analytical continuation shows that cotanu→2 i , leading to a
finite total cross section as expected.

IV. INSTANTON EFFECTS ON THE POTENTIALS

A. Generalities

Instantons are self-dual solutions to the classical Ya
Mills equations in vacuum originally discovered in Ref.@17#.
They are classical paths describing tunneling between to
logically inequivalent vacua of the gauge theory. In QC
instantons were argued to be responsible for observable
nomena such as the resolution of the U~1! problem~largeh8
mass! @18# and the spontaneous breaking of chiral symme
@12,19#. The interacting instanton liquid model~IILM ! has
been shown to reproduce multiple correlation functions,
cluding hadronic spectra and coupling constants~for a re-
view see@1#!.

Instantons are also commonly used in other gauge th
ries, especially in supersymmetric gauge theories where
persymmetry makes their effects dominant in the no
perturbative regime. Indeed, some exact results~such as the
effective low energy Lagrangian forN52 supersymmetric
theories derived by Seiberg and Witten and also the A
CFT correspondence suggested by Maldacena5 for the N
54 super-conformal theory! can be exactly reproduced usin
exclusively the instanton calculus developed in@20#.

For the purpose of this paper the topology of instanton
not important: heavy quarks do not interact with fermion
zero modes, and high energy quarks for all purposes beh
as heavy quarks. What is important instead is the follow
technical point: in the instanton field the path-ordered ex
nents can be evaluatedanalytically, since the color phase
rotations take place around the same axis for a fixed path~the
instanton is a hedgehog in color-space!. The self-duality of
the instanton field will also have an effect on some of o
results. Once a path-ordered exponent is evaluated in
one-instanton field, the vacuum averages follow through
instanton ensemble average representing the QCD vac
~dilute phase!. This includes averaging over the instanto
center positionzm and sizer. Specifically, we will use the
measure

5In fact, the 5-dimensional anti–de Sitter space emerges from
space of the instanton collective coordinates~the center position
and sized4zdr/r5) which will be extensively used for averagin
below.
4-5
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EDWARD SHURYAK AND ISMAIL ZAHED PHYSICAL REVIEW D 62 085014
dn5dr d4z
D~r!

r5 ~30!

for both instantons and anti-instantons. The integral ovez
can be sometimes carried out analytically, but most of
time will be done numerically. The understanding of the
stanton size distributionD(r) remains an open problem. Na
ive semi-classical results suggest the@18#

D0~r!'CNcS 8p2

g2~r! D
2Nc

expS 2
8p2

g2~r! D'~rL!(11/3)Nc2(2/3)Nf

~31!

whereCNc
is a constant depending on the number of col

Nc . We have used the asymptotic freedom formula in
exponent to show that this density dramatically grows w
the instanton sizer. However, in the true QCD vacuum in
stantons and anti-instantons interact with each other
other quantum fields, so that the real functionD(r) deviates
from the semi-classical one for large sizes.

For qualitative estimates we will often use parameters
the instanton liquid model@12#, which assumes that all in
stantons have the same size

dn~r!5n0 d4z dr d~r2r0! ~32!

where n0 is the total instanton~plus anti-instanton! with a
typical radiusr0, i.e.

n0'1 fm4, r0'1/3 fm. ~33!

These values were deduced from phenomenological data
tracted from the QCD sum rules, the topological suscepti
ity and the chiral condensate long before direct lattice d
became available. In Fig. 2 we show a sample of such lat
measurements, together with the parametrization for the
stanton suppression suggested in@21#. Specifically,

dn~r!5dn0~r!e22psr2
~34!

FIG. 2. ~a! The instanton densitydn/drd4z @ fm25# versus its
sizer @fm#. ~b! The combinationr26dn/drd4z, in which the main
one-loop behavior drops out forNc53,Nf50. The points are from
the lattice work@22#, for this theory, withb55.85 ~diamonds!, 6.0
~squares! and 6.1~circles!. Their comparison should demonstra
that the results are rather lattice independent. The line corresp
to @21#.
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can be used for averaging in any integral over the instan
density. Typically, the string tensions'(0.440 MeV)2, so
that

^r2&'~0.28 fm!2,

^r4&'~0.31 fm!4,

^r5&'~0.32 fm!5, ~35!

which shows that the difference between the realistic av
ages and simple powers ofr0 is relatively small. We will
ignore these differences below.

In the analysis to follow, the parameters capturing t
instanton physics will appear as two dimensionless qua
ties: ~i! a smalldilutenessparameter and~ii ! a largeactionof
an instanton~per \):

n0r0
4'S 1

3D 4

S05
8p2

g2~r0!
'~10–15!. ~36!

The small factor is a penalty for finding the instanton, a
the large factor is a classical enhancement relative to pe
bation theory. Their interplay would cause particular effe
to be parametrically large or small.

B. Static quarks

At the one instanton level, the various potentials for
static quark-antiquark potential have been assessed long
@23#, including the spin-dependent part. We will briefly r
view this assessment for completeness. We recall that
various components of the potential follow from the recta
gular T3R Wilson loop

V~R!52
1

T
lim

T→`

ln ^W~T,R!& ~37!

evaluated in a classical instanton field, after averaging o
the instanton position. In the Wilson loop, the path-orde
exponentsP exp(ig*Amdxm) can be evaluated analytically a
the instanton locks the color orientation to space. Indeed,
static potentials involveA0

a;h0,n
a (x2z)n;(x2z)a where

(xW2zW) refers to the distance between the quark position
the 3D coordinate of the instanton center.6 The resulting
color rotation anglea @23# and the unit vectorna around
which the rotation takes place are defined through

W5expS 2 ip
ta~za2r a!

@~r a2za!21r2#1/2D 5exp~2 iptanaa!.

~38!

If all relevant distances are comparable,ur a2zau;r0, the
rotation angle is O~1!, showing that the expansion in fiel
strength is in general not justified. For a small-size dipo
the potential is smallV(R→0)'R2, since the path-ordered

6The time position of the instantonz4 is irrelevant.

ds
4-6
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lines in W are close enough to cause partial cancellati
However whenR'r0, and both path-ordered lines happ
to be on the opposite sides of the instanton center, the c
rotations on both lines adds up and the potential beco
roughly linear in R and more sizable. Finally, when the
pole is too large, the potential saturates.7

The quark-antiquark potential calculated in@23# can be
expressed as

V~R!5E dn~r!r3F~R/r! ~39!

where the dimensionless functionF is defined as

F5E d3z

Ncr
3Tr~12W1W2

†!. ~40!

The trace part of the integrand is

2~12cosa1 cosa22 nW 1•nW 2sina1 sina2! ~41!

where the anglesa i and vectorsni
a are defined in Eq.~38!.

This function is shown in Fig. 3a. In order to emphasize
small-R ‘‘dipole limit’’ V(R);R2 ~to be important for what
follows!, we have also plotted the ratio of this function to
dipole limit in Fig. 3b. One can see that the dipole appro
mation has an unexpectedly large range of applicability:
ratio does not change appreciably~less than 25%! until R
'r0. One may expect a similar accuracy of the dipole a
proximation in other applications to be discussed.

For largeR the potential@23# goes to a constant plus
Coulomb term

V~R→`!537E dr

r2 D~r!2
4p3

3R

dr

r
D~r!1••• ~42!

which can be interpreted as the instanton contribution to
massandchargerenormalization, respectively. It is instruc
tive to compare the magnitude of the latter to the pertur
tive potential, through

Vinst

Vpert
5

p2

2
~n0r0

4!S 8p2

g2~r0! D , ~43!

with Vpert54as/3R. The ratio is the product of thedilute-
ness parameter8 ~the fraction of space-time occupied by in
stantons! times theclassical enhancementthrough the instan-
ton action~per \). Using the phenomenological paramete
discussed above, we observe that the diluteness is com

7In Ref. @31# one of us has noticed that this behavior is surpr
ingly similar to that experimentally observed in deep inelastic sc
tering, if theQ2 dependence of structure functions is treated as
dependence of the cross section on the dipole size.

8The coefficient in front ofp2r4/2 happens to be the volume of
4-sphere.
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sated by the classical enhancement, so that the instanton
rections atR'r0 are actually comparable to the perturbati
Coulomb effect.

However, instantons are not the only non-perturbative
fects contributing to the static quark-antiquark potential.
large R confinement in the form of a QCD string wit
Vcon f'sR dominates. In fact, already forR'r0;0.3 fm
confinement is dominant, with the instanton-induced pot
tial accounting for only 10–15 %.9 For a detailed study of
these issues at the multi-instanton level, one can con
Refs. @24# for a numerical analysis and@25# for analytical
results.

C. Static dipoles

Unlike the quark-antiquark potential, the dipole-dipo
potential is insensitive to confinement, and the instant

-
t-
e

9The claim made in@26#, that instanton effects account for th
confining potential, is incorrect.

FIG. 3. ~a! F as defined in Eq.~39! as a function of the quark-
antiquark distanceR measured in units of the instanton sizer0, ~b!
the rescaled functionF(R/r0)/R2 to exhibit the accuracy of the
dipole approximation at smallR.
4-7
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induced interaction may be easier to identify. In the lat
case, we will consider two cases where the character
time within the dipole is either~i! short, t0;d/g2!r, or ~ii !
long, t0@r0, in comparison to the instanton size. These t
cases translate to a magnitude of the dipole fieldA0;g/d
which is large~i! or small ~ii ! in comparison to that of the
instanton fieldAm;1/gr.

In case~i! the static potential can be written in terms
the polarizabilities and the correlator of gluo-electric field

V~R!5a1a2E dt^EW 2~t,R!EW 2~0,0!&. ~44!

This field strength correlator can be evaluated by substitu
the expression for the instanton field:

EW 2~x!5BW 2~x!5
96r4

g2

1

@~x2z!21r2#4 . ~45!

The averaging of the correlator over the location of the
stanton positionz can be carried out analytically@27#:

^@gGmn
a ~x!#2@gGmn

a ~0!#2&5
384g4

p4x8 1~n0r0
4!P inst~x/r!/r8,

~46!

where the last term was added to account for the perturba
contribution. The dimensionless function describing the
stanton contribution is

P inst~y!5
12288p2

y6 ~y214!5 S y8128y6294y42160y22120

1
240

y Ay214
~y612 y413 y212! arcsinh~y/2!D .

~47!

Its behavior is shown in Fig. 4a. Its ratio to the perturbat
contribution to the same correlator~for g52 or as50.32) is
shown in Fig. 4b. As expected, it is small at small distan
x!r0. At large distances, the instanton-induced contribut
has the same behaviorP inst'1/R8 as the perturbative one
Furthermore, the ratio of the two is about 30, much m
than the ‘‘instanton-induced charge renormalization’’~43!
we discussed in the preceding subsection. About the sam
found in the potentials themselves~the correlator integrated
over the time difference! as shown in Fig. 4d. The perturba
tive behavior is dominated bytwo gluons rather than one
and therefore the instanton effect occurs with a classical
hancementsquared:

Vinst

Vpert
;~n0r0

4! S 8p2

g2~r0! D
2

. ~48!

This feature implies that instanton effects are much m
important for dipole-dipole interactions atR'r0'0.3 fm
than the perturbative Casimir-Polder effects. We will arg
below that this is generic for all processes demanding mu
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gluon exchanges, and that instanton-induced processes
become dominant in this case.

In case~ii !, the dipoles can be considered quasi-static
time, t0;d/g2@r0, and the time evolution of the color de
grees of freedom due to the Coulomb interaction can be
nored. In other words, the dynamics is driven entirely by
instanton field. The potential between two dipoles is now

Vdd~R!5E dn~r!r3Fdd~R/r! ~49!

with

Fdd5E d3z

Ncr
3 ~12Tr W1Tr W2!. ~50!

HereW are rectangular Wilsonloopsfor each dipole, traced
separately. Averaging over the instanton position can
done numerically. The results are shown in Fig. 5. The o
come is proportional tod1

2d2
2 ~dipole moments! rather than

a1 a2 ~electric polarizabilities!, whend is reasonably smal
in comparison tor0. The large distance potential is a few %
that of V(R)'d1

2d2
2r0

2/R7. Note that it is larger than the

FIG. 4. ~a! Field strength correlatorP inst as defined in Eq.~47!
versus the distance in units of the instanton sizex/r0. ~b! Ratio of
the instanton-induced term in the correlator to the perturbative
versus the distance.
4-8
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perturbative one sincer0
2 is assumed to be much larger tha

d1d2, but both answers have the same~zeroth! power ofg.
In general the dipole-dipole potential cannot be appro

mated by the correlator of scalarsE2, as can be checke
through its dependence on the relative orientation of the
poles. Even in the dipole~quadratic! approximations for suf-
ficiently small dipoles (di!r) one can define 4 invarian
functions for the dipole-dipole interaction

V~R!5d1
i d1

j d2
l d2

m@A~R!d i j d lm1 1
2 B~R!~ninjd lm1nlnmd i j !

1C~R!ninld jm1D~R!ninjnlnm#. ~51!

The first functionA(R) accounts for the spin-zero gluon
operatorEW 2 discussed at the beginning of this subsecti
However, as one can see from Fig 5, other functions a
contribute. In~a! we compare thexx orientation~or A1B

FIG. 5. ~a! Two correlated Wilson loops as a function of th
distanceR between their centers, divided byd1

2d2
2 for two dipole

sizes,d15d250.1 ~circles! and 0.4r0 ~squares!. The agreement
between the points shows that the dipole scaling holds well for s
sizes. Also two dipole orientations are shown. The open points
for both dipoles oriented in thex direction~the same direction as th
distance between themR) while the closed points for thexy orien-
tation. The disagreement between those means that the di
dipole forces depend on the orientations. Further details on the
entation dependence are shown in~b!. Fdd(R5r0) shows the
dependence on the orientation angle of one dipole in thex-y plane.
The solid points and curves are for a 4D lattice-type integrat
over the instanton center, and the open points are for the altern
Monte Carlo integration: their spread from the curve shows
magnitude of the uncertainties involved.
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1C1D) with thexy one~or A1B/2) and see a clear differ
ence. In~b! we note the dependence on the rotation angle
one of the dipoles, which shows a clear cos2 u behavior ex-
pected from the expression above.

V. ONE-INSTANTON EFFECT ON SCATTERING

A. Quark-quark scattering

Our first step now is the generalization of Eq.~38! to an
arbitrary orientationu of the Wilson line. The analytical con
tinuation to Minkowski space follows fromu→ iy with y
identified as the rapidity difference between the receding p
tons. The untraced and tilted Wilson line in the one-instan
background reads

W~u,b!5cosa2 i t•n̂ sina ~52!

where

na5Rab hmn
b ẋm~z2b!n5Rab nb ~53!

anda5pg/Ag21r2 with

g25n•n5n•n5~z4sinu2z3cosu!21~b2z'!2. ~54!

The one-instanton contribution to the untrac
QQ-scattering amplitude follows from the following cor
relator

^WAC~u,b!WBD~0,0!&

' n0 E d4zS cosa cosa1AC 1BD

2
1

Nc
221

n̂•n̂sina sina~ta!AC ~ta!BDD , ~55!

where the~under!bar notation means the same as the cor
sponding un-bar notation withu50 andb50.

Furthermore,

K 1

Nc
Tr@W~u,b! W~0,0!#L 5

2n0

Nc
E d4z~cosa cosa

2n̂•n̂ sina sina!. ~56!

The integrand in Eq.~56! can be simplified by changing
variable (z4 sinu2z3 cosu)→z4 and dropping the terms tha
vanish under thez integration. Hence

K 1

Nc
Tr@W~u,b! W~0,0!#L 5

2n0

Nc
E d4zS 1

sinu
cosã cosã

2
1

tanu
sinã sinã

z'
2 2z'•b

g̃ g̃
D .

~57!
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EDWARD SHURYAK AND ISMAIL ZAHED PHYSICAL REVIEW D 62 085014
The tilded parameters follow from the un-tilded ones by s

ting u5p/2. We note thatg̃5g5uzWu. After analytical con-
tinuation, the first term produces the elastic amplitude wh
decays as 1/s with the energy. The second term correspon
to the color-changing amplitude. It is of orders0 and domi-
nates at high energy. Specifically

K 1

Nc
Tr@W~u,b! W~0,0!#L
5

2n0

Nc
S 1

sinu
Fcc~b/r0!2

1

tanu
Fss~b/r0! D . ~58!

We show in Fig. 6 the numerical behavior of the two cont
butions in Eq.~58!. Note that the second function~which
describes color-inelastic collisions and survives in the h
energy limit! changes sign, before decreasing to zero at la
b. This limit corresponds to the instanton-induced renorm
ization of the one-gluon exchange, and it has therefore lo
rithmic behavior inb, as described in Sec. III A.

FIG. 6. ~a! and ~b! show the two functionsn0Fcc and n0Fss

defined in Eq.~58! versus the impact parameterb ~in units of the
instanton radius!.
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B. Dipole-dipole and multi-parton scattering

One can directly generalize the calculation of the qua
quark scattering amplitude to that of any number of parto
For that, we assume that they all move with high energy
some reference frame and opposite direction: in Euclid
space those would propagate along two directions, with p
ton numbersN1 andN2 respectively. Any one of them, pass
ing through the instanton field, is rotated in color space b
different anglea i around a different axisnW i , depending on
the shortest distance between its path and the instanton
ter. Integration over all possible color orientations of the
stanton leads then to global color conservation.

Before discussing specific cases in details, let us mak
general qualitative statement about such processes. We
found in the previous section that~the color-changing!
quark-quark instanton-induced scattering has a finite high
ergy limit. For perturbativen-gluon exchange a factor ofas

n

is paid, while for an instanton mediated scattering a facto
n0r0

4 is paid ~the price to find the instanton at the righ
place!, no matter how many partons participate. Since
instanton vacuum is dilute, the one-gluon mediated proc
dominates the instanton one. However, the situation dram
cally changes for two or more gluon exchanges:
instanton-induced amplitude is about the same for any n
ber of partons, provided that all of them pass at a dista
'r0 from the instanton center.

Now, consider a dipole configuration of sized chosen in
the transverse plane of aq̄q located on a straight line slope
at an angleu in Euclidean space. LetAA be the initial color
of the dipole andCD its final color. The Wilson loop with
open color for the dipole configuration in the one-instant
background is

W AA
CD~u,b!5cosa2 cosa1 1CD

1 i cosa2 sina1Rab n̂1
b ~ta!DC

2 i sina2 cosa1Rab n̂2
b ~ta!DC

1sina2sina1Rab Rcdn̂2
b n̂1

d ~tcta!DC .

~59!

We have defined

a65
pg6

Ag61r2

g6
2 5~z4sinu2z3cosu!21S z'2b6

d

2D 2

n1•n25S ~z4 sinu2z3 cosu!21~b2z'!22
d2

4 D ~60!

with n6•n65g6
2 . The scattering amplitude of an initial di

pole through an instanton after averaging over the glo
color orientationR is

2

Nc
~cosa2cosa11n̂2•n̂1 sina2sina1! 1CD ~61!

which reduces to the color-singlet channel. Specifically,
4-10
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W~u,b!5
2

Nc
~cosa2cosa11n̂2•n̂1sina2sina1!.

~62!

Theu dependence in Eqs.~61!,~62! can be readily eliminated
by carrying the integration over the instanton positionz
through the same change of variable discussed in the qu
quark scattering, resulting in an amplitude that depends o
on 1/sinu. In Minkowski space this translates to 1/s which
vanishes at high energy. Indeed, the dipole-dipole scatte
amplitude through a single instanton is

^W~u,b! W~0,0!&'
n0

sinuE d4z W̃~u,b!W̃~0,0! ~63!

whereW̃ follows from W by settingu5p/2. Note that in
this caseW(0,0)5W̃(0,0).

It is clear from Eq.~59! that while scattering through a
instanton, the dipole has to flip color to keep track of t
velocity of the quarks in the dipole. The process is co
inelastic and therefore only contributes to the inelastic a
plitude to first order in the instanton densityn0 and to the
elastic amplitude to second order in the instanton densit
situation reminiscent of one- and two-gluon exchange.

The dipole-dipole scattering amplitude with open-color
the final state can be constructed by using two dipole c
figurations as given by Eq.~59! with a relative angleu. After
averaging over the instanton color orientations we obtain

W AA
CD~u,b! WA8A8

C8D8~0,0!

5
2

Nc
W11CD 1C8D81

1

Nc
221

WN
c
221~ta!DC ~ta!D8C8 ,

~64!

with the singlet part

W15cosa2cosa1 cosa2cosa1

1n2•n1n2•n1sina2 sina1 sina2 sina1

1n2•n1 cosa2 cosa1sina2 sina1

1n2•n1 sina2 sina1cosa2 cosa1 , ~65!

and the octet part

WN
c
22152cosa2 sina1cosa2 sina1n1•n1

2sina2 cosa1sina2 cosa1n2•n2

1cosa2 sina1sina2 cosa1n1•n2

1sina2 cosa1cosa2 sina1n2•n1

2sina2 sina1sina2 sina1

3~n2•n2n1•n12n2•n1n1•n2!. ~66!
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As in the case of quark-quark scattering, the~color! elastic
dipole-dipole amplitude scales as 1/sinu and vanishes a
high energy after analytical continuation. However, t
~color! inelastic part of the amplitude does not. After pe
forming the shift of variables described before, theu depen-
dence drops from all the anglesa. There is a remainingu
dependence in the four combinationsn•n. In general, theu
dependence in the latter is linear in sinu or cosu, and one
may worry that the last term in Eq.~66! may involve higher
powers of the trigonometric functions, which would yield
an unphysical cross section growing ass after analytical con-
tinuation. We have checked that this is not the case, sin

n2•n2n1•n12n2•n1n1•n2→d2~z2
22cosu z3z48!

wherez48 is the newz4 after the change of variable. More
over, the cosu term drops in the integral over z~odd under
z3→2z3), making this contribution to Eq.~66! subleading
at high energy after analytical continuation.10 Finally, we
note that all sinu contributions in Eq.~66! drop following
similar parity considerations. As a result, the pertinent oc
contribution to the scattering amplitude is proportional
cotanu which is 1/i tany51/iv after analytical continuation

We have assessed numerically the function

FN
c
221S b

r0 ,
d

r0D5
n0

cosuE d4zWN
c
221 ~67!

which is shown in Fig. 7 for different dipole sizes. We fin
that the dipole approximation scalingFN

c
221;d2 works well,

even for sizes as large as the instanton sized5r0.

10This cancellation is not generic. Indeed, the square of this c
tribution would be leading.

FIG. 7. ~a! FN
c
221(b,d) defined in Eq.~39! versus the dipole-

dipole impact parameterb ~in units of the instanton sizer0). Each
curve corresponds to a different dipole sized ~same units!.
4-11
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EDWARD SHURYAK AND ISMAIL ZAHED PHYSICAL REVIEW D 62 085014
VI. TWO-INSTANTON EFFECT

We have shown above that the instanton contribution
large s but small t behaves in a way similar to one-gluo
exchange: only color-inelastic channels survive in the h
energy limit. This means that the contribution to the to
cross section appears in the amplitude squared, leading n
rally to the concept of two-instanton exchange. The la
contribution to each Wilson line is more involved. T
streamline the discussion we will present the analysis of
two instanton contribution to the differential cross section
quark-quark scattering at high energy. Similar considerati
apply to dipole-dipole scattering as we briefly mention at
end of this section. Indeed, for the quark-quark scatter
unitarity implies that the two-instanton contribution to th
differential cross section is

ds

dt
'

1

s2 (CD
u T AC

BD u2, ~68!

with the averaging over the initial colorsA,B understood.
Inserting Eq.~13! after the substitution~55!, we obtain

ds

dt
'S 4n0

Nc
D 2 E db db8 eiq•(b2b8) S J1

1

~Nc
221!

K D
~69!

with

J5E d4z ~cosa21!~cosa21! E d4z8~cosa821!

3~cosa821!

K5E d4z n̂•n̂sina sinaE d4z8 n̂8•n̂8sina8 sina8.

~70!

The primed variables follow from the unprimed ones throu
the substitutionz,b→z8,b8. For largeAs, J'(12Fcc)(1
2Fcc8 )/s2,11 andK5FssFss8 , so that

ds

dt
'

16n0
2

Nc
2~Nc

221!
U E db eiq•b FssS b

r0
D U2

. ~71!

In particular, the forward scattering amplitude in the tw
instanton approximation is

s~ t50!'
16n0

2

Nc
2~Nc

221!
E

0

`

dq'
2 U E db eiq•b FssS b

r0
D U2

,

~72!

which is finite at largeAs. Hence, for forward scattering
partons in the instanton vacuum model, we have

sqq'~n0 r0
4!2 r0

2 . ~73!

11Up to self-energies.
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Clearly, the present analysis generalizes to the dipo
dipole scattering amplitude by using Eq.~64! instead of Eq.
~55! and proceeding as before. The outcome is a finite s
tering cross section

s~ t50!'
4 n0

2

~Nc
221!

E
0

`

dq'
2 U E db eiq•b FN

c
221S b

r0
,
d

r0
D U2

.

~74!

Generically, the dipole-dipole cross section relates to
quark-quark cross section in the forward direction throug

sdd'sqq

~d1d2!2

r0
4

. ~75!

It is instructive to compare our instanton results to tho
developed by Dosch and collaborators@28# in the context of
the stochastic vacuum model~SVM!. In brief, in the SVM
model the Wilson lines are expanded in powers of the fi
strength using a non-Abelian form of the Stokes theorem
the Gaussian approximation. A typical hadronic cross sec
in the SVM is

s'^~gG!2&2a10F ~Rh /a! ~76!

where the first factor is the ‘‘gluon condensate,’’a is a fitted
correlation length, andF is some dimensionless function de
pending on the hadronic radiusRh . Although our assump-
tions and those of@28# are very different regarding the cha
acter of the vacuum state, it is amusing to note the agreem
between Eqs.~75! and ~76!. Indeed, the correlation lengtha
of the SVM model is related~and in fact numerically close!
to our instanton radiusr0'1/3 fm, while the gluon conden
sate^(gG)2& of the SVM is simply proportional to the in
stanton densityn0 in the instanton model.

The most significant difference between these two
proaches apart from their dynamical content and the way
have carried the analytical continuation is the fact that we
not expand in field strength. In fact, in the instanton mo
there is no parameter which would allow to do so for stro
instanton fields. This difference is rather important as it is
it that our conclusion regarding multiple color exchanges
based.@In the SVM with Wick-theorem-like decomposition
those would be just products of single exchanges, like
perturbative QCD~PQCD!.#

VII. CROSS SECTION FLUCTUATIONS

So far, we have considered theaveragevalue of the cross
section for a parton in a state of unit probability. Howev
partons and, in general, hadrons are complex quantum
chanical states.12 Hence, the quantum system is characteriz
by some amplitude of probability through its wave functio
and its corresponding scattering cross section is pro

12A truly elementary particle may have only one state and n
fluctuating cross section: it may have diffraction but no inelas
diffraction.
4-12



is-

o
-

he
io

en
th
om
e
a

ur

on
of

n-
g’

us
a

n
d
ti

re
ad
h
ex

ic
-
e
m
n
bu

d
a
:
e
.

tu

.

-
e

o-
ta

ve
r t

been
nd
he
to
in

is

D
t

lar

y to
r-
tive
ent

ons
n-
mall
the
ef-
tab-

on-

is to
g in
ing.
on-
to
on.

INSTANTON-INDUCED EFFECTS IN QCD HIGH- . . . PHYSICAL REVIEW D 62 085014
bilistic with a probability distribution P(s). This idea was
originally suggested by Good and Walker@29#, who empha-
sized that inelastic diffraction is a way to quantify this d
tribution via the second momentDs25Š(s22^s&)2

‹.
The extraction of this and the next~cubic! moment for the

pion and the nucleon using available data was carried
years later@30#, allowing for a reconstruction of the distribu
tion P(s). A striking aspect of these results is that t
nucleon fluctuations are large and comparable to the p
fluctuations. This outcome does not fit with the constitu
quark model where the pion is a 2-body system, and
nucleon is a 3-body system, with more degrees of freed
One of us@31# had already noticed that this can be a furth
indication for strongly correlated scalar diquarks in
nucleon. An experimental test for this idea is to meas
cross section fluctuations for a decuplet baryon such asV2.
In the latter there are no diquarks, and smaller fluctuati
~typical of a 3-body state! are expected. Another aspect
these fluctuations worth mentioning here is that they seem
be maximal forAs'100 GeV, decreasing at very large e
ergies. It supports well the idea that the ‘‘most fluctuatin
partons are atx;1022, while at much smallerx one basi-
cally approaches a non-fluctuating black disk.

Although in the present paper we have limited our disc
sion to issues of methodology, it is worth pointing out th
the present concept of fluctuations in cross sections ca
used to discriminate between the instanton effects herein
scribed and other descriptions based either on perturba
multi-gluon exchange or non-perturbative vacuum structu

Indeed, the standard multi-photon exchange in QED le
to an ~eikonalized! exponential scattering amplitude, wit
Poisson-like fluctuations. If the mean number of quanta
changed̂ n&@1 ~e.g. for heavy ions with largeZ'1/a), the
distribution becomes narrow and we approach a class
limit, with weakly fluctuating scattering. Modulo color fac
tors, the same conclusion applies to multi-gluon exchang
QCD. In contrast, the instanton-induced effects have co
pletely different statistical properties. The field of the insta
ton itself is classical, hence coherent. However, the distri
tion over the instanton size and position is quantum~in
contrast to the Coulomb field of the ion just mentione!,
thereby leading to cross section fluctuations. The latter
further enhanced by thedilutenessof the instanton ensemble
the quark may appear very black, provided a tunneling ev
happens to be close to it, and rather transparent otherwise
noticed already in@12#, quarks are ‘‘twinkling’’ objects, as
the associated gauge and quark fields are strongly fluc
ing.

To quantify some of these statements we show in Fig
how such a distribution looks. We plotuFss(b51)u2, at fixed
impact parameterb5r0. The distribution corresponds to in
stantons being homogeneously distributed in the 4D sph
around the center of the collision point, with a radiusRs

'2.2r0 such thatp2Rs
4/251/n0 or in a smaller sphere within

R,r0. However, the resulting amplitude is highly inhom
geneous, with a large peak at small amplitude and a long
at large amplitude. Comparing the solid and dashed cur
one can see that the latter is due to instantons sitting nea
center of the system.
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VIII. CONCLUSIONS AND OUTLOOK

A. Conclusions

Several new instanton-generated phenomena have
studied in this work: static potentials for color dipoles, a
high energy quark-quark and dipole-dipole scattering. T
nature of the instanton effects makes their contribution
these processes different from the contribution expected
perturbation theory.

Overall, the magnitude of the instanton contribution
governed by two competing factors:~i! a diluteness factor
n0r0

4!1, reflecting the fact that their density in the QC
vacuum is small (n0r0

4!1), and~ii ! a classical enhancemen
factor, the instanton action of which is large (S0 /\'10
@1). Naturally, the more partons are involved in a particu
process, the more powers ofas appear in the perturbative
result for a particular process. This penalty does not appl
the instanton contribution. One way to quantify this diffe
ence is to note that the ratio of the instanton-to-perturba
contributions contains a power of the classical enhancem
parameter, and this power grows with the number of part
involved. Typically the first power due to the classical i
stanton enhancement cannot really compensate for the s
diluteness of the instantons in the vacuum. However,
second power is already sufficient to make the instanton
fects larger than the perturbative ones as we have now es
lished for the potentials. Indeed, the dipole-dipole instant
induced potential exceeds significantly~by a factor of;25)
the perturbative contribution for distancesR.r0.

Based on these ideas, we have extended the analys
near-forward parton-parton scattering amplitudes, treatin
detail the case of quark-quark and dipole-dipole scatter
The key to our analysis was the concept of analytical c
tinuation in the rapidity variable, which we have applied
both the perturbative and instanton analysis for comparis

FIG. 8. The distributionuFss(b5r0)u2 with instantons filling
homogeneously the 4D ‘‘Wigner-Seitz sphere’’ of radius 2.2r0

~solid histogram! or the smaller sphere of radius 1.0r0 ~dashed his-
togram!.
4-13
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In the perturbative analysis, one- and two-gluon e
changes differ fundamentally in the sense that the forme
color changing~inelastic!, while the latter is color preserving
~elastic!. Indeed, the two-gluon exchange mechanism@32#
constitutes the starting ground for the soft Pomeron appro
to dipole-dipole scattering. Since the instantons can
viewed as multi-gluon configurations~classical fields!, we
have suggested that they maybe a viable starting poin
analyze soft parton-parton scatterings. We have shown
the instanton-induced amplitudes involve also color-ela
and color-inelastic channels. After analytical continuatio
the one-instanton contribution to the color-elastic channe
purely real and vanishes as 1/As ~much like a scalar ex-
change!. In other words, in this work a single instanton is n
‘‘cut’’ and its multi-gluon content is not used. Instanton
contribute to soft parton-parton scattering like thet-channel
gluons mostly through color exchange channels or thro
re-scattering in the elastic channel. The leading instan
contribution involves a two-instanton-prong channel, a
yields a finite elastic parton-parton scattering amplitude a
analytical continuation in rapidity space. Our result is rem
niscent of the one reached in the stochastic vacuum m
@28#, although our assumptions and methodology are dif
ent.

B. Outlook

The results we have derived were achieved in Euclid
space prior to our pertinent analytical continuation. The
fore, they are testable from first principles by repeating
analysis using instead lattice QCD simulations. Indeed,
non-perturbative dipole-dipole forces could be studied.
contrast to the quark-antiquark potential and to the bes
our knowledge, those forces have not been investigated
the lattice. Also, the various scattering amplitudes discus
in the present work can and should be looked at, leadin
multi-parton amplitudes as we have qualitatively discuss
Note that not only can the potentials and scattering am
tudes themselves be derived, but the degree of their cor
tion with the presence of instantons in the underlying c
figurations can be revealed as well, using lattice techniq
such as ‘‘cooling’’ and alike to help discriminate instanto
by their topological charge.

Regarding the applications of our results, we admit t
there remains a significant distance to the description of
hadronic processes. Although we hope to cover further p
nomenological applications elsewhere, we still would like
comment on two broad but important dynamical issues:~i!
the mechanism of color rearrangementsin high energy col-
lisions and~ii ! the issue ofhadronic substructureof the non-
perturbative effects in the hadronic wave functions.

It is generally accepted that high energy hadronic p
cesses can be split into three stages:~i! formation of hadronic
wave function ~to which we turn later!, ~ii ! color re-
arrangements of partons in a collision, and~iii ! decay of the
arising system into multi-hadron final states. It is further b
lieved that at stage~iii ! color flux tubes~QCD strings! are
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formed with basicallyunit probability,13 so that one can ig-
nore them in the calculation of the cross section. Such
sumption is implied in any perturbative approach~such as
the Low-Nussinov gluon-exchange model@32#!, and we as-
sume that the same is true for instanton-induced color
changes as well.

Our main suggestion for further work is that although t
instanton-induced mechanism yields relatively small cr
sections, this mechanism is likely to dominate overevents
with multiple color rearrangements. Is there experimenta
evidence for this assertion in high-energy hadronic co
sions? An answer is provided by Fig. 9~taken from@33#!,
which shows a~specially normalized! compilation of multi-
plicity distributions inp̄p collisions at various energies. Th
data show that there is indeed~at least! two components:~i!
one with the cross sections1(s) and standard Koba-Nielsen
Olesen~KNO! distribution ~well known from lower energy
pp collisions!, as indicated by the solid curve, and~ii ! an-
other one with a different cross sections2(s) and much
higher multiplicity. Ascribing the main peak atN/^N1&
'0.8 to a single color rearrangement reaction~52 QCD
strings formed!, one can conclude that at the highest ene
As51800 GeV the multiplicity seen may amount to up to
strings.

13The fluxes are described by multiple phenomenological mod
and codes, e.g. the Lund model.

FIG. 9. Multiplicity distribution in p̄p collisions, at 4 different
energies from@33#. At each energy the cross section and multipl
ity are rescaled, to put the low-N part at the universal KNO curve
~solid line!. This is done to see better the behavior of the ‘‘seco
component’’ discussed in the text.
4-14
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The existence of the second component with double
triple multiplicity was anticipated by physicists doing Reg
theory decades ago, in the form of multi-Pomeron e
changes. However, the multiplicity data shown in Fig. 9
not really fit well into this description. The second comp
nent simply does not look as iterations of the first one. Th
are no separate peaks and, more importantly, thes depen-
dence is completely different. The first component is in f
consistent with the approximation used above, namely
asymptotically constant cross section~zero Pomeron inter-
cept!, while the latter grows withAs very strongly.

Attempts to solve this puzzle in PQCD, by summin
ladder-type diagrams in leading log(x) approximation are
well known @4#, and they do indeed produce strongly gro
ing cross sections and multi-parton states. So the sec
component may well be due to those perturbative proces
Non-perturbative approaches~aiming mostly at the ‘‘soft
Pomeron’’ or the first component discussed! have also been
tried, from old fashion multi-peripheral hadronic mode
s.
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~e.g. recent work@34#! to mixed gluon-hadron ladder
@35,31#. Unfortunately, none of these approaches have l
so far to a quantitative theory.

Results and estimates made in this work lead to the c
clusion that instanton-induced color exchanges should do
nate over PQCDt-channel gluons starting from thedouble
exchange amplitudes. It is therefore logical to conjecture t
the second high-multiplicity component ofpp collisions may
be generated by this mechanism. That would explain w
multiple-string events are not just an iteration of the fi
component, and even consistent with where the transi
appears to be. Needless to say that much more work is
needed for a further test of this conjecture.
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