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Nonperturbative mass renormalization in quenched QED from the worldline variational approach
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Following Feynman’s successful treatment of the polaron problem we apply the same variational principle
to quenched QED in the worldline formulation. New features arise from the description of fermions by
Grassmann trajectories, the supersymmetry between bosonic and fermionic variables and the much more
singular structure of a renormalizable gauge theory such as QEB hh@mensions. We take as a trial action
a general retarded quadratic action both for the bosonic and fermionic degrees of freedom and derive the
variational equations for the corresponding retardation functions. We find a simple analytic, non-perturbative,
solution for the anomalous mass dimensigp(«) in the MS scheme. For small couplings we compare our
result with recent four-loop perturbative calculations while at large couplings we findytk{at) becomes
proportional toy/. The anomalous mass dimension shows no obvious sign of the chiral symmetry breaking
observed in calculations based on the use of Dyson-Schwinger equations; however, we find that a perturbative
expansion ofy,(a) diverges fora>0.7934. Finally, we investigate the behaviorgf(«) at large orders in
perturbation theory.

PACS numbgs): 12.20.Ds, 11.15.Me, 11.15.Tk

[. INTRODUCTION an investigation at large and, finally, bound state problems
are inherently non-perturbative and involve powers of
Variational methods are widely used in many areas ofn1/a=4.92 in radiative corrections.

physics but are not very prominent in field thety. This is The extension of our methods to QED requires a formal-
due to the infinite number of degrees of freedom and thdsm to include fermions and a treatment of the more severe
singular short-distance behavior of relativistic field theories Singularities encountered in a renormalizable field theory
A very successful application of variational methods in afather than a super-renormalizable or non-relativistic one.
non-relativisticfield theory is provided by Feynman'’s treat- We do this within the worldline technique which has recently
ment of the polaror{2]: after integrating out the phonon €Xperienced a reviv4b]. In this formulation, the degrees of
degrees Of freedom and approximating Variationa”y the refreedom deSCI’IbIng the eIeCtron are Iits bOSOﬂIC World“ne
maining effective action by a retarded quadratic trial actionX.(t), which is the four-dimensional analogue of the polaron
one obtains the best approximation scheme which works folrajectory, as well as a Grassmannian palit) needed to
both small and large coupling constants. Detailed numericailescribe the electron’s spiiY]. Heret is the proper time
investigationsg 3] have shown that Feynman’s approximateWhich parametrizes the paths and runs from OTtoThe
solution deviates at most 2.2% from the true ground statélynamics of the electron in an external vector fiélg(x)
energy for all coupling constants. It is therefore very attracWith field strengthF ,,(x) are then described by the follow-
tive to apply similar techniques to problems in relativistic ing worldline Lagrangian:
quantum field theory where there is much need for non-
perturbative methods. In previous publications we have done

that in the context of a scalar, super-renormalizable model _  ko., . _ - E o _i_e o
theory[4]. L=— 5% Hil-{+ X x—exAX) KOFW(X)Z &
In this paper we present the first results obtained by ap- (€N)

plying polaron variational methods to a realistic theory,

namely quantum electrodynami@3ED) in the quenched ap-

proximation where electron-positron loops are neglectedHere xq is an arbitrary parameter which may be used to
While the actual coupling constant between electrons andeparametrize the proper time without changing the physics
photons,a=e?/(4)=1/137, is small enough to apply per- andy is a Grassmannia(superjpartner of the proper time
turbation theory in most cases, there is enough interest t@. Note that the above action exhibits a well-knoguper-
study the theory at larger coupling: first, the strong couplingsymmetnbetween bosonic and fermionic degrees of freedom
behavior of any physical theory is of interest in itself, sec-[8]. For further details about the application of the worldline
ond, the possibility of chiral symmetry breakifg] demands formalism to QED we refer the reader to REJ).
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The photon fieldA, may be integrated out exactly in stat
complete analogy to the phonons in the polaron case, result- (exd i(S—S) 1)i=exd i{S—S): ], (5)
ing in an effective action for the electron only:
where(- - ) indicates an average involving the weight func-
tion €'t in the relevant functional integral ar®l is a suitable
trial action. Note that corrections to this variational approxi-
mation may be calculated in a systematic way and that, fur-
: 2 thermore, to first order in the interactidie. to ordera) the
Xu(t1)+K_O§u(t1) k-£(ty) } relation is in fact an equality i§; reduces to the free action

4

e2 (T
Su=So- 5 | dudt, [~

(2m)*

X
for small couplings.
- 2 _ _ For the trial action required in E¢5) we choose a general
N . K-[x(t) —x(tp) ]
X1 %,(t2) Ko Gu(ta)k-{(tp) (o7 TR retarded quadratic action which is a two-time modification
2 of the free action in Eq(3)
. - T ) : 2i
Here S, denotes the free action, S[=So+iKgf dtldtz[ —0g(0) X(t1)-x(tp) + K—g’F(o)
0 0
T Kq- 2 . . 1 .
so:f dtl — 50 +iZ(D)- ZO+ Tx(1)-£(1) x|, o
0 X {(ty)- (1)) = 2——=0so(o) X(t1)- {(t2) x
(3) Kol
andG**(k) the gauge-fixed photon propagator. As described TN P-X—iX £(0)-4(T). (6)

in Ref. [9], the electron propagator is obtained by carrying
out a path integral over the degrees of freedopit) and
£,(1), as well as a weighted integral over the proper tiffies
and y, and finally identifying the Grassmannian varialble
={(0)+¢(T) with the Dirac matrixy:

Here the variational parameters are contained in the retarda-
tion functionsg;(o) for bosonic, fermionic and spin-orbit
interactions; these are even functionsooft, —t, and they
become identical for a supersymmetric trial acttofthe
variational principle “adjusts” these functions in order to
G,(p) compensate for the fact that the true effective act®nis
not quadratic in the variableqt), (t). Feynman’s polaron
_ev i f * dT f d result was obtained by taking a specific ansatz for the retar-
T X dation functions but here we leave their functional form free.
This is because one expects that the correct short-time be-
[ ) ) havior of these functions is much more important for a renor-
X ex Z[(D —MgT+(p-T'=Mo)x] malizable theory like QED than for the polaron problem
0 which does not exhibit any ultraviolet divergences. Indeed

~ i i one finds that for small- the “best” gg(o) behaves like
J DxDEexplip-x+£(0)- {(T)] expliSer) Jo, Ing and 1k in the polaron, super-renormalizable and
X . QED case, respectively. The “tilde” over the trial action
J' Dx D¢ exip-x+£(0)- £(T)]exg(iSy) @ndicates that it includes thg boundary terms aIready present
r=o in Eq. (4) and that we are using “momentum averagingf].

(4) These terms, involving the external momentgrand the
Grassmann variabl€&', are multiplied by additional varia-

Here M, is the bare mass anBix contains an integration tonal parameters, and\,, respectively. They provide ad-

over the end poink=x(T). Note that we have divided and ditional freedom to modify the strength of the boundary.
multiplied by the path integral for the free theory, so the bareterms'. We hlave zallloweq tr}!s Il(‘jre(;dom beCﬁuse c;:‘ our experi-
propagator may be obtained by just ignoring the last line. Foffce In scaiar re ativistic field theofy], where the varia-
non-zero couplings, of course, the path integrals in the la onal parametek ; turned out to be essential for describing

line cannot be performed: these we shall approximate varigne instability of the Wick-Cutkosky model.
tionally in the next section. Since the trial actiorn{6) is at most quadratic ix(t) and

{(t), it is possible to evaluate the various averages required

II. VARIATIONAL APPROACH

~ Feynman’s variational principle has its root in Jensen’s iyye haye explicitly separated out the free action in @4, which
inequality for convex functions applied to exp§:), where  ¢oyid have alternatively been added into the second term by adding
SE iS a EUClidean aCtion. In MinkOWSki Space and/OI‘ for 5(0-)/(2| KO) to each of th@i(a-)’sl This way our retardation func-
complex actions the variational principle remains valid; how-tions contain no distributions. Also, in the supersymmetric limit our
ever, it becomes a stationary principle rather than a minitrial action could be written in the explicitly supersymmetric nota-
mum principle. To be more precise, the path integral ovetion of Ref.[9] asi«3[jdt;dt, [d#;d6,g(T1;) DX;-DX,, with a
bosonic and fermionic paths obeys single retardation function.
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in Eq. (5) analytically. A particular simplification occurs if
one restricts oneself o?=M?2, whereM is the physicali.e.
pole) mass: as discussed [id], the divergence of the propa-
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respectively> Furthermore, it is convenient to define
=\1/Ag(0). Indeed it turns out that the averages in Eq).
can be directly expressed in terms of these quantities. The

gator on its mass shell results from a divergence of the intekinetic terms in Eqs(7) and(8) become

gral over the proper timé. Indeed, the variational approxi-
mation (5) results in an electron propagatfsee Eq.(4)]
which has the form

G\éar(p):eyﬂ/al“fo de dX
Xexp{i[—MZerz(Z)\—)\z)]]
2K0 0
iT 5
X ex _K_O(Q[AB]_Q[AF]+V[/-LB’/-LF])

+F(X,F;T;p)]|ro, 7

where A (which is defined beloyy the O’'s and V are T
independent and the functiéi( y,I"; T;p) is subleading irT.

The latter therefore contains information relevant for the

var,

wave function renormalization d&,”(p), and not the pole

Q[A]=

dKo * (
dE| logA(E) + 1], (@1

2iT 0 Al(E)
whered is the spacetime dimensiah=4—2e. This is iden-
tical to the result in Ref[4] if d=4 and ky=i (i.e. the
Euclidean formulationare taken. The specific properties of
QED are encoded in the “interaction” teriv which, with
V=V;+V,, reads

dk
(2m)¢

2€ (o
vl[ué,uék—(d—l)m';—ofo daf
X{[nd(0)P—[1d(0)]13 E(k,0) (12

4 26)\2 .
Vo= - T fo do f

(k-p)?
2

dik 1
(2m)9 K?

X| M?+(d—2)

E(k,0). (13

structure. We leave the discussion of this function, which

also contains the entirg andI” dependencéand hence the
spin structure of the propagajofor a future publication as it
is not required for our present investigation.

From Eq.(7) we see that the bare and physical masses are ;2.

related through

M§=MZ(zx—v)—2<9[AB]—Q[AF]+V[M§M%J>.( )
8

We have labeled this relationshigpano’s equatioras Mano
first applied polaron techniques to a scalar relativistic fiel
theory [10]. Note that, on the mass shell, the variational
equations resulting from E@5) are equivalent to demanding
stationarity of Mano’s equation.

The nomenclature in Mano’s equation corresponds to th
introduced in Ref[4]: Q[Ag] and Q[Ag] originate from
contributions (bosonic and fermionic, respectivelpf the
terms in Eq.(5) involving Sy and S; only. They are the

analogue of the kinetic term in variational quantum mechani

cal calculations, while the analogue of the contribution from

a potential term(explicitly proportional to the strength of the
coupling resides inV.

Similarly to Ref.[4], it is useful to express the retardation
functions in terms of the variational “profile functions”
A;(E) and the “pseudotimes’ﬁ?(a),i =B, F defined by

Ai(E)=1+iKofwdagi(o)COSEU) 9
0

4 (= 1 E
o] g ol 7) @

Note that by u?(c) we mean ¢/do)u?(c) (and not
[(d/do)u(o)]?), the function E(k,o) is defined to be
E(k, o) = expi[k2u3(0)— 2\k-po/(2x0)} and of coursep?
The fermionic contributions, both in the “kinetic
term” Qg as well as inV,, appear with an opposite sign to
the bosonic contributions. The reason for the separatioh of
into two pieces will become apparent below.

By construction Mano’s equation istationary under
variation of the parameters. It is important to note that we
have not demanded the various retardation functigys (as

dyell as Oso. Which only plays a role for the residlfm be

identical (before variation Had we done so, the resulting
profile functionsAg and A would have also been identical,
the pseudotime/ﬁtéF would have been one and the same and

6\Inence()[AB]—Q[AF] as well asV,; would have vanished.

The absence of a “kinetic” contribution would have been
fatal to the variational principle as this contribution provides
the restoring “force” to the potential/. On the other hand,

closer examination o¥/, reveals thatu3+ w2 is also dan-
gerous: The contribution of each of these terms is quadrati-
cally (UV) divergent if the dimensional regularization is re-
placed by a momentum cutoff. This may be checked by
either directly substituting the smatdt limit of ,uiz(a) into

2t is easy to show from Eq10) that, as long a#,;(0) andA; (=)
exist, for both asymptotically large and infinitesimally small times
o the functions,uiz(a) become proportional te; hence the label
“pseudotime.” In the free case one haa(E)zl,;Liz(o):a,)\
=1,Q;=0. The other variational functioAg(E) and parameter
N\, are linked to the spin structure of the propagator and therefore
do not show up in Mano’s equation.

085009-3



C. ALEXANDROU, R. ROSENFELDER, AND A. W. SCHREIBER PHYSICAL REVIEW B2 085009

V, or by noting that for scalar QED, where the Grassman- (2—e)(1—¢) 0 do 1du
nian path integrals are absent, the remaining contribution szf . fo — | =
from ,ué gives rise to the quadratically divergent one-loop 0 [u*(a)] ol
diagram of that theory. It ishe combination(u3)?— (u2)? i A2M?2g?2
which displays the usual logarithmic UV divergence of X[6+(1—6)U]6X[{—2—KOWU)
QED. Although at leading order in the coupling we are guar-
anteed to reproduce the correct perturbative rgside Eq.  where theu integration arises from an exponentiation of the
(5], at higher orders the cancellation of these quadratic diphoton propagator in Eq13) in a similar way as in Ref4].
vergences is ensured by the supersymmetry. To summariz@yith this, the variational equation fox in this asymptotic
on the one hand the trial action cannot be restricted to conimit becomes
tain only supersymmetric terms but on the other hand allow- P
ing non-supersymmetric terms may destroy the renormaliz- _1_ 7 2
ability of the theory. A=1= o8 (VW) (7

The way out of this predicament is provided by the varia-
tional principle itself: although it is unavoidable that the trial 1. MASS RENORMALIZATION
action breaks supersymmetry, the actual solutions to the
variational equations may in fact be nearly supersymmetric. Renormalizability of(quenchegl QED means that all di-
That this indeed turns out to be the case may be seen byergences can be collected in the mass and wave function
recognizing thal/, is the most singular part of the interac- renormalization constants. In the present investigation we

tion whereasv,, which involves only bosonic contributions concentrate on the mass renormalization constant in the

before[11]. Divergent contributions in the limé&—0 to the  scheme it has the perturbative expansion

to u3 and u2, are identical. e m

=A(E). The corresponding variational equation becomesexpansion coefficienty;; are pure, i.e. mass independent,
perturbation theory only the coefficieht, contains new in-

and is the only source of supersymmetry breaking, is similaminimal subtraction(MS) scheme,Z}i°, defined viaM,
variational equations are solely determined\Myy Therefore,
bll o o
a
In this paper we confine ourselves to studying this diver-
after performing thek integration in Eq.(12), numbers. Furthermore, the renormalization group provides
formation. This is encapsulated in the solution of the renor-

(16)

2

b_22 b_12 4+ ... (]_8)

€2 €

in structure to the scalar super-renormalizable model studiee Z\\°M , where M, is an intermediate mass scale. In this

the divergent contributions tAg(E) andAg(E), and hence stz 14 2u

gent structure and so it is sufficient to s&§(E)=Ag(E)  Where it is known from perturbation theofyl2] that the
relations between many of these coefficients; at ordér

SinEco ,.LLZ(O')

A(E)=1+(1—¢)c, usz do
0

E [u’(0)] ¢ malization group equation faEM°, namely
AN2M 252 1 (e X
xexp —i——7—|. (14) ZMS=ex ——f dxym—()
2kou(0) 2¢€)o X
. 1 ” Yn-1| & n
Note that here we have now also dropped the subscript on =exg — — E — 1, (19
the pseudotime as it is no longer relevant and we have de- 2eq=1 N \mw
fined
where y,(«@) is the anomalous mass dimension of the elec-
. o0 tron [13]. In perturbation theory;y,(a) can be extracted
c :ﬁ( ﬂ) 3-2e . 3_0‘ (15) from perturbative QCD calculations, which have been per-
¢ m\ ko) (1—€)(2—€) 27’ formed up to 4-loop order. One obtaing=3/2,y,=3/16
[14], vy,=*8=2.0156 and y;=—35[ 52 +336¢(3)]=
Sinceu?(o)— o for small o one sees that the integral in ~ —4.3868[15].
Eqg. (14) would diverge fore=0; this just reflects the &/ As the variational calculation is applicable for arbitrary

behavior of the retardation function in E(Q) as was dis- values of the coupling, comparison to perturbation theory
cussed before. The crucial difference between supemprovides a useful guide to its utility. As mentioned before, to
renormalizable and renormalizable theories therefore is thdirst order in the coupling the calculation is guaranteed to be
for the latter ones the variational equations themselves arexact as long as one has used a trial action which can reduce
UV divergent. In this way the divergent structure of higher-to the free action in the limiw—0. A genuine test of the
order diagrams is effectively summed up. variational scheme is only obtained by comparing the coef-
We may now simplifyV by making use of the above ficients in higher order. It should be noted that this test is
“asymptotic” supersymmetry. The only remaining contribu- much more demanding than in the polaron case where one
tion is that of V,=\?M?W, which becomes, after carrying can only compare the numerical value of the second-order
out the integration over the momentum coefficient for the energy: here, in addition, one tests¢he

085009-4



NONPERTURBATIVE MASS RENORMALIZATION IN . .. PHYSICAL REVIEW D 62 085009

dependence of this coefficient and also whether it is mass 2.0 . T T T

independent as it should be in the exact theory. 3—|00p// Badop
In order to know() andV at second order i one re- 16 | ’ 72— 100p,. ]
quires variational parameters up to first orderdn These 7
may be obtained by inserting the zeroth order results 12 | o7 e
u?(0)=0 andA=1 into the variational equations for the - // 1=loop
profile function, Eq(14), and\, Eq.(17). The solutions then & Dyson— | o
need to be substituted back inf [Eq. (11)] and V, [Eq. 08 - Schwingers T 7
(16)]. Having done thisZM° may then be extracted from S Variational ™,
Mano’s equation, yieldind33'=9/32, which is correct, and 0.4 - P o
19=0, which should be compared to the exact value of 4_|oop\\
bi,=—3/64. As in the Wick-Cutkosky model, the varia- 0.0 L L ' ' ' -

tion is of crucial importance: for example, fixing= 1 would 0 05 10 1520 2530

give a wrong result fob,, and a logarithmic mass depen-
dence forb,. FIG. 1. Anomalous mass dimension, as function of the cou-

It is possible to develop the perturbative expansion of the?ling constanta in quenched QED. The variational res(@4) is
variational result further, with the result that no mass depenshown as a solid curve while the solution from the Dyson-
dence in the coefficients appears even at higher order. Imchwinger equations in rainbow approximation is indicated as a
deed, it turns out that it is in fact possible to obtain fh ~ dot-dashed curve. The curves labeletHoop” show the result up
analytic expression for the anomalous mass dimension in th@ N0op perturbation theory. Finally, the Padstimation of the
worldline variational approximation. We shall sketch the °7100P resultis also shown.
derivation below, leaving the technical details for the Appen-
dix to this paper.

To begin with, we first drop the mass term in the varia-
tional equation(14) since it only affects long-distance phys-
ics and not the ultraviolet behavior containedz}f>. Then
we change variables fromr to y=c.(v?0)¢, and equiva-

(22)]. Hence, aty=yy, the left hand sidéLHS) of Eq. (23)
may be written in terms ok while on the RHS we can
eliminatev (y,) completely in terms oy by making use of
Eqg.(21). One is left with a simple implicit algebraic equation
for the anomalous dimension,

lently for E. This has the effect of making the system of 3 /29"
integral equation§l0),(14),(16) independent of the coupling. Za:( 1+ i) ta | (24
We write these explicitly in the Appendix, where it is shown 1+,

that if, for smalle, the pseudotime has the form

2
u (o) =exr{— woiy)+o(€o)

(o

without ever having actually solved the variational equations
themselves. Equatiof24) is the main result of this paper.

: (20

IV. DISCUSSION
then the anomalous mass dimension may be written in terms

of this functionwy(y), i.e. When expanded in powers af, Eq. (24) immediately

yields
var_ v(Yo) 3 4
yar=——— (21 var 3a 9 o @ 27 o &
1_ —_ e — —_ J—
v(¥o) LCRC R e B 7R =
wherev(y) =yw(y) andy, is determined by the implicit 243 72\ [ )5
equation - 1—287T2(1—%)<; +0(a®), (29
3a
y0=ze“’0(y°). (220 which may be compared to perturbation theory. Numerically

the values of the coefficients are different but of the same

On the other hand, it can also be sho(gee the Appen- order of magnitude as the exact perturbative results. Note,

dix) that the variational equation for the pseudotime transhowever, that this comparison is not particularly meaningful:
lates into an equation fa,(y), i.e. the variational result is an approximation which is valid at all

a. It need not have the same, or even approximately the
same, perturbative expansion i as the exact result. It
should, however, baumerically similar. In Fig. 1 we plot

the variational result as a function of the coupling and com-
This equation must in general be solved numerically. How-pare it to perturbation theory up to 4-loop order. For 1
ever, we note that the calculation of the anomalous masthe 3- and 4-loop anomalous dimensions start to deviate so
dimension in Eq(21) only requires knowledge of the func- much from each other that one cannot trust either of them.
tionv(y) aty=y,. Furthermore, it is remarkable that, at this Also shown is the result up to 5 loops, where the 5-loop
value ofy, the combinatiore®o™)/y is precisely the combi- coefficient has been estimated from Pagproximations to
nation that is fixed in terms of the coupling constesee Eq. the perturbation theorjsee Eq.(2.12 of Ref. [16], which

e‘”o()’) T T
=3l 1—v<y>]co{5v(y>

. (23
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needs to be adapted to QED with=0 flavors; one finds It is interesting to note, however, that there are also some
529 3.848]. Clearly this does not significantly extend the strong similarities in the analytic structure of the variational
numerical validity of the perturbative result. In short, the and DS result. A perturbative inversion of E@4), i.e. the
variational estimate foy,, is roughly in agreement wittal-  expansiony,e(a)==,_,c,a", has a finite radius of conver-
beit apparently a little belowthe perturbative result in the gence due to a branch cut in the comptexplane. The po-
region where the perturbative result can be trusted. sition of this cut, and hence the radius of convergence, can
Also shown in Fig. 1 is the only other easily available be determined most easily by searching for the value at
non-perturbative result foyms based on the use of dimen- which Eq.(24) has two solutions fory,&" which are infini-
sionally regularized Dyson-SchwingdDS) equations in tesimally close to each other. This amounts to demanding
“rainbow approximation” within the Landau gauge. This that Eq.(24) be satisfied and at the same time the derivative

may be obtained by adapting the discussion in REF] to  of its RHS vanish, i.e.

finite Mo, with the result thaty25=1— \1—3a/ (which is i 0 p
the same as derived by Mir_ans[q(8] usin_g a hard momen- =co m + ™ / Sir? ™ . (@
tum cutoff). We see that this result deviates from perturba- 1+ 9y 1+ 1+

tion theory in a region where, at least numerically, perturba-

tion theory still appears to converge. Above= 7/3 One finds thaty.,,= 0.7934, which is not too different from
=1.047 the DS result becomes complex, this value of thdhe radius of convergence of the DS re$@8]. It is not clear
coupling constant coinciding with the couplimg, at which ~ whether this similarity betweea., and ., is accidental or
the onset of chiral symmetry breaking takes place in thos&ot.

calculations. This is in contrast to the variational result In connection with this, it is interesting to note that for
which remains real for all values of the coupling and in factlargen the behavior of the expansion coefficiestsin both

has the strong coupling limit the variational result and the DS result are rather similar:
a1 1 1 o sl [ 2= 37 1 28
Y a) — Z\/6ﬂ'a—§+(9 \/—_) (26) Cn™ @con ns/zsm ar—=-|In==3 ’ (28)
o

. o . where numericallyB~1.38, a~2.3x10 2 and b~ —8.27

Further investigations are necessary to clarify the absencg 1o-2 For the DS result one obtaing=log(2y7) = 1.27
of any obvious silag of %hiral symmetry breaking in the varia-5n the sine function is absent. It is the sine function in the
tional result foryp,(«).” Indeed, in order to investigate the ariational result which is responsible for placing the branch
issue of dynamical chiral symmetry breaking, it would seemyoint (which, for the DS result, is on the positive real axis
to be more straightforward, at least conceptually, toMgt  jnto the complex plane. Furthermore, it is remarkable that the
on the right hand side of Mano’s equatit) to zero and to  |arge- limit of |y,,(«)| obtained in Eq(26) is almost the
see if the variational equations can be satisfied in this casg;me as for the DS resulty"ar(a)|—>1.09\/5 vs [y2S(a)|
(for a finite physical mas#1). This, however, goes consid- ¢ g 1y m m
erably beyond the scope of this paper: we have merely cal- It should be pointed out that a finite radius of convergence

MS_ - MS -
culated Zy°=Mo/M, (or, more precisely,yy"), Which ot the perturbation expansion i®t what one generally ex-
means that we could simplify the calculation by restrict-  hacts from calculations of large orders of perturbation theory
ing ourselves t_o _conS|der|ng_ the _supersymmet_rlc massleq;sing the methods of Lipatov and othd0]. Rather, the
limit of the variational equations in Sec. Il ard) only  actorial growth of the number of diagrams rth order in
taking into account the most divergent contributidas e hertyrhation theory tends to lead to a vanishing radius of
—0) to the varlatlpnal equatlons, as well as\ig, in Sec. convergence. As has been observed elsewl#8ret can be
Il and the Appendix of this paper. In a full calculation of the gpown that the variational calculation contaipices of all
RHS of Mano's equatiorii.e. the additional calculation of 4ssible Feynman diagrams at any order in perturbation
the finite renormalizatioM ,/M) these two simplifications theory. One concludes, therefore, thangt order in pertur-

. MS . 1 il
should not be madeln other words, even iZy°#0, dy-  pation theory there are either strong cancellations between
namical chiral symmetry breaking can still occurMf,/M  diagrams in the variational calculation or tiagn!) of them
vanishes for finiteM. give a vanishing contribution.

V. SUMMARY AND OUTLOOK

3The reader should note that the issue of dynamical chiral sym- . . .
metry breaking in a dimensionally regulated theory is a notoriously We have aPp“ed polaro_n varlatlonal_ techn!qu_es to
subtie problem; see RefL7]. In particular, it was shown there that duénched QED in 3 1 dimensions and obtained, within the
if four dimensional quenched QED breaks chiral symmetigvea ~ MS scheme, a remarkably simple expression for the anoma-
critical coupling, then the dimensionally regularized theory will /0us mass dimension valid for arbitrary couplings. The ap-
break it forall couplings at finitee. proach has considerable advantages over other techniques in

“This situation is analogous to what is the case in perturbativdéhat it automatically maintains gauge invariance, as well as
calculations, where anomalous dimensions of operators are fdhe requirements of the renormalization group, and correc-
easier to calculate than finite contributions. tions can be systematically calculatéas has been done in
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the polaron casg21]). Furthermore, we have shown that the 1/c.\? 1 1 I%(1+e) 1—e€
numerical results fory,, are rather reasonable at small cou- S2= 5(? 1+ 2e ( cos{err))l“(1+25) 1t
pling and that at large couplings the perturbative expansion

of this quantity fails in a way similar to rainbow DS results.  e-01 /3, 12

It would be interesting to compare to DS calculations which  — A

go beyond the ladder approximation, thus decreasing the
strong gauge depgndence |nh§rent n that apprOX|mat[or:1.hiS suggests that perhaps the leadénigehavior of the co-
Furthermore, variational calculations with more general trial_...". :
. i N : ) efficients is

actions could give an indication whether this analytic struc-
ture is robust, thus indicating possible large cancellations
between diagrams at high order in the perturbation theory of
guenched QED, or whether this structure is just an artifact of
the particular trial action used in this paper. Finally, we note . . )
that the calculation of physical observables or application tdn view of these results we rewrite all equations in terms of
bound state problems also seems feasible within the varigh® dimensionless quantities

tional worldline approach developed here.

€01 (3 1\" ~0(—1)" 3a 1\"
Ny CoS e (A4)

27 € 27 €

1}2 €
y=c(v?0)¢, z=cE(E) (A5)
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sionless combination
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2K\ €
APPENDIX a.=c, (i)\Z?\AZ) (AB)
In this appendix we provide some of the technical details

which enter into the derivation of the variational approxima-  with these definitions, the massless variational equation
tion to the anomalous dimension. To begin with, we shall(14) for A(E) may be brought into the form

scale the trivialo dependence out gf?(o) and define the

reduced pseudotim& o) as 1(> cogylz)Ye
A(z)=1+ —f )
o " [s(y)]""€

€
The reduced pseudotimg.e. the rescaled version of Eq.

As argued in the main text, mass terms can be dropped fdrtQ] is now given by
the calculation of the mass anomalous dimension. A pertur-

(AT)
wi(o)=0os(0). (A1)

) 1lleq _ lle
bative evaluation of the variational equatiofis}) and (10) s(y)= 2 Ef dZE(E) M, (A8)
for M=0 then shows that the profile function and reduced m™elJo Z\Y A(2)
pseudotime have an expansion in powersEof® and o€, ] ) )
respectively: while the rescaled potentidV/, becomes a function o,
alone,
V2 ne . 1
AE)=1+ 2, An(—) . S(0)=1+ 2 s, (Vo). Wy(a)— 2Oz e = dy J du
n=1 n=1 € 2¢ 1-¢ u¢
A2) 0 [s(y)]*~<Jo
X[e+(1l—e)ulexp —(yla )”EL
One finds “ s(y))’
(A9)
em\ 703 1 (o e~0 341 . .
- ) T e T and hence the variational equati@tv) for A becomes
A1 CEF(G)CO{ 2 ) 2 e’sl e(l+e) 27 €
1
L= 1+2Ws(a) - 2ea Wj(a,). (A10)
A_1 szl—er 1o 01/ 3a1)\?
2= 5| ¢ Tyel (AH2e)codem) =5 {50 The anomalous mass dimension in the MS scheme may

(A3) be defined see Eq.(19)] through
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a 9 eV =|im a,. A18
Ym= — lim 622— @Zfﬂ . (All) Yo €—0 ¢ ( )
e—0 M

) o ) We have assumed here thea“o®) is an increasing function
Note that this equation is correct independently of wheth%f y, which will turn out to be the case. The leading term in

Zy has been calculated in the MS scheme or whether it igq (A17) may be obtained by integration by parts, with the
defined through Mano’s equation &,=M,/M. It is be-  (agylt

cause of this fact that we can derive a nonperturbative ex-

pression fory,, in the MS scheme, even though this scheme €0 1 (Yo, €)
is usually only used within the context of perturbation Wa(a) — — ;{ (1—6)}. (A19)
theory. 20'(Yo,€)

As the @ dependence afy, now only enters through the
variablea, (and of course implicitly through the variational
parameters it is not surprising that we may use the varia-

We also require the derivative of this function, which is most
easily obtained by direct differentiation of EGAL7):

tional equation(A10) for N to simplify y,,. Indeed, differ- 0 (Yo, €) )
entiating Mano’s equation with respect to the coupling gives  w;(a,) — —exp{ Yo (1—e) _
2¢ 1+Yo0' (Yo, €)
d _, ONdJ_, _da (A20)

N __ _ €y 2\£/!
Zh=m o782 \AWh(a).  (AL2)

Substitution into the variational equation foryields

The first term is zero because of the variational equation for
. . . . . — !
\, da.lda is justa,./a and by substituting the variational 0 1+yow'(Yo,€)

equation for\ into Mano’s equation we find A= 0'(Yo.€) F{w(yo’d (1 )} (A21)
exg———(1—€
Z2,=\[1-2enaWj(a,) ]. (A13) €
Hence the anomalous mass dimension is just given by and hence
, e—0
zeraWs(a,) 2eNaWj(a,) — Yo' (Yo, €) (A22)

Ym= lim —. (A14)
-0 1-2ehaWz(a) so that the anomalous dimension becomes

In order to proceed further, we need to evaluéiga,). ,
In general one would need to do this numerically; however, ~ Yo®o(Yo)
fortunately i imit i [ Ym™ ' ' (A23)

y in Eq.(A14) only the smalle limit is required. 1—Yowg(Yo)

Let us assume that the reduced pseudotime may be written as
We stress that only the last equation is exact while the pre-
vious ones have correction terms for finieIn particular,
the calculation of Zy,=My,/M (as opposed toZN°
) o o =M,y/M,) would require these additional terms and hence
where wo(y)=lim._ow(y,€) is finite. This is supported by he result, unfortunately, does not shed light on whegr
the perturbative results given in Eq#2) and(A4) and we ¢ in fact be zero for finitd, which would signal chiral
shall show that this holds in general when we solve the variagymmetry breaking. Note that the limit—0 in Eq. (A18)

tional equations below. In this case the exponential in Edneeds some care: naively, one would conclude from the defi-

o(Yy,€)

: (A15)

s(y)zex;{ -

(A9) has the argument nition (A6) that the RHS equals lim.,c.=3a/(2) but Eq.
y 1/e (A21) shows that the variational parametervanishes like
— _ew(yyf)) u. (A16)  exp(—wy(Yo)/e) and therefore also gives a contribution
aE
3a
If the term in brackets is larger than 1, this argument will yo €00l = EeZwo(yo), (A24)

become arbitrarily largéand negativein the limit e—0;
hence it will lead to a vanishing contribution to the integral. {his being the resul22) quoted in the main text.
If the term in brackets is smaller than 1, however, the argu- |1 now remains to calculate the functios,(y). The argu-

ment goes to zero, the exponential factor in &) may be  ments used to derive the approximate expressioig(a,)
replaced by unity and the integral ouemay be performed, i, £q. (A17) are more difficult to apply to the variational

yielding equation(A7) for A(z) and the definition(A8) of s(y) be-
cause of the rapidly oscillating trigonometric functions ap-

<701 (o w(y,€) pearing in their integrands. We shall therefore adopt a more
Walar) — 2¢)o dyex;{ € (1=e)}.  (AlD systematic approach at this stage and note that it is possible
to write these equations in a differential form. Consider, for
whereyy is given by the equation example, an integral of the type
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1/e
(A25)

2= [ Cayty) cos(%

By changing integration variable %"¢ and Taylor expand-
ing the functionf(y) we may carry out the integration term
by term by making use of the integral

* a
fo dyyd tcosy=I(q) cos(qg). (A26)

Hence we obtain

* n+1

2= 2 170) gy

n=0

T[1+(n+1)e] coz{(n+1)eg
(A27)

This expression may be resummed, by defining the dilatation

operatorD ,=z d/dz, into the compact form

rs z
l(2)=T(1+€D,) cos{ﬁsDz) jody f(y)

=:v.(eD,) J:dy f(y). (A28)
Hence the variational equation fé(z) becomes
A(z)=1+ ! ve(eD,) fzdy;_ (A29)
€ o “[s(y)]*"¢
and in a similar way we can rewrite EGA8) as
s(y)= ! ! ! (A30)

1+eDy y(eDy) A(y)"

Inverting Eq.(A30) and substituting into Eq(A29) elimi-
nates the profile functioA(z):

1
(1+eDy) y(eD,) s(y)

142 (€D )fydx;
7Y o st
(A31)

Finally, one can eliminate the integral by operating witp
on both sides of this equation, so that

PHYSICAL REVIEW D 62 085009

1

1 y
Dy AT eD,)7u(eDy) s(y) & LBy

[s(y)]*™¢
(A32)

This equation may be solved systematically by defirg(yg)
in terms of the functionw(y, €) [see Eq(A15)] and by mak-
ing the ansatz thab(y,e) has a power expansion

o(y,€)=wg(y) +ew(y)+:---. (A33)

The crucial observation is that repeated application of the
dilatation operator on an exponential of the form of Eq.
(A15) results in €D,)"exp/e)=[(y »')"+O(e)] exp(w/e)

so that at leading order ig, for any functionF(eD,) acting

on expfwle), we have

e—0
F(eDy) exp = w/€) — F(£Y wg) exp(+ w/e).
(A34)

Applying this relation to Eq(A32) provides the following
equation forwg(y):

!
@

(1-y wg) ve(—Y wp)

=7y wg) "0,  (A35)

which is € independent, justifying the ansatA33) a pos-
tiori. This equation may be simplified considerably by mak-
ing use of the reflection formulB(z) I"(1— z) = 7/sinwz for

I" functions. By defining (y)=yw{(y), we then find

ewo(Y)
y

K a
5[1—v(y>]co{§v<y>}, (A36)
which is Eq.(23) in the main text. Together with the bound-
ary conditionwy(0)=0 [i.e. u?(c)—o for 0—0, as dis-
cussed in footnote 2 below E@L0)] the first-order nonlinear
differential equation(A36) determines the functiomq(y).
Remarkably, as shown in the main text, it is not actually
necessary to solve it in order to obtain the anomalous mass
dimensionwy,,. It is also interesting to note that due to the
reflection formula alll’ functions have disappeared, which
has the consequence that in a perturbative expansigifiof

no Riemann functions, but only powers ofr, occur.
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