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Nonperturbative mass renormalization in quenched QED from the worldline variational approach
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Following Feynman’s successful treatment of the polaron problem we apply the same variational principle
to quenched QED in the worldline formulation. New features arise from the description of fermions by
Grassmann trajectories, the supersymmetry between bosonic and fermionic variables and the much more
singular structure of a renormalizable gauge theory such as QED in 311 dimensions. We take as a trial action
a general retarded quadratic action both for the bosonic and fermionic degrees of freedom and derive the
variational equations for the corresponding retardation functions. We find a simple analytic, non-perturbative,
solution for the anomalous mass dimensiongm(a) in the MS scheme. For small couplings we compare our
result with recent four-loop perturbative calculations while at large couplings we find thatgm(a) becomes
proportional toAa. The anomalous mass dimension shows no obvious sign of the chiral symmetry breaking
observed in calculations based on the use of Dyson-Schwinger equations; however, we find that a perturbative
expansion ofgm(a) diverges fora.0.7934. Finally, we investigate the behavior ofgm(a) at large orders in
perturbation theory.

PACS number~s!: 12.20.Ds, 11.15.Me, 11.15.Tk
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I. INTRODUCTION

Variational methods are widely used in many areas
physics but are not very prominent in field theory@1#. This is
due to the infinite number of degrees of freedom and
singular short-distance behavior of relativistic field theori
A very successful application of variational methods in
non-relativisticfield theory is provided by Feynman’s trea
ment of the polaron@2#: after integrating out the phono
degrees of freedom and approximating variationally the
maining effective action by a retarded quadratic trial act
one obtains the best approximation scheme which works
both small and large coupling constants. Detailed numer
investigations@3# have shown that Feynman’s approxima
solution deviates at most 2.2% from the true ground s
energy for all coupling constants. It is therefore very attr
tive to apply similar techniques to problems in relativis
quantum field theory where there is much need for n
perturbative methods. In previous publications we have d
that in the context of a scalar, super-renormalizable mo
theory @4#.

In this paper we present the first results obtained by
plying polaron variational methods to a realistic theo
namely quantum electrodynamics~QED! in the quenched ap
proximation where electron-positron loops are neglect
While the actual coupling constant between electrons
photons,a5e2/(4p).1/137, is small enough to apply pe
turbation theory in most cases, there is enough interes
study the theory at larger coupling: first, the strong coupl
behavior of any physical theory is of interest in itself, se
ond, the possibility of chiral symmetry breaking@5# demands
0556-2821/2000/62~8!/085009~10!/$15.00 62 0850
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an investigation at largea and, finally, bound state problem
are inherently non-perturbative and involve powers
ln 1/a.4.92 in radiative corrections.

The extension of our methods to QED requires a form
ism to include fermions and a treatment of the more sev
singularities encountered in a renormalizable field the
rather than a super-renormalizable or non-relativistic o
We do this within the worldline technique which has recen
experienced a revival@6#. In this formulation, the degrees o
freedom describing the electron are its bosonic worldl
xm(t), which is the four-dimensional analogue of the polar
trajectory, as well as a Grassmannian pathzm(t) needed to
describe the electron’s spin@7#. Here t is the proper time
which parametrizes the paths and runs from 0 toT. The
dynamics of the electron in an external vector fieldAm(x)
with field strengthFmn(x) are then described by the follow
ing worldline Lagrangian:

L52
k0

2
ẋ21 i z• ż1

1

T
ẋ•z x2e ẋ•A~x!2

ie

k0
Fmn~x! zmzn.

~1!

Here k0 is an arbitrary parameter which may be used
reparametrize the proper time without changing the phys
andx is a Grassmannian~super-!partner of the proper time
T. Note that the above action exhibits a well-knownsuper-
symmetrybetween bosonic and fermionic degrees of freed
@8#. For further details about the application of the worldlin
formalism to QED we refer the reader to Ref.@9#.
©2000 The American Physical Society09-1



n
su

e
ng

s

d
ar
Fo
la
ri

n’

or
w
in
ve

c-

xi-
fur-

n

l
n

rda-
t

o

tar-
e.
be-

or-
m
ed

d
n
sent

-
ry
eri-

g

ired

ding

ur
a-

C. ALEXANDROU, R. ROSENFELDER, AND A. W. SCHREIBER PHYSICAL REVIEW D62 085009
The photon fieldAm may be integrated out exactly i
complete analogy to the phonons in the polaron case, re
ing in an effective action for the electron only:

Seff5S02
e2

2 E0

T

dt1 dt2E d4k

~2p!4
Gmn~k!

3F ẋm~ t1!1
2

k0
zm~ t1! k•z~ t1! G

3F ẋn~ t2!2
2

k0
zn~ t2!k•z~ t2! Ge2 ik•[ x(t1)2x(t2) ] .

~2!

HereS0 denotes the free action,

S05E
0

T

dtF2
k0

2
ẋ2~ t !1 i z~ t !• ż~ t !1

1

T
ẋ~ t !•z~ t ! xG ,

~3!

andGmn(k) the gauge-fixed photon propagator. As describ
in Ref. @9#, the electron propagator is obtained by carryi
out a path integral over the degrees of freedomxm(t) and
zm(t), as well as a weighted integral over the proper timeT
and x, and finally identifying the Grassmannian variableG
5z(0)1z(T) with the Dirac matrixg:

G2~p!

5eg•
]

]GE
0

`

dTE dx

3expH i

2k0
@~p22M0

2!T1~p•G2M0!x#J
3

E Dx̃ Dz exp@ ip•x1z~0!•z~T!# exp~ iSeff!

E Dx̃ Dz exp@ ip•x1z~0!•z~T!#exp~ iS0!
U

G50

.

~4!

Here M0 is the bare mass andDx̃ contains an integration
over the end pointx5x(T). Note that we have divided an
multiplied by the path integral for the free theory, so the b
propagator may be obtained by just ignoring the last line.
non-zero couplings, of course, the path integrals in the
line cannot be performed; these we shall approximate va
tionally in the next section.

II. VARIATIONAL APPROACH

Feynman’s variational principle has its root in Jense
inequality for convex functions applied to exp(2SE), where
SE is a Euclidean action. In Minkowski space and/or f
complex actions the variational principle remains valid; ho
ever, it becomes a stationary principle rather than a m
mum principle. To be more precise, the path integral o
bosonic and fermionic paths obeys
08500
lt-

d

e
r
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^ exp@ i ~S2St! # & t.
stat

exp@ i ^S2St& t #, ~5!

where^•••& t indicates an average involving the weight fun
tion eiSt in the relevant functional integral andSt is a suitable
trial action. Note that corrections to this variational appro
mation may be calculated in a systematic way and that,
thermore, to first order in the interaction~i.e. to ordera) the
relation is in fact an equality ifSt reduces to the free actio
for small couplings.

For the trial action required in Eq.~5! we choose a genera
retardedquadratic action which is a two-time modificatio
of the free action in Eq.~3!

S̃t5S01 ik0
2E

0

T

dt1dt2 F 2gB~s! ẋ~ t1!• ẋ~ t2!1
2i

k0
gF8 ~s!

3z~ t1!•z~ t2!2 2
s

k0T
gSO8 ~s! ẋ~ t1!•z~ t2!x G

1l1 p•x2 il2 z~0!•z~T!. ~6!

Here the variational parameters are contained in the reta
tion functionsgi(s) for bosonic, fermionic and spin-orbi
interactions; these are even functions ofs5t12t2 and they
become identical for a supersymmetric trial action.1 The
variational principle ‘‘adjusts’’ these functions in order t
compensate for the fact that the true effective action~2! is
not quadratic in the variablesx(t), z(t). Feynman’s polaron
result was obtained by taking a specific ansatz for the re
dation functions but here we leave their functional form fre
This is because one expects that the correct short-time
havior of these functions is much more important for a ren
malizable theory like QED than for the polaron proble
which does not exhibit any ultraviolet divergences. Inde
one finds that for smalls the ‘‘best’’ gB(s) behaves like
As, ln s and 1/s in the polaron, super-renormalizable an
QED case, respectively. The ‘‘tilde’’ over the trial actio
indicates that it includes the boundary terms already pre
in Eq. ~4! and that we are using ‘‘momentum averaging’’@4#.
These terms, involving the external momentump and the
Grassmann variableG, are multiplied by additional varia-
tional parametersl1 andl2, respectively. They provide ad
ditional freedom to modify the strength of the bounda
terms. We have allowed this freedom because of our exp
ence in scalar relativistic field theory@4#, where the varia-
tional parameterl1 turned out to be essential for describin
the instability of the Wick-Cutkosky model.

Since the trial action~6! is at most quadratic inx(t) and
z(t), it is possible to evaluate the various averages requ

1We have explicitly separated out the free action in Eq.~6!, which
could have alternatively been added into the second term by ad
d(s)/(2ik0) to each of thegi(s)’s. This way our retardation func-
tions contain no distributions. Also, in the supersymmetric limit o
trial action could be written in the explicitly supersymmetric not
tion of Ref. @9# as ik0

2*0
Tdt1dt2 *du1du2g(T12) DX1•DX2, with a

single retardation function.
9-2
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NONPERTURBATIVE MASS RENORMALIZATION IN . . . PHYSICAL REVIEW D 62 085009
in Eq. ~5! analytically. A particular simplification occurs i
one restricts oneself top25M2, whereM is the physical~i.e.
pole! mass: as discussed in@4#, the divergence of the propa
gator on its mass shell results from a divergence of the i
gral over the proper timeT. Indeed, the variational approx
mation ~5! results in an electron propagator@see Eq.~4!#
which has the form

G2
var~p!5eg•]/]GE

0

`

dTE dx

3expH iT

2k0
@2M0

21p2~2l2l2!#J
3expH 2

iT

k0
~V@AB#2V@AF#1V@mB

2 ,mF
2 # !

1F~x,G;T;p!J uG50 , ~7!

where l ~which is defined below!, the V ’s and V are T
independent and the functionF(x,G;T;p) is subleading inT.
The latter therefore contains information relevant for t
wave function renormalization ofG2

var(p), and not the pole
structure. We leave the discussion of this function, wh
also contains the entirex andG dependence~and hence the
spin structure of the propagator!, for a future publication as it
is not required for our present investigation.

From Eq.~7! we see that the bare and physical masses
related through

M0
25M2~2l2l2!22~V@AB#2V@AF#1V@mB

2,mF
2 # !.

~8!

We have labeled this relationshipMano’s equationas Mano
first applied polaron techniques to a scalar relativistic fi
theory @10#. Note that, on the mass shell, the variation
equations resulting from Eq.~5! are equivalent to demandin
stationarity of Mano’s equation.

The nomenclature in Mano’s equation corresponds to
introduced in Ref.@4#: V@AB# and V@AF# originate from
contributions ~bosonic and fermionic, respectively! of the
terms in Eq.~5! involving S0 and St only. They are the
analogue of the kinetic term in variational quantum mecha
cal calculations, while the analogue of the contribution fro
a potential term~explicitly proportional to the strength of th
coupling! resides inV.

Similarly to Ref.@4#, it is useful to express the retardatio
functions in terms of the variational ‘‘profile functions
Ai(E) and the ‘‘pseudotimes’’m i

2(s),i 5B,F defined by

Ai~E!511 ik0E
0

`

ds gi~s!cos~Es! ~9!

m i
2~s!5

4

pE0

`

dE
1

E2Ai~E!
sin2S Es

2 D , ~10!
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respectively.2 Furthermore, it is convenient to definel
5l1 /AB(0). Indeed it turns out that the averages in Eq.~5!
can be directly expressed in terms of these quantities.
kinetic terms in Eqs.~7! and ~8! become

V@Ai #5
dk0

2ipE0

`

dES logAi~E!1
1

Ai~E!
21D , ~11!

whered is the spacetime dimensiond5422e. This is iden-
tical to the result in Ref.@4# if d54 and k05 i ~i.e. the
Euclidean formulation! are taken. The specific properties
QED are encoded in the ‘‘interaction’’ termV which, with
V5V11V2, reads

V1 @mB
2 ,mF

2 #52~d21!pa
n2e

k0
E

0

`

dsE ddk

~2p!d

3$ @ṁF
2~s!#22@ṁB

2~s!#2% E~k,s! ~12!

V2 @mB
2 #52

4pan2el2

k0
E

0

`

dsE ddk

~2p!d

1

k2

3F M21~d22!
~k•p!2

k2 G E~k,s!. ~13!

Note that by ṁ2(s) we mean (d/ds)m2(s) „and not
@(d/ds)m(s)#2

…, the function E(k,s) is defined to be
E(k,s)5exp$i@k2mB

2(s)22lk•ps#/(2k0)% and of coursep2

5M2. The fermionic contributions, both in the ‘‘kinetic
term’’ VF as well as inV1, appear with an opposite sign t
the bosonic contributions. The reason for the separation oV
into two pieces will become apparent below.

By construction Mano’s equation isstationary under
variation of the parameters. It is important to note that
have not demanded the various retardation functionsgB,F ~as
well as gSO, which only plays a role for the residue! to be
identical ~before variation!. Had we done so, the resultin
profile functionsAB andAF would have also been identica
the pseudotimesmB,F

2 would have been one and the same a
henceV@AB#2V@AF# as well asV1 would have vanished
The absence of a ‘‘kinetic’’ contribution would have bee
fatal to the variational principle as this contribution provid
the restoring ‘‘force’’ to the potentialV. On the other hand
closer examination ofV1 reveals thatṁB

2ÞṁF
2 is also dan-

gerous: The contribution of each of these terms is quadr
cally ~UV! divergent if the dimensional regularization is r
placed by a momentum cutoff. This may be checked
either directly substituting the smalls limit of m i

2(s) into

2It is easy to show from Eq.~10! that, as long asAi(0) andAi(`)
exist, for both asymptotically large and infinitesimally small tim
s the functionsm i

2(s) become proportional tos; hence the label
‘‘pseudotime.’’ In the free case one hasAi(E)51,m i

2(s)5s,l
51,V i50. The other variational functionASO(E) and parameter
l2 are linked to the spin structure of the propagator and there
do not show up in Mano’s equation.
9-3
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V1 or by noting that for scalar QED, where the Grassm
nian path integrals are absent, the remaining contribu
from ṁB

2 gives rise to the quadratically divergent one-lo

diagram of that theory. It isthe combination(ṁB
2)22(ṁF

2)2

which displays the usual logarithmic UV divergence
QED. Although at leading order in the coupling we are gu
anteed to reproduce the correct perturbative result@see Eq.
~5!#, at higher orders the cancellation of these quadratic
vergences is ensured by the supersymmetry. To summa
on the one hand the trial action cannot be restricted to c
tain only supersymmetric terms but on the other hand allo
ing non-supersymmetric terms may destroy the renorma
ability of the theory.

The way out of this predicament is provided by the var
tional principle itself: although it is unavoidable that the tr
action breaks supersymmetry, the actual solutions to
variational equations may in fact be nearly supersymme
That this indeed turns out to be the case may be seen
recognizing thatV1 is the most singular part of the intera
tion whereasV2, which involves only bosonic contribution
and is the only source of supersymmetry breaking, is sim
in structure to the scalar super-renormalizable model stu
before@11#. Divergent contributions in the limite→0 to the
variational equations are solely determined byV1. Therefore,
the divergent contributions toAB(E) andAF(E), and hence
to ṁB

2 and ṁF
2 , are identical.

In this paper we confine ourselves to studying this div
gent structure and so it is sufficient to setAB(E)5AF(E)
[A(E). The corresponding variational equation becom
after performing thek integration in Eq.~12!,

A~E!511~12e! ce n2e E
0

`

ds
sinEs

E

ṁ2~s!

@m2~s!#22e

3expF2 i
l2M2s2

2k0m2~s!
G . ~14!

Note that here we have now also dropped the subscrip
the pseudotime as it is no longer relevant and we have
fined

ce5
a

pS 2p i

k0
D e 322e

~12e!~22e!
→

e→03a

2p
. ~15!

Sincem2(s)→s for small s one sees that thes integral in
Eq. ~14! would diverge fore50; this just reflects the 1/s
behavior of the retardation function in Eq.~9! as was dis-
cussed before. The crucial difference between sup
renormalizable and renormalizable theories therefore is
for the latter ones the variational equations themselves
UV divergent. In this way the divergent structure of highe
order diagrams is effectively summed up.

We may now simplifyV by making use of the abov
‘‘asymptotic’’ supersymmetry. The only remaining contrib
tion is that ofV2[l2M2W2 which becomes, after carryin
out the integration over the momentumk,
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~22e!~12e!

2
ce n2eE

0

` ds

@m2~s!#12eE0

1du

ue

3@e1~12e!u#expS 2
i

2k0

l2M2s2

m2~s!
uD ~16!

where theu integration arises from an exponentiation of t
photon propagator in Eq.~13! in a similar way as in Ref.@4#.
With this, the variational equation forl in this asymptotic
limit becomes

l512
]

]l
~l2W2!. ~17!

III. MASS RENORMALIZATION

Renormalizability of~quenched! QED means that all di-
vergences can be collected in the mass and wave func
renormalization constants. In the present investigation
concentrate on the mass renormalization constant in
minimal subtraction~MS! scheme,ZM

MS, defined via M0

5ZM
MSM n where M n is an intermediate mass scale. In th

scheme it has the perturbative expansion

ZM
MS511

b11

e

a

p
1Fb22

e2
1

b12

e G S a

p D 2

1•••, ~18!

where it is known from perturbation theory@12# that the
expansion coefficientsbi j are pure, i.e. mass independen
numbers. Furthermore, the renormalization group provi
relations between many of these coefficients; at ordern in
perturbation theory only the coefficientb1n contains new in-
formation. This is encapsulated in the solution of the ren
malization group equation forZM

MS, namely

ZM
MS5expF2

1

2eE0

a

dx
gm~x!

x G
5expF2

1

2e (
n51

`
gn21

n S a

p D nG , ~19!

wheregm(a) is the anomalous mass dimension of the el
tron @13#. In perturbation theory,gm(a) can be extracted
from perturbative QCD calculations, which have been p
formed up to 4-loop order. One obtainsg053/2,g153/16

@14#, g25 129
64 52.0156 and g352 1

128@ 1261
8 1336z(3)#5

24.3868@15#.
As the variational calculation is applicable for arbitra

values of the coupling, comparison to perturbation the
provides a useful guide to its utility. As mentioned before,
first order in the coupling the calculation is guaranteed to
exact as long as one has used a trial action which can re
to the free action in the limita→0. A genuine test of the
variational scheme is only obtained by comparing the co
ficients in higher order. It should be noted that this test
much more demanding than in the polaron case where
can only compare the numerical value of the second-or
coefficient for the energy: here, in addition, one tests the
9-4
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dependence of this coefficient and also whether it is m
independent as it should be in the exact theory.

In order to knowV and V at second order ina one re-
quires variational parameters up to first order ina. These
may be obtained by inserting the zeroth order res
m2(s)5s and l51 into the variational equations for th
profile function, Eq.~14!, andl, Eq.~17!. The solutions then
need to be substituted back intoV @Eq. ~11!# and V2 @Eq.
~16!#. Having done this,ZM

MS may then be extracted from
Mano’s equation, yieldingb22

var59/32, which is correct, and
b12

var50, which should be compared to the exact value
b12523/64. As in the Wick-Cutkosky model, thel varia-
tion is of crucial importance: for example, fixingl51 would
give a wrong result forb22 and a logarithmic mass depen
dence forb12.

It is possible to develop the perturbative expansion of
variational result further, with the result that no mass dep
dence in the coefficients appears even at higher order
deed, it turns out that it is in fact possible to obtain thefull
analytic expression for the anomalous mass dimension in
worldline variational approximation. We shall sketch t
derivation below, leaving the technical details for the Appe
dix to this paper.

To begin with, we first drop the mass term in the var
tional equation~14! since it only affects long-distance phy
ics and not the ultraviolet behavior contained inZM

MS. Then
we change variables froms to y5ce(n

2s)e, and equiva-
lently for E. This has the effect of making the system
integral equations~10!,~14!,~16! independent of the coupling
We write these explicitly in the Appendix, where it is show
that if, for smalle, the pseudotime has the form

m2~s!

s
5expF2

v0~y!

e
1O~e0!G , ~20!

then the anomalous mass dimension may be written in te
of this functionv0(y), i.e.

gm
var5

v~y0!

12v~y0!
, ~21!

wherev(y)5yv08(y) and y0 is determined by the implicit
equation

y05
3a

2p
ev0(y0). ~22!

On the other hand, it can also be shown~see the Appen-
dix! that the variational equation for the pseudotime tra
lates into an equation forv0(y), i.e.

ev0(y)

y
5

p

2
@ 12v~y! #cotFp2 v~y!G . ~23!

This equation must in general be solved numerically. Ho
ever, we note that the calculation of the anomalous m
dimension in Eq.~21! only requires knowledge of the func
tion v(y) at y5y0. Furthermore, it is remarkable that, at th
value ofy, the combinationev0(y)/y is precisely the combi-
nation that is fixed in terms of the coupling constant@see Eq.
08500
ss

s

f

e
-

n-

he

-

-

s

-

-
ss

~22!#. Hence, aty5y0, the left hand side~LHS! of Eq. ~23!
may be written in terms ofa while on the RHS we can
eliminatev(y0) completely in terms ofgm

var by making use of
Eq. ~21!. One is left with a simple implicit algebraic equatio
for the anomalous dimension,

3

4
a5~ 11gm

var ! tanS p/2gm
var

11gm
varD , ~24!

without ever having actually solved the variational equatio
themselves. Equation~24! is the main result of this paper.

IV. DISCUSSION

When expanded in powers ofa, Eq. ~24! immediately
yields

gm
var~a!5

3

2

a

p
2

9

32
p2S a

p D 3

1
27

32
p2S a

p D 4

2
243

128
p2S 12

p2

20D S a

p D 5

1O~a6!, ~25!

which may be compared to perturbation theory. Numerica
the values of the coefficients are different but of the sa
order of magnitude as the exact perturbative results. N
however, that this comparison is not particularly meaningf
the variational result is an approximation which is valid at
a. It need not have the same, or even approximately
same, perturbative expansion ina as the exact result. I
should, however, benumericallysimilar. In Fig. 1 we plot
the variational result as a function of the coupling and co
pare it to perturbation theory up to 4-loop order. Fora*1
the 3- and 4-loop anomalous dimensions start to deviate
much from each other that one cannot trust either of the
Also shown is the result up to 5 loops, where the 5-lo
coefficient has been estimated from Pade´ approximations to
the perturbation theory@see Eq.~2.12! of Ref. @16#, which

FIG. 1. Anomalous mass dimensiongm as function of the cou-
pling constanta in quenched QED. The variational result~24! is
shown as a solid curve while the solution from the Dyso
Schwinger equations in rainbow approximation is indicated a
dot-dashed curve. The curves labeled ‘‘n-loop’’ show the result up
to n-loop perturbation theory. Finally, the Pade´ estimation of the
5-loop result is also shown.
9-5
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needs to be adapted to QED withnf50 flavors; one finds
g4

Pade53.848]. Clearly this does not significantly extend t
numerical validity of the perturbative result. In short, t
variational estimate forgm is roughly in agreement with~al-
beit apparently a little below! the perturbative result in the
region where the perturbative result can be trusted.

Also shown in Fig. 1 is the only other easily availab
non-perturbative result forgm

MS based on the use of dimen
sionally regularized Dyson-Schwinger~DS! equations in
‘‘rainbow approximation’’ within the Landau gauge. Th
may be obtained by adapting the discussion in Ref.@17# to
finite M0, with the result thatgm

DS512A123a/p ~which is
the same as derived by Miransky@18# using a hard momen
tum cutoff!. We see that this result deviates from perturb
tion theory in a region where, at least numerically, pertur
tion theory still appears to converge. Abovea5p/3
51.047 the DS result becomes complex, this value of
coupling constant coinciding with the couplingacr at which
the onset of chiral symmetry breaking takes place in th
calculations. This is in contrast to the variational res
which remains real for all values of the coupling and in fa
has the strong coupling limit

gm
var~a! →

a→`1

4
A6pa2

1

2
1OS 1

Aa
D . ~26!

Further investigations are necessary to clarify the abse
of any obvious sign of chiral symmetry breaking in the var
tional result forgm

MS(a).3 Indeed, in order to investigate th
issue of dynamical chiral symmetry breaking, it would se
to be more straightforward, at least conceptually, to setM0
on the right hand side of Mano’s equation~8! to zero and to
see if the variational equations can be satisfied in this c
~for a finite physical massM ). This, however, goes consid
erably beyond the scope of this paper: we have merely
culated ZM

MS5M0 /M n ~or, more precisely,gm
MS), which

means that we could simplify the calculation by~i! restrict-
ing ourselves to considering the supersymmetric mass
limit of the variational equations in Sec. II and~ii ! only
taking into account the most divergent contributions~as e
→0) to the variational equations, as well as toW2, in Sec.
III and the Appendix of this paper. In a full calculation of th
RHS of Mano’s equation~i.e. the additional calculation o
the finite renormalizationM n /M ) these two simplifications
should not be made.4 In other words, even ifZM

MSÞ0, dy-
namical chiral symmetry breaking can still occur ifM n /M
vanishes for finiteM.

3The reader should note that the issue of dynamical chiral s
metry breaking in a dimensionally regulated theory is a notoriou
subtle problem; see Ref.@17#. In particular, it was shown there tha
if four dimensional quenched QED breaks chiral symmetryabovea
critical coupling, then the dimensionally regularized theory w
break it forall couplings at finitee.

4This situation is analogous to what is the case in perturba
calculations, where anomalous dimensions of operators are
easier to calculate than finite contributions.
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It is interesting to note, however, that there are also so
strong similarities in the analytic structure of the variation
and DS result. A perturbative inversion of Eq.~24!, i.e. the
expansiongm

var(a)5(n51
` cnan, has a finite radius of conver

gence due to a branch cut in the complexa plane. The po-
sition of this cut, and hence the radius of convergence,
be determined most easily by searching for the value ofa at
which Eq. ~24! has two solutions forgm

var which are infini-
tesimally close to each other. This amounts to demand
that Eq.~24! be satisfied and at the same time the derivat
of its RHS vanish, i.e.

05cotS p/2

11gm
varD 1

p/2

11gm
varY sin2S p/2

11gm
varD . ~27!

One finds thatacon50.7934, which is not too different from
the radius of convergence of the DS result@19#. It is not clear
whether this similarity betweenacr andacon is accidental or
not.

In connection with this, it is interesting to note that fo
largen the behavior of the expansion coefficientscn in both
the variational result and the DS result are rather similar

cn'acon
2n e2b

n3/2
sinF S a1

5p

7 Dn2
3p

7
1bG , ~28!

where numericallyb'1.38, a'2.331023 and b'28.27
31022. For the DS result one obtainsb5 log(2Ap)51.27
and the sine function is absent. It is the sine function in
variational result which is responsible for placing the bran
point ~which, for the DS result, is on the positive real axi!
into the complex plane. Furthermore, it is remarkable that
large-a limit of ugm(a)u obtained in Eq.~26! is almost the
same as for the DS result:ugm

var(a)u→1.09Aa vs ugm
DS(a)u

→0.98Aa.
It should be pointed out that a finite radius of convergen

of the perturbation expansion isnot what one generally ex-
pects from calculations of large orders of perturbation the
using the methods of Lipatov and others@20#. Rather, the
factorial growth of the number of diagrams atnth order in
perturbation theory tends to lead to a vanishing radius
convergence. As has been observed elsewhere@4#, it can be
shown that the variational calculation contains~pieces of! all
possible Feynman diagrams at any order in perturba
theory. One concludes, therefore, that atnth order in pertur-
bation theory there are either strong cancellations betw
diagrams in the variational calculation or thatO(n!) of them
give a vanishing contribution.

V. SUMMARY AND OUTLOOK

We have applied polaron variational techniques
quenched QED in 311 dimensions and obtained, within th
MS scheme, a remarkably simple expression for the ano
lous mass dimension valid for arbitrary couplings. The a
proach has considerable advantages over other techniqu
that it automatically maintains gauge invariance, as well
the requirements of the renormalization group, and corr
tions can be systematically calculated~as has been done i
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the polaron case@21#!. Furthermore, we have shown that th
numerical results forgm are rather reasonable at small co
pling and that at large couplings the perturbative expans
of this quantity fails in a way similar to rainbow DS result
It would be interesting to compare to DS calculations wh
go beyond the ladder approximation, thus decreasing
strong gauge dependence inherent in that approxima
Furthermore, variational calculations with more general t
actions could give an indication whether this analytic str
ture is robust, thus indicating possible large cancellati
between diagrams at high order in the perturbation theor
quenched QED, or whether this structure is just an artifac
the particular trial action used in this paper. Finally, we n
that the calculation of physical observables or application
bound state problems also seems feasible within the va
tional worldline approach developed here.
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APPENDIX

In this appendix we provide some of the technical deta
which enter into the derivation of the variational approxim
tion to the anomalous dimension. To begin with, we sh
scale the trivials dependence out ofm2(s) and define the
reduced pseudotimes(s) as

m2~s!5ss~s!. ~A1!

As argued in the main text, mass terms can be dropped
the calculation of the mass anomalous dimension. A per
bative evaluation of the variational equations~14! and ~10!
for M50 then shows that the profile function and reduc
pseudotime have an expansion in powers ofE2e and se,
respectively:

A~E!511 (
n51

AnS n2

E D ne

, s~s!511 (
n51

sn ~n2s!ne.

~A2!

One finds

A15ceG~e!cosS ep

2 D →
e→03a

2p

1

e
,s152

ce

e~11e!
→

e→0

2
3a

2p

1

e

A25
1

2 S ce

e D 2 12e

11e
G~112e! cos~ep! →

e→01

2 S 3a

2p

1

e D 2

~A3!
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e
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s25
1

2 S ce

e D 2 1

112e F S 11
1

cos~ep! D G2~11e!

G~112e!
2

12e

11e G
→

e→01

2 S 3a

2p

1

e D 2

.

This suggests that perhaps the leadinge behavior of the co-
efficients is

An →
e→0 1

n! S 3a

2p

1

e D n

, sn →
e→0~21!n

n! S 3a

2p

1

e D n

. ~A4!

In view of these results we rewrite all equations in terms
the dimensionless quantities

y5ce~n2s!e, z5ceS n2

E D e

~A5!

where we have also rescaled byce ~which is linear in the
coupling! because the mass scalen always appears in the
combinationa n2e in dimensional regularization. In a simila
way, the variational parameterl almost always appears i
the combinationlM , so it is convenient to define the dimen
sionless combination

ae5ce S 2k0n2

il2M2D e

. ~A6!

With these definitions, the massless variational equa
~14! for A(E) may be brought into the form

A~z!511
1

eE0

`

dy
cos~y/z!1/e

@s~y!#12e
. ~A7!

The reduced pseudotime@i.e. the rescaled version of Eq
~10!# is now given by

s~y!5
2

p

1

eE0

`

dz
1

z S z

yD 1/e 12cos~y/z!1/e

A~z!
, ~A8!

while the rescaled potentialW2 becomes a function ofae
alone,

W2~ae!5
~22e!~12e!

2e E
0

` dy

@s~y!#12eE0

1 du

ue

3@e1~12e!u#expF2~y/ae!
1/e

u

s~y!G ,
~A9!

and hence the variational equation~17! for l becomes

1

l
5112W2~ae!22eaeW28~ae!. ~A10!

The anomalous mass dimension in the MS scheme m
be defined@see Eq.~19!# through
9-7
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gm52 lim
e→0

e
a

ZM
2

]

]a
ZM

2 . ~A11!

Note that this equation is correct independently of whet
ZM has been calculated in the MS scheme or whether
defined through Mano’s equation byZM[M0 /M . It is be-
cause of this fact that we can derive a nonperturbative
pression forgm in the MS scheme, even though this sche
is usually only used within the context of perturbatio
theory.

As thea dependence ofZM now only enters through the
variableae ~and of course implicitly through the variationa
parameters!, it is not surprising that we may use the vari
tional equation~A10! for l to simplify gm . Indeed, differ-
entiating Mano’s equation with respect to the coupling giv

]

]a
ZM

2 5
]l

]a

]

]l
ZM

2 22
]ae

]a
l2W28~ae!. ~A12!

The first term is zero because of the variational equation
l, ]ae /]a is just ae /a and by substituting the variationa
equation forl into Mano’s equation we find

ZM
2 5l @ 122elaeW28~ae! #. ~A13!

Hence the anomalous mass dimension is just given by

gm5 lim
e→0

2elaeW28~ae!

122elaeW28~ae!
. ~A14!

In order to proceed further, we need to evaluateW2(ae).
In general one would need to do this numerically; howev
fortunately in Eq.~A14! only the small-e limit is required.
Let us assume that the reduced pseudotime may be writte

s~y!5expF2
v~y,e!

e G , ~A15!

wherev0(y)[ lime→0v(y,e) is finite. This is supported by
the perturbative results given in Eqs.~A2! and ~A4! and we
shall show that this holds in general when we solve the va
tional equations below. In this case the exponential in
~A9! has the argument

2S y

ae
ev(y,e)D 1/e

u. ~A16!

If the term in brackets is larger than 1, this argument w
become arbitrarily large~and negative! in the limit e→0;
hence it will lead to a vanishing contribution to the integr
If the term in brackets is smaller than 1, however, the ar
ment goes to zero, the exponential factor in Eq.~A9! may be
replaced by unity and the integral overu may be performed,
yielding

W2~ae! →
e→0 1

2eE0

y0
dyexpFv~y,e!

e
~12e!G , ~A17!

wherey0 is given by the equation
08500
r
is

x-
e

s

r

r,

as

-
.

l

.
-

y0 ev0(y0)5 lim
e→0

ae . ~A18!

We have assumed here thatyev0(y) is an increasing function
of y, which will turn out to be the case. The leading term
Eq. ~A17! may be obtained by integration by parts, with th
result

W2~ae! →
e→0 1

2v8~y0 ,e!
expFv~y0 ,e!

e
~12e!G . ~A19!

We also require the derivative of this function, which is mo
easily obtained by direct differentiation of Eq.~A17!:

W28~ae! →
e→0 1

2e
expFv~y0 ,e!

e
~12e!G e2v(y0 ,e)

11y0v8~y0 ,e!
.

~A20!

Substitution into the variational equation forl yields

l →
e→0

v8~y0 ,e!
11y0 v8~y0 ,e!

expFv~y0 ,e!

e
~12e!G ~A21!

and hence

2elaeW28~ae! →
e→0

y0 v8~y0 ,e! ~A22!

so that the anomalous dimension becomes

gm5
y0 v08~y0!

12y0v08~y0!
. ~A23!

We stress that only the last equation is exact while the p
vious ones have correction terms for finitee. In particular,
the calculation of ZM5M0 /M ~as opposed toZM

MS

5M0 /M n) would require these additional terms and hen
the result, unfortunately, does not shed light on whetherZM
could in fact be zero for finiteM, which would signal chiral
symmetry breaking. Note that the limite→0 in Eq. ~A18!
needs some care: naively, one would conclude from the d
nition ~A6! that the RHS equals lime→0ce53a/(2p) but Eq.
~A21! shows that the variational parameterl vanishes like
exp(2v0(y0)/e) and therefore also gives a contribution

y0 ev0(y0)5
3a

2p
e2v0(y0), ~A24!

this being the result~22! quoted in the main text.
It now remains to calculate the functionv0(y). The argu-

ments used to derive the approximate expression forW2(ae)
in Eq. ~A17! are more difficult to apply to the variationa
equation~A7! for A(z) and the definition~A8! of s(y) be-
cause of the rapidly oscillating trigonometric functions a
pearing in their integrands. We shall therefore adopt a m
systematic approach at this stage and note that it is pos
to write these equations in a differential form. Consider,
example, an integral of the type
9-8
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I e~z!5E
0

`

dy f~y! cosS y

zD
1/e

. ~A25!

By changing integration variable toy1/e and Taylor expand-
ing the functionf (y) we may carry out the integration term
by term by making use of the integral

E
0

`

dyyq21 cosy5G~q! cosS q
p

2 D . ~A26!

Hence we obtain

I e~z!5 (
n50

`

f (n)~0!
zn11

~n11!!
G@11~n11!e# cosF ~n11!e

p

2 G .
~A27!

This expression may be resummed, by defining the dilata
operatorDz[z d/dz, into the compact form

I e~z!5G~11eDz! cosS p

2
eDzD E

0

z

dy f~y!

5:gc~eDz! E
0

z

dy f~y!. ~A28!

Hence the variational equation forA(z) becomes

A~z!511
1

e
gc~eDz!E

0

z

dy
1

@s~y!#12e
~A29!

and in a similar way we can rewrite Eq.~A8! as

s~y!5
1

11eDy

1

gc~eDy!

1

A~y!
. ~A30!

Inverting Eq. ~A30! and substituting into Eq.~A29! elimi-
nates the profile functionA(z):

1

~11eDy!gc~eDy! s~y!
511

1

e
gc~eDy!E

0

y

dx
1

@s~x!#12e
.

~A31!

Finally, one can eliminate the integral by operating withDy
on both sides of this equation, so that
is
lis

s-
P

ld

-

08500
n

Dy

1

~11eDy!gc~eDy! s~y!
5

1

e
gc~eDy!

y

@s~y!#12e
.

~A32!

This equation may be solved systematically by definings(y)
in terms of the functionv(y,e) @see Eq.~A15!# and by mak-
ing the ansatz thatv(y,e) has a power expansion ine:

v~y,e!5v0~y!1ev1~y!1•••. ~A33!

The crucial observation is that repeated application of
dilatation operator on an exponential of the form of E
~A15! results in (eDy)

nexp(v/e)5@(yv8)n1O(e)# exp(v/e)
so that at leading order ine, for any functionF(eDy) acting
on exp(6v/e), we have

F~eDy! exp~6v/e! →
e→0

F~6y v08! exp~6v/e!.
~A34!

Applying this relation to Eq.~A32! provides the following
equation forv0(y):

v08

~12y v08! gc~2y v08!
5gc~y v08! e2v0, ~A35!

which is e independent, justifying the ansatz~A33! a pos-
tiori . This equation may be simplified considerably by ma
ing use of the reflection formulaG(z) G(12z)5p/sinpz for
G functions. By definingv(y)[yv08(y), we then find

ev0(y)

y
5

p

2
@12v~y!#cotFp2 v~y!G , ~A36!

which is Eq.~23! in the main text. Together with the bound
ary conditionv0(0)50 @i.e. m2(s)→s for s→0, as dis-
cussed in footnote 2 below Eq.~10!# the first-order nonlinear
differential equation~A36! determines the functionv0(y).
Remarkably, as shown in the main text, it is not actua
necessary to solve it in order to obtain the anomalous m
dimensiongm . It is also interesting to note that due to th
reflection formula allG functions have disappeared, whic
has the consequence that in a perturbative expansion ofgm

var

no Riemannz functions, but only powers ofp, occur.
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