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We study patterns of chiral symmetry breaking at zero temperature and its subsequent restoration at nonzero
temperature within the SU(3% SU(3), linear sigma model. Gap equations for the masses of the scalar and
pseudoscalar mesons and the non-strange and strange quark condensates are systematically derived in the
Hartree approximation via the Cornwall-Jackiw-Tomboulis formalism. In the chiral limit, the chiral symmetry
restoring transition is found to be first order, as predicted by universality arguments. Taking the experimental
values for the meson masses, however, the transition is crossover. The absence of jhendfigly is found
to drive this transition closer to being first order. At large temperatures, the mixing angles between octet and
singlet states approach ideal flavor mixing.

PACS numbd(s): 11.10.Wx

[. INTRODUCTION Pisarski and Wilczek6] discussed the order of the chiral
transition using renormalization group arguments in the
Chiral symmetry is broken in the vacuum of quantumframework of the linear sigma model. This model is the ef-
chromodynamics(QCD). At temperatures of about 150 fective theory for the low-energy degrees of freedom of
MeV, lattice QCD calculations indicate that chiral symmetry QCD and incorporates the global SW{), X SU(N;),
is restored 1]. The order of the phase transition depends onx U(1), symmetry, but not the local SU(3)xolor symme-
the mass of the non-strange up and down quarksymy, try. They found that folN;=2 flavors of massless quarks,
and the mass of the strange quank [2]. In nature,m, the transition can be of second order, if the U{ Bymmetry
=my~10 MeV andmg~100 MeV [3]. At temperatures on s explicitly broken by instantons. It is driven first order by
the order of 150 MeV, heavier quark flavors do not play anfluctuations, if the U(1) symmetry is restored &aF.. For
essential role. N;=3 massless flavors, the transition is always first order. In
For Nt massless quark flavors, the QCD Lagrangian has ghis case, the term which breaks the U{ Bymmetry explic-
SU(N) X SU(N¢); X U(1)s symmetry. In the vacuum, a iy js a cubic invariant, and consequently drives the transi-
non-vanishing expectation value of the quark condensatgjo, first order. In the absence of explicit UL symmetry
(a19,)#0, spontaneously breaks this symmetry to the diagpreaking, the transition is fluctuation-induced of first order.
onal SUNy)y group of vector transformation¥,=r +1. For In nature, the chiral symmetry of QCD is explicitly bro-
N;=3, the effective, low-energy degrees of freedom of QCDyen by nonzero quark masses. In this case, one has to resort
are the scalar and pseudoscalar mesons. Since mesang areto numerical calculations to determine the order of the chiral
states, they fall in singlet and octet representations ofransition. At present, however, lattice QCD data have not
SU@B)y . unambiguously settled this issue. For physical values of the
The SUN;), X SU(N¢);XU(1), symmetry of the QCD quark masses, calculations with staggered fermj@hgvor
Lagrangian is also explicitly broken by nonzero quarka smooth crossover transition, while calculations with Wil-
masses. FoOM=<N; degenerate quark flavors, a W)y  son fermiong7] predict the transition to be first order.
symmetry is preserved. M <N, the mass eigenstates are  As an alternative to lattice QCD calculations, one can also
mixtures of singlet and octet states. For instance, in the psewrse the linear sigma model to make predictions on the order
doscalar meson sector, this mixing occurs betweemthed  of the phase transition in QCD. Furthermore, various
the »' meson, with they meson being mostly octet and the symmetry-breaking scenarios can be more easily investi-
7' meson being mostly singlet, with a mixing angle of aboutgated than on the lattice. Studying the linear sigma model at
—10° to —20°[4]. nonzero temperature, however, requires many-body resum-
As shown by 't Hooff 5], instantons also break the U({Ll) mation schemes, because infrared divergences cause naive
symmetry explicitly toZ(N;) 5 [6]. For the low-energy dy- perturbation theory to break dow8].
namics of QCD, however, this discrete symmetry is irrel- For N;=2, effective chiral models for QCD have been
evant. studied extensively, because in this case SUXRJU(2) is
isomorphic to @4), and ON) models[9] in general are
particularly amenable to many-body approximations at non-
*Current address: Physics Department, Brookhaven Nationatero temperature. For an incomplete list of references, see
Laboratory, Upton, NY 11973. [10], where some of ug).T.L. and D.H.R.studied the O)
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model in the Hartree and larde-approximations. L(P)=Tr(9,To*® —m?dTd) -\ [ Tr(DTD)]?
For Ny=3, many-body resummation schemes become
considerably more involved due to the larger number of de- —\,Tr(®®)?+c[Det(®) + Det( ®")]
grees of freedom. The SU(3¥ SU(3), linear sigma model +THH(® + O], )

[11] was previously studied at nonzero temperaturelizy.

The genuine problem of these approaches is that they emply 5 4 complex X3 matrix parametrizing the scalar and
methods related to the standard loop expansion to Compuﬁseudoscalar meson nonets,

the effective potential. At nonzero temperature, the loop ex-

pansion is known to fail in the case of spontaneously broken O=Tp,=T(o.+im,), (3a
symmetry, since it generates imaginary masses for the par-

ticles. The physical reason for this failure is that contribu-where o, are the scalar fields ant, are the pseudoscalar

tions from thermal excitations to the masses are neglectedields. The 3x3 matrix H breaks the symmetry explicitly
This can be amended by self-consistent resummatioand is chosen as

schemes like the mean-field or the Hartree approximation. In
[13], one of ugJ.S.-B) studied the linear sigma model in the H=T.h,, (3b)
mean-field approximation.

In this work, we study the SU(3X SU(3), linear sigma  whereh, are nine external fieldsI,=\./2 are the genera-

model in the Hartree approximation. We derive this approxigg of (3), whereX, are the Gell-Mann matrices witky
mation systematically from the Cornwall-Jackiw-Tomboulis \/; h i h th _
(CJT) formalism[14]. Thus, we extend previous work for — s1. The T, are normalized such that Tr{Ty) = /2

N;=2 [10] to N;=3. We study possible patterns of symme- and obey the U(3) algebra with
try breaking in the vacuum and its subsequent restoration at

nonzero temperature. We focus on both the cases where chi- [Ta, Tol=ifabcTe, (48)
ral symmetry is and where it is not explicitly broken by
nonzero quark masses. Lattice QCD data indicate that the {Ta To}=dancTe, (4b)
U(1), anomaly becomes small near the chiral transition
[15]. Therefore, we also study the influence of the U(1) Where fapc and dape for a,b,c=1,...,8 are thestandard

anomaly on symmetry restoration at nonzero temperature. antisymmetric and symmetric structure constants of SU(3)
This paper is organized as follows. In Sec. Il, we intro-2"

duce the SU(3)XSU(3), linear sigma model. In Sec. lll,

the possible patterns of symmetry breaking in the vacuum foo=0  dop= \ﬁ5 (40

are discussed. Section IV is devoted to the vacuum proper- b0+, Hab0 3ab:

ties of the model at tree level. In Sec. V, we derive the gap

equations for the condensates and the masses in Hartree ap-In Eq. (2), m? is squared the tree-level mass of the fields

proximation via the CJT effective potential. Numerical re-in the absence of symmetry breaking, and\, are the two

sults are presented in Sec. VI. We conclude this work in Sedqoossible quartic coupling constants, ands the cubic cou-

VIl with a summary of our results. pling constant. In four dimensions, the cubic and the two
We use the imaginary-time formalism to compute quanti-quartic terms are the only relevant SU{(3)SU(3), invari-
ties at nonzero temperature. Our notation is ant operators.

The terms in the first line of Eq2) are actually invariant
under the larger group of U(3X U(3), symmetry transfor-

d3k . mations,
f(2minT,k),

f=T >
f" == ) (2m)? ®—U,0Uf, U, =expio? T?). )

uT Introducing w 4=(w!*+ w})/2, the right- and left-handed
f f(x)= f dr f d3x f(7,x). (1) symmetry transformations can be alternatively written as
X 0 vector,V=r +I, and axial vectorA=r —1, transformations.
It is then obvious thatb is a singlet under U(3) transfor-
mations exp’@?,TO). This U(1)y is the U(1) of baryon num-
ber conservation and thus always respected. The first three
terms of Eq.(2) are therefore invariant under SU(3)
X SU(3) X U(1)a=SU(3), X U(3)a-
The determinant terms correspond to the U(aphomaly
in the QCD vacuum. As shown by 't Hoof6], they arise
from instantons. These terms are invariant under S|J(3)
X SU(3),=SU(3), X SU(3), transformations, but break the
The Lagrangian of the SU(3XSU(3) linear sigma U(1), symmetry of the Lagrangrian explicitly. The last term
model is given by{11] in Eq. (2) breaks the axial and possibly the SU(3)ector

We use unitsi=c=kg=1. The metric tensor isg"”
=diag(+,—,—,—). Throughout this work, all latin sub-
scripts are adjoint U(3) indiceg,=0, ... ,8, and aumma-
tion over repeated indices is understood.

Il. THE LINEAR SIGMA MODEL FOR THREE FLAVORS

085008-2



CHIRAL SYMMETRY RESTORATION AT NONZERO. .. PHYSICAL REVIEW D62 085008

symmetries explicitly. The patterns of explicit symmetry breaking will be discussed in detail in Sec. Ill.
The o, fields are members of the scalal"&0") nonet and ther, fields are members of the pseudoscaldr=¢0")
nonet:

1 0 1 1 _ _
an"-%US'FﬁUO aO K
Lo i L, 1 1 . ca
=— a, —F=0 (o} ,
7" 2 ’ 27 6 0B
2 1
K" K° —ogt—=0y
373
1 o 1 N 1 _ K-
— — — ™
2 e B
Lo : 1oyt Ko (6b)
=— T ——=mt—=mgt—=m .
aTa \/E \/E \/6 8 \/§ 0
2 1
K" KO o4 —
\/5778 3770

Here, 7" =(m *im,)/\2 and #°=m; are the charged and neutral pions, respectivily=(m,*ims)/\2, K°=(mg
+im,)/\2, andK®=(mg—i;)/\/2 are the kaons. In general, because the strange quark is much heavier than the up or down
quarks, themry and themg are admixtures of thegy and then’ meson.

The situation with the scalar nonet is not as clear. The parity partner of the pion & (680) meson, i.e.a, =(o;
+io,)/\2 anda=o5. We identify the parity partner of the kaon with themeson[now referred to a&{ (1430) in[4]].

Finally, in general thery and theog are admixtures of the: [now also referred to af,(400—1200)] andf,(1370) mesons.
[Instead of thef((1370) meson, one could have chosenft)(®80) meson. However, as we shall see in Sec. IV, in the linear
sigma model the mass of this state is closer tofg{@370) ] For details concerning the phenomenological status of the scalar
nonet, see, for instandé 6.

In principle, there is the possibility that the scalar particles are not diquark states, but formed from two quarks and two
antiquarkg 17]. Then we would associate thewith the «(900) discovered inrK scattering 18]. Determining the vacuum
properties of the linear sigma model, cf. Sec. IV, the mass ofxlttarns out to be between that of thg900) and the
K3 (1430), while its width[19] is closer to the observed width of th&900).

Symmetry breaking gives th@ field a vacuum expectation value:

(PY=T,0,. 7

Shifting the®d field by this vacuum expectation value, the Lagrangian can be rewrittE20as

4 _
L= 5[07#0'&10“0'34- (9M7Tao7'“71'a— o4 mé)abo'b_ a( m|23)ab77b] +| Gabe— §fabcd0'd) 03010

4 — 1 —
- 3( Gabct §Habcd0'd) TaThOc~ 2HapcdTaOb T g™ §~7:abcd( TaOpOOg+ Mampmemg) —U(0), (8)
[
where is the tree-level potential anEa is determined on the tree
level by
— m, 1 (o)  — __ 4 ___
U(o)= 7Ua_ GabcTa0po et §~7:abcd0'a0'b0'c0'd —h,o, Jo =M05—30apc0p0cT §~7:abcda'b0'co'd —h,=0.

a

9 (10)
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The coefficientapc, Fabed, aNdHapcg are given by be spontaneously broken, while the vector symmetries re-
main intact. One can distinguish two ca$2g]:

(@ Npy>0. SU(3),XU(3), is broken to SU(3), with
(®)~diag(1,1,1) and the appearance of 9 Goldstone bosons
which comprise the entire pseudoscalar nonet, i.e., the pions,

(113 the kaons, they, and thez’ meson. The nine massive scalar
particles fall into irreducible representations of SU{3)
Since the mesons consist of a qu&aq 3] of SU(3)y) and

an antiquark(a [?]), these representations are a singlet and

an octet, becauge3] X[3]=[1]+[8]. The mass of the sin-
N glet, theo meson, is in general different from tlidegener-
+—2(dabndncd+ dagrdnbet dacndnpe), (11 ate masses of the octet particles.
8 (b) A,<0. SU(3),XU(3)s is broken to SU(2)
X U(2)a, with (®)~diag(0,0,1) and 10 Goldstone bosons.
(3) H=0, c#0, \,#0: The symmetry is SU(3)
X SU(3)s. A non-vanishing{®) spontaneously breaks this
(110  symmetry to SU(3), with the appearance of 8 Goldstone
) ) bosons, which is the complete pseudoscalar octet. The ninth
The tree-level massesmf) ., and (M?),, are given by Goldstone boson of caséa, the ' meson, becomes mas-
) 5 — S sive and thus is no longer a Goldstone boson, because the
(MS)ap=M"0ap~ 6Gapc0ct 4 ancadc0d, (128 y(1), symmetry is already explicitly broken. The masses of
. L the scalar particles behave as in cag®.2\ote that from Eq.
(m,%)ab=m25ab+ 6Gabc0ct4Haped0c0q- (12D (9), m?><0 is no longer required for spontaneous symmetry
breaking wherc+# 0.
In general, these mass matrices are not diagonal. Conse- (4) H#0, ¢=0, \,#0: In QCD, this corresponds to
quently, the fields ¢,,,) in the standard basis of U(3) non-vanishing quark masses, but vanishing U(ahomaly.
generators are not mass eigenstates. Since the mass matrigggce(®) must carry the quantum numbers of the vacuum,
are symmetric and real, diagonalization is achieved by agnly h,, h,;, and hg can be nonzero. One can distinguish

C 3

gabc:g dape— E( 0a0dobcT Spodaoc Scoano)
9

ts5 d000920%06c0 |»

A
Fabed™ 2 (Sandcdt 9adObcT Sacdpa)

A 2
Habcdzz 5ab5cd+§(dabndncd+ 1Eacnfnbd"' fbcnfnad)-

orthogonal transformation: three cases:
- (@ hg#0, hy=hg=0. All quark masses are equal, i.e.,
7i=03 0y, (138 m,=my=m. In this case, the U(3)axial symmetry isex-
plicitly broken, i.e., the 9 Goldstone bosons of cat® Be-
=0, (13p come (mass degeneratepseudo-Goldstone bosons. The
SU(3)y symmetry remains intact and the scalars follow the
(Ar’hép)i=Og?’P)(m§p)abOé?'P). (139 classification as discussed in case)2

(b) hg#0, h3=0, hg#0. Only the non-strange flavors
are degenerate in mass, i&,=my# mg. In addition to the
IIl. PATTERNS OF SYMMETRY BREAKING explicitly broken U(3), symmetry, SU(3) is explicitly bro-

In this section, we discuss possible patterns of symmetr}f€" t© SU(2),. For the scalar particles, the following ap-
breaking in the vacuum. We begin with the most symmetrioO“eS- If there was ideal flavor mixing, i.e., the ph)@cal par-
case, i.e., with the minimum number of nontrivial couplings, ticles are also eigenstates of flavor, one particle is estate

and then successively reduce the symmetry. (the fo meson, while all others contain at least one non-
(1) H=0, ¢=0, \,=0: Form?>0, the symmetry group Strange quark or antiquark. The latter then fall into irreduc-
is O(18), on account of ible representations of SU(g) For the scalar particles con-

taining no strange quark or antiquarﬁ a qudek[2] of
SU(2),) couples with an antiquarka [2]) to form the o

meson singlet and th@, meson triplet, since2]X [5]
=[1]+[3]. The strange scalar particles have only one quark

in a[2] or a[2] representation, and therefore fall into dou-

Tr(d'd)= %(a§+ 72). (14)

The physics of the @{) model has been studied extensively
in the past[9,10] and so we shall restrict ourselves in the ¥ 0 :
following to \,#0. Here, we only mention that fan?<0, br:ets ?f Sl;(—zo)" The « fandK_mesons formh$2], while ;
the O(18) symmetry is spontaneously broken to O(17) and® ¥ and k= mesons form 5[2]: Because the masses o
there are 17 Goldstone bosons. quarks and antiquarks are identical, these two doublets are

(2) H=0, c=0, \,#0: Form?>0, the Lagrangian has mass degenerate. In nature, however, flavor mixing is not

a global SU(3)xU(3), symmetry. Form?<0, Eq. (9) ideal and thefo_meson has a&q admixture, just as ther
shows that® develops a non-vanishing vacuum expectationmeson has ass admixture. For the pseudoscalars, only the
value, and the U(3) symmetry isspontaneouslproken. By  four non-strange pseudo-Goldstone bosons, the pions and the
the Vafa-Witten theorerf21], only the axial symmetries can 7’ meson, are degenerate in mass. The kaons andythe
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meson both have different masses. Since the pions are non- Cases £a) and 3 correspond to the chiral limit which is

Strangeqa states, and the7’ meson is degenerate in mass not realized in nature. Therefore, in principle one should not
with the pions, it follows that it is also a non-stranga use experimental values for the masses and decay constants

Th h . — e 1 . to fix the parametera?, \;, \,, and, in case 3;. For the
state. Then, the meson is a puresstate, I.e., lavor mixing  g51e of definiteness, however, we use the following tentative
is ideal in the pseudoscalar sector.

. generalizations of experimental data. We use the pion decay
(©) ho#0, h3#0, hg70. Here, SU(3y is completely constant,f ., extrapolated to the chiral limit, the meson
broken. Even the non-strange pseudo-Goldstone bosons Pss and. in case 3 the' meson massfin case 2a)

no(ll:_)o)ng(;r i%mglztgly}\d?g.nerztgv\in n;?osri the U(3), m,,=m,=0.] For the final input parameter, since the scalar
3 3 2 . ] H H _
= SU(3), X U(1), symmetry, the U(1) is explicitly broken octet is degenerate in mass when the SUXSU(3), sym

by instant Again. th " ) metry is not explicitly broken, we use an average of the
y Instantons. Again, there are three cases. - experimental values for the masses of the scalar octet.
(@ hg#0, hz=hg=0. In this case, the remaining

SU(3), axial symmetry is explicitly broken, i.e., the 8 Gold-
stone bosons of case 3 becorimass degenergt@seudo-
Goldstone bosons. As above, the SU{3ymmetry remains The vacuum expectation value(i®) = Tooo+ Tgag. The

intact. The scalar particles behave as in case 4 . —
(b) hg#0, hy=0, hg#0. Besides the explicitly broken equations for the condensateg and g read

A. Explicit chiral symmetry breaking with U (1) » anomaly

SU(3)a symmetry, SU(3) is explicitly broken to SU(2). c N -
The scalar and pseudoscalar particles behave as in (ase 4 ho=| m?>— — g+ | N+ Z2 ;ﬁ oo
except that thep’ meson mass is different from the pion G 3

mass because of the U(danomaly. Then, flavor mixing is

no longer ideal in the pseudoscalar sector. n
(c) hg#0, hy#0, hg#0. This is the case realized in na-

ture, although violation of isospin SU()is small (the

Cc — Ao —
_+()\1+)\2)0'0__20'8‘|;§, (153)

2.6 32

charged and the neutral pions are almost degenerate in.mass c c
In the following, we shall restrict ourselves to studying hg=| m?+ — ;04_ _;8+()\1+ )\2);(?)
cases Ba), 3, 4b), and §b). The first two cases are interest- \/6 2\/5
ing because they represent the idealized scenario where the
guark masses are zero, i.e., the chiral limit. The last two 2 —— Ao\ —|—
g ——= 000gt| N1+ 5|05 0. (15b
cases are close to the situation in nature where quark masses NA 2

break the chiral symmetry explicitly. Lattice QCD data indi-

cate that the U(1y anomaly becomes small for large tem- The partially conserved axial-vector currefRCAC) rela-
peratureg15]. This motivates our interest in case@2and  tions (see the Appendixdetermine the values of the conden-

4(b), see a|S([13] Since iSOSpin SU(Z/) violation is rather sates from the pion and kaon decay Constaﬁ'HS,fK,

small in nature, it is sufficient and easier to study cad® 5
instead of %c). o 4of
op=—— =~

: (169
IV. CONDENSATES AND MASSES IN THE VACUUM \/6

In this section, we establish the vacuum properties of the
SU(3), X SU(3) model in the various cases selected above. o :i(f —fy) (16b
In contrast to the previous section, it is now easier to begin 8 3 7 K
with the most asymmetric casél. This is the case closest
to nature and therefore it is natural to use the experimentajve use the experimental valuds=92.4 MeV, f =113
values for the meson masses and decay constants as input\ge\/ [4].
determine the coupling constants. The linear sigma model The nonzero elements of the scalar mass matrix are
has six parametersn?, \;, \,, ¢, hg, andhg. It therefore
requires six experimentally known quantities as input. We > _
choosem_, my, f.., fx, the average squared mass of fhe (M) go=m?— \[g cop+ (3N + )5+ (N1 +N,) a3,

’ 2 2
and ' mesonsm; +m’,, andzm,,. The other masses), , (173
M, M, the differencemf]— m and the mixing angles are
then predicted. (M3)11=(M2) 5= (M) 33
In the other cases, nature does not provide us with infor-
mation about the masses and the decay constants. In case =m2+i_ _C = + (gt hy) 02
4(b), c=0, and we need to specify only five input param- Jg 70 3 7B 2io0
eters. It turns out that we do not need to |ﬁ)§7+ mf/, , be-
- . . N A
\(/:vaetljlsan,],—mﬁ, and the mass of thg meson is predicted as +2 Nporoogt | Nyt ?2 ;g, (17b

085008-5



LENAGHAN, RISCHKE, AND SCHAFFNER-BIELICH

(mM3) 44= (M) 55= (M3) g6=(M3) 77

c —
—m +_O'0+

V6

c
Tat (N +\y) 02
2\/58(1 2)0

—_— A
2 2™
——=0g0gt+t | N1+ > |78

V2

(ms)gg m + — 0'8+()\1+)\2)0'0

&

2)\2;0;8"‘3 A +? 0'8,

C _
_+2()\1+)\2)0'0_

J6

( mé) 8= ( mé) 80—

A, 1
27

While the masses of tha, and thex mesons are given by

Og.

(179

(17d

(179

the (11) and (44) elements of the mass matri>m€2,10

E(mé)lly

According to Eq.(13),

M5 = (M%) o= (M) COS O+ (M3)gg SN s

+2(m3) g COSHs Sin b,

mf20E (M3)g=(M3) g SirPfs+ (M3)gg COS s

—2(m3) g COSHs Sin b,
where the scalar mixing angk; is given by

2(m§) 08

tan 20g=—————.
(m3)go— (M) gg

The pseudoscalar mass matrix is given by

2 _ Ao
(m,zg)o(): m2+ \/; C(To+ ( )\1+ ?

(m%)n: (m|23)22: (m|23)33

2,2

. 8

c —
=mM°——=o0gt+ —=o0g+| N+
\/600 \/50'8 ( 173

Ao
+
A 6

7

a3,

A
3 M20008

m2=(m3) 4, the o andf, meson masses are ob-
tained by diagonalizing th€08) sector of the mass matrix.

(183

(18b)

(180

(199

(19b

PHYSICAL REVIEW D62 085008

(M3) 44= (M3)55= (M3) 66= (M3) 77

c — c — Ao\ —
=m’- —=o ogt| AN+
\/6 0 2\/§ 8 1 3 0
Ny ——
_ﬁaogg"‘ )\1+6)\2 Og, (190)
c— ¢ — Ao\ —,
(ms) Mm——=opg——=o0gt| N+ =0
p/8s \/5 0 3 8 1T 37]%
2 A
_g)\zo'oo'g"‘()\l'f'?z ggy (190)
2 2 - Ny —|—
(Mp)og=(Mp)go= \/— 3)\20'0 \/50'8 Og.
(199

While the mass of the pion and the kaon are given by the
(11) and (44) elements of the mass matrixme
=(m3);;, mi=(m3)4, the ' and 7 meson masses are
obtained by diagonalizing th@8) sector of the mass matrix.
According to Eq.(13),

mi,z(rn,zg)(): (M3)go COS Bp+ (MB) g SirPOp
+2(m3)og COSHp SiNbp, (203

M’ =(M3)g=(M3) oo SIN?Op+ (M3)gg COS G
—2(m3)og COSHp SiNbp, (20b)

where the pseudoscalar mixing andle is given by
tan 20p= 2(m$,)08 (200

(M3)oo— (M3)gg.

The explicit symmetry breaking term&, and hg, are
determined from Eq915), (16), (19b), and(19¢ as

ho=—7= (219

1
JE(

m2 f.+2ma fy),

2
h8:_(m721- fﬁ_mi fK)

V3

Using the experimental pion and kaon masses, one obtains
ho=(286.094 MeV§ andhg=—(310.960 MeV}.
Comparing Egs(15b and (170 reveals

(21b)

hg=m? o, (22)
i.e., the mass of thex meson is predicted to ben,
=1124.315 MeV, which is about 21% smaller than the ex-
perimental value. The averageand»’ meson mass squared
determines\,
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:3(2fK—f,)mﬁ—(2fK+f,,)me—Z(mfl,—l—mf?)(fK—fﬁ)
[3f%+8fk(fk—f)1(fk—f) '

(23

For m + m =(1103.625 MeV¥, one obtains\,=46.484.  The pseudoscalar mixing angle is given by tap 2 242, or
The difference of the pion and kaon masses squared an@b=35.264. This corresponds to ideal flavor mixing.

\, determinec, As before,\ is given by solving the equation for the
meson mass, which in turn yields ttig meson mass, the
mz—m2 scalar mixing angle, andn®. For m,=600 MeV we find

= Fof, a2l f;)=4807.835 MeV. (24 ) - — 4550, m; ~1341.367 MeV, fs=31.326°, andm?

=—(503.551 Me\?)
Now, also the mass of the; meson is fixed,

mgozmi+(fK_fw)[C_7\2(2fK+fw)] C. Chiral limit with U (1), anomaly

X In this case,(®)=Tyo,. Using h,=0 and the explicit
=(1028.707 MeV~, 25 form for theG,pc and Fupcq, the equation for the condensate

which is about 4% larger than the experimental value. The at the tree leve{153 simplifies to

pseudoscalar mixing angle &= —5° This angle deter- c N -
mines the individualy and " meson masses to b, 0=|m?— — og+ )\1+—2 ;S 09- (29
=539.008 MeV andm,,=963.046 MeV. These values are \/5 3

surprisingly close to the experimental ones; theneson is

about 2% lighter and they’ meson is about 0.6% heavier From the PCAC relationtsee the Appendjxwe now obtain

than in nature. oo=1/3/2 f . Lattice QCD data indicate a linear behavior of
Finally, X, is determined by fixing either the mass of the f with the quark massf,=amy+b [23]. Extrapolating

o or thefo meson; the other mass, the scalar mixing anglethese data to the chiral limitn,—0 (as appropriate foH

s, andm? are then given by solving a nonlinear equation =0), one obtaing =90 MeV.

for the fixed mass. Here, we choosg =600 MeV to yield The scalar and the pseudoscalar mass matrices are diago-

N1=1.400 andmf0=1221.113 MeV, about 11% smaller nal and have the particularly simple form

than the experimental value. The scalar mixing angléds
=19.859°, andn?=(342.523 MeVy.
B. Explicit chiral symmetry breaking without U (1) » anomaly

In the absence of the U(})anomaly,c=0, the conden- _< \ﬁ 0_2)\1;()
sate equation€l5a and(15b) and the equations for the sca- 2
lar and pseudoscalar mass matri¢&%) and (19) simplify.

(M) ap= 5| Bap

708200h0, (30a

Equations(16) and(21), however remain the same and thus c _ A
2 2 2™
yield the same values far,, og, ho, andhg as above. The (Mp)ap=| M~ % oot| Mt 3]0 ap
mass of thec meson is still given by Eq22) and is the same
as above 3 _
The differences begin with the mass of thé meson, + \[5 Co08406h0- (30b)

which is now identical to the pion mass, since the (1)
anomaly is absent. Furthermobe, is given by the kaon and

: Taking into account Eq(29), the pseudoscalar octed,b
pion masses and decay constants,

=1,...,8, ismassless, as expected from group theory, see
m2 — m? case(3) in Sec. lll. The singlet, the;’ meson, is massive,
No= T : f’T - =82.470. (26) because the U(Z) symmetry is explicitly broken by the
( K™ 17)( K™ 77) U(l)A anoma|y,
This then determines the mass of themeson, 3
2 _ 2
m’,=(mg)go=x5Cf,. 31
m2=m2+2\,f(fx—f,)=(634.818 MeV?, (27) v =(Mbloo=35 31
and theay meson, If we use the experimental value of thg meson mass;
5 5 5 5 5 =6791.157 MeV.
Mg, = M, — Ao(2fi — f i —17)=(850.387 MeV~. The scalar particles fall into a singlet, themeson, with

(28) mass
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3 — — 1 ) .
M= (M= —Cf -2 (BN, (3D VIZSPI=U@)+ [ (NS et 0P )T

. 1 1 — 1=
and an octet comprising the,, x, andf, mesons, + ka[Sabl(k;a-)Sba(k)_" Pk o) Pya(k)
2 2 2 c 3 2 .
Mg, = (Mg)1,=m"+ Efw+§()\l+}\2)fﬂ' —238,50pal + Vo[ o, S, P]. (36)
2 N ¢ _ .
Emfr+ mf]r—3?\1f7275>\2fi+ §m3/" 33) Here,U(o) is the tree-level potential of E¢9), and

Soi(k; o) = — k28,0 + (M) a1, 37
where the last identity follows from Ed29). This equation a (i) av+ (Ms)ab 379

determines\; and\, for givenm,, Ma,» andm,, . As the .
octet is mass degenerate, we average the experimental values Pap (K 0) = —k?8ap+ (MP) ap, (37b
for m , m7, andm{ , weighted by the respective isospin
degeneracy, to obtain an average masg’ngof: 1225.795 are .the treg-level propag_ators for scalar and pseudoscalar
MeV. For thes meson we again take, =600 MeV. This Particles, with the respective mass matri¢e?).
results in\;=—9.291 and\,=110.046. Thenm? follows The expectation values for the scalar fieldg, and the
from any of the mass equations mé= — (164.921 MeV¥.  full propagators for scalarS(k), and pseudoscalaf(k),
Note that the scalar singlet is lighter than the scalar octeparticles are determined from the stationarity conditions
but the pseudoscalar singlet is heavier than the pseudoscalar

octet. This “inverted mass spectrum” for the scalar mesons 5\/[; S, P
relative to the pseudoscalar mes¢hg] is a general feature -0, (383
in the presence of the U(1)anomaly. It arises from the 00,
relative difference in sign of the termsG,,. in Egs.(12).
V[ 0,8, P
D. Chiral limit without U (1), anomaly SR (38b
In this case, as the U(1)symmetry is not explicitly bro-
ken, all nine pseudoscalar particles are massless. This is —
readily derived from Eqs(29) and(30b) whenc=0. oV[o,SP] _ (380
The scalar particles again fall into a singlet, theneson, OPap(K)
with mass
3 With Eq. (36), the latter two can be written in the form
miE(mé)ofm2+§(3>\1+>\2)fi, (34
S a5 (K =S5 (K;0) +Zap(K), (393
and an octet comprising the,, x, andf, mesons,
Pap (K)=Pap (ko) + ap(k), (39D
2 2y 2 3 2.2 2_ 2
mg =(mMg);3=m +§()\1+)\2)f77—m0 BN fo=No1,
0 where
(35
where the last identity follows from E¢29) with c=0. This s (k)525V2[0.3,7’] (408
equation determineks; and \, for given m, and My, We ab OSpa(k)
again usem, =1225.795 MeV anan,=600 MeV. This re-
sults in\y=—47.019 and)\2=_185.2503. Thenm? follows SN[ .8, P]
from any of the mass equations)’= — (424.264 MeVy¥, Hab(k)EZW, (40b)
a

which is negative, as required in this case for spontaneous

symmetry breaking.

are the self-energies for the scalar and pseudoscalar particles.
In general V,[ o,S8,P] is the sum of all two-particle irre-

ducible(2PI) diagrams, with all lines representing full propa-

gators. Here, we restrict ourselves to the most simple class of
The effective potential of the Cornwall-Jackiw-Tomboulis 2PI diagrams, the double-bubble diagrams of Fig. 1, which is

formalism[14] is equivalent to the Hartree approximation. Explicitly,

V. THE EFFECTIVE POTENTIAL IN THE CORNWALL-
JACKIW-TOMBOULIS FORMALISM
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RS however, only mass eigenstates can propagate. Therefore, we
! ' have to diagonalize the propagators before we compute the
Y ! loop integrals in Egs(42g and (43).

o o /ifi\’\ In the Hartree approximation, all particles are stable qua-

‘ \, H Y siparticles, i.e., the imaginary parts of the self-energies van-

' J/ ' //' ish. Therefore, the inverse propagat¢42b) and (420 are

-- real-valued. They are also symmetric in the standard basis of

FIG. 1. The double-bubble diagrams. Full lines are scalar parY(3) generators and thus diagonalizable via an orthogonal

ticles, dashed lines are pseudoscalar particles. transformation. This transformation is given by Hd30),
with the obvious replacements

VZ[E,S,P]=fabC{ fksab(k) f Sea(p) (MEp)ab—(MEp)an  (MEp)i—(MEp)i.  (44)
P
In cases @) and 3 in Sec. lll, the mass matrices are
+ f Pab(k)f Ped(P) d!agonal at zero temperature, cf. Sec. IV, and are taken to be
k p diagonal at nonzero temperatufeas well. In cases(®) and

5(b), they have off-diagonal elements in tf@8) sector at
+2H fS K fp _ 41 zero .tem.pera'gure,.and consequently also have off-diagonal
abed an(k) p cd(P) “4D contributions in this sector at nonzero temperature. In the
latter case, diagonalization proceeds as in (#§c) with the
Note that, in the Hartree approximatiov; is actually inde-  replacement$44).
pendent ofs,. Therefore, the stationarity conditions for the ~ The propagator matrices are diagonalized by the same or-
condensates are thogonal transformation as their inverse. The loop integrals
in Egs. (429 and(43) are therefore computed, for example,

ha=m23a—3gabc[3ba+ fk[scbm—mb(k)]] as

f Sap(k) =08 f Si(k)Of?, (45)
k k

g4

1
+4~7_—abc{§ opoct kacb(k)
whereS (k) is the scalar propagator in the mass eigenbasis.

— The loop integral in Eq(45) requires renormalization.
+4Hbcad“dfkpcb(k)' (423 Renormalization of many-body approximation schemes is
nontrivial [10], but does not change the results qualitatively.
Since the self-energigd0) are independent of momentum in We therefore simply omit the vacuum contributions to the
the Hartree approximation, the Schwinger-Dyson equation#0p integrals and set
(39 for the full propagators assume the simple form

B *k 1 al(M2);] ) '
820 = — K28, (M), (420 fk‘si(")zj (2 Ekumg)i](exp{ T ]_1 |
(46)

and similarly for the pseudoscalar loop integrals. Here,

where the scalar and pseudoscalar mass matrices in the H%‘L{(I\N/Ié)i]z ‘/k2+(|\~/|§)i is the relativistic energy of thith
tree approximation are given by scalar quasiparticle with momentukn

P ap (K) = —k?8ap+ (MB) ap, (420

(Mé)ab: m25ab_ Ggabc;c+ 4-7:abcz{;c;d+ fkscd( k)} VI. RESULTS
In this section, we discuss the numerical results at non-
zero temperature for the four cases of interest.
+4H gpcq f Pedl¥), (433 P

A. Chiral limit

2. 2 — —— In Fig. 2(a), the masses are shown in the chiral limit with
= + + + !

(MB)ap=M"0an+60apccre 4Hab°‘{ Ged kaCd(k)} the U(1), anomaly,c# 0. This corresponds to case 3 of Sec.

I1, for which the zero-temperature properties were discussed
in Sec. IV C. Accordingly, there are eight Goldstone bosons,
+4Fab°dJkPCd(k)' (430 the three pions, the f()gu¥ kaons and tigaeneson, while the
7' meson has a large mass due to the (apomaly. The
In general, the mass matrices are not diagonal in the standasgalar octet, comprising the thrag mesons, the fouk me-
basis of U(3) generators, see Sec. IV. Consequently, thsons, and thé, meson, is mass degenerate, while the singlet,
propagators are also not diagonal in this basis. Physicallithe & meson, has a different mass.
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As the temperature increases, the scalar masses decre@sg, c=0. This corresponds to caséap of Sec. lll. The
while the pseudoscalar masses increase. The mass of thero-temperature properties were discussed in Sec. IV D.
Goldstone bosong@he pseudoscalar ocjehcreases because Now, there are nine Goldstone bosons, the three pions, the
the Hartree approximation does not respect Goldstone'four kaons, then, and then’ meson. The behavior of the
theorem at nonzero temperatUre0]. We do not consider scalar octet is similar to the previous case.
this to be a serious shortcoming: as showrj 24|, supple- As the temperature increases, the behavior of the scalar
menting the Hartree approximation with the random-phaseand pseudoscalar masses is quite similar to the masses in Fig.
approximation cures this problem. The analogous treatmerfi(a), i.e., the scalar masses decrease and the pseudoscalar
within the CJT formalism will be deferred to a forthcoming masses increase, until they become degenerate in a first order
publication[25]. phase transition. The critical temperature for this transition,

At some critical temperaturel.~170 MeV, there is a however, appears to be slightly lower than &#0. A no-
first order phase transition between the low-temperaturéable difference between Figs.(a& and Zc) is that the
phase where chiral symmetry is broken and the highmasses do not become degenerate continuously as the con-
temperature phase where chiral symmetry is restored and alensates vanish. The reason is that,cfel0, the above con-
meson masses are equal. The exact numerical valug, of straint equation47) is absent. However, these phenomena
can be determined by computing the effective potential.  are irrelevant for the thermodynamic properties of the model,

At the point where the condensates vanish, all massess they occur in a region where the solutions are thermody-
become degenerate. The reason is that at this point the conamically unstable and the stable solution has to be found
densate equation enforces the constraint from Maxwell's construction for first order phase transitions.

Another interesting feature is that the mass of shene-

¢ son is proportional to the condensates. The reason for this is
0= 616 2 k[SOO( K) = Poo(k)] that the condensate equation and the equation fos-theass
can be combined to give
8
— Saa(K) = Paa(K)11, 4 8
2 | [8aa(k) = Pagl )]] (47) M2= 2 Foo?. 49

which is fulfilled when all masses are equal.

In Fig. 2(b), the non-strange and strange condensatgs,
andg,, respectively, are shown as a function of temperature. In Fig. 3, we show the masses for the scalé@s the
In the standard basis of U(3) generators, these are defined pseudoscalar®), the condensatds), and the mixing angles

(d) for explicit chiral symmetry breaking, including the

B. Explicit chiral symmetry breaking with U (1) , anomaly

ons O 0 U(1), anomaly. The masses behave according to the discus-
(@)= } 0 ¢ O (48) sion of case &) in Sec. lll. As the temperature increases,
2 ' chiral symmetry is restored in a crossover transition and all
0 0 \/§<Ps masses become approximately degenerate. The temperature

o o range of the crossover transitioni220 MeV, i.e., about 50
When (®)=Tyoq, ¢ns=2/30¢, and ps= (ro/\/§, i.e., s MeV higher than in the case where there is no explicit chiral
= ¢,¢/\/2, as borne out by Fig.(B). symmetry breaking. A notable feature is that thébecomes
In Figs. Zc) and 2d), the masses and condensates ardighter than thea, meson, and they’ meson lighter than the
shown for the case without explicit U(4)symmetry break- kaon, at about 240 MeV.
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FIG. 3. The meson masses, the condensates, and the mixing FIG. 4. As in Fig. 3, but forr=0.

angles as a function of temperature foy,hg#0, h;=0, andc
#0. (a) For the scalar mesons, the full line is thg the dotted line

is the k, the dashed line is the, and the dot-dashed line is tlig
meson massb) For the pseudoscalar mesons, the full line is the
pion, the dotted line is the kaon, the dashed line isgheand the
dot-dashed line is the meson masgc) The non-strangéull) and
strange(dotted condensateqd) The scalar(full) and the pseudo-
scalar(dotted mixing angles.

proximatg SU(2),XSU(2) symmetry is restored. This

means that the pion becomes degenerate withstimeeson,

and thea, becomes degenerate with t¢ meson.(The 7’

is purely non-strange due to ideal flavor mixinglowever,

due to the fact that the strange condensate decreases rather

slowly with temperature, the explicit U(}) symmetry

breaking term~G,p,.o in Egs.(43) is not small. This causes
The non-strange and the strange condensatgsnd ¢, the piont- meson mass still to be different from tlag/ 7’

are shown in Fig. ®). Note that the strange condensate de-meson mass. Only when both condensates approach zero, the

creases much more slowly with temperature than the norlJ(1)a symmetry is effectively restored and the masses of all

strange condensate. Figur&dBshows the scalar and pseu- hon-strange particles become degenerate.

doscalar mixing angles. At large temperatures, these When the temperature becomes significantly larger than

approach arcsin(3B)=35.264°. From Eq(13), ms, the (approximatg¢ SU(3), X SU(3) symmetry is re-
stored. Then, all scalar octet states become degenerate, like-
- 2 1 wise all pseudoscalar octet states become degenerate. If this

T=00="\ 3 ffﬁﬁffs, (509 happened when the explicit U(4 breaking term was still

large, then the complete pseudoscalar octet would become
degenerate in mass with the scalar singlet, and the scalar
o~ 1 2 octet degenerate in mass with the pseudoscalar singlet. As it
f0=0-8:__0-0+ 5 0g- (50b) I .
J3 3 turns out, however, the explicit U(1)symmetry breaking
becomes small around the same point where (dpproxi-

On the other hand, mate SU(3), X SU(3) symmetry is restored.
— 1 — C. Explicit chiral symmetry breaking without U (1) , anomaly
Pns— § oot —= 0g, (513 .
\/5 In Fig. 4, we show the masses for the scal@s the
pseudoscalard), the condensatéds), and the mixing angles
1 _ _ (d) for explicit chiral symmetry breaking in the absence of
%Iﬁ o0~ \3 8- (51b  the U(1), anomaly. The masses behave according to the

discussion of case(B) in Sec. lll. As the temperature in-

. _ creases, the chiral symmetry restoration crossover transition

This shows that ther meson becomes an excitation of the jg ,,ch more rapid than in the previous case, and occurs at a

non-strange condensate, i.e., a purely non-strapggstate.  slightly smaller temperature;200 MeV. A notable feature

On the other hand, thé, meson is an excitation of the s the inverse mass ordering of tleemeson and the kaon. At

strange condensate and a pw® state. Similarly, theyn’ small temperatures and above the transition, the masses of

meson is purely non-strange and the meson is purely the pion and the;” meson are the same. In the temperature

strange. This is what was referred to as ideal flavor mixingange from about 50 to 210 MeV, however, they differ. We

earlier. perceive this to be an artifact of the violation of Goldstone’s
The transition occurs at temperatures which are not sigtheorem in the Hartree approximation, cf. Figc)2

nificantly larger than the strange quark mass. Therefore, the The melting of the condensates, Figc) is similar to the

explicit SU(3) X SU(3), symmetry breaking by the strange previous case, Fig.(8). The mixing angles, Fig.(), again

guark mass cannot be neglected and, at first, only(dipe ~ approach ideal flavor mixing at large temperatures. The dif-
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ference here, however, is that tigeand »’ mesons are also peraturg19]. These properties can be experimentally inves-

ideally flavor-mixed at zero temperature, cf. Sec. IV B. tigated in relativistic nuclear collisions, for instance at
Due to the absence of the U(1anomaly, once théap-  Brookhaven National Laboratory’s Relativistic Heavy-lon

proximate SU(2), X SU(2), symmetry is restored, the pion, Collider.

the ', the a5, and thes mesons simultaneously become

degenerate in maséThe »' meson belongs to this class of ACKNOWLEDGMENTS

non-strange particles due to ideal flavor mixin@nce the . .
temperature becomes large compared to the strange quarkwe thank T. Blum, D.E. Kharzeev, and R.D. Pisarski for

mass, the masses of the strange mesons converge with thgi@uable discussions. D.H.R. and ‘]‘S"_B_' thank RIKEN BNL
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X SU(3), linear sigma model in the Hartree approximation atcompletion of this work. J.T.L. is supported by the Director,
nonzero temperature. We first classified possible patterns é9ffice of Energy Research, Division of Nuclear Physics of
symmetry breaking, with special attention to the cases wherthe Office of High Energy and Nuclear Physics of the U.S.
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masses. We then determined the coupling constants from the
vacuum values for the masses and the decay constants in the APPENDIX: DERIVATION OF EQS. (16)
various cases of interest. We systematically derived the Har- e
tree approximation within the CJT formalism. Within this  1he infinitesimal form of the SU(3)X SU(3)XU(1)a
approximation, we computed the masses of scalar and psefYMmetry transformatiof®) is
doscalar particles, the non-strange and strange condensates,
and the scalar and pseudoscalar mixing angles as a function
of temperature. We checked that our results are consiste
with the mean-field approximation employed[it8] to com-
pute these quantities.

VII. CONCLUSIONS

T2 =T~ [ T2, TP] ¢ +iwa{T2, TP 2. (A1)

Por axial-vector transformationsy=0, and the associated
(axial-vectojy Noether current is

For the SUWN;), X SU(N;), model, in the case where the SC
quark masses are zero, universality arguments predict the Jh=————id,pcp. T H.C.
chiral symmetry restoring transition to be first order for (9, bp)
=3 andN;=2 in the absence of the U(4)anomaly, and i
second order forN;=2 in the presence of the U(1) = E(ﬁ“ab—iﬁf‘wb)dabc(acﬂwc)+H.c.
anomaly[6]. We find that the Hartree approximation cor-
rectly gives a first order transition in the case=3. This is =dapd Opd* T — mHdH o). (A2)

not necessarily an indication for the validity of this approxi-

mation, because earlier work has shown that it incorrectlynserting this into the PCAC relation,

predicts a first order transition whe¥;=2 and the U(1)

anomaly is presentL0]. The transition temperature is on the (0| T4 ma)=ip*fy, (A3)
order of 170 MeV. ) ) .

As expected, when the U(1)anomaly is absent, the’ wheref? is the decay constant corresp_ondmg to the field _
meson becomes a Goldstone boson for zero quark masses@Rd shifting the scalar fields by their vacuum expectation
surprising result is that then the meson mass is directly values,c,—o,+0,, one obtains
proportional to the condensate. _

For nonzero quark masses),=my#mg, we find the fa=daap00 (A4)
transition to be a crossover transition, but for vanishing
U(1), anomaly the crossover region is much more narrowvhere one sums over the indexout not overa.
than in the presence of the U({anomaly. In the chirally In the case thatry, og# 0, one obtains for the pion and
symmetric phase, the mixing angles approach the situation dfaon decay constants
ideal flavor mixing, i.e., ther and ' mesons are pure non-

. o 1
ztgatlgg.eqq states, while thé, and they mesons are pures f=f,=dymoa= \/; 0°+ﬁ e, (A5a)
As an outlook, the present framework can be used as an
alternative to lattice QCD studi¢&] to study the order of the 1
chiral symmetry restoring transition as a function of the fKEf4:d44a;a: \ﬁ;o——;s- (A5Db)
strange and non-strange quark maggé$. Moreover, other 3 V12

meson properties such as the decay widths and the spectral .
functions can be self-consistently computed at nonzero temn the case thatrg=0, this simplifies tof .= fx= \2/30y.
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