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Chiral symmetry restoration at nonzero temperature in the SU„3… rÃSU„3… l linear sigma model
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We study patterns of chiral symmetry breaking at zero temperature and its subsequent restoration at nonzero
temperature within the SU(3)r3SU(3)l linear sigma model. Gap equations for the masses of the scalar and
pseudoscalar mesons and the non-strange and strange quark condensates are systematically derived in the
Hartree approximation via the Cornwall-Jackiw-Tomboulis formalism. In the chiral limit, the chiral symmetry
restoring transition is found to be first order, as predicted by universality arguments. Taking the experimental
values for the meson masses, however, the transition is crossover. The absence of the U(1)A anomaly is found
to drive this transition closer to being first order. At large temperatures, the mixing angles between octet and
singlet states approach ideal flavor mixing.

PACS number~s!: 11.10.Wx
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I. INTRODUCTION

Chiral symmetry is broken in the vacuum of quantu
chromodynamics~QCD!. At temperatures of about 15
MeV, lattice QCD calculations indicate that chiral symme
is restored@1#. The order of the phase transition depends
the mass of the non-strange up and down quarks,mu.md ,
and the mass of the strange quark,ms @2#. In nature,mu
.md;10 MeV andms;100 MeV @3#. At temperatures on
the order of 150 MeV, heavier quark flavors do not play
essential role.

For Nf massless quark flavors, the QCD Lagrangian ha
SU(Nf) r3SU(Nf) l3U(1)A symmetry. In the vacuum, a
non-vanishing expectation value of the quark condens
^q̄lqr&Þ0, spontaneously breaks this symmetry to the di
onal SU(Nf)V group of vector transformations,V5r 1 l . For
Nf53, the effective, low-energy degrees of freedom of QC
are the scalar and pseudoscalar mesons. Since mesons aqq̄
states, they fall in singlet and octet representations
SU(3)V .

The SU(Nf) r3SU(Nf) l3U(1)A symmetry of the QCD
Lagrangian is also explicitly broken by nonzero qua
masses. ForM<Nf degenerate quark flavors, a SU(M )V
symmetry is preserved. IfM,Nf , the mass eigenstates a
mixtures of singlet and octet states. For instance, in the p
doscalar meson sector, this mixing occurs between theh and
the h8 meson, with theh meson being mostly octet and th
h8 meson being mostly singlet, with a mixing angle of abo
210° to 220° @4#.

As shown by ’t Hooft@5#, instantons also break the U(1)A
symmetry explicitly toZ(Nf)A @6#. For the low-energy dy-
namics of QCD, however, this discrete symmetry is irr
evant.

*Current address: Physics Department, Brookhaven Natio
Laboratory, Upton, NY 11973.
0556-2821/2000/62~8!/085008~13!/$15.00 62 0850
n

n

a

e,
-

f

u-

t

-

Pisarski and Wilczek@6# discussed the order of the chira
transition using renormalization group arguments in
framework of the linear sigma model. This model is the
fective theory for the low-energy degrees of freedom
QCD and incorporates the global SU(Nf) r3SU(Nf) l

3U(1)A symmetry, but not the local SU(3)c color symme-
try. They found that forNf52 flavors of massless quarks
the transition can be of second order, if the U(1)A symmetry
is explicitly broken by instantons. It is driven first order b
fluctuations, if the U(1)A symmetry is restored atTc . For
Nf53 massless flavors, the transition is always first order
this case, the term which breaks the U(1)A symmetry explic-
itly is a cubic invariant, and consequently drives the tran
tion first order. In the absence of explicit U(1)A symmetry
breaking, the transition is fluctuation-induced of first orde

In nature, the chiral symmetry of QCD is explicitly bro
ken by nonzero quark masses. In this case, one has to r
to numerical calculations to determine the order of the ch
transition. At present, however, lattice QCD data have
unambiguously settled this issue. For physical values of
quark masses, calculations with staggered fermions@2# favor
a smooth crossover transition, while calculations with W
son fermions@7# predict the transition to be first order.

As an alternative to lattice QCD calculations, one can a
use the linear sigma model to make predictions on the o
of the phase transition in QCD. Furthermore, vario
symmetry-breaking scenarios can be more easily inve
gated than on the lattice. Studying the linear sigma mode
nonzero temperature, however, requires many-body res
mation schemes, because infrared divergences cause
perturbation theory to break down@8#.

For Nf52, effective chiral models for QCD have bee
studied extensively, because in this case SU(2)r3SU(2)l is
isomorphic to O(4), and O(N) models @9# in general are
particularly amenable to many-body approximations at n
zero temperature. For an incomplete list of references,
@10#, where some of us~J.T.L. and D.H.R.! studied the O(N)

al
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model in the Hartree and large-N approximations.
For Nf53, many-body resummation schemes beco

considerably more involved due to the larger number of
grees of freedom. The SU(3)r3SU(3)l linear sigma model
@11# was previously studied at nonzero temperature in@12#.
The genuine problem of these approaches is that they em
methods related to the standard loop expansion to com
the effective potential. At nonzero temperature, the loop
pansion is known to fail in the case of spontaneously bro
symmetry, since it generates imaginary masses for the
ticles. The physical reason for this failure is that contrib
tions from thermal excitations to the masses are neglec
This can be amended by self-consistent resumma
schemes like the mean-field or the Hartree approximation
@13#, one of us~J.S.-B.! studied the linear sigma model in th
mean-field approximation.

In this work, we study the SU(3)r3SU(3)l linear sigma
model in the Hartree approximation. We derive this appro
mation systematically from the Cornwall-Jackiw-Tombou
~CJT! formalism @14#. Thus, we extend previous work fo
Nf52 @10# to Nf53. We study possible patterns of symm
try breaking in the vacuum and its subsequent restoratio
nonzero temperature. We focus on both the cases where
ral symmetry is and where it is not explicitly broken b
nonzero quark masses. Lattice QCD data indicate that
U(1)A anomaly becomes small near the chiral transit
@15#. Therefore, we also study the influence of the U(1A
anomaly on symmetry restoration at nonzero temperatur

This paper is organized as follows. In Sec. II, we intr
duce the SU(3)r3SU(3)l linear sigma model. In Sec. III
the possible patterns of symmetry breaking in the vacu
are discussed. Section IV is devoted to the vacuum pro
ties of the model at tree level. In Sec. V, we derive the g
equations for the condensates and the masses in Hartre
proximation via the CJT effective potential. Numerical r
sults are presented in Sec. VI. We conclude this work in S
VII with a summary of our results.

We use the imaginary-time formalism to compute quan
ties at nonzero temperature. Our notation is

E
k
f ~k![T (

n52`

` E d3k

~2p!3
f ~2p inT,k!,

E
x
f ~x![E

0

1/T

dtE d3x f ~t,x!. ~1!

We use units\5c5kB51. The metric tensor isgmn

5diag(1,2,2,2). Throughout this work, all latin sub
scripts are adjoint U(3) indices,a50, . . . ,8, and asumma-
tion over repeated indices is understood.

II. THE LINEAR SIGMA MODEL FOR THREE FLAVORS

The Lagrangian of the SU(3)r3SU(3)l linear sigma
model is given by@11#
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L~F!5Tr~]mF†]mF2m2F†F!2l1@Tr~F†F!#2

2l2Tr~F†F!21c@Det~F!1Det~F†!#

1Tr@H~F1F†!#. ~2!

F is a complex 333 matrix parametrizing the scalar an
pseudoscalar meson nonets,

F5Tafa5Ta~sa1 ipa!, ~3a!

wheresa are the scalar fields andpa are the pseudoscala
fields. The 333 matrix H breaks the symmetry explicitly
and is chosen as

H5Taha , ~3b!

whereha are nine external fields.Ta5l̂a/2 are the genera
tors of U(3), wherel̂a are the Gell-Mann matrices withl̂0

5A 2
3 1. The Ta are normalized such that Tr(TaTb)5dab/2

and obey the U(3) algebra with

@Ta ,Tb#5 i f abcTc , ~4a!

$Ta ,Tb%5dabcTc , ~4b!

where f abc and dabc for a,b,c51, . . . ,8 are thestandard
antisymmetric and symmetric structure constants of SU
and

f ab0[0, dab0[A2

3
dab . ~4c!

In Eq. ~2!, m2 is squared the tree-level mass of the fiel
in the absence of symmetry breaking,l1 andl2 are the two
possible quartic coupling constants, andc is the cubic cou-
pling constant. In four dimensions, the cubic and the t
quartic terms are the only relevant SU(3)r3SU(3)l invari-
ant operators.

The terms in the first line of Eq.~2! are actually invariant
under the larger group of U(3)r3U(3)l symmetry transfor-
mations,

F→UrFUl
†, Ur ,l[exp~ iv r ,l

a Ta!. ~5!

Introducing vV,A
a [(v r

a6v l
a)/2, the right- and left-handed

symmetry transformations can be alternatively written
vector,V5r 1 l , and axial vector,A5r 2 l , transformations.
It is then obvious thatF is a singlet under U(1)V transfor-
mations exp(ivV

0T0). This U(1)V is the U(1) of baryon num-
ber conservation and thus always respected. The first t
terms of Eq. ~2! are therefore invariant under SU(3)r
3SU(3)l3U(1)A>SU(3)V3U(3)A .

The determinant terms correspond to the U(1)A anomaly
in the QCD vacuum. As shown by ’t Hooft@5#, they arise
from instantons. These terms are invariant under SU(r
3SU(3)l>SU(3)V3SU(3)A transformations, but break th
U(1)A symmetry of the Lagrangrian explicitly. The last ter
in Eq. ~2! breaks the axial and possibly the SU(3)V vector
8-2
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symmetries explicitly. The patterns of explicit symmetry breaking will be discussed in detail in Sec. III.
The sa fields are members of the scalar (JP501) nonet and thepa fields are members of the pseudoscalar (JP502)

nonet:

Tasa5
1

A2S 1

A2
a0

01
1

A6
s81

1

A3
s0 a0

2 k2

a0
1

2
1

A2
a0

01
1

A6
s81

1

A3
s0 k̄0

k1 k0
2

2

A3
s81

1

A3
s0

D , ~6a!

Tapa5
1

A2S 1

A2
p01

1

A6
p81

1

A3
p0 p2 K2

p1
2

1

A2
p01

1

A6
p81

1

A3
p0 K̄0

K1 K0
2

2

A3
p81

1

A3
p0

D . ~6b!

Here, p6[(p16 ip2)/A2 and p0[p3 are the charged and neutral pions, respectively.K6[(p46 ip5)/A2, K0[(p6

1 ip7)/A2, andK̄0[(p62 ip7)/A2 are the kaons. In general, because the strange quark is much heavier than the up o
quarks, thep0 and thep8 are admixtures of theh and theh8 meson.

The situation with the scalar nonet is not as clear. The parity partner of the pion is thea0(980) meson, i.e.,a0
6[(s1

6 is2)/A2 anda0
0[s3. We identify the parity partner of the kaon with thek meson@now referred to asK0* (1430) in @4##.

Finally, in general thes0 and thes8 are admixtures of thes @now also referred to asf 0(40021200)# and f 0(1370) mesons.
@Instead of thef 0(1370) meson, one could have chosen thef 0(980) meson. However, as we shall see in Sec. IV, in the lin
sigma model the mass of this state is closer to thef 0(1370).# For details concerning the phenomenological status of the sc
nonet, see, for instance@16#.

In principle, there is the possibility that the scalar particles are not diquark states, but formed from two quarks a
antiquarks@17#. Then we would associate thek with the k(900) discovered inpK scattering@18#. Determining the vacuum
properties of the linear sigma model, cf. Sec. IV, the mass of thek turns out to be between that of thek(900) and the
K0* (1430), while its width@19# is closer to the observed width of thek(900).

Symmetry breaking gives theF field a vacuum expectation value:

^F&[Tas̄a . ~7!

Shifting theF field by this vacuum expectation value, the Lagrangian can be rewritten as@20#

L5
1

2
@]msa]msa1]mpa]mpa2sa~mS

2!absb2pa~mP
2 !abpb#1S Gabc2

4

3
Fabcds̄dDsasbsc

23S Gabc1
4

3
Habcds̄dDpapbsc22Habcdsasbpcpd2

1

3
Fabcd~sasbscsd1papbpcpd!2U~ s̄ !, ~8!
where

U~ s̄ !5
m2

2
s̄a

22Gabcs̄as̄bs̄c1
1

3
Fabcds̄as̄bs̄cs̄d2has̄a

~9!
08500
is the tree-level potential ands̄a is determined on the tree
level by

]U~ s̄ !

]s̄a

5m2s̄a23Gabcs̄bs̄c1
4

3
Fabcds̄bs̄cs̄d2ha50.

~10!
8-3
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The coefficientsGabc , Fabcd, andHabcd are given by

Gabc5
c

6 Fdabc2
3

2
~da0d0bc1db0da0c1dc0dab0!

1
9

2
d000da0db0dc0G , ~11a!

Fabcd5
l1

4
~dabdcd1daddbc1dacdbd!

1
l2

8
~dabndncd1dadndnbc1dacndnbd!, ~11b!

Habcd5
l1

4
dabdcd1

l2

8
~dabndncd1 f acnf nbd1 f bcnf nad!.

~11c!

The tree-level masses, (mS
2)ab and (mP

2 )ab are given by

~mS
2!ab5m2dab26Gabcs̄c14Fabcds̄cs̄d , ~12a!

~mP
2 !ab5m2dab16Gabcs̄c14Habcds̄cs̄d . ~12b!

In general, these mass matrices are not diagonal. Co
quently, the fields (sa ,pa) in the standard basis of U(3
generators are not mass eigenstates. Since the mass ma
are symmetric and real, diagonalization is achieved by
orthogonal transformation:

s̃ i5Oia
(S)sa , ~13a!

p̃ i5Oia
(P)pa , ~13b!

~m̃S,P
2 ! i5Oai

(S,P)~mS,P
2 !abObi

(S,P) . ~13c!

III. PATTERNS OF SYMMETRY BREAKING

In this section, we discuss possible patterns of symm
breaking in the vacuum. We begin with the most symme
case, i.e., with the minimum number of nontrivial coupling
and then successively reduce the symmetry.

~1! H50, c50, l250: Form2.0, the symmetry group
is O(18), on account of

Tr~F†F!5
1

2
~sa

21pa
2!. ~14!

The physics of the O(N) model has been studied extensive
in the past@9,10# and so we shall restrict ourselves in th
following to l2Þ0. Here, we only mention that form2,0,
the O(18) symmetry is spontaneously broken to O(17)
there are 17 Goldstone bosons.

~2! H50, c50, l2Þ0: For m2.0, the Lagrangian has
a global SU(3)V3U(3)A symmetry. Form2,0, Eq. ~9!
shows thatF develops a non-vanishing vacuum expectat
value, and the U(3)A symmetry isspontaneouslybroken. By
the Vafa-Witten theorem@21#, only the axial symmetries ca
08500
e-
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n

ry
c
,

d

n

be spontaneously broken, while the vector symmetries
main intact. One can distinguish two cases@22#:

~a! l2.0. SU(3)V3U(3)A is broken to SU(3)V , with
^F&;diag(1,1,1) and the appearance of 9 Goldstone bos
which comprise the entire pseudoscalar nonet, i.e., the pi
the kaons, theh, and theh8 meson. The nine massive scal
particles fall into irreducible representations of SU(3)V .
Since the mesons consist of a quark„a @3# of SU(3)V… and
an antiquark~a @ 3̄#), these representations are a singlet a
an octet, because@3#3@ 3̄#5@1#1@8#. The mass of the sin-
glet, thes meson, is in general different from the~degener-
ate! masses of the octet particles.

~b! l2,0. SU(3)V3U(3)A is broken to SU(2)V
3U(2)A , with ^F&;diag(0,0,1) and 10 Goldstone boson

~3! H50, cÞ0, l2Þ0: The symmetry is SU(3)V
3SU(3)A . A non-vanishinĝ F& spontaneously breaks thi
symmetry to SU(3)V , with the appearance of 8 Goldston
bosons, which is the complete pseudoscalar octet. The n
Goldstone boson of case 2~a!, the h8 meson, becomes mas
sive and thus is no longer a Goldstone boson, because
U(1)A symmetry is already explicitly broken. The masses
the scalar particles behave as in case 2~a!. Note that from Eq.
~9!, m2,0 is no longer required for spontaneous symme
breaking whencÞ0.

~4! HÞ0, c50, l2Þ0: In QCD, this corresponds to
non-vanishing quark masses, but vanishing U(1)A anomaly.
Since^F& must carry the quantum numbers of the vacuu
only h0 , h3, and h8 can be nonzero. One can distinguis
three cases:

~a! h0Þ0, h35h850. All quark masses are equal, i.e
mu5md5ms . In this case, the U(3)A axial symmetry isex-
plicitly broken, i.e., the 9 Goldstone bosons of case 2~a! be-
come ~mass degenerate! pseudo-Goldstone bosons. Th
SU(3)V symmetry remains intact and the scalars follow t
classification as discussed in case 2~a!.

~b! h0Þ0, h350, h8Þ0. Only the non-strange flavor
are degenerate in mass, i.e.,mu5mdÞms . In addition to the
explicitly broken U(3)A symmetry, SU(3)V is explicitly bro-
ken to SU(2)V . For the scalar particles, the following ap
plies. If there was ideal flavor mixing, i.e., the physical pa
ticles are also eigenstates of flavor, one particle is anss̄state
~the f 0 meson!, while all others contain at least one no
strange quark or antiquark. The latter then fall into irredu
ible representations of SU(2)V . For the scalar particles con
taining no strange quark or antiquark, a quark„a @2# of
SU(2)V… couples with an antiquark~a @ 2̄#) to form the s

meson singlet and thea0 meson triplet, since@2#3@ 2̄#
5@1#1@3#. The strange scalar particles have only one qu
in a @2# or a @ 2̄# representation, and therefore fall into do
blets of SU(2)V . The k1 andk0 mesons form a@2#, while
the k2 and k̄0 mesons form a@ 2̄#. Because the masses o
quarks and antiquarks are identical, these two doublets
mass degenerate. In nature, however, flavor mixing is
ideal and thef 0 meson has aqq̄ admixture, just as thes
meson has anss̄ admixture. For the pseudoscalars, only t
four non-strange pseudo-Goldstone bosons, the pions an
h8 meson, are degenerate in mass. The kaons and thh
8-4
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meson both have different masses. Since the pions are
strangeqq̄ states, and theh8 meson is degenerate in ma
with the pions, it follows that it is also a non-strangeqq̄

state. Then, theh meson is a puress̄state, i.e., flavor mixing
is ideal in the pseudoscalar sector.

~c! h0Þ0, h3Þ0, h8Þ0. Here, SU(3)V is completely
broken. Even the non-strange pseudo-Goldstone boson
no longer completely degenerate in mass.

~5! HÞ0, cÞ0, l2Þ0: Now, from the U(3)A
>SU(3)A3U(1)A symmetry, the U(1)A is explicitly broken
by instantons. Again, there are three cases:

~a! h0Þ0, h35h850. In this case, the remainin
SU(3)A axial symmetry is explicitly broken, i.e., the 8 Gold
stone bosons of case 3 become~mass degenerate! pseudo-
Goldstone bosons. As above, the SU(3)V symmetry remains
intact. The scalar particles behave as in case 4~a!.

~b! h0Þ0, h350, h8Þ0. Besides the explicitly broken
SU(3)A symmetry, SU(3)V is explicitly broken to SU(2)V .
The scalar and pseudoscalar particles behave as in case~b!,
except that theh8 meson mass is different from the pio
mass because of the U(1)A anomaly. Then, flavor mixing is
no longer ideal in the pseudoscalar sector.

~c! h0Þ0, h3Þ0, h8Þ0. This is the case realized in na
ture, although violation of isospin SU(2)V is small ~the
charged and the neutral pions are almost degenerate in m!.

In the following, we shall restrict ourselves to studyin
cases 2~a!, 3, 4~b!, and 5~b!. The first two cases are interes
ing because they represent the idealized scenario where
quark masses are zero, i.e., the chiral limit. The last t
cases are close to the situation in nature where quark ma
break the chiral symmetry explicitly. Lattice QCD data ind
cate that the U(1)A anomaly becomes small for large tem
peratures@15#. This motivates our interest in cases 2~a! and
4~b!, see also@13#. Since isospin SU(2)V violation is rather
small in nature, it is sufficient and easier to study case 5~b!
instead of 5~c!.

IV. CONDENSATES AND MASSES IN THE VACUUM

In this section, we establish the vacuum properties of
SU(3)r3SU(3)l model in the various cases selected abo
In contrast to the previous section, it is now easier to be
with the most asymmetric case 5~b!. This is the case closes
to nature and therefore it is natural to use the experime
values for the meson masses and decay constants as inp
determine the coupling constants. The linear sigma mo
has six parameters,m2, l1 , l2 , c, h0, andh8. It therefore
requires six experimentally known quantities as input. W
choosemp , mK , f p , f K , the average squared mass of theh
andh8 mesons,mh

21mh8
2 , andms . The other masses,ma0

,

mk , mf 0
, the differencemh

22mh8
2 , and the mixing angles ar

then predicted.
In the other cases, nature does not provide us with in

mation about the masses and the decay constants. In
4~b!, c50, and we need to specify only five input param
eters. It turns out that we do not need to fixmh

21mh8
2 , be-

causemh85mp , and the mass of theh meson is predicted a
well.
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Cases 2~a! and 3 correspond to the chiral limit which i
not realized in nature. Therefore, in principle one should
use experimental values for the masses and decay cons
to fix the parametersm2, l1 , l2, and, in case 3,c. For the
sake of definiteness, however, we use the following tenta
generalizations of experimental data. We use the pion de
constant,f p , extrapolated to the chiral limit, thes meson
mass, and, in case 3, theh8 meson mass.@In case 2~a!,
mh85mp50.# For the final input parameter, since the sca
octet is degenerate in mass when the SU(3)r3SU(3)l sym-
metry is not explicitly broken, we use an average of t
experimental values for the masses of the scalar octet.

A. Explicit chiral symmetry breaking with U „1…A anomaly

The vacuum expectation value is^F&5T0s̄01T8s̄8. The
equations for the condensatess̄0 and s̄8 read

h05Fm22
c

A6
s̄01S l11

l2

3 D s̄0
2G s̄0

1F c

2A6
1~l11l2!s̄02

l2

3A2
s̄8G s̄8

2 , ~15a!

h85Fm21
c

A6
s̄01

c

2A3
s̄81~l11l2!s̄0

2

2
l2

A2
s̄0s̄81S l11

l2

2 D s̄8
2G s̄8 . ~15b!

The partially conserved axial-vector current~PCAC! rela-
tions ~see the Appendix! determine the values of the conde
sates from the pion and kaon decay constants,f p , f K ,

s̄05
f p12 f K

A6
, ~16a!

s̄85
2

A3
~ f p2 f K!. ~16b!

We use the experimental valuesf p592.4 MeV, f K5113
MeV @4#.

The nonzero elements of the scalar mass matrix are

~mS
2!005m22A2

3
cs̄01~3l11l2!s̄0

21~l11l2!s̄8
2 ,

~17a!

~mS
2!115~mS

2!225~mS
2!33

5m21
c

A6
s̄02

c

A3
s̄81~l11l2!s̄0

2

1A2 l2s̄0s̄81S l11
l2

2 D s̄8
2 , ~17b!
8-5
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~mS
2!445~mS

2!555~mS
2!665~mS

2!77

5m21
c

A6
s̄01

c

2A3
s̄81~l11l2!s̄0

2

2
l2

A2
s̄0s̄81S l11

l2

2 D s̄8
2 , ~17c!

~mS
2!885m21

c

A6
s̄01

c

A3
s̄81~l11l2!s̄0

2

2A2 l2s̄0s̄813S l11
l2

2 D s̄8
2 , ~17d!

~mS
2!085~mS

2!805F c

A6
12~l11l2!s̄02

l2

A2
s̄8G s̄8 .

~17e!

While the masses of thea0 and thek mesons are given by
the ~11! and ~44! elements of the mass matrix,ma0

2

[(mS
2)11, mk

2[(mS
2)44, thes and f 0 meson masses are ob

tained by diagonalizing the~08! sector of the mass matrix
According to Eq.~13!,

ms
2[~m̃S

2!05~mS
2!00 cos2uS1~mS

2!88 sin2uS

12~mS
2!08 cosuS sinuS , ~18a!

mf 0

2 [~m̃S
2!85~mS

2!00 sin2uS1~mS
2!88 cos2uS

22~mS
2!08 cosuS sinuS , ~18b!

where the scalar mixing angleuS is given by

tan 2uS5
2~mS

2!08

~mS
2!002~mS

2!88

. ~18c!

The pseudoscalar mass matrix is given by

~mP
2 !005m21A2

3
cs̄01S l11

l2

3 D ~ s̄0
21s̄8

2!, ~19a!

~mP
2 !115~mP

2 !225~mP
2 !33

5m22
c

A6
s̄01

c

A3
s̄81S l11

l2

3 D s̄0
2

1
A2

3
l2s̄0s̄81S l11

l2

6 D s̄8
2 , ~19b!
08500
~mP
2 !445~mP

2 !555~mP
2 !665~mP

2 !77

5m22
c

A6
s̄02

c

2A3
s̄81S l11

l2

3 D s̄0
2

2
l2

3A2
s̄0s̄81S l11

7

6
l2D s̄8

2 , ~19c!

~mP
2 !885m22

c

A6
s̄02

c

A3
s̄81S l11

l2

3 D s̄0
2

2
A2

3
l2s̄0s̄81S l11

l2

2 D s̄8
2 , ~19d!

~mP
2 !085~mP

2 !805F2
c

A6
1

2

3
l2s̄02

l2

3A2
s̄8G s̄8 .

~19e!

While the mass of the pion and the kaon are given by
~11! and ~44! elements of the mass matrix,mp

2

[(mP
2 )11, mK

2 [(mP
2 )44, the h8 and h meson masses ar

obtained by diagonalizing the~08! sector of the mass matrix
According to Eq.~13!,

mh8
2 [~m̃P

2 !05~mP
2 !00 cos2uP1~mP

2 !88 sin2uP

12~mP
2 !08 cosuP sinuP , ~20a!

mh
2[~m̃P

2 !85~mP
2 !00 sin2uP1~mP

2 !88 cos2uP

22~mP
2 !08 cosuP sinuP , ~20b!

where the pseudoscalar mixing angleuP is given by

tan 2uP5
2~mP

2 !08

~mP
2 !002~mP

2 !88

. ~20c!

The explicit symmetry breaking terms,h0 and h8, are
determined from Eqs.~15!, ~16!, ~19b!, and~19c! as

h05
1

A6
~mp

2 f p12mK
2 f K!, ~21a!

h85
2

A3
~mp

2 f p2mK
2 f K!. ~21b!

Using the experimental pion and kaon masses, one obt
h05(286.094 MeV)3 andh852(310.960 MeV)3.

Comparing Eqs.~15b! and ~17c! reveals

h85mk
2 s̄8 , ~22!

i.e., the mass of thek meson is predicted to bemk
51124.315 MeV, which is about 21% smaller than the e
perimental value. The averageh andh8 meson mass square
determinesl2
8-6
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l25
3~2 f K2 f p!mK

2 2~2 f K1 f p!mp
2 22~mh8

2
1mh

2 !~ f K2 f p!

@3 f p
2 18 f K~ f K2 f p!#~ f K2 f p!

. ~23!
a

h

e

r

e
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us
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,

For mh8
2

1mh
25(1103.625 MeV)2, one obtainsl2546.484.

The difference of the pion and kaon masses squared
l2 determinec,

c5
mK

2 2mp
2

f K2 f p
2l2~2 f K2 f p!54807.835 MeV. ~24!

Now, also the mass of thea0 meson is fixed,

ma0

2 5mk
21~ f K2 f p!@c2l2~2 f K1 f p!#

5~1028.707 MeV!2, ~25!

which is about 4% larger than the experimental value. T
pseudoscalar mixing angle isuP525o. This angle deter-
mines the individualh and h8 meson masses to bemh
5539.008 MeV andmh85963.046 MeV. These values ar
surprisingly close to the experimental ones; theh meson is
about 2% lighter and theh8 meson is about 0.6% heavie
than in nature.

Finally, l1 is determined by fixing either the mass of th
s or the f 0 meson; the other mass, the scalar mixing ang
uS , andm2 are then given by solving a nonlinear equati
for the fixed mass. Here, we choosems5600 MeV to yield
l151.400 andmf 0

51221.113 MeV, about 11% smalle

than the experimental value. The scalar mixing angle isuS
519.859°, andm25(342.523 MeV)2.

B. Explicit chiral symmetry breaking without U „1…A anomaly

In the absence of the U(1)A anomaly,c50, the conden-
sate equations~15a! and~15b! and the equations for the sca
lar and pseudoscalar mass matrices~17! and ~19! simplify.
Equations~16! and~21!, however, remain the same and th
yield the same values fors̄0 , s̄8 , h0, andh8 as above. The
mass of thek meson is still given by Eq.~22! and is the same
as above.

The differences begin with the mass of theh8 meson,
which is now identical to the pion mass, since the U(1A
anomaly is absent. Furthermore,l2 is given by the kaon and
pion masses and decay constants,

l25
mK

2 2mp
2

~2 f K2 f p!~ f K2 f p!
582.470. ~26!

This then determines the mass of theh meson,

mh
25mp

2 12l2f K~ f K2 f p!5~634.818 MeV!2, ~27!

and thea0 meson,

ma0

2 5mk
22l2~2 f K

2 2 f p f K2 f p
2 !5~850.387 MeV!2.

~28!
08500
nd

e

,

The pseudoscalar mixing angle is given by tan 2uP52A2, or
uP535.264o. This corresponds to ideal flavor mixing.

As before,l1 is given by solving the equation for thes
meson mass, which in turn yields thef 0 meson mass, the
scalar mixing angle, andm2. For ms5600 MeV we find
l1524.550, mf 0

51341.367 MeV,uS531.326°, andm2

52(503.551 MeV2).

C. Chiral limit with U „1…A anomaly

In this case,̂ F&5T0s̄0. Using ha50 and the explicit
form for theGabc andFabcd, the equation for the condensa
at the tree level~15a! simplifies to

05Fm22
c

A6
s̄01S l11

l2

3 D s̄0
2G s̄0 . ~29!

From the PCAC relations~see the Appendix!, we now obtain
s̄05A3/2 f p . Lattice QCD data indicate a linear behavior
f p with the quark mass,f p.amq1b @23#. Extrapolating
these data to the chiral limit,mq→0 ~as appropriate forH
50), one obtainsf p590 MeV.

The scalar and the pseudoscalar mass matrices are d
nal and have the particularly simple form

~mS
2!ab5Fm21

c

A6
s̄01~l11l2!s̄0

2Gdab

2SA3

2
c22l1s̄0D s̄0da0db0 , ~30a!

~mP
2 !ab5Fm22

c

A6
s̄01S l11

l2

3 D s̄0
2Gdab

1A3

2
cs̄0da0db0 . ~30b!

Taking into account Eq.~29!, the pseudoscalar octet,a,b
51, . . . ,8, ismassless, as expected from group theory,
case~3! in Sec. III. The singlet, theh8 meson, is massive
because the U(1)A symmetry is explicitly broken by the
U(1)A anomaly,

mh8
2 [~mP

2 !005
3

2
c fp . ~31!

If we use the experimental value of theh8 meson mass,c
56791.157 MeV.

The scalar particles fall into a singlet, thes meson, with
mass
8-7
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ms
2[~mS

2!005m22c fp1
3

2
~3l11l2! f p

2 , ~32!

and an octet comprising thea0 , k, and f 0 mesons,

ma0

2 [~mS
2!115m21

c

2
f p1

3

2
~l11l2! f p

2

[ms
21mh8

2
23l1f p

2 [l2f p
2 1

2

3
mh8

2 , ~33!

where the last identity follows from Eq.~29!. This equation
determinesl1 andl2 for given ms , ma0

, andmh8 . As the
octet is mass degenerate, we average the experimental v
for ma0

2 , mk
2 , and mf 0

2 , weighted by the respective isosp

degeneracy, to obtain an average mass ofma0
51225.795

MeV. For thes meson we again takems5600 MeV. This
results inl1529.291 andl25110.046. Then,m2 follows
from any of the mass equations asm252(164.921 MeV)2.

Note that the scalar singlet is lighter than the scalar oc
but the pseudoscalar singlet is heavier than the pseudos
octet. This ‘‘inverted mass spectrum’’ for the scalar meso
relative to the pseudoscalar mesons@17# is a general feature
in the presence of the U(1)A anomaly. It arises from the
relative difference in sign of the terms;Gabc in Eqs.~12!.

D. Chiral limit without U „1…A anomaly

In this case, as the U(1)A symmetry is not explicitly bro-
ken, all nine pseudoscalar particles are massless. Th
readily derived from Eqs.~29! and ~30b! whenc50.

The scalar particles again fall into a singlet, thes meson,
with mass

ms
2[~mS

2!005m21
3

2
~3l11l2! f p

2 , ~34!

and an octet comprising thea0 , k, and f 0 mesons,

ma0

2 [~mS
2!115m21

3

2
~l11l2! f p

2 [ms
223l1f p

2 [l2f p
2 ,

~35!

where the last identity follows from Eq.~29! with c50. This
equation determinesl1 and l2 for given ms and ma0

. We

again usema0
51225.795 MeV andms5600 MeV. This re-

sults in l15247.019 andl25185.503. Then,m2 follows
from any of the mass equations,m252(424.264 MeV)2,
which is negative, as required in this case for spontane
symmetry breaking.

V. THE EFFECTIVE POTENTIAL IN THE CORNWALL-
JACKIW-TOMBOULIS FORMALISM

The effective potential of the Cornwall-Jackiw-Tombou
formalism @14# is
08500
ues

t,
lar
s

is

us

V@s̄,S,P#5U~ s̄ !1
1

2Ek
$@ ln S 21~k!#aa1@ ln P 21~k!#aa%

1
1

2Ek
@Sab

21~k;s̄ !Sba~k!1Pab
21~k;s̄ !Pba~k!

22dabdba#1V2@s̄,S,P#. ~36!

Here,U(s̄) is the tree-level potential of Eq.~9!, and

Sab
21~k;s̄ !52k2dab1~mS

2!ab , ~37a!

Pab
21~k;s̄ !52k2dab1~mP

2 !ab , ~37b!

are the tree-level propagators for scalar and pseudosc
particles, with the respective mass matrices~12!.

The expectation values for the scalar fields,s̄a , and the
full propagators for scalar,S(k), and pseudoscalar,P(k),
particles are determined from the stationarity conditions

dV@s̄,S,P#

ds̄a

50, ~38a!

dV@s̄,S,P#

dSab~k!
50, ~38b!

dV@s̄,S,P#

dPab~k!
50. ~38c!

With Eq. ~36!, the latter two can be written in the form

S ab
21~k!5Sab

21~k;s̄ !1Sab~k!, ~39a!

P ab
21~k!5Pab

21~k;s̄ !1Pab~k!, ~39b!

where

Sab~k![2
dV2@s̄,S,P#

dSba~k!
, ~40a!

Pab~k![2
dV2@s̄,S,P#

dPba~k!
, ~40b!

are the self-energies for the scalar and pseudoscalar part
In general,V2@s̄,S,P# is the sum of all two-particle irre-

ducible~2PI! diagrams, with all lines representing full propa
gators. Here, we restrict ourselves to the most simple clas
2PI diagrams, the double-bubble diagrams of Fig. 1, whic
equivalent to the Hartree approximation. Explicitly,
8-8
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V2@s̄,S,P#5FabcdF E
k
Sab~k!E

p
Scd~p!

1E
k
Pab~k!E

p
Pcd~p!G

12HabcdE
k
Sab~k!E

p
Pcd~p!. ~41!

Note that, in the Hartree approximation,V2 is actually inde-
pendent ofs̄a . Therefore, the stationarity conditions for th
condensates are

ha5m2s̄a23GabcH s̄bs̄c1E
k
@Scb~k!2Pcb~k!#J

14FabcdF1

3
s̄bs̄c1E

k
Scb~k!G s̄d

14Hbcads̄dE
k
Pcb~k!. ~42a!

Since the self-energies~40! are independent of momentum
the Hartree approximation, the Schwinger-Dyson equati
~39! for the full propagators assume the simple form

S ab
21~k!52k2dab1~MS

2!ab , ~42b!

P ab
21~k!52k2dab1~M P

2 !ab , ~42c!

where the scalar and pseudoscalar mass matrices in the
tree approximation are given by

~MS
2!ab5m2dab26Gabcs̄c14FabcdF s̄cs̄d1E

k
Scd~k!G

14HabcdE
k
Pcd~k!, ~43a!

~M P
2 !ab5m2dab16Gabcs̄c14HabcdF s̄cs̄d1E

k
Scd~k!G

14FabcdE
k
Pcd~k!. ~43b!

In general, the mass matrices are not diagonal in the stan
basis of U(3) generators, see Sec. IV. Consequently,
propagators are also not diagonal in this basis. Physic

FIG. 1. The double-bubble diagrams. Full lines are scalar p
ticles, dashed lines are pseudoscalar particles.
08500
s

ar-

rd
e

y,

however, only mass eigenstates can propagate. Therefore
have to diagonalize the propagators before we compute
loop integrals in Eqs.~42a! and ~43!.

In the Hartree approximation, all particles are stable q
siparticles, i.e., the imaginary parts of the self-energies v
ish. Therefore, the inverse propagators~42b! and ~42c! are
real-valued. They are also symmetric in the standard bas
U(3) generators and thus diagonalizable via an orthogo
transformation. This transformation is given by Eq.~13c!,
with the obvious replacements

~mS,P
2 !ab→~MS,P

2 !ab, ~m̃S,P
2 ! i→~M̃S,P

2 ! i . ~44!

In cases 2~a! and 3 in Sec. III, the mass matrices a
diagonal at zero temperature, cf. Sec. IV, and are taken t
diagonal at nonzero temperatureT as well. In cases 4~b! and
5~b!, they have off-diagonal elements in the~08! sector at
zero temperature, and consequently also have off-diag
contributions in this sector at nonzero temperature. In
latter case, diagonalization proceeds as in Eq.~13c! with the
replacements~44!.

The propagator matrices are diagonalized by the same
thogonal transformation as their inverse. The loop integr
in Eqs.~42a! and ~43! are therefore computed, for exampl
as

E
k
Sab~k!5Oai

(S)E
k
S̃i~k!Obi

(S) , ~45!

whereS̃i(k) is the scalar propagator in the mass eigenba
The loop integral in Eq.~45! requires renormalization

Renormalization of many-body approximation schemes
nontrivial @10#, but does not change the results qualitative
We therefore simply omit the vacuum contributions to t
loop integrals and set

E
k
S̃i~k!5E d3k

~2p!3

1

ek@~M̃S
2! i #

S expH ek@~M̃S
2! i #

T J 21D 21

,

~46!

and similarly for the pseudoscalar loop integrals. He

ek@(M̃S
2) i #5Ak21(M̃S

2) i is the relativistic energy of thei th
scalar quasiparticle with momentumk.

VI. RESULTS

In this section, we discuss the numerical results at n
zero temperature for the four cases of interest.

A. Chiral limit

In Fig. 2~a!, the masses are shown in the chiral limit wi
the U(1)A anomaly,cÞ0. This corresponds to case 3 of Se
III, for which the zero-temperature properties were discus
in Sec. IV C. Accordingly, there are eight Goldstone boso
the three pions, the four kaons and theh meson, while the
h8 meson has a large mass due to the U(1)A anomaly. The
scalar octet, comprising the threea0 mesons, the fourk me-
sons, and thef 0 meson, is mass degenerate, while the sing
the s meson, has a different mass.

r-
8-9
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FIG. 2. The meson masses and the cond
sates as a function of temperature for~a,b! the
case with U(1)A anomaly (cÞ0) and ~c,d! the
case without U(1)A anomaly (c50), for H50.
In ~a,c!, the full lines are the masses of thea0 , k,
and f 0 mesons, the dotted lines represent thes
meson mass, the dashed lines arep, K, and h
meson masses, and the dot-dashed lines are
h8 meson mass. In~b,d!, the full lines represent
the non-strange condensate, and the dotted li
represent the strange condensate.
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As the temperature increases, the scalar masses dec
while the pseudoscalar masses increase. The mass o
Goldstone bosons~the pseudoscalar octet! increases becaus
the Hartree approximation does not respect Goldston
theorem at nonzero temperature@10#. We do not consider
this to be a serious shortcoming: as shown in@24#, supple-
menting the Hartree approximation with the random-ph
approximation cures this problem. The analogous treatm
within the CJT formalism will be deferred to a forthcomin
publication@25#.

At some critical temperature,Tc;170 MeV, there is a
first order phase transition between the low-tempera
phase where chiral symmetry is broken and the hi
temperature phase where chiral symmetry is restored an
meson masses are equal. The exact numerical value oTc
can be determined by computing the effective potential.

At the point where the condensates vanish, all mas
become degenerate. The reason is that at this point the
densate equation enforces the constraint

05
c

6A6
H 2E

k
@S00~k!2P00~k!#

2 (
a51

8 E
k
@Saa~k!2Paa~k!#J , ~47!

which is fulfilled when all masses are equal.
In Fig. 2~b!, the non-strange and strange condensates,wns

andws, respectively, are shown as a function of temperatu
In the standard basis of U(3) generators, these are define

^F&5
1

2 S wns 0 0

0 wns 0

0 0 A2ws

D . ~48!

When ^F&5T0s̄0 , wns5A2/3s̄0, and ws5s̄0 /A3, i.e., ws

5wns/A2, as borne out by Fig. 2~b!.
In Figs. 2~c! and 2~d!, the masses and condensates

shown for the case without explicit U(1)A symmetry break-
08500
ase
the

’s

e
nt

re
-
all

es
n-

e.
as

e

ing, c50. This corresponds to case 2~a! of Sec. III. The
zero-temperature properties were discussed in Sec. IV
Now, there are nine Goldstone bosons, the three pions,
four kaons, theh, and theh8 meson. The behavior of the
scalar octet is similar to the previous case.

As the temperature increases, the behavior of the sc
and pseudoscalar masses is quite similar to the masses in
2~a!, i.e., the scalar masses decrease and the pseudos
masses increase, until they become degenerate in a first o
phase transition. The critical temperature for this transiti
however, appears to be slightly lower than forcÞ0. A no-
table difference between Figs. 2~a! and 2~c! is that the
masses do not become degenerate continuously as the
densates vanish. The reason is that, forc50, the above con-
straint equation~47! is absent. However, these phenome
are irrelevant for the thermodynamic properties of the mod
as they occur in a region where the solutions are thermo
namically unstable and the stable solution has to be fo
from Maxwell’s construction for first order phase transition

Another interesting feature is that the mass of thes me-
son is proportional to the condensates. The reason for th
that the condensate equation and the equation for thes mass
can be combined to give

Ms
25

8

3
F0000s̄0

2 . ~49!

B. Explicit chiral symmetry breaking with U „1…A anomaly

In Fig. 3, we show the masses for the scalars~a!, the
pseudoscalars~b!, the condensates~c!, and the mixing angles
~d! for explicit chiral symmetry breaking, including th
U(1)A anomaly. The masses behave according to the dis
sion of case 5~b! in Sec. III. As the temperature increase
chiral symmetry is restored in a crossover transition and
masses become approximately degenerate. The temper
range of the crossover transition is;220 MeV, i.e., about 50
MeV higher than in the case where there is no explicit ch
symmetry breaking. A notable feature is that thek becomes
lighter than thea0 meson, and theh8 meson lighter than the
kaon, at about 240 MeV.
8-10
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The non-strange and the strange condensates,wns andws,
are shown in Fig. 3~c!. Note that the strange condensate d
creases much more slowly with temperature than the n
strange condensate. Figure 3~d! shows the scalar and pse
doscalar mixing angles. At large temperatures, th
approach arcsin(1/A3).35.264°. From Eq.~13!,

s[s̃05A2

3
s01

1

A3
s8 , ~50a!

f 0[s̃852
1

A3
s01A2

3
s8 . ~50b!

On the other hand,

wns5A2

3
s̄01

1

A3
s̄8 , ~51a!

ws5
1

A3
s̄02A2

3
s̄8 . ~51b!

This shows that thes meson becomes an excitation of th
non-strange condensate, i.e., a purely non-strangeqq̄ state.
On the other hand, thef 0 meson is an excitation of th
strange condensate and a puress̄ state. Similarly, theh8
meson is purely non-strange and theh meson is purely
strange. This is what was referred to as ideal flavor mix
earlier.

The transition occurs at temperatures which are not
nificantly larger than the strange quark mass. Therefore,
explicit SU(3)r3SU(3)l symmetry breaking by the strang
quark mass cannot be neglected and, at first, only the~ap-

FIG. 3. The meson masses, the condensates, and the m
angles as a function of temperature forh0 ,h8Þ0, h350, and c
Þ0. ~a! For the scalar mesons, the full line is thea0, the dotted line
is thek, the dashed line is thes, and the dot-dashed line is thef 0

meson mass.~b! For the pseudoscalar mesons, the full line is t
pion, the dotted line is the kaon, the dashed line is theh8, and the
dot-dashed line is theh meson mass.~c! The non-strange~full ! and
strange~dotted! condensates.~d! The scalar~full ! and the pseudo-
scalar~dotted! mixing angles.
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proximate! SU(2)r3SU(2)l symmetry is restored. This
means that the pion becomes degenerate with thes meson,
and thea0 becomes degenerate with theh8 meson.~The h8
is purely non-strange due to ideal flavor mixing.! However,
due to the fact that the strange condensate decreases r
slowly with temperature, the explicit U(1)A symmetry
breaking term;Gabcs̄c in Eqs.~43! is not small. This causes
the pion/s meson mass still to be different from thea0 /h8
meson mass. Only when both condensates approach zero
U(1)A symmetry is effectively restored and the masses of
non-strange particles become degenerate.

When the temperature becomes significantly larger t
ms , the ~approximate! SU(3)r3SU(3)l symmetry is re-
stored. Then, all scalar octet states become degenerate,
wise all pseudoscalar octet states become degenerate. I
happened when the explicit U(1)A breaking term was still
large, then the complete pseudoscalar octet would bec
degenerate in mass with the scalar singlet, and the sc
octet degenerate in mass with the pseudoscalar singlet.
turns out, however, the explicit U(1)A symmetry breaking
becomes small around the same point where the~approxi-
mate! SU(3)r3SU(3)l symmetry is restored.

C. Explicit chiral symmetry breaking without U „1…A anomaly

In Fig. 4, we show the masses for the scalars~a!, the
pseudoscalars~b!, the condensates~c!, and the mixing angles
~d! for explicit chiral symmetry breaking in the absence
the U(1)A anomaly. The masses behave according to
discussion of case 4~b! in Sec. III. As the temperature in
creases, the chiral symmetry restoration crossover trans
is much more rapid than in the previous case, and occurs
slightly smaller temperature,;200 MeV. A notable feature
is the inverse mass ordering of theh meson and the kaon. A
small temperatures and above the transition, the masse
the pion and theh8 meson are the same. In the temperatu
range from about 50 to 210 MeV, however, they differ. W
perceive this to be an artifact of the violation of Goldstone
theorem in the Hartree approximation, cf. Fig. 2~c!.

The melting of the condensates, Fig. 4~c!, is similar to the
previous case, Fig. 3~c!. The mixing angles, Fig. 4~d!, again
approach ideal flavor mixing at large temperatures. The

ing FIG. 4. As in Fig. 3, but forc50.
8-11
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ference here, however, is that theh andh8 mesons are also
ideally flavor-mixed at zero temperature, cf. Sec. IV B.

Due to the absence of the U(1)A anomaly, once the~ap-
proximate! SU(2)r3SU(2)l symmetry is restored, the pion
the h8, the a0, and thes mesons simultaneously becom
degenerate in mass.~The h8 meson belongs to this class o
non-strange particles due to ideal flavor mixing.! Once the
temperature becomes large compared to the strange q
mass, the masses of the strange mesons converge with
of the non-strange mesons.

VII. CONCLUSIONS

In this work, we computed properties of the SU(3r
3SU(3)l linear sigma model in the Hartree approximation
nonzero temperature. We first classified possible pattern
symmetry breaking, with special attention to the cases wh
the U(1)A anomaly is either absent or present, and the ca
of zero, degenerate or nonzero, non-degenerate q
masses. We then determined the coupling constants from
vacuum values for the masses and the decay constants i
various cases of interest. We systematically derived the H
tree approximation within the CJT formalism. Within th
approximation, we computed the masses of scalar and p
doscalar particles, the non-strange and strange condens
and the scalar and pseudoscalar mixing angles as a fun
of temperature. We checked that our results are consis
with the mean-field approximation employed in@13# to com-
pute these quantities.

For the SU(Nf) r3SU(Nf) l model, in the case where th
quark masses are zero, universality arguments predict
chiral symmetry restoring transition to be first order forNf
53 andNf52 in the absence of the U(1)A anomaly, and
second order forNf52 in the presence of the U(1)A
anomaly @6#. We find that the Hartree approximation co
rectly gives a first order transition in the caseNf53. This is
not necessarily an indication for the validity of this appro
mation, because earlier work has shown that it incorre
predicts a first order transition whenNf52 and the U(1)A
anomaly is present@10#. The transition temperature is on th
order of 170 MeV.

As expected, when the U(1)A anomaly is absent, theh8
meson becomes a Goldstone boson for zero quark mass
surprising result is that then thes meson mass is directly
proportional to the condensate.

For nonzero quark masses,mu5mdÞms , we find the
transition to be a crossover transition, but for vanish
U(1)A anomaly the crossover region is much more narr
than in the presence of the U(1)A anomaly. In the chirally
symmetric phase, the mixing angles approach the situatio
ideal flavor mixing, i.e., thes andh8 mesons are pure non
strangeqq̄ states, while thef 0 and theh mesons are puress̄
states.

As an outlook, the present framework can be used as
alternative to lattice QCD studies@2# to study the order of the
chiral symmetry restoring transition as a function of t
strange and non-strange quark masses@26#. Moreover, other
meson properties such as the decay widths and the spe
functions can be self-consistently computed at nonzero t
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perature@19#. These properties can be experimentally inve
tigated in relativistic nuclear collisions, for instance
Brookhaven National Laboratory’s Relativistic Heavy-Io
Collider.
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APPENDIX: DERIVATION OF EQS. „16…

The infinitesimal form of the SU(3)r3SU(3)l3U(1)A
symmetry transformation~5! is

Tafa→Tafa2 ivV
a@Ta,Tb#fb1 ivA

a$Ta,Tb%fb. ~A1!

For axial-vector transformations,vV
a[0, and the associate

~axial-vector! Noether current is

J a
m[

dL
d~]mfb!

idabcfc1H.c.

5
i

2
~]msb2 i ]mpb!dabc~sc1 ipc!1H.c.

5dabc~sb]mpc2pb]msc!. ~A2!

Inserting this into the PCAC relation,

^0uJ a
mupa&[ ipm f a , ~A3!

wheref a is the decay constant corresponding to the fieldpa ,
and shifting the scalar fields by their vacuum expectat
values,sa→sa1s̄a , one obtains

f a5daabs̄b , ~A4!

where one sums over the indexb but not overa.
In the case thats̄0 , s̄8Þ0, one obtains for the pion an

kaon decay constants

f p[ f 15d11as̄a5A2

3
s̄01

1

A3
s̄8 , ~A5a!

f K[ f 45d44as̄a5A2

3
s̄02

1

A12
s̄8 . ~A5b!

In the case thats̄850, this simplifies tof p5 f K5A2/3s̄0.
8-12
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