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Applicability of weak-coupling results in high density QCD
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Quark matter at an asymptotically high baryon chemical potential is in a color superconducting state char-
acterized by a gapjr. We demonstrate that although present weak-coupling calculations ae formally
correct for u—o0, the contributions which have to this point been neglected are large enough that present
results can only be trusted far> .~ 10 MeV. We make this argument by using the gauge dependence of
the present calculation as a diagnostic tool. It is known that the present calculation yields a gauge invariant
result for u—o; we show, however, that the gauge dependence of this resultbegiipsto decrease fop
=pu., and conclude that the result can certainly not be trustedufam.. In an appendix, we set up the
calculation of the influence of the Meissner effect on the magnitude of the gap. This contributlorsto
however, much smaller than the neglected contributions whose absence we detect via the resulting gauge
dependence.

PACS numbdps): 12.38.Aw, 26.60+c, 74.90+n

[. INTRODUCTION leaving an unbroken global symmetry under simultaneous
SU(3) transformations of color, left flavor, and right flavor.

The starting point for a description of matter at high In this color flavor locking CFL) phase, all nine quarks have
baryon density and low temperature is a Fermi sea of quarks gap and all eight gluons have a mgKg|. Chiral symmetry
The important degrees of freedom—those whose fluctuationis spontaneously broken, as is baryon number, and there are
cost little free energy—are those involving quarks near theconsequently nine massless Goldstone bogbBis Matter in
Fermi surface. We know from the work of Bardeen, Cooperthe CFL phase is therefore similar in many respects to super-
and Schrieffef1] that any attractive interaction between the fluid hypernuclear mattefr10,12—14. The fact that color su-
quarks, regardless how weak, makes the Fermi sea unstatlérconducting phases always feature either chiral symmetry
to the formation of a condensate of Cooper pairs. In QcDbreaking(as in the CFL phageor some quarks which remain
the interaction of two quarks whose colors are antisymmetri@@plessias in the 2SC phagenay be understood as a con-

= : . . . sequence of imposing 't Hooft's anomaly matching criterion
(the color3, channel is attractive (The attractiveness of this 15]. The first order phase transition between the CFL and

interaction can be seen from single-gluon exchange, as SC phases has been analyzed in dét8l14,16, but all

relevant at short distances, or via counting strings or analyzpa¢ il concern us below is that any finite’str’ange quark

ing the instanton induced coupling, as may be relevant gf,aqs is unimportant at large enoughand quark matter is
longer distances.We therefore expect that under any Cir- tnerefore in the CFL phase at asymptotically lagge
cumstance in which cold dense quark matter is present it will - \ych recent work has resulted in two classes of estimates
be in a color superconducting phgge-6]. The one caveatis f the magnitude o\, the gap in the density of quasiparticle
that this conclusion is known to be false if the number ofstates in the superconducting phase. The first class of esti-
colors isNg=c [7]. Recent work8,9] indicates that quark mates is done within the context of models whose parameters
matter is in a color superconducting phaseNgress than of  5re chosen to give reasonable vacuum physics. Examples
the order of thousands, and in this paper we only disCusgclude analyses in which the interaction between quarks is

QCD with N.=3. _ ~ replaced simply by four-fermion interactions with the quan-

We now know much about the symmetries and physicatym numbers of the instanton interactids,6,17 or of
properties of color superconducting quark matter. The domisingle-gluon exchangel0,13 and more sophisticated analy-
nant c_ondensate in QCD with two flavors of quarks is in theges done using instanton liquid modgls,19. Renormaliza-
color 35 channel, breakin@ U(3).,0—SU(2), and is a fla-  tion group analyses have also been used to explore the space
vor singlet[2—6]. Quarks with two of three colors have a gap of all possible four-fermion interactions allowed by the sym-

in this 2SC phase, and five of eight gluons get a mass via thenetries of QCD[20,21]. These methods yield results which

Meissner effect. In QCD with three flavors of quarks, theare in qualitative agreement: the gaps range from several tens

Cooper pairs cannot be flavor singlets, and flavor symmetriesf MeV up to as much as about 100 MeV and the corre-

are necessarily broken. The symmetries of the phase whickponding critical temperatures, above which the supercon-

results have been analyzed in R@f0], and were in fact first ducting condensates vanish, can be as large as about 50

analyzed in a differentzero density context in Ref.[11]. MeV.

The dominant condensate locks color and flavor symmetries, The second class of estimates uges:e physics as a
guide. At asymptotically large., models with short range
interactions are bound to fail, because the dominant interac-

*Email address: krishna@ctp.mit.edu tion is due to the long-range magnetic interaction coming
"Email address: eugeneus@mit.edu from single-gluon exchangg22,23. The collinear infrared
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divergence in small-angle scattering via single-gluon extions as we can. We solve the resulting gap equation numeri-
change results in a gap which is parametrically largerat cally in several different gauges. Our results &et one
—oo than it would be for any point-like four-fermion inter- more confirmation of Eq(1). Furthermore, we do find evi-
action[3]. Son showed23] that this collinear divergence is dence that the gauge dependencd decreases fog— 0.
regulated by Landau dampin@ynamical screeningand  However, this decrease only begins to set inder0.8. This
that, as a consequence, the parametric dependence of the gaplies that the contributions t@A which have been
in the limit in which the QCD couplingg—0 is neglected—Ilike those arising from vertex corrections—only
become subleading fag<g.~0.8. If we translatey. to u.
5 by assumingy should be taken ag(w), this corresponds to
~iex B 3i 1 A~ 10® MeV. Recent work[31] shows thatg should be
g® \/fg ' evaluated at a much loweg{dependentscale thanw. This
means that the conditiog<g.~ 0.8 would translate intq
o ] o ] > u. With . orders of magnitude larger than.~ 10° MeV.
which is more easily seen as an expansiog ihen rewrit- The original purpose of our investigation was to do a
ten as self-consistent calculation of the influence of the Meissner
effect on the magnitude of the gap in the CFL phase. In the
A 372 presence of a condensate, the gluon propagator is modified:
In( )

A
M

=— 3_5 Ing+f(g). (2)  some gluons get a mass. In the CFL phasdegluons get a
\/E mass, and this makes a calculation based on perturbative
single-gluon exchange a self-consistent and complete de-
scription of the physics at asymptotically large with no
remaining infrared problemsln the 2SC phase, in contrast,
the calculation ofA leaves unanswered any questions about
the non-Abelian infrared physics of the three gluons left un-
screened by the condensat#Ve felt that this motivation
warranted a self-consistent calculation in which we calculate
the gap using a Schwinger-Dyson equation in which the
0\512 gluon propagator is modified not only by the presence of the
2‘1’3256774(—) }=8.88 (3y  Fermi sea(Debye mass, Landau dampingut is also af-
3 fected by the condensatéhe Meissner effegt We set this
calculation up in an appendix. Previous work, beginning
in the CFL phasédsee also Ref.25]), and Brown, Liu, and with that of Ref.[23], shows that the form of Eql) is
Ren[28] find a result for limy_f(g) which is smaller by unmodified by including the Meissner effect, tg) is af-
(7%+4)/8—In2=1.04. If this asymptotic expression is ap- fected. Our preliminary results suggest that the changes in
plied by takingg=g(w) from the perturbative QCIB func-  f(g) are small, as anticipated in Ref23,24,27,29,32,33
tion (with A ocp=200 MeV), evaluatingA at x~500 MeV  Indeed, the effects of physics left out of the present analysis,
yields gaps in rough agreement with the estimates based omhich we have diagnosed via the gauge dependentégdf
zero-density phenomenology. are much larger than those introduced by the Meissner effect
The central purpose of this paper is to demonstrate thaat anyg we have investigated.
this nice agreement must at present be seen as coincidental,
because present estimates fomare demonstrably uncon-
trolled for g>g.~0.8, corresponding tqu<p. with g, Il. DERIVING THE GAP EQUATION

~10° or higher. , . In this section, we derive the gap equation for QCD with
The Wegk-couplmg calculathns are derived from analyseg,ree massless flavors which is valid at asymptotically high
(done using varying approximationsof the one-loop densities. We follow Ref{24], but make fewer approxima-

Schwinger-Dyson equation without vertex correction, andjong Because our point is to stress the importance of effects
(with one exceptionyield gauge dependent results. HOW- \hich we donot calculate, we will make our assumptions
ever, Schaefer and Wilczek argue that the result for

i ; X h lculation i ) ) h and approximations very clear as we proceed. In other
im, _of(g) in such a calculation is gauge invariant. The one,q4g since the lesson we learn from our resuilts is that they
calculation which is gauge invariant throughout is the calcu

X ¢ X ‘cannot yet be trusted, it is important to detail carefully all
lation of T. (and henceA since the BCS relationT, points at which we leave something out.

=0.57A holds[25]) done by Brown, Liu, and Ref28]. As We use the standard Nambu-Gorkov formalism by defin-
in other calculations, however, these authors neglect verte|>r<1 an eight-component field = (y, 7). In this basis, the

corrections. Our purpose is tsethe fact that our calcula- . 9 g P =) ’
tion (like mos) is gauge dependent, and only gauge invariant

for g—0, to estimate thg above which vertex corrections,

This equation should be viewed as a definition f¢f),
which will include a term which is constant fg—0 and
terms which vanish fog—0. The result(1) has been con-
firmed using a variety of method24-29, and several esti-
mates of lim_of(g) exist in the literature. For example,
Schaefer and Wilczek fing24,3Q

limf(g)~In
g—0

nverse quark propagator takes the form

left out of all calculations, cannot be neglected. K+ 1270 A
We begin by sketching the derivation of the one-loop S (k)= . (4)
Schwinger-Dyson equation fdr, making as few approxima- A (k=0

085007-2



APPLICABILITY OF WEAK-COUPLING RESULTS IN . ..

PHYSICAL REVIEW D62 085007

whereA = y,A"y,. The color, flavor, and Dirac indices are Of our ansatz is thus precisely that first explored in iRE@),
suppressed in the above expression. The diagonal blocks cothich allows quarks of all three colors and all three flavors
respond to ordinary propagation and the off-diagonal blockd0 pair. Subsequent word0,32,33,3} confirms that this is
reflect the possibility for “anomalous propagation” in the the favored condensate, and we will not attempt to further

presence of a diquark condensate.

generalize it here.

We make the fo”owing ansatz for the form of the gap Third, we have assumed that the COOper pairS in the con-

matrix [4,10,24,34

A= (NP Cye[ AT (Ko) P (K) +AS(Ko) P (K)]
+(A5)2(N3)i; Cys[ AT(Ko) P (K)
+A3(kg)P_(K)]. 5

Here,a,b=1,2,3 are color indices,j=1,2,3 are flavor in-
dices,)\lA are antisymmetridJ(3) color or flavor matrices
with 1=1,2,3, and)\f are symmetricU(3) color or flavor

with J=1,...,6, and therojection operator$. are de-
fined as
1+a-k
L 6
with @= v47.

By making this ansatz, we are making several assump-

tions:
First, we have takeA?, A5, AT, andA3 to be functions

of ko only. All are in principle functions of botk, and k|,
but we assume that they are dominated Iayv,u. This is a

densate have zero spin and orbital angular momentum. This
seems a safe assumption in the CFL phase, where the domi-
nant condensate, made of Cooper pairs with zero spin and
orbital angular momentum, leaves no quarks ungapped.

Fourth, we negleciyyy condensates. Since chiral symme-
try is broken in the CFL phase, these must be nong&dh

This applies to both color singlet and color ocfel conden-
sateq 36]. Such condensates are sma®,30, however, and
we expect that neglecting them results in only a very small
error in the magnitude of the dominant diquark condensate.

The most important assumption we make is that we obtain
the gap by solving the one-loop Schwinger-Dyson equation
of the form

d*q
(2m)*

ras(g)ID4y(k—q),
@

using a medium-modified gluon propagator described below
and unmodified vertices

ra_ VN2 0
Lo —(y,A¥2)T)

s*l<k>—sgl<k>=i92f

8

Here,S; is the bare fermion propagator witt= 0. Note that
we use a Minkowski metric unless stated otherwise. We will

standard assumption, and although we do not expect thafemonstrate that our results are completely uncontrolled for
relaxing this assumption would resolve the problems whichy>g_~0.8. This breakdown could in principle reflect a fail-
we diagnose below, this does belong on the list of potentiajire of any of our assumptions. We expect, however, that it

cures.

arises because contributions which have been truncated in

Second, we have explicitly separated the gaps which argriting Eq. (7) are large forg>g.. That is, we expect that
antisymmetric3, in color and flavor from those which are this truncationand not any of the simplifications introduced
symmetric6g in color and flavor and, in both cases, we haveby our ansatz fo\) is the most significant assumption we
assumed that the favored channel is the one in which colaare making.
and flavor rotations are locked. The color and flavor structure We obtain four coupled gap equations

[
Ao = 592

s 1 o[ d'
A7 (ko) = 69 J(Z’ZT)

d4
(27:;4TV{P¢(|<) YulP+(@)as(q)+P_(aa_(q)]y,}D*"(k—q)

TP (K) [P ()b (a)+P_(a)b_(a)]y,}D*"(k—q) 9

whereP.. meansP, in the A; equation and®_ in the A, equation and where

—A3(do) —A%(do)

a,(q)=

93— (|q]+ 1) 2= 4[A5(do) +2A5(q0) 1

[A%(do) —A5(Go) {— a3+ (|al + )2+ [5A5(qo) + 7A5(do) ILAS(Go) + 3A5(d0) 1}

{a3—(|a]+ )2 —[A%(do) — AS(do) 12Ha3— (|al+ )2 =4[ A%(do) + 2A5(q0) 1%}
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_Af(QO)—Af(%)

a_(q)= =
O = (a1 - 12— 41A a0 + 2250 12
. [A%(do) —AZ(do) 1{— a3+ (|a] — 1) 2+ [5A%(do) + 7TAT(Ao) ITAT(do) + 3AT(o) 1}
{a5—(|a]— 1)2—[A%(do) — AT(do) 12H a3~ (] — )2 = A[ A%(do) + 2AT(q0) 1%}
Ag(Qo)
b.(q)= _
- a5—(|al+ w)?—4[ A5(qo) +2A3(o) 12
N [AQ(QO)_AS(QO)][AQ(QO)+A§(Qo)][A§(QO)+5A§(QO)]
{a5—(|a]+ 1)2—[A%(do) — AS(Ao) 12H a3~ (|a| + )2 4[ A%(do) + 2A3(00) 1%}
AS(qo)
b_(q)= 1(do

93— (|al— w)2—4[A%(qo) + 2A5(q0) 1

[A%(do) —AT(do) ILAL(Go) +A(de) AT (Do) +5A3(do)]

+ _ ~ . (10
{05~ (lal— w)*~[AT(do) ~ AT(do) 1PHa5— (|al — ) >~ 4[ AT(do) + 24 T(00) 1%}
In a general covariant gauge, the resummed gluon propagator is given by
D Q)= 5t el 1
9°=G(a) g°—F(a) q
whereG(q) andF(q) are functions ofy, and|ﬁ| and the projectorﬁ’;'yL are defined as follows:
P 4.9,
P;I}:5ij_qujv Pgo: Pgizoa P,Lw:_g#wL%_P,Tw- (12)

The functionsF andG describe the effects of the medium on the gluon propagator. If we neglect the Meissneftbéfei,
if we neglect the modification df (q) andG(q) due to the ga@\ in the fermion propagatdrthenF(q) describes Thomas-
Fermi screening an@(q) describes Landau damping and they are given in the hard denséH&dp approximation by 37]

2 i i
F(q)=m? a 2{1— &Qo(ﬁ)
|al lal "\ d

) . 2 . .
oo 3 b3}
|ql |q lal/ |al

wherem?=3g?u?/272 is the Debye screening mass Mf=3. We discuss the modifications B{q) andG(q) due to the
Meissner effect in the Appendix.

In order to obtain the final form of the gap equation, we need the following trace:

) 1 X+1
, with Qo(x)zzlog(m),

TH{P.(K) [P+ (da(@)+P_(ada_(a)]y,}D*"(k—q) (14)
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o (k=a)g+ (k=) | J(k=a)§
- - . —1%Fk- k k k
_ - REDE T kg WD G
=a,(q)| 2 > + >
(k=q)°—G(k—q) (k=g)*—F(k—q)

- (k=)§+(k—0)?
¢ (ﬁk_q( W5+ (k-a)

. - (K=q)’
* k=g =200 -k 4 )

(k—q)2 (k—q)?
o (k=i (k—a)? L(k=a)3
R . —1=xk- F2(k—0q)-k k— )-
~12(K0)-kK=0)-§ R L i
+a_(q)| 2 5 + 5
(k—=q)*—G(k—q) (k=q)°—F(k—q)
¢ L (k—@)3 (kg2 412—5)2)
+k- F2(k—q)-k(k—q)-
HrEndk ( q (k—q)? (k—q)-k(k—q) q(k_q)2

This allows us to recast E¢9) into the following form:

—1—(k’—\q>-R<k’—71>-a
A% (ko) a,
(ko) =9 f(2 23 G Epe ey
. A(k_Q)o+(k_Q)2 ~(k—q)3
—-1-k. k kk S
D o T S DO [ ot
(k—q)’—F(k—q) T k=g T k—a?
L A<|2—a>2) —1+(k—q)-k(k—0)-q
+2(k—q)-k(k—q)- +a_ 2
(k=) k(k=0)- &, @] 2 Car—ek=a)
. (k—q)3+(k—0)? (k—a)3
) P 2(k—q)-k(k—q)- g2
(k—q)*—F(k—q)
¢ L (k=g +(k-a)2 . . (k—q)?
1+k- —2(k—q)-k(k—q)-
+W( +tk-q (k=q)? (k=a)-k(k—q) q(k—q)2
i d*q —1+(k—q)-k(k—)-q
A%(ko)=— =02 ()] 2
2(Ko) 69 f(zﬂ-)“ a.(q) (k—q)z—G(k—q)
< (k=q)3+(k—0q)? ~(k—)3
X —1+k-q (k_q)z —2(k—q) k(k CI) QW
(k—q)2—F(k—q)
L& (1+R.A<k—q)é+<|2—ﬁ)2_Z(k,_\)_k(k,_\)kli—aﬁ o)
k= | T kg2 T R
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( —Q)o

2—1—(k—q)~k(k—q)-q N

(k—)?—G(k—q)

3 L (k= )5+ (k—q)?
+<'<—Q>2(1 T ka7

+2(k—q)-k(k—9)-q

(k—q)?=F(k—q)

- -

(k—q)?
(k—q)?

~1—(k—q)-k(k—)-q
Sk)——— b, 2
Ailko Sl [P ey
. A(k—q>%+<|2—&>2 (k=)3
+—1—k-q k—q)? +2(k=0)-k(k=q)- I k=q)?
(k—q)?—F(k—q)
¢ A A<k—q>%+<|2—6>2 S q))
~ . (k=)3+(k—0)? (k—)3
—1+(k—q)-k(k—9)-q 1+kq (k—0)? 260 kk-a. k=2
+b_(q)| 2 > + .
(k—q)%—G(k—q) (k—q)2~F(k—q)
¢ (k=@ (k—a)2 AuZ—&)Z)
+Wz(1+k'q k=) 2(k—q)-k(k Q)‘Cl(k_q)2
—1+(k—q) -k(k=0)-
A3(ko) = b, 2
2(Ko) (@) (k—q)2— G(k—q)

« (k=)3+(k—0)?
~1+k-
T ka2

( _Q)o

J’_

(k—q)2=F(k—q)

3 - (kK=q)3+(k—0q)?
+(k_q)2(1+k-q k—q)?

1-(k—q)-k(k—q)- q

—2(k—q)-k(k=q)-q

(K= q))

(k—q)?

R'A(k—q)é+(|2— q)?
(k—q)?

(k=a)3
#2(R=0) K0l

+b_(Qq) 2
D Cor-ok-a)

¢ - (k=q)3+(k—0)?
+W(l T e

+2(k—q

(k—q)?—F(k—q)

(15

o A(R—d)z)
‘k(k—=0a)-
q)-k(k—q) Y —a)y?
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ll. SOLVING THE GAP EQUATION explicit examination of the gap equations Ed5) (and in-

In order to obtain a tractable numerical problem, we makedeed of the gap equations of RE£0)). In fact, this result is

two further simplifying assumptions: msmifest on symmgtry ground43,38: in the presenpe of
First, at weak coupling we expect the physics to be domi&17 0, @ nonzera\y breaks no new global symmetries and
nated by particles and holes near the Fermi surface. Thiiere is therefore no symmetry to keep it zero. Because
manifests itself in Eq(15) in the fact thata_ andb_ have  Single-gluon exchange is repulsive in the symmetric channel,
singularities on the Fermi surface whie andb, are regu- this condensate can only exist in the presence of condensa-
lar there, and we therefore expect that at weak coupling wéon in the antisymmetric channel. Explicit calculation
can negleca, andb, . Upon doing this, we have equations [10,30,32 shows that the symmetric condensates are much
for A7 which do not involveA5S. We are only interested Smaller than those in the antisymmetric channels. We are
in A%S, sinceA’"S describe the propagation of antiparticles therefore confident that keepirg; would yield only a very
far from the Fermi surface. If we assume that we are at weakmall correction taA? .
enough coupling thad, andb, can be neglectetthat is if We must now solve a single gap equation Mf(ko),
we assume thady"5><pu), then we can ignoré'> in our  which henceforth we denote simply d(ko). The reader
calculation of A2, (Note that we are not assuming that will see below that this equation is still rather involved. Most
A%S is any smaller tharhy"S; there is no reason for this to authors have made further approximations, valid ge#0.
be true) We will see that our results break down fgr  Because we make no further approximations, our results can-
=0.8, at whichA<10 ’u. BecauseA <, neglecting the not be gauge invariant. This allows us to test the claim that
effects ofA5"S on A%° should be a good approximation, and the results become gauge invariant in the lignit-0, and to
we do not expect that including these effects would cure theise the rapidity of the disappearance of gauge dependence as
problems we discover. This should, however, be investigatethis limit is approached to evaluate at wiathe contribu-
further. tions we have truncated can legitimately be ignored.
Second, we set\j=0, and solve an equation fak} In order to obtain numerical solutions, it is convenient to
alone. This assumption is in fact inconsistent, as the gap ido a Wick rotationgo—iqg to Euclidean space, yielding the
the symmetric channel must be nonzero. This is clear frongap equation

A(qp) . A(do)[ a3+ (|al— w)2+5A2(qp)]
93+ (|al— w)2+4A2%(qp)  [a3+(|a]— w)?+A%(ae) 1[a3+ (|l — w)2+4A%(qg)]

d*q
2m)4

2
M= -

, 1-(k—q)-k(k—q)-q

(k—@)3+(k—q)2+G(ko—do,|k—al)

—(k—a)5+(k—q)? (k—a)3

(k—@)3+(k—q)? (k—q)3+(k—q)?

(k—a)3+(k—a)2+F(ko—do,|k—al)
- —(k=q)a+(k—q)?
k-q 2 (E_f\2
(k=q)g+(k—q)

(k—q)3+(k—q)?

The integral over the azimuthal angfeis trivial, and we therefore have three integrals to do. We do the remaining angular
integration analytically, after making a change of variables. We define

1+k-q +2(k—q)-k(k—q)-q

—1+

o)k
(k—q)3+(k—0q)?

e (16)

q'=Kk—-d

because the integration over the polar angjis simpler when the momentum integration is done ai/erThe simplification
arises because there is no longer any angular dependence in the fulkctiodss:

F(ko—do,|Kk— @) =F(ko—do,|d'])

and similarly forG. After doing the angular integration, the gap equation reduces to a double integral equation with integration
variables|q’| (which we henceforth denotg) andqq:
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Atk = -2 f dq fwdq[ 2% | o001
R TPl B I (ko—Q0)2+ 9%+ G(ko—qg,q) & %’
A(do) qA(do)
n I£(Ko,0o,0) + € ~———5—l (Ko, 0o, 1
(Ko— o) >+ 2+ F (Kg— 0o, q) r(Ko,00,9) f(ko_q0)2+q2 «(Ko,0o,0Q) (17)
where
(0.0 ) 2[5+ 4A%(do) + 92][ 4>+ 42— g5— 4A%(qp) ] et q
G 40> M) = a R
3qu?Vg3+4A2(qo) Va5 +4A%(qp)
ALg3+ A%(qo) +q2I[a2+ 4u?—q5— AZ%(qo)] q 12A%(q) + 605 — 20> — 24u?
+ T arctan-=—— + 3.2
3qu?\a5+A2(do) Vag+A2(qo) I
(e G000 2{[93+4A%(do)1(Ko— o) 2~ q*}[a?— 42+ g5+ 4A%(qg)] e q
F\Ko,Yo0» M) = al 8]
3qu?Va3+4A%(qo)[ (Ko— o)+ 2] Va3 +4A%(q)
4lg5+A%(do)l(ko—do)*—q*} @’ —4p+ Qg+ A%q9] g
+ 3 2\/ > A2 o > 2 arcta..\/ > >
quVdg+A“(do) [ (Ko—do)“+09°] go+A<(dp)
6G°*+2(ko— o)’ — 207+ 12u?— 35— 6A%(qp)]
+
3u’[(Ko—0o)*+9°]
(ke GG ) 2005+ 4A%(o) ~ (ko— Qo) Il 0~ 4p” + g+ 40%(9)] g
E\R0-Y0 M)= al 1§
3u?\q3+4A%(qo)[ (Ko— o) >+ 7] Va3+4A2(qp)
Aot A%(do)— (Ko~ Go)’J[A”~4p*+ Qo +AKGD)] g
3u?\a3+A2(qo)[ (Ko— o) 2+ 9] a2+ A2(qo)
2a[292—3(ko— o) 2— 1212+ 393+ 6A%(qp) ]
+
317 (ko— o) +0?]
(o= ) [qg+4A2(QO)+q2][q2+4M2_qg_4A2(QO)](arctan q srctan 972
c\Uo:Yy=u)= ) - )
3qu2\ag+4A2(qo) Va3+4A%(qo) Va5+4A%(qo)
2[5+ A2%(do) + a2 92+ 4u2— 35— A%(do)] q q—2u
+ 2 > > arctan > > —arctan > >
3au2Va5+A2(do) Vag+A2(qo) Va3 +A%(qo)

+4[qS+A2(qo)+q2]r a5+ A%(qo) +0° +2[q3+4A2(qo)+q2]r g5+ 4A%(qo) + 02
3qu ‘q5+A2(qo) +(q—2p)? 3qu ‘q5+4A%(qo) +(q—2p)2

12A2(q) + 605 — 607~ 8u?—12u(
+
3uq
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{[a5+4A%(0o) 1(Ko—do)?— q*}[a®— 42+ g5+ 4A%(qp) ]

le(Ko,0o,q=p) =

_2,“
arctaﬁ—2 2
\Vag+4A2(do) \/%+4A (d0)

3qu?\d5+4A%(qo)[ (Ko—do)?+d?]

. 2{[a5+A%(do) 1(ko— o) >~ q*}[G?— 4u?+ a5+ A%(qp) ]

3qu2 a2+ A%(qo)[ (ko— o)+ 2]

(afCtaﬁ—— arctan q-2p 4{q4_[qg+A2(QO)](ko_%)2}
Vdo+A%(do) Vag+A%(qp) 3qu[ g%+ (ko—do)?]

“in 93+ A2(qo) + g2
n—

 2{g"~[a5+44%q0)](ko— o)}

Q5+ A%(qo)+(q—2u)2

3qu[a®+ (Ko—do)?]

i, G0t 48%(ao)+a? | 60" +2(ko— do)[61a+ 44"~ 305~ 6A%(do)]
02+ 4A%(q0) + (9 2p)? 3udl(Ko—do)?+0?]
(koo 0= ) [a5+44%(do) — (ko= do)*J[9°— 44>+ g5+ 4A%(qo)]
0:Yo.4=H)=—
¢ 323+ 4A%(qo)[ (Ko~ Go)2+ 2]
t L
arc aﬁ—
Vag+4A2(qp) VQO+4A2(QO
- Z[QS"‘AZ(QO)_(kO_QO)Z][q2_4M2+qg+A2(QO)]( et rctan 972
3P\ a3+ A2(qo)[ (Ko— o) 2+ 9] vq§+ %(qo) \/QO2+A2(qO

4[q5+A%(dg) — (Ko—do)*]

95+ A2(q) +?

3ulq?+(Ko—do)?]

2[5+ 4A%(dg) — (Ko— QO)Z]I

N
do+A%(do) +(g—2u)?

d5+4A%(qg) +9?

3u[a”+ (ko= do)?]

605+ 12A2(0lg) — 6(ko— o) >~ 8u’—

N
q3+4A2(qg) +(q—2u)?

12uq

3ul(ko—do)*+ 0]

We have solved the gap equati¢h7) numerically for
several different values @fand several different values éf
It is convenient to change integration variables frgmto
In g and fromq to Ing. We evaluate the integral over a
range gmin<q<10*w with gmi,/u chosen differently for
eachg in such a way that it is less than 12 (0) in all
cases. They, integral is made even i, (by taking the

average of the integrand g and —qg) and then evaluated

over a rangedomin<Jo<100w, where we choseqomin

quite as small as we did. It is, however, quite important to
extend the upper limit of thgg andq integrals to well above

w in order to avoid sensitivity to the ultraviolet cutdfive
use an iterative method, in which an initial guess Aqik)

is used on the right-hand side of E47); the integrations are

IThe one exception, in which we do find some sensitivity to one

=0min- We have checked that our results are insensitive t@f our limits of integration, is ag=3.5576. Withg this large, we
the choice of upper and lower cutoffs of the integration re-should perhaps have extended the upper cutoff ofjghietegration

gion. It was probably not necessary to choqgg, anddomin

to 100Qu, as the results shown in Fig. 1 below make clear.
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g = 3.5576 (u = 400 MeV) x 10 g=1.0149 (u = 10° MeV)
(Y] Pep e —— - Ao N

0.35 \ 1.2 «
0.3 \ 1
0.25 \

/u

0.2

A(qy)

0.15 \
0.1

0.05 RN N\

q /n qq/k

FIG. 1. The gapA(qy) for
five different values of the cou-
pling constang. In each plot, the
upper, middle, and lower curves
are calculations done using three
different gaugesé=-1,0,1. In
each panel, the range over which
the q, integration was done is that
shown.

107 10° 107"° 10
q,/u q,/u

x107"° g =0.6268 (= 10'2 MeV)

done yielding a newA(kg), which is in turn used on the we have done our calculations correspond to larger values of
right-hand side. The solution converges well after about ten: than shown in Fig. 131]. Evanset al. have obtained nu-
iterations. All results we show were iterated at least 15 timesmerical solutions to simplified gap equations describing the
Our results are shown in Fig. 1. Note that the output ofgap in the CFL phasg33]. Their results agree reasonably
our calculation is a plot oA (qg)/« as a function ofgpg/x well with the results of our calculation done in the=0
for some choice ofy and & The only way in whichu en-  gauge but disagree qualitatively with ours in any other
ters the calculation is to set the units of energy. The valuegauge. Simply setting=0, as in Refs[24,33, is not a valid
of u shown in Fig. 1 corresponding to each valugyafo not  approximation at the values @ at which we (and these
come from the calculation. They are obtained by assuminguthor$ work.
that the running coupling should be evaluated at the scale  How should one interpret the results of a gauge dependent
w# and using the one-loop beta function withocp=200  calculation, given that at any fixed one can obtain any
MeV. We include these values gf to make a comparison result one likes if one is willing to explore gauge parameters
with the results of Refs[24,33 easier. If, as seems quite —oo<¢<®? In the present circumstance, the idea is that we
reasonableg should in fact be evaluated atgadependent expect this calculation to give a gauge invariant result in the
scale which is lower thap, then the values of at which  g—0 limit. More precisely, if we define
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12 T T T T T T T T
£
% %
¢ %
1M q
o]
or FIG. 2. The functionf(g), defined in Eg.
o o (18), for five different values of the coupling con-
S ol o o i stantg. At eachg, the points(from top to bottom
- o o correspond to different gauges with=—4,
°© o —1,0,1,4 respectively. Note that the horizontal
sl ° | axis is 1§ and u increases to the right. At the
= o =} o largest value of g, we only shoé=—1,0,1. In
Fig. 1, we have not shown th&(q,) curves for
7+ g ¢==*4 because in these gaugAgqg) is very
* small or large on the scales of Fig. 1.
*
6_ -
*
*
5 1 1 1 1 1 1 1
0 0.2 04 0.6 0.8 1 1.2 14 16
1/9
A(0) 2 IV. CONCLUSION
f(@=in n + \/fg +5lIng, (18 We have detailed our assumptions and approximations as

we made them. Let us now ask which of them should be
improved upon if we wish to include those contributions

then we expect to go to aé-independent constant in thie whose neglect we have diagnosed via the gauge dependence
—0 limit. In Fig. 2, we plotf(g) in five different gauges. of our results. Note thag=0.8 corresponds ta/u~10"".
From this figure we learn the following: Thus, those contributions té which we have neglected

(i) For any ¢, f(g) is a reasonably slowly varying func- which are controlled whed < x arenot responsible for the
tion of g. This confirms Son’s resulfl) and justifies an breakdown of our calculation arouigd-0.8. We believe that
analysis in terms of (g). the assumptions we made in writing the ans&zand the

(ii) It does appear that lign.of(g) is a &-independent assumptions we made in neglectiA@ and A’Q‘S all intro-
constant, perhaps not far from the estimate of R2#],  duce errors which are small whén< . [For example, even
namely limy_,f(g)=8.88, or that of Ref.[28], namely though neglecting\, is a source of gauge dependence, we
limg_of(g)=7.84. do not expect that remedying this neglect would chai{gg

(i) If we do a calculation in some fixed gauge, we expectappreciably in any gauge gt~ 0.8, whereA/u is so small}
that at small enougy this calculation yields a good estimate Hence, we believe that it is the assumptions made in writing
of the true gauge invariant result. By doing calculations inthe truncated gap equati@i) that are at fault. One obvious
several gauges, we can bound the regime of applicability opossible explanation is the absence of vertex corrections, al-
this estimate. We can only trust our calculatiorf ¢g) inthe  though there are other missing skeleton diagrams which
regime in which thef dependence of decreases with de- should also be investigated.
creasingg. Our calculation off (g) is completely meaning- The gapA is of course a gauge invariant observable. A
less unlesgy is small enough that the curves for different complete calculation would yield a gauge invariant expres-
values of¢ are converging. Figure 2 shows that the gaugesion for the functiorf, which could be expanded as a power
dependence of our result féris about the same for alj series ing. We learn three things from oudincomplete and
=0.8. It is only forg=0.8 thatf(g) calculated in different gauge dependentalculation. First, our results obtained in
gaugeshbeginsto converge. At larger values aof our calcu-  different gauges appear to converge at srgadind support
lation provides no guide whatsoever as to the valuétbht  previous estimates of lign,of(g), namely theg® term in the
would be obtained in a complete, gauge invariant calculatioxpansion of. Second, because the results we obtain in dif-
including all the physics neglected in the present calculationferent gauges only begin to converge fp<g.~0.8, we
Even atg=0.8 the values oA (0) differ by a factor of about learn that contributions to our gauge dependent function
400 for gaps withé=—4 and é=4. We could make the which are of ordeg® and higher must have gauge dependent
gauge dependence look even larger by choosing larger vaparts which are numerically large gt~g.. Although we
ues of|£|. Our result does not guarantee that the calculatiorhave simply evaluated(g) and not expanded it iy, we
is under control forg<<0.8, but it does guarantee that the learn that such an expansion is uncontrolleddorg. . This
result is uncontrolled and completely meaningless dor suggests that if we knew the complete, gauge invariant func-
>0.8. tion f, theg® and higher terms in that expansion would also
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become uncontrolled fog>g.. It may be that the vertex gapA on the functions= andG which describe the screening
corrections are the dominant contribution to the missingf the gluon propagator.
esis is supported by the arguments of R@B| that these pegin by filling in some details in the derivation of E)

effects contribute td at orderg’. Regardless of whether the from Eq. (7). We work in a color-flavor basis{{,a},{j,b}).
vertex corrections turn out to be the most important effect, thjs pasis, we define the following twox9 matrices:

left out of the truncated gap equatidi), our calculation

demonstrates that some contribution which is formally sub-

leading is in fact large enough to render the calculation un- Avabrs A

controlled atg~g. . The third thing we learn is that although Qij =\ (N

present calculations do vyield reasonable estimates of 0 1 1

limg_of(Q), if one is interested in using these calculations to

estimate the value of to within a factor of 2, this can only 1 0 1

be done forg<g,~0.8.
In the CFL phase, all eight gluons get a mass. This means 1 1 0

that in the CFL phase there are no gapless fermionic excita-

tions and no massless gluonic excitations, and therefore no 0o -1

non-Abelian physics in the infrared to obstruct weak-

coupling calculations. The lesson we have learned is that

even though everything is in principle under control, present

weak-coupling calculations break down fgrg.~0.8, cor- 0o -1

responding tou< . with u.~10° MeV (or higher[31]).

This breakdown occurs even though<u at g~g.. It -1 0

should be noted that what breaks down is the weak-coupling

calculation of the magnitude of the gap Estimates based 0 -1

on models normalized to give reasonable zero density phe-

nomenology can still be used as a guide, albeit a qualitative -1 0

one. Furthermore, regardless of the fact that a controlled cal-

culation of A has not yet been done at<10® MeV, it is (A1)

possible to construct a controlled effective field theory which

describes the infrared physics of the CFL phase on length

scales long compared to Al/ since in such an effective 2 1 1

theory A is simply a parameter determined by physics out-

side the effective theory. This infrared physics is dominated 1 2 1

by the massless Abelian gauge bosphs,39, the Nambu-

Goldstone boson arising from spontaneously brokk€n )g 1 1 2

[10], and the pseudo-Nambu-Goldstone bosons arising from

spontaneously broken chiral symmetry which have small 0 1

masses due to the nonvanishing quark magseg0—47.
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In the derivation of the gap equation, we were only inter-
ested in the off-diagonal lower left component of the
Nambu-Gorkov fermion propagat& However, the calcula-

In this appendix, we set up the calculation of the Meissnetion of the Meissner effect involves all components of the
effect. That is, we investigate the effect of the presence of &rmion propagator. Obtaining the fermion propagator by in-

APPENDIX: THE MEISSNER EFFECT
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verting the inverse propagat¢f) is straightforward but tedious. After a lot of algebra and using the ariSator the gap

matrix, we find

:(511(Q) 512(Q)> (A3)
S1(0)  SxAa)
where
A(q) B(q) B(q)
B(a) A(aq) B(a)
B(q) B(a) A(Q)
C(q)
Su(a)= C(q) (A4)
C(q)
C(q)
C(q)
C(q)
E(q) H(g) H(q)
H(q) E(q) H(a)
H(q) H(a) E(q)
D(a)
Su(q)= D(a) (A5)
D(a)
D(q)
D(a)
D(a)
K(g) L(q) L(q)
L(g) K(g) L(q)
L(g) L(a) K(a)
0 M(q)
Su(@)=SiA0) =~ M(a) 0 (A6)
0 M(q)
M(q) O
0 M(aq)
M(q) O

and where the above functions are defined as follows:

do— | 93— (|al+ )= 3[A%(do) 12— 11(AS(do) 12— 10A5(de) A5(qo)
93— (|q]+ p)?—4[A%(qo) +2A5(qo) 1 93— (|q]+ 1) 2—[A5(ge) — A(do) 2
95— (|a]— 1) 2= 3[A%(Ae) 12— 1 AT(qo) 1>~ 10AT(de) AT(do)
93— (|al— w)2—[AL(ge) — AT(qo) 1

A(@)=7°| P.(q)

QO_M"‘@
95— (|a] — 1) ?— 4[A%(do) +2A3(d0) 12

+P_(a)
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8= P (q) do——|q| [A7(do) +5A3(do) ITA(do) + A5(d0)]
T2 (Jal+ 1) 2= 4[AR(G0) +245(q0) 12 02— (|q] + )2~ [AS(do) — AS(qo) 12
P Qo— w+1dl [A?(QOH‘5Af(Qo)][A'1A(QO)+Af(QO)]]
a3 (gl w) 2= 4[AN(Ae) +2A3(A0) 12 93— (]a]— 1) 2—[AL(go) — AT(do) ]2
Go— ] Go— p+]dl ]
C(a)=9° P.(q) - +P_(q) -
Ve T a2 1A% A0V 2= (1G] )= [AN(Ge) — A(d0)

' Qo+ .+ |q Qo+ —|q 1
D(q)=C»°| P_(q) - +P.(q) -
7 a5—(|al+x)2—[A%(de) —A3(do) 12 a5—(lal— w)2—[A%(do) — A3(qo) 12
E(q)=Cy°-P @ do+ p+1q] d5—(Jal + #)* = 3[A%(do) I°— L A5(do) ]° — L0A(do) AS(d)
a3 (g + )= 4[AS(ge) +2A5(q0) 12 93— (gl + p)2—[A%(q0) — A5(go) 1
P) do+x—|d| 95— (|q] = 1)?—3[A%(Ae) 12— 1 AT(qo) 12— 10AT(qe) AT(qo) c
02— (0l - )2 4 AN o) +245(go) 12 a3—(Jal— 1)?—[A7(do) —A(do) 12
H(@=C® P_(a) Ao+ p+1q] [A%(do) +5A3(d0) [[A2(do) +A3(q0)]
g3 (gl + )2 A[AS(de) +2A5(00) 1% 93— (|g]+ 1) —[A5(G0) — AS(do)]?
1P (@) do+x—|d| [A%(do) +5A3(go) ITAT(o) +AT(qp)]

95— (gl — )= 4[A%(do) +2A3(00) 1% 93— (|a|— p)?—[A (o) —AT(do) ]2

A3(qo) A%(qo)— A3(qo)

K(q)=2Cy® - + -
q 7 d5—(|al+x)2—4[A5(de) +2A5(ao) 1% a5—(|a]+ w)?—4[A5(do) +2A5(qp) 12

P+(Q)(

A3(do)
93— (|al— w)2—4[A%(qo) + 2A5(q0) 1

[A5(do) +5A5(do) ILAS(do) +A5(o) ]
93— (lal+ x)2—[A%(ge) — A3(qo) 12

)+P—(Q)

A(do)—AT(do) [A’f(qo>+5Af<qo>][A’f<qo>+Af<qo>])
+ 2 e 2 A S, 2 2 = 2 A S 2
95— (|a] = )= 4[A%(do) +2A3(A0) 1% 95— (]al— 1) ?—[A%(do) —AT(do)]

A3(do)+A5(qo) —A%(do) +A3(do)
2_ |~ 2_ A S 2+ 2_ 1~ 2_ A S 2
a5—(1g|+m)2—4[A5(qo) +2A3(qe) 1> dg—(|a]+ ) —4[A5(do) +2A35(do)]

L(q)=Cy° P.(q)

A3(gg) + A% (do)

y [AQ(QO) + 5A§(Qo)][A§(QO) + Ag(Qo)]
93— (g — p)?—4[A%(qe) +2A3(go) 1

93— (lal+ x)2—[A%(de) — A3(qo) 1

+P_(a)

. —A%(go) +A3(do) [A%(do)+5A3(ao) ITAT(do) +AT(dp)]
92— (|al— w)2— 4[A%a) +2A5(90) 1% 92— (|al— )2~ [AL(ge) — AT(q0) 1

_AQ(QO)"‘AE(QO) P
93— (lal+w)2—-[A%(ae) —AS(a0) 1>

_AA AS
(@) 1(do) +AT(dp) l A7)

M(q)=C»°| P.(q) -
7 P2 (a1 - )2 [AN(Go)— AS(qo) 2
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k+q where the trace is taken over color, flavor, and Dirac indices
and all four elements of the fermion propagatsfq), have
been defined previously in Eq#\4)—(A7). This polarization
amplitude contains all the one loop contributions to the gluon
propagator including the gap independent contributions,
Fo(q) andGg(q). I14 can be written in terms df andG in

a simple fashion:

k

4= 8,,{[Go(q) + 6G(q) IP**T+[Fo(q) + 8F(q)]P#*L}.
(A10)

FIG. 3. One-loop contribution to the Meissner effect.

Note thatS,,(q)=S;,(q) is a general property of the Fer- Hence, we only need to compute two componentBlgf in
mion propagatoSand can be proved for an arbitrary number order to obtain the function8F(q) and 5§G(q), for example,
of colors and flavors using only the definition of the inversell33 andI133. Because we already knol,(q) and Go(q),
Fermion propagator, Eq4), and properties of the Dirac our goal is to extracHF(q) and §G(q). We are therefore
gamma matrices. Whereas oMy L andM were used in the  only interested in the differencH%}(A #0)—IT14/(A=0).
de_rivati_on of the_ gap equa_tion, all these functions are refinally, becauseSF(q) and 5G(q) depend only org, and
quired in evaluating the Meissner effect. (i| we can choosé to lie along thez axis for simplicity.

The Meissner effect is the change in the screening of th eeping all this in mind, we find thain Euclidean spade
gluon propagator induced by the presence of a gap. To one '

loop order, we need to evaluate the gluon propagator of Fig.
3 using the full fermion propagator including the gap. The qg+|a|2
result can still be written in the forr(l.1) but now SF(q)=

EE [TI$(A#0)~TIFA=0)]

q
_1r11 oA —

F(q)=Fo(a)+ 5F(q) and G(q)=Go(q)+5G(q)  (A8) 06(a)=Ms(A#0)~1I5(A=0).  (ALD)

Note that(unlike the integrals which arise on the right hand
whereF, andG, are theA =0 functions written a§ andG  side of the gap equatigthe integrals which must be done in
in Eq. (13). Recall thatG,, which describes Landau damp- evaluatinglI(q) are ultraviolet divergent and, therefore, sen-
ing, vanishes foigy— 0. BecauseSG is nonzero in they,  sitive to how they are cutoff at larde, andk. This ultravio-

—0 limit, the Meissner effect can be described as giving det divergence has nothing to do with, and is canceled in
mass to the gluons. Previous analyses of the Meissner effeotir calculation of6F and G by subtracting the\=0 result
have either been done for two-flavor QGB8,49 or have for I1(q). We have checked that our results #F and §G
used simplified estimat¢27,32,33. Our goal is to formulate are insensitive to the ultraviolet cutoffs in the integrals.
the correct calculation obF(q) and 6§G(q) in the CFL Looking back at the definition dfl4}, we can see that it
phase. Recent work along the same lines can be found ifdepends omﬁvs(ko) and Agvs(ko)_ We make the same as-
Ref. [50]. sumptions here as in our solution of the gap equation,
~ From the diagram of Fig. 3, we obtain the gluon polariza-namely that the antiparticle and sextet contributions can be
tion neglected ifA<u and if one is interested in physics domi-
nated by particles and holes near the Fermi surface. Before
i we proceed, let us define the following notation for the func-
v o N tions A(q) throughM(q) defined in Eq.(A7): identify the
I3p=—ig J (277)4Tr[F§S(k+q)FbS(k)] scalar functions multiplying th@.. projectors with the ap-
propriate=x signs, e.gA, (q). With this notation, the domi-

d*k A A nant contributions to the two polarization amplitudes we are
.2 a b
=-ig JWTF Y5 Su(k+a)y" 5 Su(k) interested in are
Aa| " o) T [ d*k I
w_ e v_ P 00_ _ ~ 2 .
+| 7 2) Spk+a)| v 2) Spa(k) M%=-59 f<2w)4[1+<k+q) KIA- (k+a)A_(K)
N, o\ T —B_(k+q)B_(k)+2C_(k+q)C_(k)+E,(k+q)
— y* =S (k+ v— k
g Skt 2) S XE. (K~ H. (k+Q)H (k) +2D , (k+ @)D, (K)
AT Ay —2K_(k+q)K_(K)+2L_(k+q)L_(k)
_ Mm_< v_ P
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i d*k — — .
Héé=—592f Gaplt 2kt k= (k+q)-k]

X[A_(k+q)A_(k)—B_(k+q)B_(k)+2C_(k+q)
XC_(K)+E  (K+a)E(k)—H (k+q)H (k)
+2D ,(k+q)D, (k) +2K_(k+q)K_(k)

—2L_(k+q)L_(K)—2M_(k+q)M_(K)].  (A12)

In any one gauge, i.e. for a particular choicepbur task is
now clear. We first calculaté\ (k) with 6F(q)=6G(q)
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numerically. We must then re-evaluadk,) with the new
gluon propagator, modified by the addition 6F(q) and
6G(q). We must then iterate this procedure, calculating
SoF(q) and 6G(q) and then recalculating (ky) repeatedly,
until all results have converged. We have not carried this
program to completion. However, preliminary numerical in-
vestigation suggests that, in agreement with arguments and
estimates made by oth€f33,24,27,29,32,33the change in

A arising from the inclusion ofSF and 6G is small. In
particular, it appears to be much smaller than the change in
A which arises if one changes gauge frgm —1 to £=0 to
¢=1. Perhaps at some extremely smgllthe influence of

the Meissner effect on the gap could be larger than the in-
fluence of the neglected physics whose absence we diagnose

=0, as described in the body of the paper. We must then usga the gauge dependence of our results. At grat which

Eqg. (A12) to evaluatesF(q) andsG(q) given by Eq.(A11).

we have been able to obtain numerical results, however, the

As in the calculation ofA, we can do all angular integrals Meissner effect is insignificant relative to that which is miss-

analytically and evaluate the double integral ok@rand||2|

ing.
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