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Applicability of weak-coupling results in high density QCD
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Quark matter at an asymptotically high baryon chemical potential is in a color superconducting state char-
acterized by a gapD. We demonstrate that although present weak-coupling calculations ofD are formally
correct form→`, the contributions which have to this point been neglected are large enough that present
results can only be trusted form@mc;108 MeV. We make this argument by using the gauge dependence of
the present calculation as a diagnostic tool. It is known that the present calculation yields a gauge invariant
result form→`; we show, however, that the gauge dependence of this result onlybeginsto decrease form
*mc , and conclude that the result can certainly not be trusted form,mc . In an appendix, we set up the
calculation of the influence of the Meissner effect on the magnitude of the gap. This contribution toD is,
however, much smaller than the neglected contributions whose absence we detect via the resulting gauge
dependence.

PACS number~s!: 12.38.Aw, 26.60.1c, 74.90.1n
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I. INTRODUCTION

The starting point for a description of matter at hig
baryon density and low temperature is a Fermi sea of qua
The important degrees of freedom—those whose fluctuat
cost little free energy—are those involving quarks near
Fermi surface. We know from the work of Bardeen, Coop
and Schrieffer@1# that any attractive interaction between t
quarks, regardless how weak, makes the Fermi sea uns
to the formation of a condensate of Cooper pairs. In QC
the interaction of two quarks whose colors are antisymme

~the color3̄A channel! is attractive.~The attractiveness of thi
interaction can be seen from single-gluon exchange, a
relevant at short distances, or via counting strings or ana
ing the instanton induced coupling, as may be relevan
longer distances.! We therefore expect that under any c
cumstance in which cold dense quark matter is present it
be in a color superconducting phase@2–6#. The one caveat is
that this conclusion is known to be false if the number
colors isNc5` @7#. Recent work@8,9# indicates that quark
matter is in a color superconducting phase forNc less than of
the order of thousands, and in this paper we only disc
QCD with Nc53.

We now know much about the symmetries and phys
properties of color superconducting quark matter. The do
nant condensate in QCD with two flavors of quarks is in
color 3̄A channel, breakingSU(3)color→SU(2), and is a fla-
vor singlet@2–6#. Quarks with two of three colors have a ga
in this 2SC phase, and five of eight gluons get a mass via
Meissner effect. In QCD with three flavors of quarks, t
Cooper pairs cannot be flavor singlets, and flavor symmet
are necessarily broken. The symmetries of the phase w
results have been analyzed in Ref.@10#, and were in fact first
analyzed in a different~zero density! context in Ref.@11#.
The dominant condensate locks color and flavor symmetr
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leaving an unbroken global symmetry under simultane
SU(3) transformations of color, left flavor, and right flavo
In this color flavor locking~CFL! phase, all nine quarks hav
a gap and all eight gluons have a mass@10#. Chiral symmetry
is spontaneously broken, as is baryon number, and there
consequently nine massless Goldstone bosons@10#. Matter in
the CFL phase is therefore similar in many respects to su
fluid hypernuclear matter@10,12–14#. The fact that color su-
perconducting phases always feature either chiral symm
breaking~as in the CFL phase! or some quarks which remai
gapless~as in the 2SC phase! may be understood as a con
sequence of imposing ’t Hooft’s anomaly matching criteri
@15#. The first order phase transition between the CFL a
2SC phases has been analyzed in detail@13,14,16#, but all
that will concern us below is that any finite strange qua
mass is unimportant at large enoughm, and quark matter is
therefore in the CFL phase at asymptotically largem.

Much recent work has resulted in two classes of estima
of the magnitude ofD, the gap in the density of quasipartic
states in the superconducting phase. The first class of
mates is done within the context of models whose parame
are chosen to give reasonable vacuum physics. Exam
include analyses in which the interaction between quark
replaced simply by four-fermion interactions with the qua
tum numbers of the instanton interaction@5,6,17# or of
single-gluon exchange@10,13# and more sophisticated analy
ses done using instanton liquid models@18,19#. Renormaliza-
tion group analyses have also been used to explore the s
of all possible four-fermion interactions allowed by the sym
metries of QCD@20,21#. These methods yield results whic
are in qualitative agreement: the gaps range from several
of MeV up to as much as about 100 MeV and the cor
sponding critical temperatures, above which the superc
ducting condensates vanish, can be as large as abou
MeV.

The second class of estimates usesm→` physics as a
guide. At asymptotically largem, models with short range
interactions are bound to fail, because the dominant inte
tion is due to the long-range magnetic interaction com
from single-gluon exchange@22,23#. The collinear infrared
©2000 The American Physical Society07-1
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divergence in small-angle scattering via single-gluon
change results in a gap which is parametrically larger am
→` than it would be for any point-like four-fermion inter
action @3#. Son showed@23# that this collinear divergence i
regulated by Landau damping~dynamical screening! and
that, as a consequence, the parametric dependence of th
in the limit in which the QCD couplingg→0 is

D

m
;

1

g5
expS 2

3p2

A2g
D , ~1!

which is more easily seen as an expansion ing when rewrit-
ten as

lnS D

m D52
3p2

A2

1

g
25 lng1 f ~g!. ~2!

This equation should be viewed as a definition off (g),
which will include a term which is constant forg→0 and
terms which vanish forg→0. The result~1! has been con-
firmed using a variety of methods@24–29#, and several esti-
mates of limg→0f (g) exist in the literature. For example
Schaefer and Wilczek find@24,30#

lim
g→0

f ~g!; lnF221/3256p4S 2

3D 5/2G58.88 ~3!

in the CFL phase~see also Ref.@25#!, and Brown, Liu, and
Ren @28# find a result for limg→0f (g) which is smaller by
(p214)/82 ln 251.04. If this asymptotic expression is a
plied by takingg5g(m) from the perturbative QCDb func-
tion ~with LQCD5200 MeV!, evaluatingD at m;500 MeV
yields gaps in rough agreement with the estimates base
zero-density phenomenology.

The central purpose of this paper is to demonstrate
this nice agreement must at present be seen as coincide
because present estimates forf are demonstrably uncon
trolled for g.gc;0.8, corresponding tom,mc with mc
;108 or higher.

The weak-coupling calculations are derived from analy
~done using varying approximations! of the one-loop
Schwinger-Dyson equation without vertex correction, a
~with one exception! yield gauge dependent results. How
ever, Schaefer and Wilczek argue that the result
limg→0f (g) in such a calculation is gauge invariant. The o
calculation which is gauge invariant throughout is the cal
lation of Tc ~and henceD since the BCS relationTc
50.57D holds @25#! done by Brown, Liu, and Ren@28#. As
in other calculations, however, these authors neglect ve
corrections. Our purpose is touse the fact that our calcula
tion ~like most! is gauge dependent, and only gauge invari
for g→0, to estimate theg above which vertex corrections
left out of all calculations, cannot be neglected.

We begin by sketching the derivation of the one-lo
Schwinger-Dyson equation forD, making as few approxima
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-

gap

on

at
tal,

s

d

r

-

ex

t

tions as we can. We solve the resulting gap equation num
cally in several different gauges. Our results are~yet one
more! confirmation of Eq.~1!. Furthermore, we do find evi
dence that the gauge dependence off decreases forg→0.
However, this decrease only begins to set in forg&0.8. This
implies that the contributions toD which have been
neglected—like those arising from vertex corrections—o
become subleading forg!gc;0.8. If we translategc to mc
by assumingg should be taken asg(m), this corresponds to
mc;108 MeV. Recent work@31# shows thatg should be
evaluated at a much lower (g-dependent! scale thanm. This
means that the conditiong,gc;0.8 would translate intom
.mc with mc orders of magnitude larger thanmc;108 MeV.

The original purpose of our investigation was to do
self-consistent calculation of the influence of the Meiss
effect on the magnitude of the gap in the CFL phase. In
presence of a condensate, the gluon propagator is modi
some gluons get a mass. In the CFL phase,all gluons get a
mass, and this makes a calculation based on perturba
single-gluon exchange a self-consistent and complete
scription of the physics at asymptotically largem, with no
remaining infrared problems.~In the 2SC phase, in contras
the calculation ofD leaves unanswered any questions ab
the non-Abelian infrared physics of the three gluons left u
screened by the condensate.! We felt that this motivation
warranted a self-consistent calculation in which we calcul
the gap using a Schwinger-Dyson equation in which
gluon propagator is modified not only by the presence of
Fermi sea~Debye mass, Landau damping! but is also af-
fected by the condensate~the Meissner effect!. We set this
calculation up in an appendix. Previous work, beginni
with that of Ref. @23#, shows that the form of Eq.~1! is
unmodified by including the Meissner effect, butf (g) is af-
fected. Our preliminary results suggest that the change
f (g) are small, as anticipated in Refs.@23,24,27,29,32,33#.
Indeed, the effects of physics left out of the present analy
which we have diagnosed via the gauge dependence off (g),
are much larger than those introduced by the Meissner ef
at anyg we have investigated.

II. DERIVING THE GAP EQUATION

In this section, we derive the gap equation for QCD w
three massless flavors which is valid at asymptotically h
densities. We follow Ref.@24#, but make fewer approxima
tions. Because our point is to stress the importance of eff
which we donot calculate, we will make our assumption
and approximations very clear as we proceed. In ot
words, since the lesson we learn from our results is that t
cannot yet be trusted, it is important to detail carefully
points at which we leave something out.

We use the standard Nambu-Gorkov formalism by de
ing an eight-component fieldC5(c,c̄T). In this basis, the
inverse quark propagator takes the form

S21~k!5S k”1mg0 D̄

D ~k”2mg0!TD ~4!
7-2
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APPLICABILITY OF WEAK-COUPLING RESULTS IN . . . PHYSICAL REVIEW D62 085007
whereD̄5g0D†g0. The color, flavor, and Dirac indices ar
suppressed in the above expression. The diagonal blocks
respond to ordinary propagation and the off-diagonal blo
reflect the possibility for ‘‘anomalous propagation’’ in th
presence of a diquark condensate.

We make the following ansatz for the form of the g
matrix @4,10,24,34#:

D i j
ab~k!5~l I

A!ab~l I
A! i j Cg5@D1

A~k0!P1~k!1D2
A~k0!P2~k!#

1~lJ
S!ab~lJ

S! i j Cg5@D1
S~k0!P1~k!

1D2
S~k0!P2~k!#. ~5!

Here,a,b51,2,3 are color indices,i , j 51,2,3 are flavor in-
dices,l I

A are antisymmetricU(3) color or flavor matrices
with I 51,2,3, andlJ

S are symmetricU(3) color or flavor
with J51, . . . ,6, and theprojection operatorsP6 are de-
fined as

P1~k!5
11aW • k̂

2

P2~k!5
12aW • k̂

2
~6!

with aW 5g0gW .
By making this ansatz, we are making several assu

tions:
First, we have takenD1

A , D2
A , D1

S , andD2
S to be functions

of k0 only. All are in principle functions of bothk0 and ukW u,
but we assume that they are dominated byukW u;m. This is a
standard assumption, and although we do not expect
relaxing this assumption would resolve the problems wh
we diagnose below, this does belong on the list of poten
cures.

Second, we have explicitly separated the gaps which
antisymmetric3̄A in color and flavor from those which ar
symmetric6S in color and flavor and, in both cases, we ha
assumed that the favored channel is the one in which c
and flavor rotations are locked. The color and flavor struct
08500
or-
s

p-

at
h
al

re

or
e

of our ansatz is thus precisely that first explored in Ref.@10#,
which allows quarks of all three colors and all three flavo
to pair. Subsequent work@30,32,33,35# confirms that this is
the favored condensate, and we will not attempt to furt
generalize it here.

Third, we have assumed that the Cooper pairs in the c
densate have zero spin and orbital angular momentum.
seems a safe assumption in the CFL phase, where the d
nant condensate, made of Cooper pairs with zero spin
orbital angular momentum, leaves no quarks ungapped.

Fourth, we neglectc̄c condensates. Since chiral symm
try is broken in the CFL phase, these must be nonzero@10#.
This applies to both color singlet and color octetc̄c conden-
sates@36#. Such condensates are small@19,30#, however, and
we expect that neglecting them results in only a very sm
error in the magnitude of the dominant diquark condensa

The most important assumption we make is that we ob
the gap by solving the one-loop Schwinger-Dyson equat
of the form

S21~k!2S0
21~k!5 ig2E d4q

~2p!4
Gm

a S~q!Gn
bDab

mn~k2q!,

~7!

using a medium-modified gluon propagator described be
and unmodified vertices

Gm
a 5S gmla/2 0

0 2~gmla/2!TD . ~8!

Here,S0 is the bare fermion propagator withD50. Note that
we use a Minkowski metric unless stated otherwise. We w
demonstrate that our results are completely uncontrolled
g.gc;0.8. This breakdown could in principle reflect a fa
ure of any of our assumptions. We expect, however, tha
arises because contributions which have been truncate
writing Eq. ~7! are large forg.gc . That is, we expect tha
this truncation~and not any of the simplifications introduce
by our ansatz forD! is the most significant assumption w
are making.

We obtain four coupled gap equations
D1,2
A ~k0!52

i

6
g2E d4q

~2p!4
Tr$P6~k!gm@P1~q!a1~q!1P2~q!a2~q!#gn%D

mn~k2q!

D1,2
S ~k0!52

i

6
g2E d4q

~2p!4
Tr$P6~k!gm@P1~q!b1~q!1P2~q!b2~q!#gn%D

mn~k2q! ~9!

whereP6 meansP1 in the D1 equation andP2 in the D2 equation and where

a1~q!5
2D2

S~q0!2D2
A~q0!

q0
22~ uqW u1m!224@D2

A~q0!12D2
S~q0!#2

1
@D2

A~q0!2D2
S~q0!#$2q0

21~ uqW u1m!21@5D2
A~q0!17D2

S~q0!#@D2
A~q0!13D2

S~q0!#%

$q0
22~ uqW u1m!22@D2

A~q0!2D2
S~q0!#2%$q0

22~ uqW u1m!224@D2
A~q0!12D2

S~q0!#2%
7-3



-

KRISHNA RAJAGOPAL AND EUGENE SHUSTER PHYSICAL REVIEW D62 085007
a2~q!5
2D1

S~q0!2D1
A~q0!

q0
22~ uqW u2m!224@D1

A~q0!12D1
S~q0!#2

1
@D1

A~q0!2D1
S~q0!#$2q0

21~ uqW u2m!21@5D1
A~q0!17D1

S~q0!#@D1
A~q0!13D1

S~q0!#%

$q0
22~ uqW u2m!22@D1

A~q0!2D1
S~q0!#2%$q0

22~ uqW u2m!224@D1
A~q0!12D1

S~q0!#2%

b1~q!5
D2

S~q0!

q0
22~ uqW u1m!224@D2

A~q0!12D2
S~q0!#2

1
@D2

A~q0!2D2
S~q0!#@D2

A~q0!1D2
S~q0!#@D2

A~q0!15D2
S~q0!#

$q0
22~ uqW u1m!22@D2

A~q0!2D2
S~q0!#2%$q0

22~ uqW u1m!224@D2
A~q0!12D2

S~q0!#2%

b2~q!5
D1

S~q0!

q0
22~ uqW u2m!224@D1

A~q0!12D1
S~q0!#2

1
@D1

A~q0!2D1
S~q0!#@D1

A~q0!1D1
S~q0!#@D1

A~q0!15D1
S~q0!#

$q0
22~ uqW u2m!22@D1

A~q0!2D1
S~q0!#2%$q0

22~ uqW u2m!224@D1
A~q0!12D1

S~q0!#2%
. ~10!

In a general covariant gauge, the resummed gluon propagator is given by

Dmn~q!5
Pmn

T

q22G~q!
1

Pmn
L

q22F~q!
2j

qmqn

q4 ~11!

whereG(q) andF(q) are functions ofq0 and uqW u and the projectorsPmn
T,L are defined as follows:

Pi j
T 5d i j 2q̂i q̂ j , P00

T 5P0i
T 50, Pmn

L 52gmn1
qmqn

q2 2Pmn
T . ~12!

The functionsF andG describe the effects of the medium on the gluon propagator. If we neglect the Meissner effect@that is,
if we neglect the modification ofF(q) andG(q) due to the gapD in the fermion propagator#, thenF(q) describes Thomas
Fermi screening andG(q) describes Landau damping and they are given in the hard dense loop~HDL! approximation by@37#

F~q!5m2
q2

uqW u2
F12

iq0

uqW u
Q0S iq0

uqW u
D G , with Q0~x!5

1

2
logS x11

x21D ,

G~q!5
1

2
m2

iq0

uqW u H F12S iq0

uqW u
D 2GQ0S iq0

uqW u
D 1

iq0

uqW u J , ~13!

wherem253g2m2/2p2 is the Debye screening mass forNf53. We discuss the modifications ofF(q) andG(q) due to the
Meissner effect in the Appendix.

In order to obtain the final form of the gap equation, we need the following trace:

Tr$P6~k!gm@P1~q!a1~q!1P2~q!a2~q!#gn%D
mn~k2q! ~14!
085007-4
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5a1~q!F 2
217~k2q̂!• k̂~k2q̂!•q̂

~k2q!22G~k2q!
1

217 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
62~k2q̂!• k̂~k2q̂!•q̂

~k2q!0
2

~k2q!2

~k2q!22F~k2q!

1
j

~k2q!2 S 17 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
62~k2q̂!• k̂~k2q̂!•q̂

~kW2qW !2

~k2q!2D G
1a2~q!F 2

216~k2q̂!• k̂~k2q̂!•q̂

~k2q!22G~k2q!
1

216 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
72~k2q̂!• k̂~k2q̂!•q̂

~k2q!0
2

~k2q!2

~k2q!22F~k2q!

1
j

~k2q!2 S 16 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
72~k2q̂!• k̂~k2q̂!•q̂

~kW2qW !2

~k2q!2D G .

This allows us to recast Eq.~9! into the following form:

D1
A~k0!52

i

6
g2E d4q

~2p!4
H a1~q!F 2

212~k2q̂!• k̂~k2q̂!•q̂

~k2q!22G~k2q!

1

212 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
12~k2q̂!• k̂~k2q̂!•q̂

~k2q!0
2

~k2q!2

~k2q!22F~k2q!
1

j

~k2q!2 S 12 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2

12~k2q̂!• k̂~k2q̂!•q̂
~kW2qW !2

~k2q!2D G1a2~q!F 2
211~k2q̂!• k̂~k2q̂!•q̂

~k2q!22G~k2q!

1

211 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
22~k2q̂!• k̂~k2q̂!•q̂

~k2q!0
2

~k2q!2

~k2q!22F~k2q!

1
j

~k2q!2 S 11 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
22~k2q̂!• k̂~k2q̂!•q̂

~kW2qW !2

~k2q!2D G J
D2

A~k0!52
i

6
g2E d4q

~2p!4
H a1~q!F 2

211~k2q̂!• k̂~k2q̂!•q̂

~k2q!22G~k2q!

1

211 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
22~k2q̂!• k̂~k2q̂!•q̂

~k2q!0
2

~k2q!2

~k2q!22F~k2q!

1
j

~k2q!2 S 11 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
22~k2q̂!• k̂~k2q̂!•q̂

~kW2qW !2

~k2q!2D G1a2~q!
085007-5
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2
212~k2q̂!• k̂~k2q̂!•q̂

~k2q!22G~k2q!
1

212 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
12~k2q̂!• k̂~k2q̂!•q̂

~k2q!0
2

~k2q!2

~k2q!22F~k2q!

1
j

~k2q!2 S 12 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
12~k2q̂!• k̂~k2q̂!•q̂

~kW2qW !2

~k2q!2D G J
D1

S~k0!52
i

6
g2E d4q

~2p!4
H b1~q!F 2

212~k2q̂!• k̂~k2q̂!•q̂

~k2q!22G~k2q!

1

212 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
12~k2q̂!• k̂~k2q̂!•q̂

~k2q!0
2

~k2q!2

~k2q!22F~k2q!

1
j

~k2q!2 S 12 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
12~k2q̂!• k̂~k2q̂!•q̂

~kW2qW !2

~k2q!2D G
1b2~q!F 2

211~k2q̂!• k̂~k2q̂!•q̂

~k2q!22G~k2q!
1

211 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
22~k2q̂!• k̂~k2q̂!•q̂

~k2q!0
2

~k2q!2

~k2q!22F~k2q!

1
j

~k2q!2 S 11 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
22~k2q̂!• k̂~k2q̂!•q̂

~kW2qW !2

~k2q!2D G J
D2

S~k0!52
i

6
g2E d4q

~2p!4
H b1~q!F 2

211~k2q̂!• k̂~k2q̂!•q̂

~k2q!22G~k2q!

1

211 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
22~k2q̂!• k̂~k2q̂!•q̂

~k2q!0
2

~k2q!2

~k2q!22F~k2q!

1
j

~k2q!2 S 11 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
22~k2q̂!• k̂~k2q̂!•q̂

~kW2qW !2

~k2q!2D G
1b2~q!F 2

212~k2q̂!• k̂~k2q̂!•q̂

~k2q!22G~k2q!
1

212 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
12~k2q̂!• k̂~k2q̂!•q̂

~k2q!0
2

~k2q!2

~k2q!22F~k2q!

1
j

~k2q!2 S 12 k̂•q̂
~k2q!0

21~kW2qW !2

~k2q!2
12~k2q̂!• k̂~k2q̂!•q̂

~kW2qW !2

~k2q!2D G J . ~15!
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III. SOLVING THE GAP EQUATION

In order to obtain a tractable numerical problem, we ma
two further simplifying assumptions:

First, at weak coupling we expect the physics to be do
nated by particles and holes near the Fermi surface. T
manifests itself in Eq.~15! in the fact thata2 andb2 have
singularities on the Fermi surface whilea1 andb1 are regu-
lar there, and we therefore expect that at weak coupling
can neglecta1 andb1 . Upon doing this, we have equation
for D1

A,S which do not involveD2
A,S . We are only interested

in D1
A,S , sinceD2

A,S describe the propagation of antiparticl
far from the Fermi surface. If we assume that we are at w
enough coupling thata1 andb1 can be neglected~that is if
we assume thatD1

A,S!m), then we can ignoreD2
A,S in our

calculation of D1
A,S . ~Note that we are not assuming th

D2
A,S is any smaller thanD1

A,S ; there is no reason for this t
be true.! We will see that our results break down forg
*0.8, at whichD,1027m. BecauseD!m, neglecting the
effects ofD2

A,S on D1
A,S should be a good approximation, an

we do not expect that including these effects would cure
problems we discover. This should, however, be investiga
further.

Second, we setD1
S50, and solve an equation forD1

A

alone. This assumption is in fact inconsistent, as the ga
the symmetric channel must be nonzero. This is clear fr
08500
e

i-
is

e

k

e
d

in
m

explicit examination of the gap equations Eq.~15! ~and in-
deed of the gap equations of Ref.@10#!. In fact, this result is
manifest on symmetry grounds@13,38#: in the presence of
D1

AÞ0, a nonzeroD1
S breaks no new global symmetries an

there is therefore no symmetry to keep it zero. Beca
single-gluon exchange is repulsive in the symmetric chan
this condensate can only exist in the presence of conde
tion in the antisymmetric channel. Explicit calculatio
@10,30,32# shows that the symmetric condensates are m
smaller than those in the antisymmetric channels. We
therefore confident that keepingD1

S would yield only a very
small correction toD1

A .
We must now solve a single gap equation forD1

A(k0),
which henceforth we denote simply asD(k0). The reader
will see below that this equation is still rather involved. Mo
authors have made further approximations, valid forg→0.
Because we make no further approximations, our results c
not be gauge invariant. This allows us to test the claim t
the results become gauge invariant in the limitg→0, and to
use the rapidity of the disappearance of gauge dependen
this limit is approached to evaluate at whatg the contribu-
tions we have truncated can legitimately be ignored.

In order to obtain numerical solutions, it is convenient
do a Wick rotationq0→ iq0 to Euclidean space, yielding th
gap equation
gular

gration
D~k0!5
g2

6 E d4q

~2p!4 F D~q0!

q0
21~ uqW u2m!214D2~q0!

1
D~q0!@q0

21~ uqW u2m!215D2~q0!#

@q0
21~ uqW u2m!21D2~q0!#@q0

21~ uqW u2m!214D2~q0!#
G

3F 2
12~k2q̂!• k̂~k2q̂!•q̂

~k2q!0
21~kW2qW !21G~k02q0 ,ukW2qW u!

1

11 k̂•q̂
2~k2q!0

21~kW2qW !2

~k2q!0
21~kW2qW !2

12~k2q̂!• k̂~k2q̂!•q̂
~k2q!0

2

~k2q!0
21~kW2qW !2

~k2q!0
21~kW2qW !21F~k02q0 ,ukW2qW u!

1j

211 k̂•q̂
2~k2q!0

21~kW2qW !2

~k2q!0
21~kW2qW !2

22~k2q̂!• k̂~k2q̂!•q̂
~kW2qW !2

~k2q!0
21~kW2qW !2

~k2q!0
21~kW2qW !2

G . ~16!

The integral over the azimuthal anglef is trivial, and we therefore have three integrals to do. We do the remaining an
integration analytically, after making a change of variables. We define

qW 85kW2qW

because the integration over the polar angleu is simpler when the momentum integration is done overqW 8. The simplification
arises because there is no longer any angular dependence in the functionsF andG:

F~k02q0 ,ukW2qW u!5F~k02q0 ,uqW 8u!

and similarly forG. After doing the angular integration, the gap equation reduces to a double integral equation with inte
variablesuqW 8u ~which we henceforth denoteq) andq0:
7-7
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D~k0!5
g2

48p3E
2`

`

dq0E
0

`

dqF D~q0!

~k02q0!21q21G~k02q0 ,q!
I G~q0 ,q!

1
D~q0!

~k02q0!21q21F~k02q0 ,q!
I F~k0 ,q0 ,q!1j

qD~q0!

~k02q0!21q2I j~k0 ,q0 ,q!G ~17!

where

I G~q0 ,q,m!5
2@q0

214D2~q0!1q2#@q214m22q0
224D2~q0!#

3qm2Aq0
214D2~q0!

arctan
q

Aq0
214D2~q0!

1
4@q0

21D2~q0!1q2#@q214m22q0
22D2~q0!#

3qm2Aq0
21D2~q0!

arctan
q

Aq0
21D2~q0!

1
12D2~q0!16q0

222q2224m2

3m2

I F~k0 ,q0 ,q,m!5
2$@q0

214D2~q0!#~k02q0!22q4%@q224m21q0
214D2~q0!#

3qm2Aq0
214D2~q0!@~k02q0!21q2#

arctan
q

Aq0
214D2~q0!

1
4$@q0

21D2~q0!#~k02q0!22q4%@q224m21q0
21D2~q0!#

3qm2Aq0
21D2~q0!@~k02q0!21q2#

arctan
q

Aq0
21D2~q0!

1
6q412~k02q0!2@22q2112m223q0

226D2~q0!#

3m2@~k02q0!21q2#

I j~k0 ,q0 ,q,m!52
2@q0

214D2~q0!2~k02q0!2#@q224m21q0
214D2~q0!#

3m2Aq0
214D2~q0!@~k02q0!21q2#

arctan
q

Aq0
214D2~q0!

2
4@q0

21D2~q0!2~k02q0!2#@q224m21q0
21D2~q0!#

3m2Aq0
21D2~q0!@~k02q0!21q2#

arctan
q

Aq0
21D2~q0!

1
2q@2q223~k02q0!2212m213q0

216D2~q0!#

3m2@~k02q0!21q2#

I G~q0 ,q>m!5
@q0

214D2~q0!1q2#@q214m22q0
224D2~q0!#

3qm2Aq0
214D2~q0!

S arctan
q

Aq0
214D2~q0!

2arctan
q22m

Aq0
214D2~q0!

D
1

2@q0
21D2~q0!1q2#@q214m22q0

22D2~q0!#

3qm2Aq0
21D2~q0!

S arctan
q

Aq0
21D2~q0!

2arctan
q22m

Aq0
21D2~q0!

D
1

4@q0
21D2~q0!1q2#

3qm
ln

q0
21D2~q0!1q2

q0
21D2~q0!1~q22m!21

2@q0
214D2~q0!1q2#

3qm
ln

q0
214D2~q0!1q2

q0
214D2~q0!1~q22m!2

1
12D2~q0!16q0

226q228m2212mq

3mq
085007-8
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I F~k0 ,q0 ,q>m!5
$@q0

214D2~q0!#~k02q0!22q4%@q224m21q0
214D2~q0!#

3qm2Aq0
214D2~q0!@~k02q0!21q2#

3S arctan
q

Aq0
214D2~q0!

2arctan
q22m

Aq0
214D2~q0!

D
1

2$@q0
21D2~q0!#~k02q0!22q4%@q224m21q0

21D2~q0!#

3qm2Aq0
21D2~q0!@~k02q0!21q2#

3S arctan
q

Aq0
21D2~q0!

2arctan
q22m

Aq0
21D2~q0!

D 1
4$q42@q0

21D2~q0!#~k02q0!2%

3qm@q21~k02q0!2#

3 ln
q0

21D2~q0!1q2

q0
21D2~q0!1~q22m!21

2$q42@q0
214D2~q0!#~k02q0!2%

3qm@q21~k02q0!2#

3 ln
q0

214D2~q0!1q2

q0
214D2~q0!1~q22m!21

6q412~k02q0!2@6mq14m223q0
226D2~q0!#

3mq@~k02q0!21q2#

I j~k0 ,q0 ,q>m!52
@q0

214D2~q0!2~k02q0!2#@q224m21q0
214D2~q0!#

3m2Aq0
214D2~q0!@~k02q0!21q2#

3S arctan
q

Aq0
214D2~q0!

2arctan
q22m

Aq0
214D2~q0!

D
2

2@q0
21D2~q0!2~k02q0!2#@q224m21q0

21D2~q0!#

3m2Aq0
21D2~q0!@~k02q0!21q2#

S arctan
q

Aq0
21D2~q0!

2arctan
q22m

Aq0
21D2~q0!

D
1

4@q0
21D2~q0!2~k02q0!2#

3m@q21~k02q0!2#
ln

q0
21D2~q0!1q2

q0
21D2~q0!1~q22m!2

1
2@q0

214D2~q0!2~k02q0!2#

3m@q21~k02q0!2#
ln

q0
214D2~q0!1q2

q0
214D2~q0!1~q22m!2

1
6q0

2112D2~q0!26~k02q0!228m2212mq

3m@~k02q0!21q2#
.

re

to

ne
We have solved the gap equation~17! numerically for
several different values ofg and several different values ofj.
It is convenient to change integration variables fromq0 to
ln q0 and fromq to ln q. We evaluate theq integral over a
range qmin,q,104m with qmin /m chosen differently for
eachg in such a way that it is less than 1025D(0) in all
cases. Theq0 integral is made even inq0 ~by taking the
average of the integrand atq0 and2q0) and then evaluated
over a rangeq0min,q0,100m, where we choseq0min
5qmin . We have checked that our results are insensitive
the choice of upper and lower cutoffs of the integration
gion. It was probably not necessary to chooseqmin andq0min
08500
to
-

quite as small as we did. It is, however, quite important
extend the upper limit of theq0 andq integrals to well above
m in order to avoid sensitivity to the ultraviolet cutoff.1 We
use an iterative method, in which an initial guess forD(k0)
is used on the right-hand side of Eq.~17!; the integrations are

1The one exception, in which we do find some sensitivity to o
of our limits of integration, is atg53.5576. Withg this large, we
should perhaps have extended the upper cutoff of theq0 integration
to 1000m, as the results shown in Fig. 1 below make clear.
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FIG. 1. The gapD(q0) for
five different values of the cou-
pling constantg. In each plot, the
upper, middle, and lower curve
are calculations done using thre
different gauges j521,0,1. In
each panel, the range over whic
theq0 integration was done is tha
shown.
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done yielding a newD(k0), which is in turn used on the
right-hand side. The solution converges well after about
iterations. All results we show were iterated at least 15 tim

Our results are shown in Fig. 1. Note that the output
our calculation is a plot ofD(q0)/m as a function ofq0 /m
for some choice ofg and j. The only way in whichm en-
ters the calculation is to set the units of energy. The val
of m shown in Fig. 1 corresponding to each value ofg do not
come from the calculation. They are obtained by assum
that the running couplingg should be evaluated at the sca
m and using the one-loop beta function withLQCD5200
MeV. We include these values ofm to make a comparison
with the results of Refs.@24,33# easier. If, as seems quit
reasonable,g should in fact be evaluated at ag-dependent
scale which is lower thanm, then the values ofg at which
08500
n
s.
f

s

g

we have done our calculations correspond to larger value
m than shown in Fig. 1@31#. Evanset al. have obtained nu-
merical solutions to simplified gap equations describing
gap in the CFL phase@33#. Their results agree reasonab
well with the results of our calculation done in thej50
gauge but disagree qualitatively with ours in any oth
gauge. Simply settingj50, as in Refs.@24,33#, is not a valid
approximation at the values ofg at which we ~and these
authors! work.

How should one interpret the results of a gauge depend
calculation, given that at any fixedg one can obtain any
result one likes if one is willing to explore gauge paramet
2`,j,`? In the present circumstance, the idea is that
expect this calculation to give a gauge invariant result in
g→0 limit. More precisely, if we define
7-10
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FIG. 2. The function f (g), defined in Eq.
~18!, for five different values of the coupling con
stantg. At eachg, the points~from top to bottom!
correspond to different gauges withj524,
21,0,1,4 respectively. Note that the horizont
axis is 1/g and m increases to the right. At the
largest value of g, we only showj521,0,1. In
Fig. 1, we have not shown theD(q0) curves for
j564 because in these gaugesD(q0) is very
small or large on the scales of Fig. 1.
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f ~g![ lnFD~0!

m G1
3p2

A2g
15 lng, ~18!

then we expectf to go to aj-independent constant in theg
→0 limit. In Fig. 2, we plot f (g) in five different gauges.
From this figure we learn the following:

~i! For anyj, f (g) is a reasonably slowly varying func
tion of g. This confirms Son’s result~1! and justifies an
analysis in terms off (g).

~ii ! It does appear that limg→0f (g) is a j-independent
constant, perhaps not far from the estimate of Ref.@24#,
namely limg→0f (g)58.88, or that of Ref.@28#, namely
limg→0f (g)57.84.

~iii ! If we do a calculation in some fixed gauge, we exp
that at small enoughg this calculation yields a good estima
of the true gauge invariant result. By doing calculations
several gauges, we can bound the regime of applicability
this estimate. We can only trust our calculation off (g) in the
regime in which thej dependence off decreases with de
creasingg. Our calculation off (g) is completely meaning-
less unlessg is small enough that the curves for differe
values ofj are converging. Figure 2 shows that the gau
dependence of our result forf is about the same for allg
*0.8. It is only forg&0.8 that f (g) calculated in different
gaugesbeginsto converge. At larger values ofg our calcu-
lation provides no guide whatsoever as to the value off that
would be obtained in a complete, gauge invariant calcula
including all the physics neglected in the present calculat
Even atg50.8 the values ofD(0) differ by a factor of about
400 for gaps withj524 and j54. We could make the
gauge dependence look even larger by choosing larger
ues ofuju. Our result does not guarantee that the calculat
is under control forg,0.8, but it does guarantee that th
result is uncontrolled and completely meaningless forg
.0.8.
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IV. CONCLUSION

We have detailed our assumptions and approximation
we made them. Let us now ask which of them should
improved upon if we wish to include those contributio
whose neglect we have diagnosed via the gauge depend
of our results. Note thatg50.8 corresponds toD/m;1027.
Thus, those contributions tof which we have neglected
which are controlled whenD!m arenot responsible for the
breakdown of our calculation aroundg;0.8. We believe that
the assumptions we made in writing the ansatz~5! and the
assumptions we made in neglectingD1

S and D2
A,S all intro-

duce errors which are small whenD!m. @For example, even
though neglectingD2 is a source of gauge dependence,
do not expect that remedying this neglect would changef (g)
appreciably in any gauge atg;0.8, whereD/m is so small.#
Hence, we believe that it is the assumptions made in writ
the truncated gap equation~7! that are at fault. One obviou
possible explanation is the absence of vertex corrections
though there are other missing skeleton diagrams wh
should also be investigated.

The gapD is of course a gauge invariant observable.
complete calculation would yield a gauge invariant expr
sion for the functionf, which could be expanded as a pow
series ing. We learn three things from our~incomplete and
gauge dependent! calculation. First, our results obtained
different gauges appear to converge at smallg and support
previous estimates of limg→0f (g), namely theg0 term in the
expansion off. Second, because the results we obtain in d
ferent gauges only begin to converge forg,gc;0.8, we
learn that contributions to our gauge dependent functiof
which are of orderg1 and higher must have gauge depend
parts which are numerically large atg;gc . Although we
have simply evaluatedf (g) and not expanded it ing, we
learn that such an expansion is uncontrolled forg.gc . This
suggests that if we knew the complete, gauge invariant fu
tion f, theg1 and higher terms in that expansion would al
7-11
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become uncontrolled forg.gc . It may be that the vertex
corrections are the dominant contribution to the miss
physics which is responsible for this breakdown: this hypo
esis is supported by the arguments of Ref.@28# that these
effects contribute tof at orderg1. Regardless of whether th
vertex corrections turn out to be the most important eff
left out of the truncated gap equation~7!, our calculation
demonstrates that some contribution which is formally s
leading is in fact large enough to render the calculation
controlled atg;gc . The third thing we learn is that althoug
present calculations do yield reasonable estimates
limg→0f (g), if one is interested in using these calculations
estimate the value ofD to within a factor of 2, this can only
be done forg!gc;0.8.

In the CFL phase, all eight gluons get a mass. This me
that in the CFL phase there are no gapless fermionic exc
tions and no massless gluonic excitations, and therefore
non-Abelian physics in the infrared to obstruct wea
coupling calculations. The lesson we have learned is
even though everything is in principle under control, pres
weak-coupling calculations break down forg.gc;0.8, cor-
responding tom,mc with mc;108 MeV ~or higher @31#!.
This breakdown occurs even thoughD!m at g;gc . It
should be noted that what breaks down is the weak-coup
calculation of the magnitude of the gapD. Estimates based
on models normalized to give reasonable zero density p
nomenology can still be used as a guide, albeit a qualita
one. Furthermore, regardless of the fact that a controlled
culation of D has not yet been done atm,108 MeV, it is
possible to construct a controlled effective field theory wh
describes the infrared physics of the CFL phase on len
scales long compared to 1/D, since in such an effective
theory D is simply a parameter determined by physics o
side the effective theory. This infrared physics is domina
by the massless Abelian gauge bosons@10,39#, the Nambu-
Goldstone boson arising from spontaneously brokenU(1)B
@10#, and the pseudo-Nambu-Goldstone bosons arising f
spontaneously broken chiral symmetry which have sm
masses due to the nonvanishing quark masses@10,40–47#.
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APPENDIX: THE MEISSNER EFFECT

In this appendix, we set up the calculation of the Meiss
effect. That is, we investigate the effect of the presence
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gapD on the functionsF andG which describe the screenin
of the gluon propagator.

In order to establish some necessary notation, we m
begin by filling in some details in the derivation of Eq.~9!
from Eq. ~7!. We work in a color-flavor basis ($ i ,a%,$ j ,b%).
In this basis, we define the following two 939 matrices:

Qi j
ab5~l I

A!ab~l I
A! i j

5

¨

0 1 1

1 0 1

1 1 0

0 21

21 0

0 21

21 0

0 21

21 0

©

~A1!

Ri j
ab5~lJ

S!ab~lJ
S! i j 5

¨

2 1 1

1 2 1

1 1 2

0 1

1 0

0 1

1 0

0 1

1 0

©

~A2!

which represent the antisymmetric color and flavor3̄A and
the symmetric color and flavor6S channels respectively in
this basis.

In the derivation of the gap equation, we were only inte
ested in the off-diagonal lower left component of th
Nambu-Gorkov fermion propagatorS. However, the calcula-
tion of the Meissner effect involves all components of t
fermion propagator. Obtaining the fermion propagator by
7-12
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verting the inverse propagator~4! is straightforward but tedious. After a lot of algebra and using the ansatz~5! for the gap
matrix, we find

S~q!5S S11~q! S12~q!

S21~q! S22~q!
D ~A3!

where

S11~q!51
A~q! B~q! B~q!

B~q! A~q! B~q!

B~q! B~q! A~q!

C~q!

C~q!

C~q!

C~q!

C~q!

C~q!

2 ~A4!

S22~q!51
E~q! H~q! H~q!

H~q! E~q! H~q!

H~q! H~q! E~q!

D~q!

D~q!

D~q!

D~q!

D~q!

D~q!

2 ~A5!

S21~q!5S12̄~q!521
K~q! L~q! L~q!

L~q! K~q! L~q!

L~q! L~q! K~q!

0 M ~q!

M ~q! 0

0 M ~q!

M ~q! 0

0 M ~q!

M ~q! 0

2 ~A6!

and where the above functions are defined as follows:

A~q!5g0F P1~q!
q02m2uqW u

q0
22~ uqW u1m!224@D2

A~q0!12D2
S~q0!#2

q0
22~ uqW u1m!223@D2

A~q0!#2211@~D2
S~q0!#2210D2

A~q0!D2
S~q0!

q0
22~ uqW u1m!22@D2

A~q0!2D2
S~q0!#2

1P2~q!
q02m1uqW u

q0
22~ uqW u2m!224@D1

A~q0!12D1
S~q0!#2

q0
22~ uqW u2m!223@D1

A~q0!#2211@D1
S~q0!#2210D1

A~q0!D1
S~q0!

q0
22~ uqW u2m!22@D1

A~q0!2D1
S~q0!#2 G
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B~q!5g0F P1~q!
q02m2uqW u

q0
22~ uqW u1m!224@D2

A~q0!12D2
S~q0!#2

@D2
A~q0!15D2

S~q0!#@D2
A~q0!1D2

S~q0!#

q0
22~ uqW u1m!22@D2

A~q0!2D2
S~q0!#2

1P2~q!
q02m1uqW u

q0
22~ uqW u2m!224@D1

A~q0!12D1
S~q0!#2

@D1
A~q0!15D1

S~q0!#@D1
A~q0!1D1

S~q0!#

q0
22~ uqW u2m!22@D1

A~q0!2D1
S~q0!#2 G

C~q!5g0F P1~q!
q02m2uqW u

q0
22~ uqW u1m!22@D2

A~q0!2D2
S~q0!#2

1P2~q!
q02m1uqW u

q0
22~ uqW u2m!22@D1

A~q0!2D1
S~q0!#2G

D~q!5Cg0F P2~q!
q01m1uqW u

q0
22~ uqW u1m!22@D2

A~q0!2D2
S~q0!#2

1P1~q!
q01m2uqW u

q0
22~ uqW u2m!22@D1

A~q0!2D1
S~q0!#2GC

E~q!5Cg0F P2~q!
q01m1uqW u

q0
22~ uqW u1m!224@D2

A~q0!12D2
S~q0!#2

q0
22~ uqW u1m!223@D2

A~q0!#2211@D2
S~q0!#2210D2

A~q0!D2
S~q0!

q0
22~ uqW u1m!22@D2

A~q0!2D2
S~q0!#2

1P1~q!
q01m2uqW u

q0
22~ uqW u2m!224@D1

A~q0!12D1
S~q0!#2

q0
22~ uqW u2m!223@D1

A~q0!#2211@D1
S~q0!#2210D1

A~q0!D1
S~q0!

q0
22~ uqW u2m!22@D1

A~q0!2D1
S~q0!#2 GC

H~q!5Cg0F P2~q!
q01m1uqW u

q0
22~ uqW u1m!224@D2

A~q0!12D2
S~q0!#2

@D2
A~q0!15D2

S~q0!#@D2
A~q0!1D2

S~q0!#

q0
22~ uqW u1m!22@D2

A~q0!2D2
S~q0!#2

1P1~q!
q01m2uqW u

q0
22~ uqW u2m!224@D1

A~q0!12D1
S~q0!#2

@D1
A~q0!15D1

S~q0!#@D1
A~q0!1D1

S~q0!#

q0
22~ uqW u2m!22@D1

A~q0!2D1
S~q0!#2 GC

K~q!52Cg5F P1~q!S D2
S~q0!

q0
22~ uqW u1m!224@D2

A~q0!12D2
S~q0!#2

1
D2

A~q0!2D2
S~q0!

q0
22~ uqW u1m!224@D2

A~q0!12D2
S~q0!#2

3
@D2

A~q0!15D2
S~q0!#@D2

A~q0!1D2
S~q0!#

q0
22~ uqW u1m!22@D2

A~q0!2D2
S~q0!#2 D 1P2~q!S D1

S~q0!

q0
22~ uqW u2m!224@D1

A~q0!12D1
S~q0!#2

1
D1

A~q0!2D1
S~q0!

q0
22~ uqW u2m!224@D1

A~q0!12D1
S~q0!#2

@D1
A~q0!15D1

S~q0!#@D1
A~q0!1D1

S~q0!#

q0
22~ uqW u2m!22@D1

A~q0!2D1
S~q0!#2 D G

L~q!5Cg5F P1~q!S D2
S~q0!1D2

A~q0!

q0
22~ uqW u1m!224@D2

A~q0!12D2
S~q0!#2

1
2D2

A~q0!1D2
S~q0!

q0
22~ uqW u1m!224@D2

A~q0!12D2
S~q0!#2

3
@D2

A~q0!15D2
S~q0!#@D2

A~q0!1D2
S~q0!#

q0
22~ uqW u1m!22@D2

A~q0!2D2
S~q0!#2 D 1P2~q!S D1

S~q0!1D1
A~q0!

q0
22~ uqW u2m!224@D1

A~q0!12D1
S~q0!#2

1
2D1

A~q0!1D1
S~q0!

q0
22~ uqW u2m!224@D1

A~q0!12D1
S~q0!#2

@D1
A~q0!15D1

S~q0!#@D1
A~q0!1D1

S~q0!#

q0
22~ uqW u2m!22@D1

A~q0!2D1
S~q0!#2 D G

M ~q!5Cg5F P1~q!
2D2

A~q0!1D2
S~q0!

q0
22~ uqW u1m!22@D2

A~q0!2D2
S~q0!#2

1P2~q!
2D1

A~q0!1D1
S~q0!

q0
22~ uqW u2m!22@D1

A~q0!2D1
S~q0!#2G . ~A7!
085007-14
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APPLICABILITY OF WEAK-COUPLING RESULTS IN . . . PHYSICAL REVIEW D62 085007
Note thatS21(q)5S12̄(q) is a general property of the Fe
mion propagatorSand can be proved for an arbitrary numb
of colors and flavors using only the definition of the inver
Fermion propagator, Eq.~4!, and properties of the Dirac
gamma matrices. Whereas onlyK, L andM were used in the
derivation of the gap equation, all these functions are
quired in evaluating the Meissner effect.

The Meissner effect is the change in the screening of
gluon propagator induced by the presence of a gap. To
loop order, we need to evaluate the gluon propagator of
3 using the full fermion propagator including the gap. T
result can still be written in the form~11! but now

F~q!5F0~q!1dF~q! and G~q!5G0~q!1dG~q! ~A8!

whereF0 andG0 are theD50 functions written asF andG
in Eq. ~13!. Recall thatG0, which describes Landau damp
ing, vanishes forq0→0. BecausedG is nonzero in theq0
→0 limit, the Meissner effect can be described as givin
mass to the gluons. Previous analyses of the Meissner e
have either been done for two-flavor QCD@48,49# or have
used simplified estimates@27,32,33#. Our goal is to formulate
the correct calculation ofdF(q) and dG(q) in the CFL
phase. Recent work along the same lines can be foun
Ref. @50#.

From the diagram of Fig. 3, we obtain the gluon polariz
tion

Pab
mn52 ig2E d4k

~2p!4Tr@Ga
mS~k1q!Gb

nS~k!#

52 ig2E d4k

~2p!4TrFgm
la

2
S11~k1q!gn

lb

2
S11~k!

1S gm
la

2 D T

S22~k1q!S gn
lb

2 D T

S22~k!

2gm
la

2
S12~k1q!S gn

lb

2 D T

S21~k!

2S gm
la

2 D T

S21~k1q!gn
lb

2
S12~k!G , ~A9!

FIG. 3. One-loop contribution to the Meissner effect.
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where the trace is taken over color, flavor, and Dirac indi
and all four elements of the fermion propagator,S(q), have
been defined previously in Eqs.~A4!–~A7!. This polarization
amplitude contains all the one loop contributions to the glu
propagator including the gap independent contributio
F0(q) andG0(q). Pab

mn can be written in terms ofF andG in
a simple fashion:

Pab
mn5dab$@G0~q!1dG~q!#PmnT1@F0~q!1dF~q!#PmnL%.

~A10!

Hence, we only need to compute two components ofPab
mn in

order to obtain the functionsdF(q) anddG(q), for example,
P33

00 andP33
11. Because we already knowF0(q) andG0(q),

our goal is to extractdF(q) and dG(q). We are therefore
only interested in the differencePab

mn(DÞ0)2Pab
mn(D50).

Finally, becausedF(q) and dG(q) depend only onq0 and
uqW u, we can chooseqW to lie along thez axis for simplicity.
Keeping all this in mind, we find that~in Euclidean space!

dF~q!5
q0

21uqW u2

uqW u2
@P33

00~DÞ0!2P33
00~D50!#

dG~q!5P33
11~DÞ0!2P33

11~D50!. ~A11!

Note that~unlike the integrals which arise on the right han
side of the gap equation! the integrals which must be done i
evaluatingP(q) are ultraviolet divergent and, therefore, se
sitive to how they are cutoff at largek0 andk. This ultravio-
let divergence has nothing to do withD, and is canceled in
our calculation ofdF anddG by subtracting theD50 result
for P(q). We have checked that our results fordF anddG
are insensitive to the ultraviolet cutoffs in the integrals.

Looking back at the definition ofPab
mn , we can see that it

depends onD1
A,S(k0) and D2

A,S(k0). We make the same as
sumptions here as in our solution of the gap equati
namely that the antiparticle and sextet contributions can
neglected ifD!m and if one is interested in physics dom
nated by particles and holes near the Fermi surface. Be
we proceed, let us define the following notation for the fun
tions A(q) throughM (q) defined in Eq.~A7!: identify the
scalar functions multiplying theP6 projectors with the ap-
propriate6 signs, e.g.A1(q). With this notation, the domi-
nant contributions to the two polarization amplitudes we
interested in are

P33
0052

i

2
g2E d4k

~2p!4@11~k1q̂!• k̂#@A2~k1q!A2~k!

2B2~k1q!B2~k!12C2~k1q!C2~k!1E1~k1q!

3E1~k!2H1~k1q!H1~k!12D1~k1q!D1~k!

22K2~k1q!K2~k!12L2~k1q!L2~k!

12M 2~k1q!M 2~k!#
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P33
1152

i

2
g2E d4k

~2p!4 @112~k1q̂!1k̂12~k1q̂!• k̂#

3@A2~k1q!A2~k!2B2~k1q!B2~k!12C2~k1q!

3C2~k!1E1~k1q!E1~k!2H1~k1q!H1~k!

12D1~k1q!D1~k!12K2~k1q!K2~k!

22L2~k1q!L2~k!22M 2~k1q!M 2~k!#. ~A12!

In any one gauge, i.e. for a particular choice ofj, our task is
now clear. We first calculateD(k0) with dF(q)5dG(q)
50, as described in the body of the paper. We must then
Eq. ~A12! to evaluatedF(q) anddG(q) given by Eq.~A11!.
As in the calculation ofD, we can do all angular integral
analytically and evaluate the double integral overk0 and ukW u
m

7

ys

.

n

08500
se

numerically. We must then re-evaluateD(k0) with the new
gluon propagator, modified by the addition ofdF(q) and
dG(q). We must then iterate this procedure, calculati
dF(q) anddG(q) and then recalculatingD(k0) repeatedly,
until all results have converged. We have not carried t
program to completion. However, preliminary numerical i
vestigation suggests that, in agreement with arguments
estimates made by others@23,24,27,29,32,33#, the change in
D arising from the inclusion ofdF and dG is small. In
particular, it appears to be much smaller than the chang
D which arises if one changes gauge fromj521 to j50 to
j51. Perhaps at some extremely smallg, the influence of
the Meissner effect on the gap could be larger than the
fluence of the neglected physics whose absence we diag
via the gauge dependence of our results. At anyg at which
we have been able to obtain numerical results, however,
Meissner effect is insignificant relative to that which is mis
ing.
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