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Solution to the hierarchy problem with an infinitely large extra dimension and moduli stabilization

Z. Chacko and Ann E. Nelson
Department of Physics, University of Washington, Seattle, Washington 98195

~Received 30 March 2000; published 20 September 2000!

We construct a class of solutions to Einstein’s equations for dimensions greater than or equal to 6. These
solutions are characterized by a non-trivial warp factor and possess a non-compact extra dimension. We study
in detail a simple model in six dimensions containing two four-branes. One of each brane’s four spatial
directions is compactified. The hierarchy problem is resolved by the enormous difference between the warp
factors at the positions of the two-branes, with the standard model fields residing on the brane with a small
warp factor. Both branes can have positive tensions. Their positions, and the size of the compact dimension, are
determined in terms of the fundamental parameters of the theory by a combination of two independent and
comparable effects—an anisotropic contribution to the stress tensor of each brane from quantum fields residing
on it and a contribution to the stress tensor from a bulk scalar field. One overall fine-tuning of the parameters
of the theory is required —that for the cosmological constant.

PACS number~s!: 12.10.Dm
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I. INTRODUCTION

The work of Arkani-Hamed, Dimopoulos and Dva
~ADD! @1# and of Randall and Sundrum~RS! @2# has stimu-
lated interest in explaining the observed weakness of gra
~the ‘‘hierarchy problem’’! using extra dimensions. Th
ADD solution requires the new dimensions to have a fin
but large volume, which introduces a new hierarchy betw
the volume of the compact dimension and the fundame
scale of the theory.1 RS proposed instead five dimension
spacetime with a curvature comparable to the fundame
scale, and showed that a massless graviton can be loca
to a 311 dimensional hypersurface known as the ‘‘Plan
brane.’’ In their setup the extra dimension may be tak
infinitely large, and four dimensional general relativity st
agrees to a high precision with long distance experime
measurements. The weakness of observed gravity is
plained provided the standard model fields are localized
311 dimensional ‘‘TeV brane,’’ where the graviton wav
function is small. Becasue of the exponential falloff of t
graviton wave function away from the Planck brane, the d
tance between the TeV brane and the Planck brane doe
need to be large in units of the fundamental scale. Lykk
and Randall~LR! @5# have shown that an infinite fifth dimen
sion is experimentally quite consistent with such a resolut
of the hierarchy problem.

In such a picture, it is necessary to introduce dynam
which determines the location of the TeV brane relative
the Planck brane. If this interbrane distance is not fixed
becomes a massless modulus which leads to unnaccep
cosmology@6# and experimental consequences. Goldber
and Wise showed that adding a scalar field which propag
in the bulk and has a source on the branes is sufficient to

1For examples of theories which naturally have a finite but ex
nentially large volume for the additional dimensions see Ref.@3#.
For earlier work on large extra dimensions and/or a low quan
gravity scale see Ref.@4#.
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this distance@7#. Several other suggestions have been m
for bulk dynamics to fix the extra dimensional configurati
@8#.

In this paper we first construct a class of solutions
Einstein’s equations for dimensions greater than or equa
6. These solutions are characterized by a non-trivial w
factor and possess a non-compact extra dimension. We
study in detail a simple model in six dimensions containi
two four branes that employs a metric of this form to addr
the hierarchy problem. One of each brane’s four spatial
rections is compactified on a circle of small radius. The
erarchy problem is resolved as in the RS and LR models
the enormous difference in the warp factors at the positi
of the two branes, with the standard model fields residing
the brane with a small warp factor.

In this model the positions of the branes, and hence
magnitude of the hierarchy, are determined by the comb
tion of two independent effects. The first is an anisotro
contribution to the stress tensor of each brane arising fr
the quantum effects of fields localized to it. The second i
contribution to the stress tensor from a scalar bulk field a
the model of Goldberger and Wise. These effects are n
rally comparable in size and together can yield a sufficien
large value of the brane spacing to solve the hierarchy pr
lem without a fine-tuning of the parameters.

The reason for the first effect is that the theory contain
compact dimension, in addition to the noncompact dim
sion r. The size of the compact dimension is in general ar
dependent function, which is determined from Einstein
equations. We argue that in general the component of
brane tension in the compact dimension will depend on
size, due to the quantum effects of fields localized to
brane. Then a consistent solution to Einstein’s equations
fix each brane location at a particular value ofr. However, in
this model this effect by itself does not give rise to a lar
hierarchy without fine tuning. Nevertheless, when combin
with the effect of a bulk scalar field on the geometry it
possible to realize a large hierarchy without a fine-tuning
the parameters.

Both branes in the theory can have positive tensions

-
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the solution is free of singularities where general relativ
might break down. One overall fine-tuning of the paramet
in the theory is required to adjust the four dimensional c
mological constant to zero.

II. ANSATZ, EQUATIONS OF MOTION AND SOLUTIONS

We begin by looking for solutions to the Einstein equ
tions inD dimensions, whereD is greater than or equal to 6
in the presence of a constant background bulk cosmolog
constant. We assume that all sources other than the
cosmological constant are restricted to subspaces of lo
dimension. Hence our approach will be to first solve t
equations of motion in the bulk to obtain solutions with
number of constants of integration that can then be adju
to find solutions for various boundary conditions.

The action in the bulk is

S5E dDxA2G~2M
*
D22R2LB!. ~1!

We label a general coordinate byxM whereM runs from
0 to (D21). We restrict our search to metrics of the simp
form

ds25 f ~z!hmndxmdxn1s~z!dy21dz2 ~2!

where m and n run from 0 to D23. The remaining two
coordinates are labeled byy and z. Here the warp factorsf
ands are assumed to be functions only ofz.

Einstein’s equations in the bulk take the form

2M
*
D22~RMN2gMNR!52

1

2
gMNLB . ~3!

The nontrivial components of this equation are

1

2
f 9~32D !2

1

2
f

s9

s
1 f 8

s8

s

~32D !

4
1

1

4
f S s8

s D 2

2 f S f 8

f D 2S D229D118

8 D
52a2f

~D22!21~D22!

8
~4!

1

2 F ~D22!
f 9

f
1

~D22!~D25!

4 S f 8

f D 2G
5a2

~D22!21~D22!

8
~5!

~D22!~D23!

8 S f 8

f D 2

1
D22

4

f 8

f

s8

s

5a2
~D22!21~D22!

8
~6!

wherea is defined by
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a2
~D22!21~D22!

8
52

LB

4M
*
(D22)

. ~7!

To solve these equations note that we can rewrite Eq.~5!
in the form

1

2 H ~D22!F S f 8

f D 8
1S f 8

f D 2G1
~D22!~D25!

4 S f 8

f D 2J
5a2

~D22!21~D22!

8
. ~8!

This has the form of a first order differential equation f
f 8/ f . This differential equation is straightforward to solv
and we can then obtainf itself by performing a simple inte-
gration. We then use the result obtained forf in Eq. ~6! and
the problem of determinings also then reduces to performin
a simple integral. The results are

f 5 f 0eaz@12ce2(D21)/2]az#4/(D21) ~9!

s5s0eaz@12ce[ 2D21)/2]az#22(D23)/D21

3@11ce[ 2(D21)/2]az#2. ~10!

Here f 0 , s0 and c are constants to be determined b
boundary conditions. In the limits of vanishingc and infinite
c we recover the usual anti–de Sitter~AdS! metric. It is easy
to see that in fact for any values of these constants the w
factorsf ands change very rapidly as function ofz. In par-
ticular there are always values ofz where they are changing
exponentially quickly. This suggests that these metrics
good candidates for a solution to the hierarchy problem.

It is possible to use the class of metrics above to fi
solutions to the Einstein equations for various source c
figurations and geometries.2 In the next section we exhibit a
potential solution to the hierarchy problem based on th
metrics.

III. MODEL

A. Metric

In this section we limit our interest to a solution where t
fifth dimensiony is compact and corresponds to an angle
the higher dimensional space. We relabely by f in this
section and hereafter to emphasize its angular character.
anglef runs from zero to 2p. We allow the coordinatez to
be non-compact and run from zero to infinity. It correspon
to a ‘‘radius’’ in the higher dimensional space. We relabe
by r to emphasize its radial character.

The geometry of our model consists of two four-bran
localized in the higher dimensional space at different val
of r. Their positions are specified by the equationsr 5a and
r 5b wherea,b. They can therefore be thought of as bei
similar to the surfaces of two infinitely long ‘‘concentric cy

2Note that these solutions are coordinate transformations of
bulk solutions found in Ref.@9#.
6-2
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SOLUTION TO THE HIERARCHY PROBLEM WITH AN . . . PHYSICAL REVIEW D62 085006
inders’’ in the higher dimensional space, with the regu
four dimensions parallel to the common axis of the cylinde
the fifth dimension going around the surface but perpend
lar to the axis, and the sixth dimension being the rad
~This intuitive picture does not account for the fact that t
space is curved.! The standard model fields are localized
the brane atr 5a. The hierarchy problem will be resolved b
the enormous difference between the values of the warp
tor at r 5a and r 5b.

Because the coordinatef is compact, the four-brane ap
pears as a three-brane at sufficiently long length scales.

The branes divide the space into three distinct sectio
0,r ,a, a,r ,b, and r .b. In general there is no reaso
for the bulk cosmological constants in these three section
be the same since the branes may be separating diffe
phases of the theory. In what follows we will assume th
they are different and will associate the three regions w
three different values ofa: a1 , a2 anda3 respectively.

The solutions of Einstein’s equations in the three regio
will be of the form of Eqs.~9! and ~10! but with different
values of the constantsf 0 , s0 and c. We will give these
constants an additional subscripti, wherei runs from 1 to 3,
in order to differentiate them in the three different region

Now the constantc1 is fixed to be21 by the requiremen
that the solution be non-singular at the origin. This requi
ment also fixes the value ofs01 to be 216/5/(25a2). To see
that this choice does indeed smooth out the singularity at
origin we first examine the behavior of the the functionsf (r )
ands(r ) as r tends to 0:

f ~r !5const1O~r 2! ~11!

s~r !5r 21O~r 4!. ~12!

We then go to the ‘‘Cartesian’’ coordinate system whi
is smooth at the origin:

x85r cosf ~13!

y85r sinf. ~14!

It is straightforward to verify that in this coordinate sy
tem the components of the metric and their first and sec
derivatives~which go into the Ricci tensor! are smooth at the
origin, showing that there is no singularity there.

The requirement that the metric be bounded at infin
determines that the space outsider 5b must be AdS. This
corresponds to settingc3 to infinity while keeping the prod-
uctsc3f 03 andc3s03 finite. We relabel these products byf 3
ands3 respectively.

We are now in a position to write down the forms of th
solutions in the three regions. Forr ,a,

f 5 f 01e
a1r@11e2~5/2!a1r #4/5 ~15!

s5s01e
a1r@11e2~5/2!a1r #26/5@12e(25/2)a1r #2.

~16!

For b.r .a,
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f 5 f 02e
a2r@12c2e2~5/2!a2r #4/5 ~17!

s5s02e
a2r@12c2e2~5/2!a2r #26/5@11c2e(25/2)a2r #2.

~18!

For r .b,

f 5 f 3e2a3r , ~19!

s5s3e2a3r . ~20!

The constantf 01 is determined by normalizing the war
factor f to 1 at the position of the visible brane. The consta
s01 was determined earlier. All the other constants above
well as the positions of the branesa and b must be deter-
mined by matching across the branes.

We now write down the action for the branes:

Sb5E dxMA2Ḡ$d~r 2a!@LM12L̄1#1d~r 2b!%

3@LM22L̄2#. ~21!

HereḠ is the determinant of the metric tensor in the fi
dimensional subspace,L̄1 andL̄2 are the cosmological con
stants on the two branes, andLM1 and LM2 are the
Lagrangians of matter fields localized to the branes.

The stress tensor for each brane has the form

TAB5TL
AB1^TM

AB& ~22!

whereTL is the contribution from the cosmological consta
and ^TM& the expectation value of the stress tensor of
matter fields residing on the brane. We will be working
the semi-classical limit, treating gravity completely clas
cally but accounting for the quantum effects of matter loc
ized to the branes.

Assuming the matter on the brane is in its ground sta
TAB is constrained by four dimensional Lorentz invariance
be of the form

8p

2M
*
4

TAB52S 2b2f 0 0 0 0

0 b2f 0 0 0

0 0 b2f 0 0

0 0 0 b2f 0

0 0 0 0 g2s

D ,

~23!

whereb2 and g2 are constants associated with each bra
that we require to be positive. The form ofTL is more con-
strained since it is proportional toḠAB , which would imply
that b25g2 if the only contribution toT came from the
cosmological constant on the brane. Thus the deviation oT

from the ḠAB form is due entirely to the contribution from
the matter Lagrangian. In a subsequent section we will sh
that the contribution to the stress tensor from the zero p
energies of fields residing on the brane leads tobÞg. In
generalb andg will depend on the geometrical factorsa, b
6-3
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Z. CHACKO AND ANN E. NELSON PHYSICAL REVIEW D62 085006
and c2 due to the quantum contribution to the stress ten
from matter localized on the brane.

Now Einstein’s equations for the upper 5 by 5 block
the Ricci tensor get modified in the presence of the brane

2M
*
4 ~RAB2gABR!52

1

2
gABLB18pd~r 2a!TAB

a

18pd~r 2b!TAB
b . ~24!

Since we already have the solution in the bulk, we can
the complete solution by matching across the branes.
metric tensor is continuous across the branes but its de
tives are not. The above equation fixes the jump discont
ity in the derivatives across the boundary.

In terms of components the conditions on the derivati
are

2
3

2
D

f 8

f
2

1

2
D

s8

s
5b2 ~25!

2D
f 8

f
52g2. ~26!

We wish to apply these conditions to our solution. T
simplify matters we first define

ḡ254b223g2 ~27!

F~c,r ,a!5
2ac

~e~5/2!ra2c!
. ~28!

The conditions on the derivatives at the first boundary

a22a11F~c2 ,a,a2!2F~21,a,a1!52
1

2
g1

2 ~29!

a22a12
3

2
@F~c2 ,a,a2!2F~21,a,a1!#

1
5

2
@F~2c2 ,a,a2!2F~1,a,a1!#52

1

2
ḡ1

2 .

~30!

The conditions at the second boundary are

2a32a22F~c2 ,b,a2!52
1

2
g2

2 ~31!

2a32a21
3

2
F~c2 ,b,a2!2

5

2
F~2c2 ,b,a2!52

1

2
ḡ2

2 .

~32!

Looking at the above equations we have three parame
c2 , a and b which have to satisfy four independent equ
tions. Hence a fine-tuning is necessary. This is the fi
tuning necessary to set the effective four dimensional cos
logical constant to zero. Once this fine-tuning has be
made, it is straightforward to find solutions to the abo
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equations without singularities where all parameters are
order 1 in terms of the fundamental scaleM* . However,
since we want to generate a hierarchy, we wanta2b
5O(40)@1. From now on we will assume thatb is the only
large parameter in the problem and that it is therefore resp
sible for generating the hierarchy. Subtracting Eq.~31! from
Eq. ~32! we see that

5

2
F~c2 ,b,a2!2

5

2
F~2c2 ,b,a2!52

1

2
g 2̄

21
1

2
g2

2 .

~33!

Note that from the definition ofḡ it is clear that if b

5g, then ḡ5g. But the difference betweenb andg arises
from the vacuum energy of quantum fields localized to
brane ~the Casimir effect!, which vanishes in the limit of
large proper radius for the compact dimension. As will
discussed in a subsequent section the Casimir effect is fi
and regulator independent in the limit that the cutoff is tak
to infinity. Then by dimensional considerations, if the fiel
on the brane are massless, the right hand side must b
order@2ps(b)#25/2 since the proper size of the compact d
mension is the only scale in the problem. Then the equa
above becomes

5

2
F~c2 ,b,a2!2

5

2
F~2c2 ,b,a2!

5const@e(25/2)a2b~12c2e2~5/2!a2b!3

3~11c2e(25/2)a2b!25# , ~34!

where the constant above is of order 1 in units of the fun
mental scale. While we see that both sides of this equa
are the same order of magnitude even for largeb we also see
that b only appears in the combinatione(25/2)a2b. It is this
combination which is determined in terms of the vario
tensions. Hence, although the brane spacing is fixed, a l
value for a2b is only possible through a fine-tuning of pa
rameters which is over and above the fine-tuning neces
to set the four dimensional cosmological constant to zero
the next section we shall show that by adding a scalar fiel
the bulk in the manner of Goldberger and Wise@7# the
matching conditions at the branes can be made more se
tive to b and the hierarchy can be made natural.3

Equating the various components of the metric across
boundary fixes the values of the coefficientsf 02, s02, f 3, and
s3. Once again there are four equations but there are n
four unknowns, so there is no further fine tuning required

This completes the determination of the metric in the a
sence of any bulk matter. The warp factor for the fifth d
mension is plotted in Fig. 1 for a choice of parameters

3Note that the necessary fine-tuning of the Planck 4-brane ten
might also be natural if the 4-brane is an approximate Bogomol’n
Prasad-Sommerfield~BPS! state of a nearly supersymmetric theor
Thus supersymmetry of the bulk action might provide an alterna
solution to the hierarchy problem.
6-4
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which there is a large hierarchy. The warp factor for t
usual 311 dimensions is qualitatively similar, except ne
r 50 where it goes to a constant. We call this the ‘‘spa
needle’’ metric for reasons which are obvious from the p
ture.

B. Model with bulk scalar fields

In this section we show that when the model of the p
vious section is modified by the inclusion of bulk sca
fields, the hierarchy can be made natural.

The action for the scalar field

SM5E d6xA2G
1

2
~2]Mc]Mc2m2c2!

1A2ḠF~c!d~r 2a!1A2ḠH~c!d~r 2b!.

~35!

Herem is the mass of the scalar field in the bulk. We will b
interested in the limitm2!a2, since this is where we natu
rally obtain a large hierarchy. The scalar field sourcesF(c)
and H(c) are in general arbitrary functions. For simplici
we will take

F~c!5l1c ~36!

H~c!5l2c. ~37!

The coupled equations for the gravity-matter system
difficult to solve. We shall address the problem by a succ
sive approximation method. We will first solve for the grav
tational field in the absence of the scalar field, assuming
the contribution to the stress tensor of this field is small. W
will then solve for the scalar field in this geometry, and co

FIG. 1. Plot of warp factor of compact dimension~circumfer-
ence of circles! versusr ~vertical axis!, illustrating why we call this
the ‘‘space needle’’ metric. The apparent singularity at the t
wherer 50, is a coordinate singularity only.
08500
e
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-

e
s-

at
e
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pute the stress tensorTc of the scalar field. We then ca
substitute this solution back into Einstein’s equations to
termine the correction to the geometry induced by the str
tensor of the scalar field.4 If we wish, this procedure, which
is essentially an expansion inTc /M

*
6 , can be carried out to

higher orders but the lowest order will be sufficient to to
the brane spacing, which we expect will receive only sm
corrections at higher orders.

For simplicity we will take as a starting metric

f 051, r ,a, ~38!

f 05e2aaear , a,r ,b, ~39!

f 05e2aae2abe2ar , r .b, ~40!

s05r 2, r ,a, ~41!

s05a2e2aaear , a,r ,b, ~42!

s05a2e2aae2abe2ar , r .b. ~43!

This corresponds to a solution for the special case with
bulk cosmological constant forr ,a but the same cosmo
logical constant everywhere outside, andc250. This metric
is flat in the neighborhood of the origin and pure AdS outs
a. This is a special case, witha1 andc2 set to zero, of the
more general class of metrics we have considered in S
III A. Non-zero c2 will be treated perturbatively in what fol
lows and we will also indicate how to includea1 perturba-
tively. Hence the only loss of generality arising from th
starting metric is that we can only extend our conclusions
the more general class of metrics of the previous sec
when c2 and a1 are sufficiently small that a perturbativ
approach is valid.

We first solve for the scalar field in this background m
ric. The equation of motion is

2c92S 2
f 8

f
1

1

2

s8

s Dc81m2c5l1d~r 2a!1l2d~r 2b!.

~44!

The solutions in the three regions consistent with smoo
ness ofc at the origin and vanishing ofc at infinity are

c5A1S 11
1

4
m2r 21••• D , r ,a, ~45!

c5A2es1r1B2es2r , a,r ,b, ~46!

c5A3es3r , r .b, ~47!

where we have neglected higher order terms inm2r 2 in Eq.
~45!, and

4We neglect quantum corrections to the stress tensor from
scalar field, as we do not expect these to qualitatively alter
conclusions.

,
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s152
5

4
a2AS 5

4
a D 2

1m2 ~48!

s252
5

4
a1AS 5

4
a D 2

1m2. ~49!

For positivem2 s2 is positive ands1 negative. Then

s352s2 . ~50!

The coefficientsAi andBi are to be determined by matchin
the solutions forc across the boundaries. We require con
nuity of c across the boundaries and the following jum
conditions:

Dc8~a!52F8~c! ~51!

at the first boundary and

Dc8~b!52H8~c! ~52!

at the second boundary.
Since the expressions for theAi ’s and Bi ’s are compli-

cated, we will neglect effects of ordere2ab which are very
small and further assumem2a2!1 so that such effects ca
also be neglected. These approximations will not affect
conclusions. Then in this limit the expressions for theAi ’s
andBi ’s are

A25
l2s2

~s32s2!s1
e(s22s1)ae2s2b2

l1

s1
e2s1a ~53!

B252
l2

~s32s2!
e2s2b ~54!

A352
l2

~s32s2!
e2s3b. ~55!

We now find the contribution to the stress tensor from
field c, Tc :

16pTc
0

05 K 2
1

2
~c821m2!1F~c!d~r 2a!

1H~c!d~r 2b!L ~56!

16pTc
r

r5 K 1

2
~c822m2!L . ~57!

Next, we substitute the stress tensor back into the Eins
equations to determine the corrections to the geometry.
convenience we defineT̄58pTc/2M

*
4 , l̄5l/2M

*
4 . Ein-

stein’s equations in the regiona,r ,b take the form

2
3

2
f 92

1

2
f

s9

s
2

3

4
f 8S s8

s D1
1

4
f S s8

s D 2

52
5

2
a2f 1T̄00

~58!
08500
-

r

e
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or

2
f 9

f
1

1

2 S f 8

f D 2

5
5

2
a21T5

5

~59!

3

2 S f 8

f D 2

1
f 8

f

s8

s
5

5

2
a21T6

6.

~60!

The equations insider ,a can be obtained by settinga
50 in the equations above. The equations forr .b are iden-
tical to those above. We are interested in the correction to
geometry to linear order inT̄/M

*
2 . To obtain this we expand

f 5 f 0~11e! ~61!

s5s0~11k!, ~62!

and linearize ine and k. Then for r ,a Eqs. ~58! and ~60!
above become

e85
1

2
rT6

6 ~63!

2
3

2
e92

1

2
k92

1

r
k82

3

2r
e852T0

0. ~64!

These equations yield

e85
1

2
rT6

6 ~65!

k85
1

2
rT6

62
5

2

1

r 2E0

r

drr 2T6
6,

~66!

which can be integrated to gete andk. Here we have used
the constraints of smoothness at the origin and the linear
form of the Bianchi identity. The latter is shown below:

~rT6
6!85T5

5. ~67!

For a,r ,b Eqs.~59! and ~60! when linearized become

2e915ae85T5
5 ~68!

4ae81ak85T6
6. ~69!

These yield

e85De2~5/2! ~ar !1
T6

6

5a
~70!

k8524De2~5/2! ~ar !1
T6

6

5a
, ~71!

which can be integrated to yielde andk. HereD is a con-
stant of integration which must be determined from match
and once again the linearized form of the Bianchi identity
this region, shown below, has been used:
6-6
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~T6
6!81

5a

2
T6

622aT0
02

1

2
aT5

550. ~72!

In identical fashion we can get, for the regionr .b,

e85k852
T6

6

5a
. ~73!

Here the requirement that the metric die away at infin
has been imposed. This completes the determination of
corrections to the metric. The final step is to match across
branes, thereby determining the brane positions and the
determined constantD.

The conditions on the continuity of the metric across
brane are straightforward to satisfy because of the additio
constants of integration that will be obtained on integrat
the expressions fore8 andk8. Oncef has been normalized t
1 on the visible brane and the requirement of smoothness
been met atr 50, all these additional constants will hav
been fixed.

We now focus our attention on the jump conditions on
derivatives. At the inner brane we have

2
3

2
De8~a!2

1

2
Dk8~a!2

1

2 S a2
2

aD2
3

2
a

5b1
22

1

2
l̄1c~a! ~74!

2De8~a!12a52g1
21

1

2
l̄1c~a!. ~75!

At the outer brane

2
3

2
De8~b!2

1

2
Dk8~b!1

1

2
~2a!1

3

2
~2a!

5b2
22

1

2
l̄2c~b! ~76!

2De8~b!24a52g2
21

1

2
l̄2c~b!. ~77!

These are four independent equations for the three unkno
a, b and D. Just as in the previous section, the metric a
brane locations are completely determined with one ove
fine-tuning needed to find a Poincare´ invariant solution.

First consider the situation without the scalar field, i.eT̄
50. This is the same case which was considered in the
vious section. In general, as we found that the metric bew
the branes need not be pure AdS even without a scalar fi
The tensions of the branes must be fine-tuned to setD to
zero. We are allowing these brane tensions~which are related
to b2 andg2 in the above equations! to deviate from those
fine-tuned values by small amounts. Here small mer
means that perturbation theory is valid. Then it is straig
forward to verify that Eqs.~74! to ~77! are simply linearized
versions of Eqs.~29!–~32! with a150 and the parameterD
is proportional toc2. Hence even in the absence of the sca
08500
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field the metric between the branes is not of the AdS for
and our conclusions once the scalar field is introduced
be valid for this more general class of metrics. SettingT̄ in
the above formulas to a constant non-zero value forr ,a
corresponds to allowing a non-zeroa1. Although it is
straightforward to accomodate a non-zeroa1 perturbatively
in this framework, for simplicity we shall keepa150 in
what follows below, andT̄ will be related only toTc and
will not include any piece from a cosmological constant.

We now return to the general case with a scalar field.
are interested in a solution with all parameters of order 1
units of the fundamental scale but we allowm2/a2 to be
somewhat less than 1 in order to obtain a hierarchy.

Rather than give the exact solution we will give the mo
informative order of magnitude results. For dimensional co
siderations any parameter of order 1 in units of the fun
mental scale will be denoted by the appropriate power ofa.

The matching conditions at the inner brane, Eqs.~74! and
~75!, determinea andD as functions ofb. Providedm2b/a is
less than or of order 1,a andD are of order 1 in units of the
fundamental scale. The dependence ofD on b is

D5O~a!1O~m2b!. ~78!

This result will turn out to be crucial for the solution of th
hierarchy problem.

Both equations at the outer brane are sensitive tob anda
only through exponentially small terms. This is because
value ofc and its derivatives is exponentially insensitive
b anda in this region, which manifests itself in the forms o
e8 and k8 close to the outer brane. This is similar to th
insensitivity tob of Eqs.~31! and~32!. One might therefore
worry that just as in the previous case an exponentially p
cise fine-tuning will be necessary to get a hierarchy. Ho
ever the fine-tuning in the previous case was related to
fact that near the Planck brane the metric was very ne
pure AdS, which is a homogenous space, and the com
dimension was exponentially large, so that the location of
Planck brane had very little effect on the matching con
tions at either brane. In the present case with a light b
scalar the value of the scalar at the TeV brane depends m
sensitively onb. To determineb, add Eqs.~76! and ~77! to
obtain

5

2
De(25/2)ab5~b2!22~g2!2 . ~79!

This is the analogue of Eq.~33! in the previous section
Recall that (b2)22(g2)2 arises from the vacuum energy o
quantum fields localized on the brane and is of ord
ae(25/2)ab. Then this equation, together with Eq.~78! which
relatesD to b, determinesb as

b5OS a

m2D . ~80!

Clearly m need not be much smaller thana to get a siz-
able hierarchy. The difference of Eqs.~76! and ~77!, which
6-7
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Z. CHACKO AND ANN E. NELSON PHYSICAL REVIEW D62 085006
we have not yet used, becomes the condition that the ef
tive four dimensional cosmological constant be zero, wh
is the usual fine-tuning.5

One limitation of the above approach is that the inn
brane necessarily has negative tension along the n
compact directions. This is a consequence of the choice
starting metric with zeroa1 andc2 and the fact that devia
tions from this metric can only be perturbative. The non-z
a1 case is not simple but there is a limit in which it
tractable — that in which (a1a)2 is perturbatively less than
1, even thougha1 is not small. In this limit, neglecting
higher order terms in (a1r )2 we find

f 8

f
5

5

4
a1

2r 1••• ~81!

s8

s
5

2

r
2

5

6
a1

2r 1••• . ~82!

We can substitute for this in Eq.~44! and find that to the
order shown the solution~45! is unchanged. Now, ifa1

2a
.a2, the inner brane can have positive tension and i
straightforward to verify that all the other conclusions abo
go through as before.

C. Physical implications

To determine the effective four dimensional Planck sc
we concentrate on the higher dimensional Einstein act
When the two extra dimensions are integrated out this
contain the usual four dimensional Einstein action:

SG52M
*
4 E d6xMA2GR6. ~83!

Expandinggmn5hmn1hmn and integrating out the two
extra dimensions we see that

SG52M
*
4 E d6xMA2gR4fAs1•••

5M4
2E d4xmA2gR41•••, ~84!

and consequently

2pM
*
4 E dr fAs5M4

2 . ~85!

Rather than do this integral exactly we will be satisfi
with an estimate. The dominant contribution to the integ
comes from the region close to the outer brane where
integrand is very large and the forms off and s are very
nearly simple exponentials. For the purposes of the estim
we seta35a25a215M* 5a:

5Work is in progress to see whether this fine-tuning can be m
more natural though supersymmetry of the bulk action when
Planck brane is approximately BPS.
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M4
25O~a2e(3/2)ab!. ~86!

This large exponent is responsible for the hierarchy betw
the Planck scale and the weak scale.

Next we analyze the spectrum of linearized tensor fl
tuations to see if it is consistent with the results of gravi
tional experiments. We neglect the effect of the scalar fi
in what follows since we do not expect it to qualitative
affect our results because its contribution to the energy d
sity is small.

Expanding

Gmn5 f hmn1hmn ~87!

and substituting this into the Lagrangian we get the follo
ing equation for the fluctuationh in the bulk:

2h92
1

2

s8

s
h82S f 8

f D 2

h1
5

2
a2h5

1

f
m2h, ~88!

wherem252hmnpmpn and we are restricting our attentio
to modes that have no momentum in the compact direct
These are expected to be separated by a mass gap from
heavier modes with nonzero momentum in the fifth directio

The boundary conditions thath has to satisfy areh8(0)
50 at the origin and

2D
h8

h
52g2. ~89!

Clearly h5 f is a solution of this equation withm50 by
comparison with Eqs.~5! and~6!. This is the massless grav
ton. There is a continuum of other solutions for all positi
m2, as can be seen from the asymptotic behavior of the eq
tion. However, to extract these solutions is not easy, beca
of the complicated forms off ands. However, since we are
only interested in order of magnitude estimates, we can s
plify the problem by considering instead a simpler proble
that retains the physics we are interested in. Consider
metric

f 51, r ,a, ~90!

f 5e2aaear , a,r ,b, ~91!

f 5e2aae2abe2ar , r .b, ~92!

s5r 2,r ,a, ~93!

s5a2e2aaear , a,r ,b, ~94!

s5a2e2aae2abe2ar , r .b. ~95!

This corresponds to a solution for the case with no c
mological constant forr ,a but the same cosmological con
stant everywhere outside. This metric is flat in the neighb
hood of the origin, AdS outsidea. It clearly has a form very
similar to the metric we are interested in forr @a, although
unlike our case, the positions of the branes are not fixed
one has negative tension. In what follows we will assume

e
e

6-8
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main features of the excitations we are interested in are c
mon to both metrics and proceed.

With this approximation the equation in the regionr ,a
wherea is zero becomes

2h92
1

r
h85m2h. ~96!

The solution of this equation to leading order inm2a2 is

h5NF12
1

4
m2r 2G ~97!

whereN is a normalization constant. Since we are primar
interested in the light modes this will suffice. In the regi
between the branes the equation for the modes has the

2h92
1

2
ah81

3

2
a2h5

m2

f
h. ~98!

This equation admits a solution in terms of Bessel functio
The solution is

h5Ne(21/4)ar~A2J5/2@mq2#1B2J25/2@mq2# ! ~99!

whereA2 andB2 are constants andq2 is defined by

q25
2

a

e(21/2)ar

e(21/2)aa
. ~100!

The closed form expressions for the relevant Bessel fu
tions are

J5/2~x!5A 2

pxS sinxF 3

x2
21G23

cosx

x D ~101!

J25/2~x!5A 2

pxS cosxF 3

x2
21G13

sinx

x D . ~102!

Since we are interested in values ofm such thatmq1!1,
we can conveniently approximate the solution between
branes by

h5NF Ā2S 2m

a D 5/2

e(23/2)ar13B̄2S 2m

a D 25/2

ear

1
1

2
B̄2S 2m

a D 21/2

eaaG . ~103!

Coming to the regionr .b we can also obtain a solutio
in terms of Bessel functions:

h5Ne(11/4)ar~A3J5/2@mq3#1B3J25/2@mq3# ! ~104!

whereq3 is defined by

q35
2

a

e1/2ar

e(21/2)aa1ab
. ~105!
08500
-

rm

s.
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e

The values of theA’s and B’s are to be determined by
matching. The boundary conditions to be satisfied are co
nuity of h across the various boundaries and the followi
jump conditions on the derivatives atr 5a andr 5b respec-
tively:

D
h8

h
5a ~106!

D
h8

h
522a. ~107!

The constantN is to be determined by normalization
Since this is not quite in the form of a eigenvalue proble
we make some simple transformations which render it so

Defining

g5const3hS s

f D
1/4

~108!

q5E dr
1

Af
, ~109!

we get an equation forg as a function ofq which has the
form of an eigenvalue equation form2 with unit density
function. For the continuum modes it is the outer regi
which is relevant for normalization. But heres and f are
proportional, so we can conveniently choose the constan
that g5h in this region. Alsoq and q3 as defined differ at
most by an additive constant. Hence for the continu
modes we merely have to normalize the solution forh for
r .b with respect toq3.

Matching at the inner brane we find thatĀ2 is of order
Am/a, and B̄2 is of order (m/a)5/2. Then matching at the
outer brane we find that

A35OF S a

mD 1/2

eabG ~110!

B35OF S a

mD 25/2

e2(a/2)bG . ~111!

In the far asymptotic region theA3 mode is dominant.
Normalizing to a box of sizeL we find

N5OF 1

AL

m

a
e(23/2)abG . ~112!

The situation is slightly different for the zero mode. W
write the normalizable wave function as

g05N0f 3/4s1/4. ~113!

Now the integral relevant for normalization,

E dqg0
25N0

2E dr
1

Af
f 3/2s1/25N0

2E dr f s1/2. ~114!
6-9
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Z. CHACKO AND ANN E. NELSON PHYSICAL REVIEW D62 085006
This is the same integral that appears in determination
the four dimensional Planck scale. By exactly the sa
methods we obtain, on normalizing to unity,

N05O~ae(23/4)ab!. ~115!

We are now in a position to determine the corrections
gravity from the Kaluza-Klein excitations of the gravito
The change in the potential energy between two massesm1
andm2 on our brane is given by

DV5OFGm1m2

r E dmS N2

N0
2a

D Le2mrG
5OFGm1m2

e(23/2)ab

a3r 4 G5OFGm1m2

r S 10232

r 3~TeV!3D G .

~116!

From this it is clear that deviations from Newtonian grav
are highly suppressed at long distances.

We now explain why we expect this model to have t
same physical implications as the model we started out w
Essentially forr @a the general solution of both models wi
have a similar form. The only difference will be in the ma
nitudes of the coefficientsĀ2 and B̄2. Although these coef-
ficients are determined by matching in the interior, their
der of magnitude follows from simple dimension
considerations. This then implies thatĀ3 and B̄3 and hence
the normalization of the modes can be fixed by dimensio
considerations. Hence the two theories will give the sa
order of magnitude estimate for the the corrections to Ne
tonian gravity.

Because of the isometry of the compact dimension,
theory contains a massless ‘‘gravi-photon’’—a Kaluza-Kle
U(1) gauge boson. However, no light or massless fields
carry non-trivialU(1) charge since they have no momentu
in the compact dimension. We expect that other than
modes we have already discussed, the remaining spectru
gravitational excitations will be massive.

A more comprehensive study of the phenomenolog
implications of this model is left for future work.

D. Stress energy tensor for a field localized to a brane

In this section we consider the form of the stress ene
tensor for a field localized to a brane having the me
ḠAB5diag(21,1,1,1,1) but in which the fifth dimension i
compact and has a proper sizea. We show that in the ground
state the stress tensor does indeed have the form given in
~23!. For simplicity we limit ourselves to the case of a fre
scalar field.

The Lagrangian has the form

L52
1

2
]Af]Af2

1

2
m2f2 . ~117!

We are interested in the expectation value of the str
tensor in the ground state:
08500
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^TA
B&5^2]Af]Bf2ḠA

BL&. ~118!

Because the ground state possesses translational sym
try,

^TA
B&5

1

VE d4x^TA
B& ~119!

where V is the volume of the four space dimensions. P
forming a Fourier expansion for the fieldf and making use
of the canonical commutation relations this reduces to

^T0
0&5(

k
(
k5

1

2V
Ak21k5k51m2 ~120!

^Tm
n &52(

k
(
k5

1

2V

kmkn

Ak21k5k51m2
. ~121!

Since the usual three space dimensions are infinite,
sums over momenta in these three directions can be repl
by integrals. However, since the fifth dimensionf is com-
pact, the momenta in this direction remain discrete,k5
5n/a wheren is an integer:

^T0
0&5(

k5

1

~2p!4a
E d3kAk21k5k51m2 ~122!

^Tm
n &52(

k5

1

~2p!4a
E d3k

kmkn

Ak21k5k51m2
. ~123!

These integrals are infinite and must be regulated in orde
yield sensible physical results. We will use a Pauli-Villa
regulator, adding massive fields with appropriate statis
until all the divergences have been removed.~We could get
similar results in a theory with spontaneously broken sup
symmetry.! We simplify to the special case where the bos
field is massless. Then all the divergences can be remove
adding three fields with opposite statistics having massesM,
M and 2M and two fields with the same statistics which bo
have massA3M . Here M is assumed to be some kind o
cutoff for the theory.

Performing the integrals and adding the contributio
from the various fields we get the finite but regulator dep
dent results

Tm
n 5dm

n (
k5

1

4~2p!3a
@k5

4ln~k5
2!12~k5

213M2!2ln~k5
213M2!

22~k5
21M2!2ln~k5

21M2!2~k5
214M2!2ln~k5

214M2!#

~124!

T5
552(

k5

1

~2p!3a
k5

2@k5
2ln~p5

2!12~k5
213M2!ln~k5

213M2!

22~k5
21M2!ln~k5

21M2!2~k5
214M2!ln~k5

214M2!#

~125!

Tm
5 50. ~126!
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SOLUTION TO THE HIERARCHY PROBLEM WITH AN . . . PHYSICAL REVIEW D62 085006
All other components of the stress energy tensor vanish,
it clearly has the form of Eq.~23!. In a supersymmetric
theory the scaleM will be related to the scale of supersym
metry breaking. We now estimateTm

n andT5
5 in various lim-

its.
WhenM!(1/a) we can approximateTm

n andT5
5 to lead-

ing order in (1/a)2 asO(M4/a) andO(M2/a3) respectively.
Clearly in this limit b2 andg2 are not equal.

The relative difference betweenT5
5 andTm

n must be finite
when the cutoffM is taken to infinity and must vanish as th
size of the fifth dimension becomes infinite. We now es
mate this difference as a function ofa and M when the di-
mensionless quantityaM is large.

To do this we attempt to replace the sum we are intere
in by a sum of integrals. We begin by observing that t
integral below can be broken up into a sum of integrals o
equal subdomains:

E dk5T~k5!5(
k5

E
k5

k511/a

dp5T~p5!. ~127!

HereT represents an arbitrary function ofk5. If the function
T is smooth it can be Taylor expanded:

T~p5!5T~k5!1T8~k5!~p52k5!1T9~k5!
~p52k5!2

2
1••• .

~128!

Then performing the integrals over the subdomains we

E dk5T~k5!5(
k5

F1

a
T~k5!1

1

2a2
T8~k5!

1
1

6a3
T9~k5!1•••G . ~129!

Now if (T is Tm
n or T5

5 , the first term on the right has th
form we are interested in. Also notice that the other terms
the right then involve fewer powers ofk5 in the numerator
and hence for the seventh term and beyond the sums
individual fields are finite and straightforward to estimate

(T can also be chosen to be derivatives to arbitrary or
of Tm

n or T5
5 . Since these quantities occur in the expansio

for Tm
n or T5

5 , they can then be substituted back to obta
systematic expansions forTm

n andT5
5 in terms of integrals.

A complication that arises for the case of a massless fi
is that the fourth derivative and higher ofTm

n andT5
5 are not

well defined atk550. We account for this by separating th
point from the sum and approximating the rest of the sum
integrals from (1/a) to infinity and 2(1/a) to negative in-
finity.

To obtain a reasonable estimate we must expand in
~128! to at least seventh order in order to account for
possible divergences as powers or logarithms ofM. The cal-
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culation is straightforward but lengthy and the details w
not be presented here. The result is that the difference
tweenTm

n andT5
5 is finite and of order (1/a)5 in the limit that

the cutoffM is large.
This (1/a)5 result for the difference could have been a

ticipated. Since the only counterterm allowed by general
variance is the cosmological constant which contribu
equally to bothTm

n andT5
5 , the difference between these tw

must be finite and regulator independent in the limit that
cutoff is taken to infinity. For a massless field,a is the only
available dimensionful parameter. This result is just a hig
dimensional form of the Casimir force.

IV. CONCLUSIONS

We have constructed a set of solutions to Einstein’s eq
tions in six or more dimensions, and exhibited a six dime
sional setup, ‘‘the space needle,’’ with two concentric po
tive tension 4-branes, which each have one comp
dimension. Gravity is mostly localized to the outer bra
while we assume the standard model resides on the in
brane, explaining the apparent weakness of gravity in
world. There are no massless moduli associated with ei
the size of the compact dimension or the brane locatio
This provides an explicit demonstration that the gauge h
archy problem can be solved in six dimensions, without
persymmetry, and with negligible corrections to gravity
distances longer than an inverse TeV. Gravitational effe
do become strong at energies of order 1 TeV. We leave
discussion of gravitational collider phenomenology of ne
noncompact dimensions for future work.

We do not address the important issue of how to obt
chiral fermions on the standard model brane. Ordinary
mensional reduction by compactifying the fifth dimension
a circle always results in a non-chiral theory. One sim
alternate possibility is to have the standard model reside o
3-brane at the center of space. Then it is only necessar
have one 4-brane—the Planck brane. The metric is sim
the a→0 limit of the space needle metric. Alternatively,
may be possible to generalize our mechanism to additio
dimensions with some compactification which does allow
chiral effective theory on the TeV brane.

We also do not address the cosmological constant p
lem. The effective four dimensional cosmological consta
depends on a complicated function of the bulk and bra
parameters, and may be fine-tuned to zero or to a small
ceptable value.

ACKNOWLEDGMENTS

This work was partially supported by the DOE under co
tract DE-FGO3-96-ER40956. A.E.N. would like to acknow
edge useful conversations with D.B. Kaplan. Z.C. would li
to acknowledge useful conversations with S.P. Kumar a
M. Luty.
6-11



B

s.

o-

n
ev

s.
J.

.

ll,
,

Z. CHACKO AND ANN E. NELSON PHYSICAL REVIEW D62 085006
@1# N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett.
429, 263 ~1998!; I. Antoniadis, N. Arkani-Hamed, S. Di-
mopoulos, and G. Dvali,ibid. 436, 257 ~1998!.

@2# L. Randall and R. Sundrum, Phys. Rev. Lett.83, 3370~1999!;
83, 4690~1999!.

@3# A. G. Cohen and D. B. Kaplan, Phys. Lett. B470, 52 ~1999!;
N. Arkani-Hamed, L. Hall, D. Smith, and N. Weiner, Phy
Rev. D ~to be published!, hep-ph/9912453.

@4# O. Klein, Z. Phys.37, 895 ~1926!; Nature~London! 118, 516
~1926!; K. Akama, inProceedings of the International Symp
sium on Gauge Theory and Gravitationedited by K. Kikkawa,
N. Nakanishi, and H. Nariai~Springer-Verlag, 1983!, pp. 267–
271; Prog. Theor. Phys.78, 184 ~1987!; 79, 1299 ~1988!; M.
Visser, Phys. Lett.159B, 22 ~1985!; M. Gell-Mann and B.
Zwiebach, Nucl. Phys.B260, 569 ~1985!; V. A. Rubakov and
M. E. Shaposhnikov, Phys. Lett.125B, 136~1983!; 125B, 139
~1983!; I. Antoniadis, Phys. Lett. B246, 377 ~1990!; J. D.
Lykken, Phys. Rev. D54, 3693 ~1996!; R. Sundrum, J. High
Energy Phys.07, 001 ~1999!.

@5# J. Lykken and L. Randall, hep-th/9908076. See also N. Arka
Hamed, S. Dimopoulos, G. Dvali, and N. Kaloper, Phys. R
08500
i-
.

Lett. 84, 586 ~2000!.
@6# C. Csaki, M. Graesser, and J. Terning, Phys. Lett. B456, 16

~1999!; P. Binetruy, C. Deffayet, and D. Langlois, Nucl. Phy
B565, 269 ~2000!; C. Csaki, M. Graesser, C. Kolda, and
Terning, Phys. Lett. B462, 34 ~1999!; J. M. Cline, C. Grojean,
and G. Servant, Phys. Rev. Lett.83, 4245~1999!; D. J. Chung
and K. Freese, Phys. Rev. D61, 023511~2000!; T. Shiromizu,
K. Maeda, and M. Sasaki,ibid. 62, 024012~2000!; C. Csaki,
M. Graesser, L. Randall, and J. Terning,ibid. 62, 045015
~2000!; W. D. Goldberger and M. B. Wise, Phys. Lett. B475,
275 ~2000!; P. Binetruy, C. Deffayet, U. Ellwanger, and D
Langlois, Phys. Lett. B477, 285 ~2000!; P. Kanti, I. I. Kogan,
K. A. Olive, and M. Pospelov, Phys. Rev. D61, 106004
~2000!.

@7# W. D. Goldberger and M. B. Wise, Phys. Rev. Lett.83, 4922
~1999!.

@8# N. Arkani-Hamed, S. Dimopoulos, and J. March-Russe
Phys. Rev. D~to be published!, hep-th/9809124; R. Sundrum
ibid. 59, 085010~1999!; M. A. Luty and R. Sundrum,ibid. 62,
035008~2000!.

@9# A. Chodos and E. Poppitz, Phys. Lett. B471, 119 ~1999!.
6-12


