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We construct a class of solutions to Einstein’s equations for dimensions greater than or equal to 6. These
solutions are characterized by a non-trivial warp factor and possess a non-compact extra dimension. We study
in detail a simple model in six dimensions containing two four-branes. One of each brane’s four spatial
directions is compactified. The hierarchy problem is resolved by the enormous difference between the warp
factors at the positions of the two-branes, with the standard model fields residing on the brane with a small
warp factor. Both branes can have positive tensions. Their positions, and the size of the compact dimension, are
determined in terms of the fundamental parameters of the theory by a combination of two independent and
comparable effects—an anisotropic contribution to the stress tensor of each brane from quantum fields residing
on it and a contribution to the stress tensor from a bulk scalar field. One overall fine-tuning of the parameters
of the theory is required —that for the cosmological constant.

PACS numbeps): 12.10.Dm

[. INTRODUCTION this distancd 7]. Several other suggestions have been made
for bulk dynamics to fix the extra dimensional configuration
The work of Arkani-Hamed, Dimopoulos and Dvali [8].

(ADD) [1] and of Randall and SundrufRS) [2] has stimu- In this paper we first construct a class of solutions to
lated interest in explaining the observed weakness of gravitiinstein’s equations for dimensions greater than or equal to
(the “hierarchy problem’ using extra dimensions. The 6. These solutions are characterized by a non-trivial warp
ADD solution requires the new dimensions to have a finitefactor and possess a non-compact extra dimension. We then
but large volume, which introduces a new hierarchy betweestudy in detail a simple model in six dimensions containing
the volume of the compact dimension and the fundamentdwo four branes that employs a metric of this form to address
scale of the theory.RS proposed instead five dimensional the hierarchy problem. One of each brane’s four spatial di-
spacetime with a curvature comparable to the fundamentdfctions is compactified on a circle of small radius. The hi-
scale, and showed that a massless graviton can be localiz&frchy problem is resolved as in the RS and LR models by
to a 3+1 dimensional hypersurface known as the “planckthe enormous d|ﬁer§nce in the warp factors_ at the po;mons
brane.” In their setup the extra dimension may be takerPf the two br'anes, with the standard model fields residing on
infinitely large, and four dimensional general relativity still the braf‘e with a small warp factor.
agrees to a high precision with long distance experimental in t_h|3 mofdf]l t?].e posﬁlons ofdthe br_anedsbanrc]j henci_the
measurements. The weakness of observed gravity is e{&“ag”'t” e of the hierarchy, are determined by the combina-

lained provided the standard model fields are localized to jon of wo independent effects. The first is an anisotropic
P ! provi . N . Qontribution to the stress tensor of each brane arising from
3+1 dimensional “TeV brane,” where the graviton wave

f o I B £ th 1 falloff of th the quantum effects of fields localized to it. The second is a
uncyon IS Small. becasue o the exponential falloff of t '€ contribution to the stress tensor from a scalar bulk field as in
graviton wave function away from the Planck brane, the diSyhe model of Goldberger and Wise. These effects are natu-

tance between the TeV brane and the Planck brane does ngfily comparable in size and together can yield a sufficiently

need to be large in units of the fundamental scale. Lykkengrge value of the brane spacing to solve the hierarchy prob-
and RandallLR) [5] have shown that an infinite fifth dimen- |em without a fine-tuning of the parameters.

sion is experimentally quite consistent with such a resolution  The reason for the first effect is that the theory contains a
of the hierarchy problem. . ~ compact dimension, in addition to the noncompact dimen-
In such a picture, it is necessary to introduce dynamicgjonr. The size of the compact dimension is in generar an
which determines the location of the TeV brane relative togependent function, which is determined from Einstein’s
the Planck brane. If this interbrane distance is not fixed, i%quations. We argue that in general the component of the
becomes a massless modulus which leads to unnacceptabjgyne tension in the compact dimension will depend on its
cosmology[6] and experimental consequences. Goldbergegize, due to the quantum effects of fields localized to the
and Wise showed that adding a scalar field which propagatgsyane. Then a consistent solution to Einstein’s equations will

in the bulk and has a source on the branes is sufficient to fixy each brane location at a particular valuer oHowever, in
this model this effect by itself does not give rise to a large
hierarchy without fine tuning. Nevertheless, when combined
IFor examples of theories which naturally have a finite but expo-With the effect of a bulk scalar field on the geometry it is
nentially large volume for the additional dimensions see R&f.  possible to realize a large hierarchy without a fine-tuning of
For earlier work on large extra dimensions and/or a low quantunthe parameters.
gravity scale see Ref4]. Both branes in the theory can have positive tensions and
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the solution is free of singularities where general relativity (D—2)2+(D—2) A
might break down. One overall fine-tuning of the parameters a? s =— (:_2). @)
in the theory is required to adjust the four dimensional cos- AM

mological constant to zero. . .
To solve these equations note that we can rewrite(gq.

in the form
We begin by looking for solutions to the Einstein equa- = (D—Z)[(—, ’+(£
tions inD dimensions, wher® is greater than or equal to 6, 2 f f
in the presence of a constant background bulk cosmological 2(D—2)2+(D—2)
= .

II. ANSATZ, EQUATIONS OF MOTION AND SOLUTIONS

2 (D—2)(D—5)(f’>2
T\ ]

constant. We assume that all sources other than the bulk
cosmological constant are restricted to subspaces of lower 8
dimension. Hence our approach will be to first solve the , . , , )
equations of motion in the bulk to obtain solutions with a This has the form of a first order differential equation for

number of constants of integration that can then be adjustefi/f- This differential equation is straightforward to solve,
to find solutions for various boundary conditions. and we can then obtainitself by performing a simple inte-
The action in the bulk is gration. We then use the result obtained ffam Eq. (6) and

the problem of determiningalso then reduces to performing
a simple integral. The results are

®

s:f d®x\—G(2MP?R—Ayp). (1)

f= foeaZ[ 1— Cef(Dfl)IZ]aZ]M(Dfl) (9)
We label a general coordinate & whereM runs from
0to (D—1). We restrict our search to metrics of the simple

form X[1+ce ~(P-12az)2 (10)
ds’=f(z) 5, dx*dx"+s(z)dy*+dz* 2)

s=spe*1—- cel~D-1)/2laz)~2(D-3)ID-1

Here fy, sp and c are constants to be determined by
boundary conditions. In the limits of vanishimgand infinite
¢ we recover the usual anti—de Sitt&dS) metric. It is easy
to see that in fact for any values of these constants the warp
factorsf ands change very rapidly as function af In par-
ticular there are always values pfvhere they are changing
1 exponentially quickly. This suggests that these metrics are
2M22(Ryn—gwnR) = — EgMNAB. (3 good candidates for a solution to the hierarchy problem.
It is possible to use the class of metrics above to find
The nontrivial components of this equation are solutions to the Einstein equations for various source con-
figurations and geometriédn the next section we exhibit a
2 potential solution to the hierarchy problem based on these
metrics.

where x and v run from 0 toD—3. The remaining two
coordinates are labeled hyyand z. Here the warp factor
ands are assumed to be functions only of

Einstein’s equations in the bulk take the form

s” s"(3-D) 1 (¢
s

1f”3D 1f +f' +
P

_¢[F)7(P°-9D+18 Ill. MODEL
f 8

A. Metric

(D—-2)°+(D-2) In this section we limit our interest to a solution where the
°f 8 (4)  fifth dimensiony is compact and corresponds to an angle in
the higher dimensional space. We relalyeby ¢ in this
1 " (D-2)(D—5)[f'\2 section and hereafter to emphasize its angular character. The
—{(D—z)—+—(—) } angle ¢ runs from zero to z. We allow the coordinate to
2 f 4 f be non-compact and run from zero to infinity. It corresponds
5 to a “radius” in the higher dimensional space. We relabel it
:az(D_Z) +(D-2) (5) by r to emphasize its radial character.
8 The geometry of our model consists of two four-branes
localized in the higher dimensional space at different values
(D—2)(D-3) ( f’)z D—-2f"s of r. Their positions are specified by the equatiorsa and
8 f

4 f s r=b wherea<b. They can therefore be thought of as being
similar to the surfaces of two infinitely long “concentric cyl-

,(D—2)*+(D-2)
=

5 ©®)

°Note that these solutions are coordinate transformations of the
where« is defined by bulk solutions found in Ref9].
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inders” in the higher dimensional space, with the regular f=foe 2 [1—Cc e (5Rr]4s (17
four dimensions parallel to the common axis of the cylinders,

the fifth dimension going around the surface but perpendicu-  s=sg,e%2'[1—c,e~ 522" |76 1 4 ¢ el 5221 ]2,

lar to the axis, and the sixth dimension being the radius. (18)
(This intuitive picture does not account for the fact that the

space is curvedl.The standard model fields are localized to  Forr>b,

the brane at =a. The hierarchy problem will be resolved by

the enormous difference between the values of the warp fac- f="fze™ ", (19
tor atr=a andr=b. o
Because the coordinatg is compact, the four-brane ap- S=Sze “3. (20

pears as a three-brane at sufficiently long length scales.

The branes divide the space into three distinct sections; The constant,, is determined by normalizing the warp
0<r<a, a<r<b, andr>b. In general there is no reason factorf to 1 at the position of the visible brane. The constant

for the bulk cosmological constants in these three sections top1 Was determl_n_ed earlier. All the other constants above as
be the same since the branes may be separating differve_eII as the positions of the branesandb must be deter-
phases of the theory. In what follows we will assume thatMin€d by matching across the branes.
they are different and will associate the three regions with W& now write down the action for the branes:
three different values of: a4, a, and a; respectively.
The solutions of Einstein’s equations in the three regions sbzf dxM\ = G{8(r—a)[Lys—A1]+8(r—b)}
will be of the form of Egs.(9) and (10) but with different
values of the constantk,, sy and c. We will give these e
constants an additional subscriptvherei runs from 1 to 3, Xlmz= Azl @D

in order to differentiate them in the three different regions. = . : : :
S . HereG is the determinant of the metric tensor in the five
Now the constant; is fixed to be—1 by the requirement

that the solution be non-singular at the origin. This require-dimensional subspacé,; andA, are the cosmological con-

ment also fixes the value @, to be 26%(2542). To see Stants on the two branes, ardy;, and Ly, are the
that this choice does indeed smooth out the singularity at thk@grangians of matter fields localized to the branes.
origin we first examine the behavior of the the functid(is) The stress tensor for each brane has the form

ands(r) asr tends to O: TAB:TAAB+<TMAB> 22)
_ 2

f(r)=const- O(r") (a1 whereT? is the contribution from the cosmological constant
and (TM) the expectation value of the stress tensor of the
matter fields residing on the brane. We will be working in
the semi-classical limit, treating gravity completely classi-
cally but accounting for the quantum effects of matter local-
ized to the branes.

Assuming the matter on the brane is in its ground state,

S(r)=r2+0(r%). (12

We then go to the “Cartesian” coordinate system which
is smooth at the origin:

The requirement that the metric be bounded at infinity
determines that the space outsideb must be AdS. This 0 0 0 %
corresponds to settingg to infinity while keeping the prod- 23
ucts c;f oz and c3Sgs finite. We relabel these products lhy
ands; respectively.

We are now in a position to write down the forms of the

X'=r cos¢ (13 T g IS constrained by four dimensional Lorentz invariance to
y'=r sing. (14) be of the form
: : : o : -p¥ 0 0 0 ©
It is straightforward to verify that in this coordinate sys- )

tem the components of the metric and their first and second 8 0 gt 0 0 0

derivatives(which go into the Ricci tenspare smooth at the 774 Ap=— 0 0 B 0 0|,

origin, showing that there is no singularity there. 2M7 0 0 0 B o0

0

where 82 and y? are constants associated with each brane
that we require to be positive. The form ®f* is more con-

solutions in the three regions. FoKk a, strained since it is proportional 6,5, which would imply
that 8= 2 if the only contribution toT came from the
f=fg e [1+e G2a1r]4s (15)  cosmological constant on the brane. Thus the deviatioh of
from the G,g form is due entirely to the contribution from
S=5g e [1+ e ®2aur] =64 1 — e(~52)a1r]2, the matter Lagrangian. In a subsequent section we will show

(16)  that the contribution to the stress tensor from the zero point
energies of fields residing on the brane lead8ty. In
Forb>r>a, generalB and vy will depend on the geometrical factoasb
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andc, due to the quantum contribution to the stress tensoequations without singularities where all parameters are of
from matter localized on the brane. order 1 in terms of the fundamental scdle, . However,
Now Einstein’s equations for the upper 5 by 5 block of since we want to generate a hierarchy, we waipb
the Ricci tensor get modified in the presence of the branes te- O(40)>1. From now on we will assume thhtis the only
large parameter in the problem and that it is therefore respon-

4 _ __ - _ _\Ta sible for generating the hierarchy. Subtracting E2{) from
2M (Rag—9asR) > JagApt+87S(r—a)Tyg Eq. (32) we see that
+8md(r—b)Ths. (24) 5 5 11,
EF(CLb,az)_ EF(—Cz,b,a2)= 572 + 572

Since we already have the solution in the bulk, we can get
the complete solution by matching across the branes. The
metric tensor is continuous across the branes but its deriva- . — . )
tives are not. The above equation fixes the jump discontinu- NOte that from the definition ofy it is clear that if 3

(33

ity in the derivatives across the boundary. =7, theny=1y. But the difference betweefl and y arises
In terms of components the conditions on the derivativegrom the vacuum energy of quantum fields localized to the
are brane (the Casimir effegt which vanishes in the limit of

large proper radius for the compact dimension. As will be

3 f 1§ discussed in a subsequent section the Casimir effect is finite
T 2% §A EI'B 29 and regulator independent in the limit that the cutoff is taken
to infinity. Then by dimensional considerations, if the fields

! on the brane are massless, the right hand side must be of
20 ==~ 2. (26)  order[27s(b)]~ %2 since the proper size of the compact di-

mension is the only scale in the problem. Then the equation

We wish to apply these conditions to our solution. Toabove becomes
simplify matters we first define

5 5
EF(Cz,b,az)_ EF(_Cz,b,az)

Y?=4p%-3y 27)
2 aC :Conste(*S/Z)azb(l_Cze7(5/2)a2b)3
F(c,r,a)= m- (28) X (1+ c el =52y 5] (34)

The conditions on the derivatives at the first boundary arevhere the constant above is of order 1 in units of the funda-
mental scale. While we see that both sides of this equation
are the same order of magnitude even for ldvgee also see
that b only appears in the combinaticel ~%222"_ |t is this
combination which is determined in terms of the various
tensions. Hence, although the brane spacing is fixed, a large
a;— a1~ 5[F(C,a,a5) —F(—1a,a,)] value for a,b is only possible through a fine-tuning of pa-
rameters which is over and above the fine-tuning necessary
5 1 to set the four dimensional cosmological constant to zero. In
+ E[F(—cz,a,az)— F(la,aq)]=— E;i' the next section we shall show that by adding a scalar field in
(30) the bulk in the manner of Goldberger and Wig# the
matching conditions at the branes can be made more sensi-
The conditions at the second boundary are tive to b and the hierarchy can be made natdral.
Equating the various components of the metric across the
5 boundary fixes the values of the coefficiefgs, sg,, f3, and
—az—a—F(Ccy,b,ap) =~ 272 31 s3. Once again there are four equations but there are now
four unknowns, so there is no further fine tuning required.
3 5 1 This completes the determination of the metric in the ab-
—az—ast EF(cz,b,aZ)— EF(—cz,b,a2)= — 5;%. sence of any bulk matter. The warp factor for the fifth di-
32) mension is plotted in Fig. 1 for a choice of parameters for

1
a—ayt+F(cy,a,a)—F(—1la,a1)=— E?’i (29

Looking at the above equations we have three parameters

2, a and b which have to satisfy four independent equa- 3note that the necessary fine-tuning of the Planck 4-brane tension
tions. Hence a fine-tuning is necessary. This is the finemignt also be natural if the 4-brane is an approximate Bogomol'nyi-
tuning necessary to set the effective four dimensional cosmaerasad-SommerfiekBPS state of a nearly supersymmetric theory.
logical constant to zero. Once this fine-tuning has beerThus supersymmetry of the bulk action might provide an alternative
made, it is straightforward to find solutions to the abovesolution to the hierarchy problem.
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pute the stress tensdr, of the scalar field. We then can
substitute this solution back into Einstein’s equations to de-
termine the correction to the geometry induced by the stress
tensor of the scalar fieltllf we wish, this procedure, which
is essentially an expansion i,/ M, can be carried out to
higher orders but the lowest order will be sufficient to to fix
the brane spacing, which we expect will receive only small
corrections at higher orders.

For simplicity we will take as a starting metric

fo=1, r<a, (39
fo=e %, a<r<b, (39
fo=e “@e2emal  >p (40)
So=r?, r<a, (41)
sp=aZe %@ a<r<b, (42)
FIG. 1. Plot of warp factor of compact dimensi¢circumfer- so=a2e’ aag2abg=ar (43

ence of circlesversusr (vertical axig, illustrating why we call this
the “space needle” metric. The apparent singularity at the top, Thijs corresponds to a solution for the special case with no
wherer =0, is a coordinate singularity only. bulk cosmological constant far<a but the same cosmo-

. ) ) logical constant everywhere outside, aryd=0. This metric
which there is a large hierarchy. The warp factor for thejs fat in the neighborhood of the origin and pure AdS outside
usual 3+1 dimensions is qualitatively similar, except near 5 This is a special case, with, andc, set to zero, of the
r=0 where it goes to a constant. We call this the “spacemngre general class of metrics we have considered in Sec.
needle” metric for reasons which are obvious from the pic-j| . Non-zero ¢, will be treated perturbatively in what fol-
ture. lows and we will also indicate how to include, perturba-

tively. Hence the only loss of generality arising from this
B. Model with bulk scalar fields starting metric is that we can only extend our conclusions to

In this section we show that when the model of the Iore_the more general class of metrics of the previous section
vious section is modified by the inclusion of bulk scalarWhen c, and «, are sufficiently small that a perturbative

fields, the hierarchy can be made natural. approach is valid. S
The action for the scalar field We first solve for the scalar field in this background met-

ric. The equation of motion is

1
SM:fdGX\/_G E(_aml/faM'lf_mZ‘lfz) 19 5
— - 2T+ >3 ' +Fmey=N18(r—a)+N,8(r—b).
+V—GF()8(r—a)+V—GH(¢)8(r—b). (44)
(35 The solutions in the three regions consistent with smooth-

Herem s the mass of the scalar field in the bulk. We will be ness ofy at the origin and vanishing of at infinity are

interested in the limim?< &2, since this is where we natu- 1
rally obtain a large hierarchy. The scalar field sourg¢g) = Al( 1+ Zm2r2+ ], r<a, (45)
andH(y) are in general arbitrary functions. For simplicity
we will take r=Ae’1"+B,e’?", a<r<b, (46)
F(yg)=\ 36
(P)=N\1yp (36) J=A™ r>b, a7)
H() =Ny (37)

where we have neglected higher order termsnfm? in Eq.

The coupled equations for the gravity-matter system aré49, and
difficult to solve. We shall address the problem by a succes-
sive approximation method. We will first solve for the gravi-
tational field in the absence of the scalar field, assuming that“we neglect quantum corrections to the stress tensor from the
the contribution to the stress tensor of this field is small. Wescalar field, as we do not expect these to qualitatively alter our
will then solve for the scalar field in this geometry, and com-conclusions.
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5 5 1%
0'1:—2(1— Za +m (48)

+m?. (49

For positivem? o, is positive ando; negative. Then

O03= — 0. (50)

PHYSICAL REVIEW D62 085006

£ 1/f' 2 5 _
2—+—(—) ==a’+T2

f 2\ f 2
(59
3/f'\2 f's" 5 —
| __ —_ 2 6
2(f)+f s 2a+T6.
(60)

The equations inside<a can be obtained by setting
=0 in the equations above. The equationsrforb are iden-

The coefficientsd; andB; are to be determined by matching tical to those above. We are interested in the correction to the
the solutions fory across the boundaries. We require conti-geometry to linear order ifi/M% . To obtain this we expand

nuity of ¢ across the boundaries and the following jump

conditions:

Ay'(a)=—F'(y) (51)
at the first boundary and

Ag'(b)=—H"(¢) (52)

at the second boundary.

Since the expressions for the’s and B;’s are compli-
cated, we will neglect effects of order *° which are very
small and further assumma?a?<1 so that such effects can

f=fo(1+e€) (61
S=5p(1+ k), (62

and linearize ine and k. Then forr<a Eqgs. (58) and (60)
above become

1
€'=51T% (63)

3 " 1 " 1 ! 3 ’ _0
_EG_EK_FK_EGZ—TO. (64)

also be neglected. These approximations will not affect our

conclusions. Then in this limit the expressions for #hés
andB;’s are

Ao A
A2: _2 2 e(o'z—u'l)ae—o'zb__le—o'la (53)
(03— 03)01 oy
A2
e 70-2b
B, (a=o) e (54
A2
_ = —(J'3b
e P LI (55)

We now find the contribution to the stress tensor from the

These equations yield

1 =
€'=51T% (65)
1 — 51/ r —
k'==rT8—=— | drr2TS,
2% 2r2)o e
(66)

which can be integrated to getand «. Here we have used
the constraints of smoothness at the origin and the linearized
form of the Bianchi identity. The latter is shown below:

(rT%)' =T5. (67)

field ¢, T,:
1 Fora<r<b Egs.(59) and(60) when linearized become
167 TS =<——( 24 m?)+F(4)8(r —a) _
¥ 2 v v 2¢"+5a€ =T (68)
+ H(¢)5(r—b)> (56) dae'+ax' =TS, (69)
These yield
1
167 Ty, = <—(¢'2— m2)> . (57) 76
2 €= De’(5’2)<“”+5—6 (70)
o
Next, we substitute the stress tensor back into the Einstein
equations to determine_the correctionsﬁj the geometry. For -|-_66
convenience we defin@=8xT,/2M}, N=\/2M} . Ein- K'=—4D97(5/2)(“r)+§1 (71

stein’s equations in the regian<r <b take the form

1 (s'\? 5 _

4 \'s 2
(58)

which can be integrated to yield and «. HereD is a con-
stant of integration which must be determined from matching
and once again the linearized form of the Bianchi identity for
this region, shown below, has been used:
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__ Sq—— 1 field the metric between the branes is not of the AdS form,
(T%)" + 7T66_2aT00_ EaT55:O' (72)  and our conclusions once the scalar field is introduced will
be valid for this more general class of metrics. Setfinm
In identical fashion we can get, for the regior b, the above formulas to a constant non-zero valuerfaml
— corresponds to allowing a non-zer@;. Although it is
L T% straightforward to accomodate a non-zerp perturbatively
€ TR T T 5, ™ in this framework, for simplicity we shall keep;=0 in

. . . what follows below, andr will be related only toT,, and
Here the requirement that the metric die away at infinityyi not include any piece from a cosmological constant,

has been imposed. This completes the determination of bulk \y/a now return to the general case with a scalar field. We
corrections to the metric. The final step is to maich across thgye interested in a solution with all parameters of order 1 in
branes, thereby determining the brane positions and the UNiits of the fundamental scale but we allaw?/a? to be
determined constar?. . , somewhat less than 1 in order to obtain a hierarchy.

The conditions on the continuity of the metric across the paer than give the exact solution we will give the more
brane are straightforward to satisfy because of the additiongh¢,rmative order of magnitude results. For dimensional con-
constants of integration that will be obtained on integratinggjyerations any parameter of order 1 in units of the funda-
the expres.s.ions for’" andk’. Oncef has been normalized to ,antal scale will be denoted by the appropriate power.of
1 on the visible brane and the requirement of smoothness has 1,4 matching conditions at the inner brane, Edg) and
been met ar =0, all these additional constants will have (75), determinea andD as functions ob. Provide,dmzb/a is

been fixed. _ , . less than or of order I3 andD are of order 1 in units of the
We now focus our attention on the jump conditions on they,qamental scale. The dependencédadn b is
derivatives. At the inner brane we have '

3 1 1 2\ 3 D=0(a)+0(m?b). (78
—zA€e'(a)— Ak () —z|la—=|— s« _ ) ) )
2 2 2 a 2 This result will turn out to be crucial for the solution of the
1 hierarchy problem.
=B3- E)\l(/,(a) (74) Both equations at the outer brane are sensitivie anda

only through exponentially small terms. This is because the
1 value of s and its derivatives is exponentially insensitive to
20€'(a)+2a=—y2+ 2np(a). (75)  bandain this region, which manifests itself in the forms of
2 €' and k' close to the outer brane. This is similar to the
insensitivity tob of Egs.(31) and(32). One might therefore
worry that just as in the previous case an exponentially pre-
3 1 1 3 cise fine-tuning will be necessary to get a hierarchy. How-
- EAE'(b)— EAK’(b)+§(2a)+ E(Za) ever the fine-tuning in the previous case was related to the
fact that near the Planck brane the metric was very nearly
1 pure AdS, which is a homogenous space, and the compact
=,8§— E)\zz/;(b) (76) dimension was exponentially large, so that the location of the
Planck brane had very little effect on the matching condi-
1 tions at either brane. In the present case with a light bulk
2A€' (b)—4a=—y2+ -\,(b). (77)  scalar the value of the scalar at the TeV brane depends more
2 sensitively onb. To determineb, add Eqs(76) and (77) to

: . obtain
These are four independent equations for the three unknowns

a, b andD. Just as in the previous section, the metric and 5
brane locations are completely determined with one overall =Del"%2b=(B,)2—(y,)? . (79
fine-tuning needed to find a Poincarariant solution. 2

First consider the situation without the scalar field, Te.
=0. This is the same case which was considered in the pres
vious section. In general, as we found that the metric bewee
the branes need not be pure AdS even without a scalar fiel
The tensions of the branes must be fine-tuned toDséb
zero. We are allowing these brane tensiomkich are related
to B2 and y? in the above equatiohso deviate from those
fine-tuned values by small amounts. Here small merely b=0
means that perturbation theory is valid. Then it is straight-
forward to verify that Eqs(74) to (77) are simply linearized
versions of Eqs(29)—(32) with ;=0 and the parametd Clearly m need not be much smaller thanto get a siz-
is proportional toc,. Hence even in the absence of the scalarable hierarchy. The difference of Eq§.6) and (77), which

At the outer brane

This is the analogue of Eq33) in the previous section.
ecall that 8,)2— (y,)? arises from the vacuum energy of
uantum fields localized on the brane and is of order
wel~529b Then this equation, together with EF8) which
relatesD to b, determined as

—2) . (80)
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we have not yet used, becomes the condition that the effec- Mi:o(QZe(S/Z)ab). (86)
tive four dimensional cosmological constant be zero, which
is the usual fine-tuning. This large exponent is responsible for the hierarchy between

One limitation of the above approach is that the innerthe Planck scale and the weak scale.
brane necessarily has negative tension along the non- Next we analyze the spectrum of linearized tensor fluc-
compact directions. This is a consequence of the choice of tations to see if it is consistent with the results of gravita-
starting metric with zerax; andc, and the fact that devia- tional experiments. We neglect the effect of the scalar field
tions from this metric can only be perturbative. The non-zeran what follows since we do not expect it to qualitatively
a4, case is not simple but there is a limit in which it is affect our results because its contribution to the energy den-
tractable — that in whichd,a)? is perturbatively less than sity is small.
1, even thougha; is not small. In this limit, neglecting Expanding
higher order terms ind;r)? we find

, G}LV:anV+hMV (87)
= ZairJr e (81))  and substituting this into the Lagrangian we get the follow-
ing equation for the fluctuatioh in the bulk:
s 2 5 ’ r\ 2
_-_Z 2 1ls f 5 1
g—r 6a1r+... . (82) _h”_zghl_<T h+§a2h=?m2h, (88)

We can substitute for this in E¢44) and find that to the 1o m2= — 7,.,P“p” and we are restricting our attention

order shown the solutiof45) is unchanged. Now, |f1§a_ _to modes that have no momentum in the compact direction.
>ay, the inner brane can have positive tension and it isthese are expected to be separated by a mass gap from the
straightforward to verify that all the other conclusions aboveneavier modes with nonzero momentum in the fifth direction.
go through as before. The boundary conditions thdt has to satisfy ard’(0)

=0 at the origin and
C. Physical implications

!

To determine the effective four dimensional Planck scale DA — = — 2 89
. . . e . h Y (89)
we concentrate on the higher dimensional Einstein action.
When the two extra dimensions are integrated out this will

contain the usual four dimensional Einstein action: Clearlyh=f is a solution of this equation witm=0 by
comparison with Eq95) and(6). This is the massless gravi-

oaa 6oM 5 ton. There is a continuum of other solutions for all positive
Se=2M; f d*-GR®. (83 m?, as can be seen from the asymptotic behavior of the equa-
tion. However, to extract these solutions is not easy, because
Expandingg,,,= 7,,*h,, and integrating out the two of the complicated forms df ands. However, since we are

extra dimensions we see that only interested in order of magnitude estimates, we can sim-
plify the problem by considering instead a simpler problem
SGZZMif oM gRA st - - - tmhg:rircetams the physics we are interested in. Consider the
=M§J dixi—gRA - (84) f=1, r<a, (0
f=e %%, a<r<b, (91
and consequently
f=e aae2abe— ar' r> b, (92)
2w|v|4f drfys=Mj3 . (85)
* 4 s=r?r<a, (93
Rather than do this integral exactly we will be satisfied A2 —aanar
: . . A ; = <r<
with an estimate. The dominant contribution to the integral s=a‘e T, a<r<b, (94
comes from the region close to the outer brane where the s—alZe W@g2abgar S p (95)

integrand is very large and the forms bfand s are very
nearly simple exgtalnentials. For the purposes of the estimate This corresponds to a solution for the case with no cos-
we setaz=ay=a =M, =a: mological constant for<a but the same cosmological con-
stant everywhere outside. This metric is flat in the neighbor-
hood of the origin, AdS outsida. It clearly has a form very
SWork is in progress to see whether this fine-tuning can be madéimilar to the metric we are interested in fora, although
more natural though supersymmetry of the bulk action when theunlike our case, the positions of the branes are not fixed and
Planck brane is approximately BPS. one has negative tension. In what follows we will assume the
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main features of the excitations we are interested in are com- The values of theA’s and B's are to be determined by

mon to both metrics and proceed. matching. The boundary conditions to be satisfied are conti-
With this approximation the equation in the regiota  nuity of h across the various boundaries and the following
wherea is zero becomes jump conditions on the derivatives mta andr =b respec-
tively:
1
—h"— =h'=m?h. (96) h'
r A P (106
The solution of this equation to leading ordernita? is
h/
1 A—=-2a. 10
h=N 1—Zm2r2} (97) h (107

. L ) o The constantN is to be determined by normalization.
whereN is a normalization constant. Since we are primarily since this is not quite in the form of a eigenvalue problem

interested in the light modes this will suffice. In the regionye make some simple transformations which render it so.
between the branes the equation for the modes has the form Defining

) 3, m S\ 4
—h"=Zah"+3a*h=—h. (98) g=c0nst><h(f) (108

This equation admits a solution in terms of Bessel functions.
The solution is q:f dr%, (109

h=Nel" " (AJ5  map]+ByJ_sAma,]) (99
_ ) we get an equation fog as a function ofg which has the

whereA, andB, are constants ang, is defined by form of an eigenvalue equation fon? with unit density
function. For the continuum modes it is the outer region
which is relevant for normalization. But heeand f are
proportional, so we can conveniently choose the constant so
thatg=nh in this region. Alsoq and g5 as defined differ at

The closed form expressions for the relevant Bessel funomost by an additive constant. Hence for the continuum
tions are modes we merely have to normalize the solution Hafor

r>b with respect tays.

2 e( = 1/2)ar

42=, o(-12)aa’ (100

Jen(x)= /i sinx 3—1 _3COSX (101) Matching at the inner brane we find thas is of order
S22 N X2 X Jm/a, andB, is of order n/«)%?2 Then matching at the
outer brane we find that
B 2 3 1 sinx 102 o 112
J_5p(X)= VR CoSX ;— +3T ) (102 A3:O[<E) b (110
Since we are interested in valuesmofsuch thatmg; <1, ~5/2
we can conveniently approximate the solution between the Bs:o[ — e(a’Z)b}, (111
branes by
__[2m\572 __[2m)\ 52 In the far asymptotic region thA; mode is dominant.
h= N[AZ(T) e(3/2)5”+382(7) e’ Normalizing to a box of sizé we find
1 (2m —-1/2 1 m
Bl aa N=0| —= —el"32ab|, 112
+252(a) ed|, (103 I a (112
Coming to the regiom>b we can also obtain a solution The situation is slightly different for the zero mode. We
in terms of Bessel functions: write the normalizable wave function as
h=Nel* ¥ (AgJg A mag]+ B3l s dmag]) (104 do=Nof %" (113
whereqs; is defined by Now the integral relevant for normalization,
_2 et/ _nN2 1 3126112 N2 1/2
qS—EW. (105) dq%—NO dl’ﬁf _NO drfs™< (114)
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This is the same integral that appears in determination of <TE>:<—3A¢I9B¢—EEL>- (118
the four dimensional Planck scale. By exactly the same
methods we obtain, on normalizing to unity, Because the ground state possesses translational symme-
try,
No=O(ae(~34ab), (115
B\ _ 4 B
We are now in a position to determine the corrections to (Ta)= \7J’ d*x(Tx) (119

gravity from the Kaluza-Klein excitations of the graviton. _ ' '
The change in the potential energy between two masges WhereV is the volume of the four space dimensions. Per-

andm, on our brane is given by forming a Fourier expansion for the fielpl and making use
of the canonical commutation relations this reduces to
Ay Gmym, g N? . 1
V=0 f M N2a)-C (M= S K+ keko+m? (120
0 Kk & 2V
(—3/2)ab —32
e Gmm, [ 10 n
:O Gm1m2 34 ‘|: ] n 1 kmk
r 3 3 T.V=— D —————— 1271
a™r r*(Tev) < m> Ek: % 2V \/m ( )
(116

Since the usual three space dimensions are infinite, the
From this it is clear that deviations from Newtonian gravity SUms over momenta in these three directions can be replaced
are highly suppressed at long distances. by integrals. However, since the fifth dimensignis com-
We now explain why we expect this model to have thepact, the momenta in this direction remain discrekg,
same physical implications as the model we started out with=n/a wheren is an integer:
Essentially for >a the general solution of both models will

h.ave a similar form.. The only difference will be in the mag- (TO)= E f a3k JKZF kgkB+ m? (122
nitudes of the coefficientd, and B,. Although these coef- )4

ficients are determined by matching in the interior, their or-

der of magnitude follows from simple dimensional n E Kmk" 123
considerations. This then implies thag and B; and hence (Tm) =~ ks (2m7)% \/k2+k kS+m? (1239

the normalization of the modes can be fixed by dimensional
considerations. Hence the two theories will give the samdhese integrals are infinite and must be regulated in order to
order of magnitude estimate for the the corrections to Newyield sensible physical results. We will use a Pauli-Villars
tonian gravity. regulator, adding massive fields with appropriate statistics
Because of the isometry of the compact dimension, thigintil all the divergences have been removefe could get
theory contains a massless ‘“gravi-photon”—a Kaluza-Klein similar results in a theory with spontaneously broken super-
U(1) gauge boson. However, no light or massless fields wilsymmetry) We simplify to the special case where the boson
carry non-trivialU(1) charge since they have no momentumfield is massless. Then all the divergences can be removed by
in the compact dimension. We expect that other than th@dding three fields with opposite statistics having masées
modes we have a|ready discussed, the remammg spectrum Mand M and two fields with the same statistics which both

gravitational excitations will be massive. have mass/3M. Here M is assumed to be some kind of
A more comprehensive study of the phenomenologicatutoff for the theory.
implications of this model is left for future work. Performing the integrals and adding the contributions

from the various fields we get the finite but regulator depen-

D. Stress energy tensor for a field localized to a brane dent results

In this section we consider the form of the stress energy , 1 a2 5 5 )
tensor for a field localized to a brane having the metricT =9 E W[k sin(k?) +2(k&+3M?)2In(k3+ 3M?)
GAB— diag(—1,1,1,1,1) but in which the fifth dimension is
compact and has a proper saeWe show that in the ground —2(k2+M?)2In(ki+M?) — (k2+4M?)2In(k3+4M?)]
state the stress tensor does indeed have the form given in Eq.

(23). For simplicity we limit ourselves to the case of a free (124
scalar field.
The Lagrangian has the form T§= _2 e ké[kéln(p§)+2(k§+3M2)In(k§+3M2)
ks ) a
1 1
L=—Z0ap7 ¢p—5m?¢® . (117 —2(kE+M?)In(k2+M?)— (k&+4M?)In(kE+4M?)]
(129
We are interested in the expectation value of the stress _
tensor in the ground state: T>=0. (126
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All other components of the stress energy tensor vanish, anclilation is straightforward but lengthy and the details will
it clearly has the form of Eq(23). In a supersymmetric not be presented here. The result is that the difference be-
theory the scalév will be related to the scale of supersym- tweenTh, andT? is finite and of order (H)® in the limit that
metry breaking. We now estimalé, and T3 in various lim-  the cutoffM is large.
its. This (1k/)° result for the difference could have been an-
WhenM <(1/a) we can approximaté,, andTg to lead- ticipated. Since the only counterterm allowed by general co-
ing order in (14)2 asO(M*/a) andO(M?/a®) respectively. variance is the cosmological constant which contributes
Clearly in this limit 32 and > are not equal. equally to bothT, and Tz, the difference between these two
The relative difference betweérz andT;, must be finite must be finite and regulator independent in the limit that the
when the cutofiM is taken to infinity and must vanish as the cutoff is taken to infinity. For a massless fieltljs the only
size of the fifth dimension becomes infinite. We now esti-available dimensionful parameter. This result is just a higher
mate this difference as a function afand M when the di- dimensional form of the Casimir force.
mensionless quantitgM is large.
To do this we attempt to replace the sum we are interested IV. CONCLUSIONS
in by a sum of integrals. We begin by observing that the ) ) .
integral below can be broken up into a sum of integrals over We have constructed a set of solutions to Einstein’s equa-

equal subdomains: tions in six or more dimensions, and exhibited a six dimen-
sional setup, “the space needle,” with two concentric posi-
— kgtlla . tive tension 4-branes, which each have one compact
f dk°T(k )—; fk dp>T(p°). (127 dimension. Gravity is mostly localized to the outer brane
> while we assume the standard model resides on the inner
HereT represents an arbitrary function kf. If the function ~ brane, explaining the apparent weakness of gravity in our
T is smooth it can be Taylor expanded: world. There are no massless moduli associated with either
the size of the compact dimension or the brane locations.
. s s e s (PPKO)? This provides an explicit demonstration that the gauge hier-
T(p?)=T(ks) +T"(k*)(p°—k*) +T"(k )T+ B archy problem can be solved in six dimensions, without su-

(128 persymmetry, and with negligible corrections to gravity at
distances longer than an inverse TeV. Gravitational effects

Then performing the integrals over the subdomains we gedlo become strong at energies of order 1 TeV. We leave the

L L discussion of gravitational collider phenomenology of new

51 By , noncompact dimensions for future work.

f dkT(k )_kES g T(Ks)+ ET (ks) We do not address the important issue of how to obtain
chiral fermions on the standard model brane. Ordinary di-
mensional reduction by compactifying the fifth dimension on

. (129 a circle always results in a non-chiral theory. One simple

alternate possibility is to have the standard model reside on a

3-brane at the center of space. Then it is only necessary to

rpave one 4-brane—the Planck brane. The metric is simply

the a—0 limit of the space needle metric. Alternatively, it
ay be possible to generalize our mechanism to additional
imensions with some compactification which does allow a

(r:hiral effective theory on the TeV brane.

We also do not address the cosmological constant prob-

m. The effective four dimensional cosmological constant

1
T (kg)+ - -
—5T(ko

Now if ST is T}, or T2, the first term on the right has the
form we are interested in. Also notice that the other terms o
the right then involve fewer powers && in the numerator
and hence for the seventh term and beyond the sums f
individual fields are finite and straightforward to estimate.

2T can also be chosen to be derivatives to arbitrary orde
of TN or T3. Since these quantities occur in the expansion:?e

2 15 . .
for Ty, or Ts, they can then be substituted back to obtaingenends on a complicated function of the bulk and brane

systematic expansions f‘_T'ﬁw andTs in terms of integrals.  harameters, and may be fine-tuned to zero or to a small ac-
A complication that arises for the case of a massless fieldeptaple value.

is that the fourth derivative and higher ®f, and T2 are not
well defined aks=0. We account for this by separating this
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