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Renormalization group study of the Chern-Simons field coupled to scalar matter
in a modified BPHZ subtraction scheme
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We apply a soft version of the Bogolubov-Parasiuk-Hepp-Zimmermann subtraction scheme to the compu-
tation of two-loop corrections from an Abelian Chern-Simons field couple@nessive scalar matter with a
MNP T®)? and (P 'd)? self-interactions. The two-loop renormalization group functions are calculated. We
compare our results with those in the literature.

PACS numbgs): 11.10.Gh, 11.10.Hi, 11.10.Kk

Field theories with the Chern-Simoi€S) term in 2+1 In a soft BPHZ scheme one introduces subtraction opera-
dimensiong 1,2] are among the best studied models in thetors in the external momenta and in the masses of the theory.
past two decades. This is due not only to their potential apin order to have a better control of the infrared divergences,
plications but also because of some subtle conceptual argbme of the subtractions have zero mass whereas others have
technical aspects. Indeed, the quantization of these theoriesass equal tqu (the renormalization scgleln D=4 this
raises interesting questions, some of which have not beescheme is in many circumstances equivalent to the dimen-
answered satisfactorily up to now. Of particular interest issional regularization with a minimal subtraction prescription,
the setup of a renormalization or regularization schemeand leads to a mass-independent renormalization group equa-
simple and reliable to provide a consistent framework fortion [16].
complex calculations. Many proposals have appeared in the In this work we use a soft BPHZ scheme in an Abelian
literature[2—7], each presenting advantages as well as dis€S theory coupled with scalar matter to compute two-loop
advantages. For instance, Pauli-Villars regularization explicrenormalization group functions. Since this method does not
itly breaks parity, analytic regularization is not gauge invari-involve analytic continuation in the space-time dimension
ant, and Slavnov regularization becomes rather intricatéi.e., we stay in the physical dimensi@n=3), we evade the
beyond one-loop calculations. problems aforementioned. Although we will be dealing

It is of course desirable that the regularization schemenainly with massive particles the scheme allows, for nonex-
preserves as much of the models symmetries as possible. teptional momenta, a smooth zero mass limit if all super-
this respect, the popular dimensional regularization appeargnormalizable interactions are deleted. The paper is orga-
to be suited for the task. However, the topological nature ohized as follows: In Sec. Il we introduce the model,
the CS term introduces extra complications. The Levi-Civitageneralize the soft BPHZ scheme to the CS theory with sca-
symbol does not admit a simple extension to complex dimenkar matter, and show that the soft BPHZ scheme respects the
sionsD and to overcome this problem some modificationsWard identity. In Sec. Ill we compute the renormalization
have to be dongs]. group functions up to two-loops. Finally, we draw some con-

If one insists on keeping the Levi-Civita symbol in three clusions and comments. Our results for the renormalization
dimensions, other approaches are possible. First, there is tlggoup functions extend the ones recently computed through
so-called consistent dimensional regularizatighl1Q] in  the use of the dimensional reductiph3], in the sense that
which €,,, is treated as essentially three dimensional, buthe results agree whenever a comparison is possible. The
one has to introduce a Maxwell or Yang-Mills kinetic term mentioned agreement indicates that dimensional reduction is
as a supplementary regularization. In another proposah consistent scheme, at least up two-loops, as far as renor-
called dimensional reductidi®,11—-13 the tensor algebra is malization group functions are concerned. However, differ-
done in three dimensions and afterwards the Feynman inteently from Ref.[13] the model that we study includes the
grals are promoted tD dimensions. This method may intro- most general, renormalizable and(1l invariant, self-
duce ambiguities in the finite parts of the amplitudes and alsinteraction of the scalar particles.
in the divergent parts in high order corrections.

Now, it is possible to renormalize divergent integrals
without introducing an specific regularization. One of the I. THE MODEL AND THE SOFT BPHZ SCHEME
most efficient and rigorous method is the Bogolubov-

Parasiuk-Hepp-ZimmermaniBPHZ) subtraction scheme The Lagrangian describing the model redttse metric
which has been applied in a variety of situatijdd]. One  has signature{,—,—) and*?=1]

class of this method, the soft BPHZ schemes, is especially

adequate for the study of massless thedriés.
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whereD ,=d,—ieA, is the covariant derivative anfi,,, It is apparent that our scheme does not introduce infrared

=d,A,—d,A,. The canonical operator dimensions are asdivergences in graphs having at least one internal scalar line.

follows (in unity of mass[m]=1): [®]=1/2, [A,]=[\] For ultraviolet divergent graphs without internal scalar lines,

=[&]=1, [v]=[e]=0. The ultraviolet degree of superficial special care has to be taken. To be precise, for ultraviolet

divergence of a graph is divergent graphs without internal scalar lines, we will use the
regularized CS field propagator

1
5Ng—Na, )

d(T)=3- Ve~ 3

P
Auv(p)zeuvp#! (4)
whereV 44 is the number of insertions of the superrenormal- P '€
izable vertexx (& Td)?, andN4(N,) is the number of scalar . o . . .
(vecton external lines il". Nonetheless, we must stress that, whereM IS a regularlz_anon mass which, in the subtraction
due to the contractions of indexes, this degree is lowered bgerms, IS to be treated in the same _Waymand has to be put
the number of external trilinear vertices having attached on qual to zero after all the subtractions are performed.

internal CS line. In this work we will use the Landau gauge, To steetk?ow the meth?dlwc;_rks, '? the Tollowlngtjhwihwnl
formally obtained by lettingt— 0. compute the vacuum polarization at one-loop in the theory

In a soft BPHZ approach the divergent quantum ampli- _specified by Eq(1). The vacuum polarization is given by the

tudes, described by Feynman integrals in perturbation theor)?um of two terms, namely,
agta )made finite by the application of subtraction operators
7% arranged in accord with the forest formuited]. (A)_ f
The subtraction operatef' has degree in the derivatives 2ie? 9y | LdalA(a), ®
and uses derivatives with respecttd (each of them having
degree 2if the integrand depends only on the square of this
mass. All infrared finite subtractions are mader#=0 but o (P)="— j [dal (29+p),(29+p), A(Q) A(g+p)
in the would be infrared divergent ternossibly occurring

in the last subtractionswe makem?=u2. As a rule, we —_ e[ rda _ ©
make the minimum number of subtractions necessary to ren- =—€"| [dall,(p.qm),
der finite a Feynman amplitude. Explicitly, the first three
subtraction operators are defined as where A(k)=i/(k?*~m?+ie) is the scalar propagator, and
. [dq]=d%q/(2m)*. Both 7)) and #{}) are linearly diver-
7 G(pi,m)=G(0,u), gents. For the renormalized quantities we obtain
1 G A .
T G(pi.m=G(0,0 +pf— , ) ng|R=2|ezng[dq](l—rl)A(q)
ap pi=0m=p
2e? [da] - - (7
G - egp)\f Al %= 5
2G(p, =000+ pf' e
&pi pj=0m=0
1 70 26 o [R(P =—e2f[dq](l—#)lm(p,q;m)
PP | p=om=p t M —— :
2 J wanv | PiT M 2
z9p| 3p am p;=0m=pu :ezf [d (2q+ p)P(2q+ p))\
m?)((q+p)?—m?)
3 =
g(pl 1 ) g(o 0)+ pl “ qpq)\ aa|p)\
' Ip=0om=0 A TP ®)
(a%) TP | =0
1, &G e
2PiP; aptap? |0 ot m am? From a practical standpoint, the finite integrals in EG.
Y pi=0m=0 and(8) may be most easily computed using an intermediate
1 G regularization(cutoff, dimensional, Pauli-Villars, efc.the
+—plplph ———— final result being, of course, independent of the regulariza-
67 ! 0pf‘apj”<9pﬁ ome tion employed. Note that the last term of the E&).vanishes
Pz upon symmetric integration. We obtain
02
+m2pi" ) e’m
&plﬂﬁmz pi:0,m:,u (A)|R_ -1 ﬁgp)\ 1 (9)
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FIG. 1. T® at one loop.
(10

“T2(p,p’;q,k) = —e[TPP(p+q,p’;k
where 7,,=0,,—p,P\/p?>. Using that m,(p)==} LERTRLLEE L p+a.ptik)

+ 7% (p), we finally get[note thatm(p>—~0)=0 as it -T@Yp,p'—q;k)]. (14
should
Here and in the following we adopt the simplified notation
pr(p)|R: m(P) T\ rm=rno,
2 2 2
S e P —4m Il. RENORMALIZATION GROUP FUNCTIONS
8 2
Tr \/p_ The renormalized vertex functions introduced in the pre-
N ) vious section satisfy the renormalization group equation
xsinh Y| ———| |7, . (11
Vam?—p?/ | " AP L Y.
,(L_ m2_ NN v o 2) 62_
The Lagrangian density in Eql) is invariant under glo- I am? I\ dv 277 e?

bal U(1) transformations. At the classical level, this de-

mands the conservation of the currem(x)=ie[<I>T3ﬂd>] —Nyg—Lya
+2e’®'PA . At the quantum level this current will be
qguantized with normal product of minimum degree, i.e., two.

The corresponding Ward identity for the Green functionsWheréBmz, By, B, Be2, Yo, andy, are power series in the
reads coupling constant®?, v, and A\. We note thatB.2=e?y,

=0 as a consequence of the Coleman-Hill theofé&id.
9, ( T No[J#](x) X{Vj}(xk Yi)) We shall fix now the other functions. We begin by prov-
ing that they do not have one-loop contributions. Indeed, in
= (T Ng[a#J,100) Xy 3 (X, ¥j) ) the computation of the renormalization group functions the
N N relevant contributions come through thedependence of the
subtraction terms. As mentioned before, these subtractions
=e 121 S(X=X;) _j:z S(x=xj) are those which are potentially infrared logarithmically di-
vergent. We shall now examine these possible contributions.
X(T X{Vj}(xk,yj) ), (12 We will use a graphical notation in which each diagram rep-
resents a set of Feynman graphs differing by the orientation
where of the external lines. Moreover, to facilitate the discussion,
one may use an auxiliary regularization so that each subtrac-
" tion can be analyzed individually.
=1;[+1 P7(x)) |1;[1 A,,l(y|), The divergent graphs contributing I§?) at one-loop are
shown in Fig. 1. Figure (B is linearly divergent but, as it
follows from the use of the normal product algorithm which does not depend on the external momentum, it does not lead
turns out to be valid in our scheme. In the first step Lowen0 & logarithmic term. The graphs in Figsbland c) van-
stein’s differentiation rulg14] was used to get the partial |§h upon contraction of indexes. Mo.re generauy, th_e subtrac-
derivative inside the normal produwhich can be done if tions for any one-loop graph contributing 8™, with an
one increases the degree of the normal product by one)unityedd number of CS lines, vanishes in the Landau gauge. This
in the second step one uses the equations of motion for tHean be used to eliminate the possible contribution$'®
bilinears ®'C0® and ®OdT, which in our case have the coming from Fig. 2. Finally, Fig. 3 shows divergent contri-
classical form. butions tol'*) at one-loop. Figure @) is linearly divergent,
The Ward identity for the proper vertex functions has theWith no logarithmic corrections. Figurgl3 is linearly diver-
same form as in Eq12) except for a minus sign on its right

hand side. Denoting by" NV (p,, ... pon;iki, ... k)

the proper vertex function of equal numbéxs of ® and®d" ;;Ff

fields andL gauge fields, one can verify that, in momentum y )/
a b

rib=o, (19

N+1

N 2N L
Xy (X, Yj) = [T ®x)
! k=1 i

space
g~ I‘Ef'l)(p,p’ q)=—e[lD(p)-T®(p)], (13 FIG. 2. Divergent contributions t6(®) at one loop.

085005-3



L. C. de ALBUQUERQUE, M. GOMES, AND A. J. da SILVA PHYSICAL REVIEW B2 085005

We have used the analytical continuation in the number of

dimensions as intermediate regularization. It turns out that all

integrals needed for the computations may be expressed in
a b c

terms of [n-dimensional Euclidean space, withdq}

_ _eqn n : _
FIG. 3. Divergent contributions t6*) at one loop. =o°d"g/(2m)", whereo is a mass scale, and=3-n]

gent. Usingry, in Eq.(3), and, in accord with Eq4), taking I&”)(Ma,Mb,MC)EJ {dk}{dq}

the limit M —0 at the end, we found that it does not depend

on w. Figure 3c) is actually finite due to the observations 1
made after Eq(2). A similar analysis can be done fd¥
andI"??) |eading to the result mentioned in the beginning of

X(k2+Mg)(q2+Mg)[(k+q)2+Mg]

this section. 1 [1
Let 3(p) be the self-energy function defined bY?)(p) — Z oyt
=i[p?>~m?—3(p)]. We have 322 | €
J J J J i (Ma+Mp+Mo)? 22
M@ﬂ“ﬁmZﬁﬂLﬁx&—)\ﬁLBVﬂ—v—Zm 2(p) 47a? ’
et 2yalpimm =0 1o (Mg, M) f{dk}{d }
2" (Ma,Mp)= U2 2 2, M2
It is then easily verified that (k*+MZ[(k+aq)*+Mj]
d [1] ! M, M (23
1 _ = .
o 2P F Bt 29 (pP-m?) =0, (17 16,2 ap

At two-loops, the nonvanishing contributions 4g, come
(19) from the three(quadratically divergentdiagrams in Fig. 4.
Figure 4a) may be written as

2
= 1Py 0 ( ig[l})
4 p? oprap”\T Im

[2] — _9ind _
| " $2(p)= - 2ie [ [dKI[dq] Atk+a-p)

PO XA*(K) A, ()| sepHz- (24)
where the superscript in parenthesis designates the order
the corresponding quantity in the loop expansion. From Eq
(18) and(19) we obtain thatyl!= gl =0, as there is ngu
dependence at one-loop. From HQ45) follows then that

J
1] _ 2. 111 1

ﬂ']is diagram has three divergent subgraphs and eight forests,
Sut the relevant term comes from the subtraction associated
to the diagram as a whole. An application of the forest for-
mula leads to the following contribution tgi2! :

pi=pl=0.

Let us now proceed to the two-loop calculation of the e?
renormalization group functions. It can be easily verified that y[iflA: - 5 (25
Y12 and B2 are given by Eqs(18) and (19), with the su- 48m

perscrip 1] replaced byf2]. Besides that, using the one-loop g second graph, Fig(), corresponds to the unsubtracted
results, and writing the renormalization group equations forintegral

I'® andI'®) in a loop expansion, we obtain at two-loops the

following relations:
E[BZ](p>=ie4f [dKI[dq] (2p+Kk)#(2p+2k+q)®

9
B[f]=6vv£§]+IM@F(G”Z](O), (20) X (2p+k+20)"(2p+q)# A(p+Kk)A

X(p+k+a) A(p+a) A, (K) A,p(Q)|sepHz.
[2] _ [2] 4 5 i (4)[2]
BI=anA i IO ), 1) (26)

In this case there is no divergent subgraph and the calcula-

tion of y{2L is reduced to just the contribution from the
ﬁ , 5‘5% forest corresponding to the graph as a whole. We then get

Qs

b c 2] _ e
. . YoB™ 2"
FIG. 4. Contributions toyg, . 127

4

(27)
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TABLE I. Contributions toI'(®2 arising from the graphs in
m/( Fig. 5.
M % Diagram Contribution
a b

5@ 7i m
W )
M 24 w
Y N wasnly]
d e f 5(c) 15 m
—e*vin|—
FIG. 5. Two-loop contributions t&'(®). 472 (,u)
. . . . 5(d) 27 m
The graph in Fig. &) is written as _T 8 |n(_)
2 M
2%1<p>=ie“f [dKI[dq] (2p—K)*(2q—K)*(2q— k)* > e m(T)
La Iz
X(2p—k)"A(k—p)A(q) A 5(f) oi 5 (m)
—_—— n J—
X (4= K)A ,o(K) Ag,(K)|sppHz: (28 us e

The calculation now is more involved and details will be

provided in the Appendix. That analysis produces the resulf@sd(I')=0, and does not contain a divergent subdiagram.
A straightforward calculation gives

e4

2472

2] _
')’EI)]C__

29 i m
29 rgna:__zmm(— . (32
o

8

Adding the results in Eq425), (27), and(29), we obtain Figure Gb) also hasd(I')=0, and no divergent subdiagram.

74 It leads to
Bl—— — 30
Yo 48772 (30

2

[ m
I‘(E;“)[z]:—)\e“ln(;). (33
v

which is in accord with the result obtained in REE3] using

dimensional reduction. , _ o Figure 6c) has Fig. 8b) as a divergent subdiagram. We
The diagrams that contribute with a logarithmic correc-giready know that this subgraph does not contribute. The

i (6)[2] i i - . o . .
tion to I are shown in Fig. 5; each one of them is cgicylation of the forest containing just the overall diagram
superficially logarithmically divergent. Concerning thesegives

graphs we make the following comments. Figurés) &nd
5(d) do not have divergent subgraphs. The other graphs, i (m)

Figs. 8b),5(c) and He),5(f) have just one divergent sub- I‘(C“)[21=—2)\e4ln M

o (34)

graph. However, in all cases the contribution coming from
the subgraph vanishes. For Figbbthis happens after the Taking the above results and using E21) we obtain
contraction of indexes whereas for Figge)sand 5f) this

results from a cancellation between different forests; also, 1 25

the possible contribution arising from the subgraph of Fig. == v——
5(c) is just Fig. 3b) whoseu dependent subtractions vanish 87 127
under symmetric integration. The conclusion is that in each
case one has to compute only the contribution of the fore
containing just the graph as a whole. The results of thes
calculations are summarized in Table I. Summing those con
tributions and using Eq20) we obtain

e\, (35)

We turn now to the computation qi[ﬁ% According to
g. (19), we still need to compute the graphs shown in Fig.
/. Figure Ta) is the same as that in Fig(a}, now with p
=0. There is a cancellation between forests. After some ma-
nipulations, we obtain

7 5 72
ﬂ£,21=24 2V2——264V+ —298. (31 E ; r\/\\jjj E ' 5
T o v
a b c

This result coincides with that of RefL3]. To obtaingl?!
we need to compute logarithmic contributions arising from
'l The relevant graphs are listed in Fig. 6. Figuta)6 FIG. 6. Contributions td"® at two loop.
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with \(®T®)? and »(®T®)?3 self-interactions. Within the
soft BPHZ approach we circumvent the problems associated
with the analytical continuation of the Levi-Civita tensor.

a b c

Hence, there is no need to deal with a complicated consistent
dimensional regularization and neither it is necessary to in-
FIG. 7. Contributions t&?l(p=0). troduce a Maxwell term. However, there is a price for this
simplification, since we have to deal with various forests
1 m with the consequent increase in the number of Feynman in-
EEE](O)=——2m2e4In(—). (36)  tegrals. In the process of calculation, however, we have
8w K found that these integrals can be reduced to a few primitive
ones. In all cases that we studied we explicitly verified the
finiteness of the subtracted integrals.
We have done a two-loop calculation of the renormaliza-
1 m tion group functions. Analogous models were studied in
sB(0)=~—m’*In —) . (37  Refs.[6,11,13,19. Our ! agrees with the one computed in
Am Ref.[6] (Abelian casg We found only a qualitative agree-
ment with Ref.[11] but a more close comparison seems in-
feasible due to the lack of details in R¢L1].

The diagram in Fig. (b) hasd(I')=2, and three divergent
subgraphs. However, due to cancellations the end result is

Finally, Fig. 7c) hasd(I") =0 and no divergent subdiagram.

The result is The comparison with the renormalization group functions
m computed with the consistent dimensional regularization

s2lo)= )\Zln(—>. (38)  scheme in Ref[19] is more difficult. Indeed, the RG func-

321 M tions computed in Ref.19] contain divergent contributions

. _ ) ) 5 in the pure CS limif{no Maxwell term that are absent in our
Cg)llectlng the partial result&12/(0)==12(0)+=5(0)  approach. However there is some partial agreement between
+3§)(0) from Egs.(36)—(38), and using Eq(19) with n our results and the finite parts g{2, 83, and of Ref.

2
=2, we obtain [19] (some coefficients of the expan;nion of these functions
are identical to oups Our result fory[lf] is entirely different
B = L)\z_ imz ot (39) from that in Ref.[19] as those authors claim that?! =0.
3272 3?2 The discrepancy could in principle be attributed to the use of

different renormalization schemes. The use of an extra regu-
For A=0 this agrees with the anomalous dimension of thearization represented by a Maxwell term for the¢ field
composite operato®’® as computed in Ref{13], as it  brings additional complications in their proposal as some of
should. the coefficients of the renormalization group functions be-
To discuss the fixed points structure of the model we in-come singular as the regularization is removed. A more care-
troduce a dimensionless coupling By=Au. Up to two-  ful analysis of this method is still lacking.

loops thebetafunctions are given by Eq31), Although our main interest resides in the pure CS model,
we would like to make a few comments on the possible
- 1. 25 . changes in our scheme if a Maxwell term(a/4)F*"F ,, is
Bi=—A+ F)\ P S €N, (400 added to Eq(1). The propagator for the gauge field is then
& g modified to
and by Eq.(39) with \ replaced byuX. If mandX are zero
there is no induction ofbT® and @ '®)? counterterms as A, (p)= P 1 2 P
i - AP) =€,y + (a%e,,,p’+iaT,,),
B5. and B2 both vanish. The case=0 has been analyzed in H K p2—M?2  1-a?p? moe "
the literature[18] unveiling an interesting tricritical behav- (42

ior. Near the trivial fixed point, for small momenta the run-

ning Coupnngg’;ef and Vet are driven away and approach the WhereM iS the aUXiliary maSSiVe parameter as introduced in
origin, respectively. For large momenta the opposite hapEd.(4) and7,, is the transversal projector defined below Eqg.
pens. As mentioned in Rd:fl?,], for e#0 there are no other (10) Observe thaa has dimension-1 in units of mass. The
fixed points since3, never vanishes in the perturbative re- degree of superficial divergence is now given by

gion. In addition, the behavior cftef near the origin is not

sensible to the introduction & d(r')=3— 1
2

lIl. CONCLUSIONS (42)

1 1
NA_ §N¢_V¢4_VA2¢2_ EVA¢*(9¢ y

In this paper we have shown that it is possible to define avhereV,, denotes the number of vertices associated to
consistent, gauge invariant subtraction scheme with a soff. With this new power counting many graphs previously
behavior in the infrared regimeoft BPH2 for an Abelian  divergent turn out to be convergent. In this situation, the
Chern-Simons theory coupled to a massive scalar mattdollowing possibilities can be envisaged.
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(i) Instead of Eq.2) one adopts Eq(42) to define the —ik-qu(q,,u)]+q“q5AW(k)Aﬁv(k)A(k,/L)
graphs to be subtracted. The outcome is a well defined theory 5 ) s
as far asa, the coefficient of the Maxwell term, is kept non- X[A%(q,0)—ik-qA(q,u)]}- (A1)

vanishing. The result, however, is not analyticarand the

limit a—0 does not exist. The divergent parts of the terms containing they factor

cancel between themselves; the finite parts associated to

(if) One uses the old power counting and the paranter em are odd and vanish under symmetrical integration. We
is not changed in the subtraction terms. This means thatp : y : 9 '
can therefore rewrite the above expression as

many graphs will be oversubtracted. However, such subtrac:
tions are needed if, a— 0, one wants to recover the pure
CS model studied in this paper. 3Bl (p)=16e*p~ pV€,u,a)\€Bvof [dKI[dq]k k"
Finite one-loop renormalization constants for the non-
Abelian CS theory with fermionic matter were computed in
Ref. [20] using consistent dimensional renormalization and [ o 2 PR
found to be different from the ones obtained from the dimen- [(k=p)*=m?][q"—m7][(q—k)*—m7]
sional reduction prescription. It should be noticed that, as 1
remarked in Ref[21], even for finite theories there could _
exist different families of BRST invariant regularizations (k%= u?][9%— u2][(q—K)?— u?]
leading to distinct results for the one-loop radiative correc-
tions. This may imply that in spite of the numerical differ- 1 1
ences there are no physical inconsistencies between the two _[(k— p)2—m?](q?)? + [K2— 12)(q?)?]
approaches.
The model studied in Ref13] is a particular case of Eq. (A2)

. _ 2_ .
(1), with A=m"=0. We found a complete agreement in 1y o qrinytion toyl?) arising from the above integral

[2] [2] [2] ; i . . . .
Yo . By, andygig, . Our results show that the dimensional oo e most easily computed if one employs an intermediate

reduction method is consistent at two-loops, at least, as far ag,xjliary regularization. Adopting dimensional regularization
the computation of the RG functions is concerned. we arrive at

1
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APPENDIX

Xo= f [dk][da]w

In this appendix we shall present details of the calculation

of the contribution of Fig. &) to y{!. The graph [) is 0 (k-q)?

logarithmically divergent and has just one divergent sub- @ K2)2(k2— ) (02— ) (K+)2— w2

graph which is the same as the one associated tcarﬁ;e (A A@ = pIl(k+a)" = u]
contribution to the CS vacuum polarization. We will denote (AS5)

this subgraph byy. There are four forestsz (the empty \ypich  after some simple manipulations, can be calculated

foresd, I', y, and{I', y}. Thus, the application of therest i, the help of the resulté22) and(23). We obtain
formulato Eqg.(28) leads to

1
. ” o X =—, A6
S)(p) =166 p* [ [AKITAAHA“GP a(K03 5,0 1) Soom? (A8)
X[A(k=p,m)A(g,mA(g—k,m) Yot ) A7)
20\ M)= 7 T
—A(k,w)A(Q,u)A(Q—K,p)] 6407
—q“qﬁAW(k)Aﬁy(k)A(k—p,m)[AZ(q,O) from which we obtain the result quoted in the text.
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