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Renormalization group study of the Chern-Simons field coupled to scalar matter
in a modified BPHZ subtraction scheme

L. C. de Albuquerque,* M. Gomes,† and A. J. da Silva‡

Instituto de Fı´sica, USP, C.P. 66318 05389-970, Sa˜o Paulo-SP, Brazil
~Received 1 March 2000; published 20 September 2000!

We apply a soft version of the Bogolubov-Parasiuk-Hepp-Zimmermann subtraction scheme to the compu-
tation of two-loop corrections from an Abelian Chern-Simons field coupled to~massive! scalar matter with a
l(F†F)2 and n(F†F)3 self-interactions. The two-loop renormalization group functions are calculated. We
compare our results with those in the literature.

PACS number~s!: 11.10.Gh, 11.10.Hi, 11.10.Kk
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Field theories with the Chern-Simons~CS! term in 211
dimensions@1,2# are among the best studied models in t
past two decades. This is due not only to their potential
plications but also because of some subtle conceptual
technical aspects. Indeed, the quantization of these the
raises interesting questions, some of which have not b
answered satisfactorily up to now. Of particular interest
the setup of a renormalization or regularization sche
simple and reliable to provide a consistent framework
complex calculations. Many proposals have appeared in
literature @2–7#, each presenting advantages as well as
advantages. For instance, Pauli-Villars regularization exp
itly breaks parity, analytic regularization is not gauge inva
ant, and Slavnov regularization becomes rather intric
beyond one-loop calculations.

It is of course desirable that the regularization sche
preserves as much of the models symmetries as possibl
this respect, the popular dimensional regularization app
to be suited for the task. However, the topological nature
the CS term introduces extra complications. The Levi-Civ
symbol does not admit a simple extension to complex dim
sionsD and to overcome this problem some modificatio
have to be done@8#.

If one insists on keeping the Levi-Civita symbol in thre
dimensions, other approaches are possible. First, there i
so-called consistent dimensional regularization@9,10# in
which emnl is treated as essentially three dimensional,
one has to introduce a Maxwell or Yang-Mills kinetic ter
as a supplementary regularization. In another propo
called dimensional reduction@6,11–13# the tensor algebra is
done in three dimensions and afterwards the Feynman
grals are promoted toD dimensions. This method may intro
duce ambiguities in the finite parts of the amplitudes and a
in the divergent parts in high order corrections.

Now, it is possible to renormalize divergent integra
without introducing an specific regularization. One of t
most efficient and rigorous method is the Bogolubo
Parasiuk-Hepp-Zimmermann~BPHZ! subtraction scheme
which has been applied in a variety of situations@14#. One
class of this method, the soft BPHZ schemes, is espec
adequate for the study of massless theories@15#.
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In a soft BPHZ scheme one introduces subtraction ope
tors in the external momenta and in the masses of the the
In order to have a better control of the infrared divergenc
some of the subtractions have zero mass whereas others
mass equal tom ~the renormalization scale!. In D54 this
scheme is in many circumstances equivalent to the dim
sional regularization with a minimal subtraction prescriptio
and leads to a mass-independent renormalization group e
tion @16#.

In this work we use a soft BPHZ scheme in an Abeli
CS theory coupled with scalar matter to compute two-lo
renormalization group functions. Since this method does
involve analytic continuation in the space-time dimensi
~i.e., we stay in the physical dimensionD53), we evade the
problems aforementioned. Although we will be dealin
mainly with massive particles the scheme allows, for non
ceptional momenta, a smooth zero mass limit if all sup
renormalizable interactions are deleted. The paper is o
nized as follows: In Sec. II we introduce the mode
generalize the soft BPHZ scheme to the CS theory with s
lar matter, and show that the soft BPHZ scheme respects
Ward identity. In Sec. III we compute the renormalizatio
group functions up to two-loops. Finally, we draw some co
clusions and comments. Our results for the renormaliza
group functions extend the ones recently computed thro
the use of the dimensional reduction@13#, in the sense tha
the results agree whenever a comparison is possible.
mentioned agreement indicates that dimensional reductio
a consistent scheme, at least up two-loops, as far as re
malization group functions are concerned. However, diff
ently from Ref. @13# the model that we study includes th
most general, renormalizable and U~1! invariant, self-
interaction of the scalar particles.

I. THE MODEL AND THE SOFT BPHZ SCHEME

The Lagrangian describing the model reads@the metric
has signature (1,2,2) ande01251#

L5~DmF!†DmF2m2F†F2
l

6
~F†F!2

2
n

36
~F†F!31

1

4
emnl Fmn Al2

1

2j
~]•A!2, ~1!
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where Dm5]m2 ieAm is the covariant derivative andFmn

5]m An2]n Am . The canonical operator dimensions are
follows ~in unity of mass@m#51!: @F#51/2, @Am#5@l#
5@j#51, @n#5@e#50. The ultraviolet degree of superficia
divergence of a graphG is

d~G!532Vf42
1

2
Nf2NA , ~2!

whereVf4 is the number of insertions of the superrenorm
izable vertexl(F†F)2, andNf(NA) is the number of scala
~vector! external lines inG. Nonetheless, we must stress th
due to the contractions of indexes, this degree is lowered
the number of external trilinear vertices having attached
internal CS line. In this work we will use the Landau gaug
formally obtained by lettingj→0.

In a soft BPHZ approach the divergent quantum am
tudes, described by Feynman integrals in perturbation the
are made finite by the application of subtraction operat
td(g) arranged in accord with the forest formula@14#.

The subtraction operatortn has degreen in the derivatives
and uses derivatives with respect tom2 ~each of them having
degree 2! if the integrand depends only on the square of t
mass. All infrared finite subtractions are made atm250 but
in the would be infrared divergent terms~possibly occurring
in the last subtractions! we makem25m2. As a rule, we
make the minimum number of subtractions necessary to
der finite a Feynman amplitude. Explicitly, the first thr
subtraction operators are defined as

t0 G~pi ,m!5G~0,m!,

t1 G~pi ,m!5G~0,0!1pi
m ]G

] pi
m U

pi50,m5m

, ~3!

t2 G~pi ,m!5G~0,0!1pi
m ]G

] pi
m U

pi50,m50

1
1

2
pi

mpj
n

]2G
]pi

m]pj
n Upi50,m5m1m2

]G
]m2U

pi50,m5m

,

t3 G~pi ,m!5G~0,0!1pi
m ]G

] pi
m U

pi50,m50

1
1

2
pi

mpj
n

]2G
]pi

m]pj
n Upi50,m501m2

]G
]m2U

pi50,m50

1
1

6
pi

mpj
npk

l
]3G

]pi
m]pj

n]pk
l U

pi50,m5m

1m2pi
m ]2G

]pi
m]m2U

pi50,m5m

.
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It is apparent that our scheme does not introduce infra
divergences in graphs having at least one internal scalar
For ultraviolet divergent graphs without internal scalar line
special care has to be taken. To be precise, for ultravi
divergent graphs without internal scalar lines, we will use
regularized CS field propagator

Dmn~p!5emnr

pr

p22M21 i e
, ~4!

whereM is a regularization mass which, in the subtracti
terms, is to be treated in the same way asm and has to be pu
equal to zero after all the subtractions are performed.

To see how the method works, in the following we w
compute the vacuum polarization at one-loop in the the
specified by Eq.~1!. The vacuum polarization is given by th
sum of two terms, namely,

prl
(A)52ie2grlE @dq# D~q!, ~5!

prl
(B)~p!52e2E @dq# ~2q1p!r~2q1p!l D~q! D~q1p!

[2e2E @dq# I rl~p,q;m!, ~6!

whereD(k)5 i /(k22m21 i e) is the scalar propagator, an
@dq#5d3q/(2p)3. Both prl

(A) and prl
(B) are linearly diver-

gents. For the renormalized quantities we obtain

prl
(A)uR52ie2grlE @dq#~12t1! D~q!

522e2grlE @dq# F 1

q22m2
2

1

q2G , ~7!

prl
(B)uR~p!52e2E @dq#~12t1! I rl~p,q;m!

5e2E @dq#F ~2q1p!r~2q1p!l

~q22m2!„~q1p!22m2
…

24
qrql

~q2!2
2pa

]I rl

]pa U
m5m,p50

G . ~8!

From a practical standpoint, the finite integrals in Eqs.~7!
and ~8! may be most easily computed using an intermedi
regularization~cutoff, dimensional, Pauli-Villars, etc.!, the
final result being, of course, independent of the regulari
tion employed. Note that the last term of the Eq.~8! vanishes
upon symmetric integration. We obtain

prl
(A)uR52 i

e2 m

2p
grl , ~9!
5-2
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prl
(B)~p!uR5 i

e2

8p F 2m S grl1
prpl

p2 D
2

p224m2

Ap2
sinh21S Ap2

A4m22p2D TrlG ,

~10!

where Trl5grl2prpl /p2. Using that prl(p)5prl
(A)

1prl
(B)(p), we finally get @note that p(p2→0)50 as it

should#

prl~p!uR5p~p!Trl

52 i
e2

8p F 2m1
p224m2

Ap2

3sinh21S Ap2

A4m22p2D GTrl . ~11!

The Lagrangian density in Eq.~1! is invariant under glo-
bal U(1) transformations. At the classical level, this d
mands the conservation of the currentJm(x)5 ie@F†]JmF#
12e2F†FAm . At the quantum level this current will be
quantized with normal product of minimum degree, i.e., tw
The corresponding Ward identity for the Green functio
reads

]m^ T N2@Jm#~x! X$n j %
~xk ,yj ! &

5^ T N3@]mJm#~x! X$n j %
~xk ,yj ! &

5e F (
j 51

N

d~x2xj ! 2 (
j 5N11

2N

d~x2xj !G
3^ T X$n j %

~xk ,yj ! &, ~12!

where

X$n j %
~xk ,yj !5)

k51

N

F~xk! )
i 5N11

2N

F†~xi ! )
l 51

L

An l
~yl !,

follows from the use of the normal product algorithm whi
turns out to be valid in our scheme. In the first step Lowe
stein’s differentiation rule@14# was used to get the partia
derivative inside the normal product~which can be done if
one increases the degree of the normal product by one un!;
in the second step one uses the equations of motion for
bilinears F†hF and FhF†, which in our case have th
classical form.

The Ward identity for the proper vertex functions has t
same form as in Eq.~12! except for a minus sign on its righ
hand side. Denoting byG (2N,L)(p1 , . . . ,p2N ;k1 , . . . ,kL)
the proper vertex function of equal numbers~N! of F andF†

fields andL gauge fields, one can verify that, in momentu
space

qm Gm
(2,1)~p,p8;q!52e@G (2)~p8!2G (2)~p!#, ~13!
08500
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qm Gmn
(2,2)~p,p8;q,k!52e@Gn

(2,1)~p1q,p8;k!

2Gn
(2,1)~p,p82q;k!#. ~14!

Here and in the following we adopt the simplified notatio
G (n)[G (n,0).

II. RENORMALIZATION GROUP FUNCTIONS

The renormalized vertex functions introduced in the p
vious section satisfy the renormalization group equation

Fm
]

]m
1bm2

]

]m2
1bl

]

]l
1bn

]

]n
1

1

2
be2

]

]e2

2NgF2LgAGG (N,L)50, ~15!

wherebm2, bl , bn , be2, gF , andgA are power series in the
coupling constantse2, n, and l. We note thatbe25e2gA
50 as a consequence of the Coleman-Hill theorem@17#.

We shall fix now the other functions. We begin by pro
ing that they do not have one-loop contributions. Indeed
the computation of the renormalization group functions
relevant contributions come through them dependence of the
subtraction terms. As mentioned before, these subtract
are those which are potentially infrared logarithmically d
vergent. We shall now examine these possible contributio
We will use a graphical notation in which each diagram re
resents a set of Feynman graphs differing by the orienta
of the external lines. Moreover, to facilitate the discussio
one may use an auxiliary regularization so that each subt
tion can be analyzed individually.

The divergent graphs contributing toG (2) at one-loop are
shown in Fig. 1. Figure 1~a! is linearly divergent but, as it
does not depend on the external momentum, it does not
to a logarithmic term. The graphs in Figs. 1~b! and 1~c! van-
ish upon contraction of indexes. More generally, the subtr
tions for any one-loop graph contributing toG (N), with an
odd number of CS lines, vanishes in the Landau gauge. T
can be used to eliminate the possible contributions toG (6)

coming from Fig. 2. Finally, Fig. 3 shows divergent cont
butions toG (4) at one-loop. Figure 3~a! is linearly divergent,
with no logarithmic corrections. Figure 3~b! is linearly diver-

FIG. 1. G (2) at one loop.

FIG. 2. Divergent contributions toG (6) at one loop.
5-3
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gent. UsingtM
1 in Eq. ~3!, and, in accord with Eq.~4!, taking

the limit M→0 at the end, we found that it does not depe
on m. Figure 3~c! is actually finite due to the observation
made after Eq.~2!. A similar analysis can be done forG (2,1)

andG (2,2) leading to the result mentioned in the beginning
this section.

Let S(p) be the self-energy function defined byG (2)(p)
5 i @p22m22S(p)#. We have

Fm
]

]m
1bm2

]

]m2
1bl

]

]l
1bn

]

]n
22gF GS~p!

1bm212gF~p22m2!50. ~16!

It is then easily verified that

m
]

]m
S [1]~p!1bm2

[1]
12gF

[1]~p22m2!50, ~17!

gF
[1]52

1

4

pmpn

p2

]2

]pm]pn S m
]

]m
S [1] DU

p50

, ~18!

bm2
[1]

52m2gF
[1]2m

]

]m
S [1]U

p50

, ~19!

where the superscript in parenthesis designates the ord
the corresponding quantity in the loop expansion. From E
~18! and~19! we obtain thatgF

[1]5bm2
[1]

50, as there is nom
dependence at one-loop. From Eq.~15! follows then that
bn

[1]5bl
[1]50.

Let us now proceed to the two-loop calculation of t
renormalization group functions. It can be easily verified t
gF

[2] and bm2
[2] are given by Eqs.~18! and ~19!, with the su-

perscript@1# replaced by@2#. Besides that, using the one-loo
results, and writing the renormalization group equations
G (6) andG (4) in a loop expansion, we obtain at two-loops t
following relations:

bn
[2]56ngF

[2]1 im
]

]m
G (6)[2]~0!, ~20!

bl
[2]54lgF

[2]1 im
]

]m
G (4)[2]~0!. ~21!

FIG. 3. Divergent contributions toG (4) at one loop.

FIG. 4. Contributions togF .
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We have used the analytical continuation in the number
dimensions as intermediate regularization. It turns out tha
integrals needed for the computations may be expresse
terms of @n-dimensional Euclidean space, with$dq%
5se dnq/(2p)n, wheres is a mass scale, ande532n#

I 1
(n)~Ma ,Mb ,Mc![E $dk%$dq%

3
1

~k21Ma
2!~q21Mb

2!@~k1q!21Mc
2#

5
1

32p2 F1

e
2g11

2 lnS ~Ma1Mb1Mc!
2

4ps2 D G , ~22!

I 2
(n)~Ma ,Mb![E $dk%$dq%

1

~k21Ma
2!@~k1q!21Mb

2#

5
1

16p2
Ma Mb . ~23!

At two-loops, the nonvanishing contributions togF come
from the three~quadratically divergent! diagrams in Fig. 4.
Figure 4~a! may be written as

SA
[2]~p!522ie4E @dk#@dq# D~k1q2p!

3Dmn~k! Dmn~q!uSBPHZ. ~24!

This diagram has three divergent subgraphs and eight for
but the relevant term comes from the subtraction associ
to the diagram as a whole. An application of the forest f
mula leads to the following contribution togF

[2] :

gF A
[2] 52

e4

48p2
. ~25!

The second graph, Fig. 4~b!, corresponds to the unsubtracte
integral

SB
[2]~p!5 ie4E @dk#@dq# ~2p1k!m~2p12k1q!a

3~2p1k12q!n~2p1q!b D~p1k!D

3~p1k1q! D~p1q! Dmn~k! Dab~q!uSBPHZ.

~26!

In this case there is no divergent subgraph and the calc
tion of gF B

[2] is reduced to just the contribution from th
forest corresponding to the graph as a whole. We then g

gF B
[2] 52

e4

12p2
. ~27!
5-4
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The graph in Fig. 4~c! is written as

SC
[2]~p!5 ie4E @dk#@dq# ~2p2k!m~2q2k!a~2q2k!b

3~2p2k!n D~k2p!D~q! D

3~q2k!Dma~k! Dbn~k!uSBPHZ. ~28!

The calculation now is more involved and details will b
provided in the Appendix. That analysis produces the re

gF C
[2] 52

e4

24p2
. ~29!

Adding the results in Eqs.~25!, ~27!, and~29!, we obtain

gF
[2]52

7e4

48p2
, ~30!

which is in accord with the result obtained in Ref.@13# using
dimensional reduction.

The diagrams that contribute with a logarithmic corre
tion to G (6)[2] are shown in Fig. 5; each one of them
superficially logarithmically divergent. Concerning the
graphs we make the following comments. Figures 5~a! and
5~d! do not have divergent subgraphs. The other grap
Figs. 5~b!,5~c! and 5~e!,5~f! have just one divergent sub
graph. However, in all cases the contribution coming fro
the subgraph vanishes. For Fig. 5~b! this happens after the
contraction of indexes whereas for Figs. 5~e! and 5~f! this
results from a cancellation between different forests; a
the possible contribution arising from the subgraph of F
5~c! is just Fig. 3~b! whosem dependent subtractions vanis
under symmetric integration. The conclusion is that in ea
case one has to compute only the contribution of the fo
containing just the graph as a whole. The results of th
calculations are summarized in Table I. Summing those c
tributions and using Eq.~20! we obtain

bn
[2]5

7

24p2
n22

5

p2
e4n1

72

p2
e8. ~31!

This result coincides with that of Ref.@13#. To obtainbl
[2]

we need to compute logarithmic contributions arising fro
G (4)[2]. The relevant graphs are listed in Fig. 6. Figure 6~a!

FIG. 5. Two-loop contributions toG (6).
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hasd(G)50, and does not contain a divergent subdiagra
A straightforward calculation gives

GA
(4)[2]52

i

8p2
ln lnS m

m D . ~32!

Figure 6~b! also hasd(G)50, and no divergent subdiagram
It leads to

GB
(4)[2]5

i

p2
le4 lnS m

m D . ~33!

Figure 6~c! has Fig. 3~b! as a divergent subdiagram. W
already know that this subgraph does not contribute. T
calculation of the forest containing just the overall diagra
gives

GC
(4)[2]5

i

2p2
le4 lnS m

m D . ~34!

Taking the above results and using Eq.~21! we obtain

bl
[2]5

1

8p2
ln2

25

12p2
e4l. ~35!

We turn now to the computation ofbm2
[2] . According to

Eq. ~19!, we still need to compute the graphs shown in F
7. Figure 7~a! is the same as that in Fig. 4~a!, now with p
50. There is a cancellation between forests. After some
nipulations, we obtain

TABLE I. Contributions toG (6)[2] arising from the graphs in
Fig. 5.

Diagram Contribution

5~a!
2

7i

24p2
n2 ln SmmD

5~b! 9i

4p2
e4n lnSmmD

5~c! 15i

4p2
e4n lnSmmD

5~d!
2

27i

p2
e8 lnSmmD

5~e!
2

9i

p2
e8 lnSmmD

5~f!
2

9i

p2
e8 lnSmmD

FIG. 6. Contributions toG (4) at two loop.
5-5
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SA
[2]~0!52

1

8p2
m2e4 lnS m

m D . ~36!

The diagram in Fig. 7~b! hasd(G)52, and three divergen
subgraphs. However, due to cancellations the end result

SB
[2]~0!52

1

4p2
m2e4 lnS m

m D . ~37!

Finally, Fig. 7~c! hasd(G)50 and no divergent subdiagram
The result is

SC
[2]~0!5

1

32p2
l2 lnS m

m D . ~38!

Collecting the partial resultsS [2] (0)5SA
[2] (0)1SB

[2] (0)
1SC

[2] (0) from Eqs.~36!–~38!, and using Eq.~19! with n
52, we obtain

bm2
[2]

5
1

32p2
l22

2

3p2
m2 e4. ~39!

For l50 this agrees with the anomalous dimension of
composite operatorF†F as computed in Ref.@13#, as it
should.

To discuss the fixed points structure of the model we
troduce a dimensionless coupling byl[l̂m. Up to two-
loops thebeta functions are given by Eq.~31!,

bl̂52l̂1
1

8p2
l̂n2

25

12p2
e4l̂, ~40!

and by Eq.~39! with l replaced byml̂. If m andl̂ are zero
there is no induction ofF†F and (F†F)2 counterterms as
bl̂ andbm2 both vanish. The casee50 has been analyzed i
the literature@18# unveiling an interesting tricritical behav
ior. Near the trivial fixed point, for small momenta the ru
ning couplingsl̂e f andne f are driven away and approach th
origin, respectively. For large momenta the opposite h
pens. As mentioned in Ref.@13#, for eÞ0 there are no othe
fixed points sincebn never vanishes in the perturbative r
gion. In addition, the behavior ofl̂e f near the origin is not
sensible to the introduction ofe.

III. CONCLUSIONS

In this paper we have shown that it is possible to defin
consistent, gauge invariant subtraction scheme with a
behavior in the infrared regime~soft BPHZ! for an Abelian
Chern-Simons theory coupled to a massive scalar ma

FIG. 7. Contributions toS [2] (p50).
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with l(F†F)2 and n(F†F)3 self-interactions. Within the
soft BPHZ approach we circumvent the problems associa
with the analytical continuation of the Levi-Civita tenso
Hence, there is no need to deal with a complicated consis
dimensional regularization and neither it is necessary to
troduce a Maxwell term. However, there is a price for th
simplification, since we have to deal with various fores
with the consequent increase in the number of Feynman
tegrals. In the process of calculation, however, we ha
found that these integrals can be reduced to a few primi
ones. In all cases that we studied we explicitly verified t
finiteness of the subtracted integrals.

We have done a two-loop calculation of the renormaliz
tion group functions. Analogous models were studied
Refs.@6,11,13,19#. OurgF

[2] agrees with the one computed
Ref. @6# ~Abelian case!. We found only a qualitative agree
ment with Ref.@11# but a more close comparison seems
feasible due to the lack of details in Ref.@11#.

The comparison with the renormalization group functio
computed with the consistent dimensional regularizat
scheme in Ref.@19# is more difficult. Indeed, the RG func
tions computed in Ref.@19# contain divergent contributions
in the pure CS limit~no Maxwell term! that are absent in ou
approach. However there is some partial agreement betw
our results and the finite parts ofbl

[2] , bm2
[2] , andbn

[2] of Ref.
@19# ~some coefficients of the expansion of these functio
are identical to ours!. Our result forgF

[2] is entirely different
from that in Ref.@19# as those authors claim thatgF

[2]50.
The discrepancy could in principle be attributed to the use
different renormalization schemes. The use of an extra re
larization represented by a Maxwell term for theAm field
brings additional complications in their proposal as some
the coefficients of the renormalization group functions b
come singular as the regularization is removed. A more ca
ful analysis of this method is still lacking.

Although our main interest resides in the pure CS mod
we would like to make a few comments on the possi
changes in our scheme if a Maxwell term2(a/4)FmnFmn is
added to Eq.~1!. The propagator for the gauge field is the
modified to

Dmn~p!5emnr

pr

p22M2
1

1

12a2p2
~a2emnrpr1 iaTmn!,

~41!

whereM is the auxiliary massive parameter as introduced
Eq. ~4! andTmn is the transversal projector defined below E
~10!. Observe thata has dimension21 in units of mass. The
degree of superficial divergence is now given by

d~G!532
1

2
NA2

1

2
Nf2Vf42VA2f22

1

2
VAf* ]f ,

~42!

whereVO denotes the number of vertices associated toO in
G. With this new power counting many graphs previous
divergent turn out to be convergent. In this situation, t
following possibilities can be envisaged.
5-6
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~i! Instead of Eq.~2! one adopts Eq.~42! to define the
graphs to be subtracted. The outcome is a well defined th
as far asa, the coefficient of the Maxwell term, is kept non
vanishing. The result, however, is not analytic ina and the
limit a→0 does not exist.

~ii ! One uses the old power counting and the parameta
is not changed in the subtraction terms. This means
many graphs will be oversubtracted. However, such subt
tions are needed if, asa→0, one wants to recover the pur
CS model studied in this paper.

Finite one-loop renormalization constants for the no
Abelian CS theory with fermionic matter were computed
Ref. @20# using consistent dimensional renormalization a
found to be different from the ones obtained from the dim
sional reduction prescription. It should be noticed that,
remarked in Ref.@21#, even for finite theories there coul
exist different families of BRST invariant regularization
leading to distinct results for the one-loop radiative corr
tions. This may imply that in spite of the numerical diffe
ences there are no physical inconsistencies between the
approaches.

The model studied in Ref.@13# is a particular case of Eq
~1!, with l5m250. We found a complete agreement
gF

[2] , bn
[2] , andgF†F

[2] . Our results show that the dimension
reduction method is consistent at two-loops, at least, as fa
the computation of the RG functions is concerned.
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APPENDIX

In this appendix we shall present details of the calculat
of the contribution of Fig. 4~c! to gF

[2] . The graph (G) is
logarithmically divergent and has just one divergent s
graph which is the same as the one associated to theprl

B

contribution to the CS vacuum polarization. We will deno
this subgraph byg. There are four forests:B ~the empty
forest!, G, g, and$G, g%. Thus, the application of theforest
formula to Eq. ~28! leads to

SC
[2]~p!516ie4pm pnE @dk#@dq#$qaqbDma~k!Dbn~k!

3@D~k2p,m!D~q,m!D~q2k,m!

2D~k,m!D~q,m!D~q2k,m!#

2qaqbDma~k!Dbn~k!D~k2p,m!@D2~q,0!
s.

08500
ry

at
c-

-

d
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s

-

wo

as

n

-

2 ik•qD3~q,m!#1qaqbDma~k!Dbn~k!D~k,m!

3@D2~q,0!2 ik•qD3~q,m!#%. ~A1!

The divergent parts of the terms containing thek•q factor
cancel between themselves; the finite parts associate
them are odd and vanish under symmetrical integration.
can therefore rewrite the above expression as

SC
[2]~p!516e4pm pnemalebnsE @dk#@dq#klks

3H 1

@~k2p!22m2#@q22m2#@~q2k!22m2#

2
1

@k22m2#@q22m2#@~q2k!22m2#

2
1

@~k2p!22m2#~q2!2
1

1

@k22m2#~q2!2J .

~A2!

The contribution togF
[2] arising from the above integra

can be most easily computed if one employs an intermed
auxiliary regularization. Adopting dimensional regularizatio
we arrive at

gFC
[2] 5216e4@X12X2#, ~A3!

where

X15E @dk#@dq#m
]

]m

q2

k2~k2m2!~q22m2!@~k1q!22m2#
,

~A4!

X25E @dk#@dq#m

3
]

]m

~k•q!2

~k2!2~k22m2!~q22m2!@~k1q!22m2#

~A5!

which, after some simple manipulations, can be calcula
with the help of the results~22! and ~23!. We obtain

X1~m!5
1

960p2
, ~A6!

X2~m!52
1

640p2
, ~A7!

from which we obtain the result quoted in the text.
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